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Reduction of Carbon Dioxide by Nickel Macrocyclic Catalysts 
adsorbed on a Mercury Electrode or a Copper Rotating 
Disc Electrode 

Caroline 1. Smith, Joe A. Crayston" and Robert W. Hay" 
Department of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK 

A new method for evaluating the efficiency of nickel macrocyclic electrocatalysts for reduction of CO, to 
CO using a rotating copper disc electrode has led to the discovery of a new highly active complex, [NiL2I2+ 
[ L2 = 3.1 0-dimethyl- 1,3,5,8,10,12- hexaazacyclotetradecane (diazacyclam)]. 

The electrocatalytic reduction of the greenhouse gas CO, 
is gaining renewed interest."' Since the discovery that 
~i(cyclam)12 + (cyclam = 1,4,8,11-tetraazacyclotetradecane) 
electrocatalyses the selective reduction of CO, to CO when it is 
adsorbed onto mercury from aqueous s ~ l u t i o n , ~ ~ ~  studies have 
dealt in detail with the greater C0,-binding affinity in dimethyl 
sulfoxide for cobalt and nickel complexes with lower M"-M' 
redox  potential^,^*^ but not the actual catalytic activity for the 
reduction of CO,. Recently, a study of N-alkylated derivatives 
of pi(cyclarn)l2 + showed that the N-monomethylated cyclam 
was the best overall catalyst in terms of its reduction potential 
and stability, but gave lower catalytic currents than m i -  
(cyclam)12 +. ' A dimeric cyclam complex was found to be less 
specific for CO, reduction and more active for the competing 
H, reduction reaction.* The nickel@) complex of the 
peripherally methyl-substituted cyclam C-rneso-5,5,7,12,12,14- 
hexamethyl- 1,4,8,11 -tetraazacyclotetradecane is apparently 
considerably less active than pi(cyclam)lZ + under the same 
conditions (MeCN-H,O) and gives more H, as byprod~ct .~*t  
A variety of unsaturated Schiff-base macrocycles have been 
studied and we have recently shown that nickel@) Schiff- 
base complexes are also active for the reduction of CO,. 

In our search for a superior catalyst to [Ni(cyclam)12+ we 
required a saturated macrocyclic complex with a more positive 
metal-based reduction. In this communication we report the 
electrocatalysis of piL'][C104], and ~iL2][C104], l4 

{ L' = 1,3,6,8,12,15-hexaazatricyclo[13.3.1. lleicosane, L2 = 
3,lO-dimethyl- 1,3,5,8,10,12-hexaazacycIotetradecane (diazacy- 
clam)}. Under an inert atmosphere these complexes have Ni"- 
Nil reduction potentials in MeCN at - 1.14 and - 1.42 V us. the 
saturated calomel electrode (SCE) respectively, compared to 
- 1.45 V for [Ni(cyclam)12 + under the same conditions. 

In the presence of CO, the Ni"-Ni' reduction wave of 
~i(cyclam)12 + in MeCN-H,O (9 : 1 v/v) becomes irreversible 
and the cathodic current is greatly increased. Similarly for 
[NiL']'+there is an increase in cathodic current (ipf = 25 pA at 
- 1.34 V) and a small pre-wave (Epc ca. - 1.2 V) (Fig. 1). Under 
the same conditions but using [Ni(cyc1am)l2+ we have 
measured a catalytic current for CO, reduction of i,, = 21 8 pA 
at - 1.62 V. Although the catalytic current for ~ i L ' ] z +  is 

t From Fig. 3 of ref. 9 we measure a catalytic current maximum of 2.68 
mA cm-2 at a scan rate of 80 mV s-', compared to 9.35 mA m-' at 100 
mV s-l for [Ni(cy~lam)]~+. The use of mixed solvent is necessary in 
order to dissolve the complex. 
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Fig. 1 Cyclic voltammetry (100 mV s-l) of p iL' ]2+ at a hanging 
mercury drop electrode (area = 0.0139 cm') at 291 K in MeCN-H,O 
(9 : lw. 1 mol dm-3 NaClO, under argon (a) and in a saturated solution 
of co2 (6) 

L' L2 

much reduced compared to ~i(cyclam)lZ + the peak current is 
at a more positive potential by 280 mV. 

The cyclic voltammogram of FiL'] [C104], in MeCN-H,O 
(9: 1 v/v) displays a Ni'I-Ni' redox couple at - 1.44 V (AE = 
120 mV) under argon but when carbon dioxide is bubbled 
through this solution there is a large catalytic current of 135 pA 
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Fig. 2 Cyclic voltammetry (100 mV s-') of DiL2I2+ at a hanging 
mercury drop electrode (area = 0.0139 cm') at 291 K in MeCN-H20 
(9: 1w.l mol dm-3 NBu",BF, under argon (a) and in a saturated 
solution of CO, (b) 

at - 1.8 V (Fig. 2), with a pre-wave at - 1.28 V, and an anodic 
peak appears at -0.18 V. The original voltammogram is 
restored only after prolonged degassing with argon to remove 
all traces of carbon dioxide. Repeating the experiment, we get 
the same catalytic current but a slightly different potential 
(- 1.68 V). On allowing carbon dioxide to bubble for a longer 
period the current increases to a limiting value of 216 PA. Thus 
this complex is more active than mi(cyclarn)]'+ under the 
same conditions. Even though ~iL2][C1O,I2 is essentially 
insoluble in water (solubility 6 1 mmol dm-3) (so that the redox 
waves are not visible), bubbling carbon dioxide into a 0.5 mmol 
dmP3 aqueous solution of w iL2I2+  yields a catalytic current of 
45 pA at - 1.4 V. 

From the scan-rate dependence of the catalytic current (v = 
10-100 mV s-') for the miL2]'+-C02 system we can plot the 
shift in the Epc values against log (v/mV s-I). If we assume that 
the catalyst is situated on the electrode then the theory for a 
totally irreversible redox system is applicable.'5-* Thus, i, is 
proportional to both carbon dioxide concentration and d Ind 
Epc shifts cathodically by 30/m mV per ten-fold increase in scan 
rate at 25 OC, where a is the transfer coefficient and n is the 
number of electrons transferred in the rate-determining step. A 
high value of 159 mV is observed, consistent with the low value 
of a (0.27) observed for the reduction of CO, at a bare mercury 
electrode in dimethylformamide,16 which was shown to be a 
one-electron process [equation (l)]. 

CO, + H,O + e- __+ HCO,(ads) + OH- (1) 

Similar values of the slope were obtained for miL']'+ and 
mi(cyclam)12+ under the same conditions. The high value of 

* It should be pointed out that a small correction should be made for the 
spherical nature of the electrode.' 5b 
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Fig. 3 (a) Current-voltage curves for a copper rotating disc (area 
0.071 cm2) with adsorbed [Ni(cyclam)12+ in MeCN-H,O (9: 1 p . l  
mol dm-3 NaClO, saturated with CO, at 288 K (scan rate = 20 mV s-') 
and (b) corresponding Levich plots for the three complexes investigated 
after correction for background hydrogen evolution; @i(cyclam)12 + 

(0)- miL1l2+ (+I, @iL2]'+ (H) 

the slope may also be related to resistance effects arising in the 
solvent [MeCN-H,O (9 : 1 v/v)] at these high catalytic currents. 

We then studied the catalysis under steady-state conditions 
at a rotating disc electrode. Initial rotating disc electrode 
experiments were attempted using mercury-plated glassy 
carbon or copper working electrodes, however stable steady- 
state waves could not be observed due to the interference from 
evolution of H,. Instead we found that bare copper itself was a 
suitable substrate. Some problems with reproducibility of the 
data were encountered, and this was traced to inadvertant 
corrosion of the copper disc in MeCN. Rotating disc electrode 
current-voltage curves are shown in Fig. 3(a) for the 
mi(cyclarn)l2 + catalysed reduction of CO,, and the corres- 
ponding Levich curves, i us. o* where o is the rotation rate in 
revolutions per minute (r.p.m.), for this complex are compared 
with those for FiL']' + and P i L 2 l 2  + in Fig. 3(b). The slopes 
of the Levich plots indicate that the reduction of CO, is a 
two-electron process for the mi(cyclam)12+ and wiL2I2 + 

catalysts, using appropriate values ' for the diffusion coefficient 
of CO, (lop6 cm2 s-'), its solubility (0.040 mol dmP3) and the 
area of the electrode (0.071 cm'). The slope of the Levich plot for 
miL'I2' is half this value suggesting that this reduction is a 
one-electron process. The intercepts of the Koutecky-Levich 
curves (2-' us. of) are very small and difficult to determine with 
great precision due to the scatter of the data; however we find 
that all of the catalysts have kinetic currents greater than 5 PA. 

The results for [Ni(cyclam)]' + and miL']' + are consistent 
with the mechanism proposed by Sauvage and c o - w ~ r k e r s , ~ ' ~  
which has recently been probed by ab initio calculations.'7 We 
propose that the good catalytic activity of the diazacyclam 
complex may be due to hydrogen-bonding interactions between 
co-ordinated C02  and the remote tertiary amine group, as 
proposed for co-ordinated C1 and H 2 0  in the related 3-methyl- 
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1,3,5,8,12-pentaazacyclotetradecane (azacyclam) complex. l8 

On the other hand, the diazacyclam L2 is known to stabilise the 
high-spin state by stabilisation of the axial ligands. 
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