# Rate Constants for Thiocyanate Substitution at Mo and W on the Trinuclear Incomplete-cuboidal Clusters $[Mo_2WS_4(H_2O)_9]^{4+}$ and $[MoW_2S_4(H_2O)_9]^{4+}$

# Jane E. Varey and A. Geoffrey Sykes\*

Department of Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

Rate constants (25 °C) have been determined for two kinetic stages, both in the stopped-flow range, for substitution by NCS<sup>-</sup> on the trinuclear clusters  $[Mo_2WS_4(H_2O)_9]^{4+}$  and  $[MoW_2S_4(H_2O)_9]^{4+}$ , I = 2.00 M (LiClO<sub>4</sub>). All the metal atoms are in oxidation state IV. Both steps are dependent on  $[NCS^-]$  and statistical factors for the first stages, 2 in the case of the Mo<sub>2</sub>W and 1 in the case of the MoW<sub>2</sub> complex, are consistent with substitution at the Mo. Variations in  $[H^+]$  were carried out in the case of the Mo<sub>2</sub>W complex and indicate contributions from conjugate-base pathways for both the first and second stages. That for the second stage is consistent with an assignment of substitution at the W, and not the second d-H<sub>2</sub>O on each Mo. From a comparison of rate constants in 2.00 M HClO<sub>4</sub> it is clear that substitution at the Mo and W of the Mo<sub>2</sub>W and MoW<sub>2</sub> complexes is little changed and within 50% of values for the homonuclear trinuclear clusters  $[Mo_3S_4(H_2O)_9]^{4+}$  and  $[W_3S_4(H_2O)_9]^{4+}$ 

The aim of this study was to explore whether molybdenum(iv) and tungsten(iv) ions in heterometallic incomplete-cuboidal trinuclear clusters of the type  $[M_2M'S_4(H_2O)_9]^{4+}$  display the same or different substitution properties to those of the homonuclear  $[Mo_3S_4(H_2O)_9]^{4+}$  and  $[W_3S_4(H_2O)_9]^{4+}$  clusters.<sup>1,2</sup> Previously, in studies on the series of mixed oxo-sulfido core complexes  $[Mo_3O_xS_{4-x}(H_2O)_9]^{4+}$  (ref. 3) and  $[W_3O_xS_{4-x}(H_2O)_9]^{4+}$  (refs. 4 and 5) it has been demonstrated that there are remote influences of core  $O^{2-}$  and  $S^{2-}$  ions on substitution at metals (in the same core) to which they are not directly bonded. These have been summarised in a recent paper,<sup>6</sup> in which core  $Se^{2-}$  ions have also been considered. Whether different metal identities in the same cluster might likewise have an influence one on the other was therefore of interest.

The heterometallic trinuclear complexes  $[Mo_2WS_4(H_2O)_9]^{4+}$  and  $[MoW_2S_4(H_2O)_9]^{4+}$ , containing metal atoms in oxidation state IV have been prepared and X-ray crystallographically characterised by Shibahara and Yamasaki.<sup>7</sup> To some extent studies were influenced by the availability (6:1 or greater) of  $[Mo_2WS_4(H_2O)_9]^{4+}$  as compared to  $[MoW_2S_4-(H_2O)_9]^{4+}$ . A full study of the former was therefore carried out, and sufficient detail was obtained for the latter to leave the outcome in no doubt. The Mo and W atoms are disordered in the crystal structure of the toluene-*p*-sulfonate (pts<sup>-</sup>) salts of  $[Mo_2WS_4(H_2O)_9]^{4+}$  and  $[MoW_2S_4(H_2O)_9]^{4+}$  with M–M distances 2.728(6) Å and 2.723(6) Å respectively.<sup>7</sup> These are very similar to the M–M distances in  $[Mo_3S_4(H_2O)_9]^{4+}$ and  $[W_3S_4(H_2O)_9]^{4+}$  which are 2.735(8) and 2.724(17) Å respectively.<sup>8</sup>

#### Experimental

Preparation of the  $Mo_2W$  and  $MoW_2$  Clusters.—The procedure used was as described.<sup>7</sup> Small portions of sodium tetrahydroborate (Aldrich) (3.0 g in 20 cm<sup>3</sup> water) and 6 M HCl (20 cm<sup>3</sup>) were added to an aqueous solution (50 cm<sup>3</sup>) containing ammonium tetrasulfidotungstate(vI),  $[NH_4]_2[WS_4]$  (1.0 g, 2.87 mmol)<sup>9</sup> and sodium di- $\mu$ -sulfido-bis[cysteinatooxomolybdate-(v)],  $Na_2[Mo_2O_2S_2(cys)_2]$ -4H<sub>2</sub>O (cys = cysteinate here refers to the doubly deprotonated 2 – form of cysteine) (1.85 g, 2.87

mmol).<sup>10</sup> Hydrochloric acid (6 M, 80 cm<sup>3</sup>) was then added and the solution in a conical flask was heated for 5 h on a steam-bath  $(\approx 90 \text{ °C})$  in air. After cooling, the green-brown solution was filtered and loaded onto a G10 Sephadex column (90  $\times$  4 cm) and eluted with 1.0 M HCl ( > 500 cm<sup>3</sup>). The sixth and seventh bands which separated (grey MoW<sub>2</sub> and green Mo<sub>2</sub>W complex respectively) were purified (and concentrated) by loading onto a Dowex 50W-X2 column and eluting with 2.0 M HClO<sub>4</sub>; UV/VIS spectra are shown in Fig. 1. Metal analyses were by inductively coupled plasma (ICP) atomic emission spectroscopy on a Thermo Electron Instrument at Albright & Wilson's, Whitehaven, Cumbria. For the green trinuclear ion the ratio of Mo: W obtained was 2.08:1.0 consistent with the formula  $[Mo_2WS_4(H_2O)_9]^{4+}$ , and for the more dilute solutions of the grey product 1:1.75 consistent with the formula  $[MoW_2S_4(H_2O)_9]^{4+}$ . Stock solutions of  $[Mo_2WS_4(H_2O)_9]^{4+}$ obtained were typically  $\approx 20 \text{ cm}^3$  of the trinuclear ion ( $\approx 0.5$ mM). Yields of  $[MoW_2S_4(H_2O)_9]^{4+}$  were on the other hand much smaller (and variable). Both solutions in 2.0 M HClO<sub>4</sub> were stable in air over periods of at least 1 week at 4 °C.

Other Reagents.--Lithium perchlorate (Aldrich) was recrystallised twice from water, and concentrations of stock



Fig. 1 The UV/VIS spectra of  $[Mo_2WS_4(H_2O)_9]^{4+}$  (left) and  $[MoW_2S_4(H_2O)_9]^{4+}$  (right) solid lines. The spectra in dotted lines are those generated by taking 2:1 and 1:2 contributions respectively from  $[Mo_3S_4(H_2O)_9]^{4+}$  and  $[W_3S_4(H_2O)_9]^{4+}$  in refs. 1 and 11

 $<sup>\</sup>dagger$  Non-SI unit employed: M = mol dm<sup>-3</sup>.

 $\begin{array}{lll} \textbf{Table 1} & \text{Details of the UV/VIS spectra, } \lambda/nm \left(\epsilon/M^{-1} \ cm^{-1} \ per \ M_3\right), \text{ of trinuclear complexes of general formula } \left[M_3S_4(H_2O)_9\right]^{4+} (M = Mo \text{ or } W) \text{ in aqueous } 2.00 \ M \ HClO_4 \end{array}$ 

| Mo <sub>3</sub> S <sub>4</sub> <sup>4+</sup> | $Mo_2WS_4^{4+}$        | MoW <sub>2</sub> S <sub>4</sub> <sup>4+</sup> | W <sub>3</sub> S <sub>4</sub> <sup>4+</sup> |
|----------------------------------------------|------------------------|-----------------------------------------------|---------------------------------------------|
| 363 (5550) <sup>a</sup>                      | 340 (4390)             | 325 (5420)                                    | 314 (6350) <sup>b</sup>                     |
|                                              | 490 (298) <sup>c</sup> | 490 (320) <sup>c</sup>                        |                                             |
| 602 (362) <sup>a</sup>                       | 590 (322)°             | 570 (363) <sup>c</sup>                        | 557 (446) <sup>ø</sup>                      |
| <sup>a</sup> Ref. 1. <sup>b</sup> Refs. 2 a  | and 11. ° Ref. 7.      |                                               |                                             |

solutions were determined by titration of H<sup>+</sup>, following the exchange of Li<sup>+</sup> by H<sup>+</sup> using an Amberlite 1R-120(H) cationexchange column. Perchloric acid (70%, Fisons) was diluted as required. Sodium thiocyanate (BDH, Analar) was used as supplied. Concentrations of stock solutions  $\approx 0.10$  M in water were determined by titration against 0.10 M silver nitrate with aqueous Fe<sup>III</sup> as indicator.

UV/VIS Spectra.—Peak positions and absorption coefficients ( $\varepsilon$ ) for the Mo<sub>2</sub>W and MoW<sub>2</sub> complexes obtained from crystalline material (Table 1) were used in this study.<sup>7</sup> We attempted to generate the Mo<sub>2</sub>W and MoW<sub>2</sub> spectra by taking appropriate contributions (one-third and two-thirds) of known spectra of the homonuclear ions  $[Mo_3S_4(H_2O)_9]^{4+}$  and  $[W_3S_4(H_2O)_9]^{4+}$ .<sup>1,11</sup> Although the main features are present in such spectra there are some differences, Fig. 1. The same holds for the spectrum of  $[Mo_2WO_4(H_2O)_9]^{4+}$  and that obtained from a consideration of  $[Mo_3O_4(H_2O)_9]^{4+}$  and  $[W_3O_4(H_2O)_9]^{4+}$ .<sup>12</sup>

Kinetic Studies.—At 25.0  $\pm$  0.1 °C two stopped-flow stages were monitored for each of the trinuclear clusters with NCS<sup>-</sup> (reactant in > 30-fold excess). The Mo<sub>2</sub>W reaction was followed at 335 nm, and the MoW<sub>2</sub> reaction at 325 nm. The Mo<sub>2</sub>W reaction was also monitored at 490 nm, but at this wavelength no second stage was observed presumably because the  $\Delta\varepsilon$  was too small. Ionic strengths were adjusted to I = 2.00 M with LiClO<sub>4</sub>. The effect of [H<sup>+</sup>] variations was explored for the Mo<sub>2</sub>W but not the MoW<sub>2</sub> reaction. Runs were also carried out with the trinuclear complex in large (> 10-fold) excess of NCS<sup>-</sup> to determine the statistical factors applying.

Treatment of Data.—Stopped-flow traces were analysed using OLIS (Bogart, GA, USA) programs. Unweighted leastsquares treatments were used to determine errors.

Other Reaction Steps.—The UV/VIS scan spectra were recorded between 300 and 550 nm on a Philips Unicam 8700 spectrophotometer (Philips analytical). The reaction of the  $Mo_2W$  complex (0.18 mM) with NCS<sup>-</sup> (5.9 mM) gave absorbance increases (up to 30%) over 60 min further to the stopped-flow changes. An initial cross-over point at 357 nm was not retained, consistent with more than one stage. For the corresponding reaction of the MoW<sub>2</sub> complex (0.084 mM) with NCS<sup>-</sup> (5.9 mM) similar observations were made, but in this case a cross-over point at 349 nm was retained as a well defined isosbestic.

#### Results

Kinetics of Mo<sub>2</sub>W Complex with NCS<sup>-</sup>.—Equilibration rate constants  $k_{1eq}$  and  $k_{2eq}$  are listed in Table 2. The dependence on [NCS<sup>-</sup>] (reactant in > 10-fold excess) at each [H<sup>+</sup>] is indicated in Fig. 2. At [H<sup>+</sup>] = 2.00 M it was possible to carry out three runs with the Mo<sub>2</sub>W complex in > 10-fold excess which define the rate equation (1), where  $k_{1f}$  and  $k_{1aq}$  are for complex

$$k_{1eq} = k_{1f} [Mo_2W] + k_{1aq}$$
(1)

**Table 2** Equilibration rate constants (25 °C) for the first  $(k_{1eq})$  and second  $(k_{2eq})$  phases of the reaction of  $[Mo_2WS_4(H_2O)_9]^{4+}$  with NCS<sup>-</sup>, I = 2.00 M (LiClO<sub>4</sub>)

| [H <sup>+</sup> ]/M | $[Mo_2W]/mM$ | [NCS <sup>-</sup> ]/mM | $10k_{1eq}/s^{-1}$ | $10^2 k_{2eq}/s^{-1}$ |
|---------------------|--------------|------------------------|--------------------|-----------------------|
| 2.00                | 0.02         | 0.60                   | 1.91               | 3.8                   |
|                     | 0.04         | 1.20                   | 2.79               | 4.9                   |
|                     | 0.04         | 1.50                   | 3.3                | 6.0                   |
|                     | 0.04         | 1.80                   | 3.7                | 6.6                   |
|                     | 0.15         | 0.015                  | 1.36               |                       |
|                     | 0.25         | 0.015                  | 1.84               |                       |
|                     | 0.50         | 0.015                  | 2.58               |                       |
| 1.50                | 0.02         | 0.60                   | 2.10               | 4.3                   |
|                     |              | 0.90                   | 2.65               | 4.7                   |
|                     | 0.04         | 1.20                   | 3.2                | 5.4                   |
|                     |              | 1.50                   | 3.5                | 6.2                   |
|                     |              | 1.80                   | 4.1                | 7.2                   |
| 1.00                | 0.02         | 0.60                   | 2.4                | 4.7                   |
|                     |              | 0.90                   | 3.2                | 5.6                   |
|                     | 0.04         | 1.20                   | 3.5                | 6.5                   |
|                     |              | 1.50                   | 4.3                | 7.2                   |
|                     |              | 1.80                   | 4.7                | 8.3                   |
| 0.75                | 0.02         | 0.60                   | 2.82               | *                     |
|                     |              | 0.90                   | 3.4                | 6.6                   |
|                     | 0.04         | 1.20                   | 3.8                | 7.8                   |
|                     |              | 1.50                   | 4.5                | 8.7                   |
|                     |              | 1.80                   | 5.2                | 9.5                   |
| 0.50                | 0.02         | 0.60                   | 3.1                | *                     |
|                     |              | 0.90                   | 3.8                | 7.7                   |
|                     | 0.04         | 1.20                   | 4.4                | 8.8                   |
|                     |              | 1.80                   | 5.8                | 11.3                  |
| 0.25                | 0.02         | 0.60                   | 4.3                | *                     |
|                     |              | 0.90                   | 5.5                | 10.1                  |
|                     | 0.04         | 1.20                   | 6.1                | 11.4                  |
|                     |              | 1.50                   | 67.1               | 12.6                  |
|                     |              | 1.80                   | 7.8                | 14.1                  |
|                     |              |                        |                    |                       |

\* Small absorbance change. No self-consistent data obtained.



**Fig. 2** Dependence of equilibration rate constants  $k_{1eq}$  (25 °C) on complex concentration for the first (stopped-flow) stage of the reaction of NCS<sup>-</sup> (>10-fold excess) with  $[Mo_2WS_4(H_2O)_9]^{4+}$  at  $[H^+]/M 2.00$  (**■**), 1.5 (**\***), 1.00 (+), 0.75 (×) 0.50 (**•**), and 0.25 (**•**), I = 2.00 M (LiClO<sub>4</sub>). Runs at  $[H^+] = 2.00$  M with  $[Mo_2WS_4(H_2O)_9]^{4+}$  the reactant in > 10-fold excess are indicated ( $\Box$ )

formation and aquation respectively in the reversible process observed. Only by including a statistical factor of 2 for the runs with  $NCS^-$  in excess, equation (2), is there a correspondence of

$$k_{1eq} = (k_{1f}[NCS^{-}]/2) + k_{1aq}$$
 (2)

 $k_{1f}$  and  $k_{1aq}$ . As in previous studies<sup>6</sup> the absorbance changes



Fig. 3 Dependence of equilibration rate constants  $k_{2eq}$  (25°C) on [NCS<sup>-</sup>] for the second (stopped-flow) stage of reaction of NCS<sup>-</sup> (>10-fold excess) with [Mo<sub>2</sub>WS<sub>4</sub>(H<sub>2</sub>O)<sub>9</sub>]<sup>4+</sup> at [H<sup>+</sup>]/M 2.00 (**m**), 1.5 (\*), 1.00 (+), 0.75 (×), 0.50 ( $\blacklozenge$ ) and 0.25 ( $\blacktriangle$ ), I =2.00 M (LiClO<sub>4</sub>)

with the Mo<sub>2</sub>W complex in excess are not sufficiently large to define the second stage. For runs with NCS<sup>-</sup> in >10-fold excess, rate constants  $k_{2eq}$  are plotted against [NCS<sup>-</sup>], Fig. 3, on the assumption that a statistical factor of 1 applies, equation (3), where  $k_{2f}$  and  $k_{2af}$  are the corresponding terms to those defined above.

$$k_{2eq} = k_{2f}[NCS^{-}] + k_{2aq}$$
 (3)

Values of  $k_{1f}$ ,  $k_{1aq}$ ,  $k_{2f}$  and  $k_{2aq}$  at different [H<sup>+</sup>] are listed in Table 3. The absorbance changes are smaller and the errors much larger for the second stage. The dependence on [H<sup>+</sup>] was investigated over the range 0.25-2.00 M. For the first stage the variation of  $k_{1f}$  with [H<sup>+</sup>] is non-linear, Fig. 4. The reaction sequence (4)-(7) is proposed, where the conjugate base in (4) is

$$Mo_2W^{4+} \xrightarrow{K_{1a}} Mo_2W(OH)^{3+} + H^+$$
 (4)

$$\operatorname{Mo}_2 W^{4+} + \operatorname{NCS}^{-} \underset{k_{-1}}{\xleftarrow{k_{-1}}} \operatorname{Mo}_2 W(\operatorname{NCS})^{3+}$$
 (5)

$$\operatorname{Mo_2W(OH)^{4+}} + \operatorname{NCS}^{-} \underset{k'_1}{\overset{k'_1}{\longleftarrow}} \operatorname{Mo_2W(OH)(NCS)^{2+}}$$
(6)

$$Mo_2W(NCS)^{3+} \xrightarrow{K_{1*}} Mo_2W(OH)(NCS)^{3+} + H^+$$
 (7)

assigned to the Mo at which substitution is occurring, and the presence of  $Mo_2W(OH)^{3+}$  brings about a labilisation effect. From this sequence  $k_{1f}$  can be expressed as in equation (8).<sup>1</sup>

$$k_{1f} = \frac{k_1 [H^+] + k'_1 K_a}{[H^+] + K_a}$$
(8)

From a fit of data  $k_1 = 219 \pm 14 \text{ M}^{-1} \text{ s}^{-1}$ ,  $k'_1 = 890 \pm 60 \text{ M}^{-1} \text{ s}^{-1}$  and  $K_{1a} = 0.27 \pm 0.02 \text{ M}$  (substitution at Mo). The corresponding expression for  $k_2$  (where  $K_{2a}$  is for action dissociation at the W) generates  $k_2 = 15.3 \pm 1.4 \text{ M}^{-1} \text{ s}^{-1}$ ,  $k'_2 = 63 \pm 6 \text{ M}^{-1} \text{ s}^{-1}$  and  $K_{2a} = 0.45 \pm 0.04 \text{ M}$  (substitution at W). For the back reaction involving aquation of the thiodynate a plot of  $k_{1aq}$  against  $[H^+]^{-1}$  is linear, Fig. 5, and gives  $k_{-1} = (8.6 \pm 0.5) \times 10^{-1} \text{ s}^{-1}$  and  $k'_{-1}K'_{1a} = (4.8 \pm 0.2) \times 10^{-2} \text{ M s}^{-1}$  (for Mo). Similarly a plot of  $k_{2aq}$  against  $[H^+]^{-1}$  gives  $k_{-2} = (1.57 \pm 0.14) \times 10^{-2} \text{ s}^{-1}$  and  $k'_{-2}K'_{2a} = (1.67 \pm 0.21) \times 10^{-2} \text{ M s}^{-1}$  (for W). The constants  $K'_{1a}$  and  $K'_{2a}$  are both  $\ll$ [H<sup>+</sup>].

**Table 3** Summary of  $k_f$  and  $k_{aq}$  values (25 °C) for the two phases of the reaction of  $[Mo_2WS_4(H_2O)_9]^{4+}$  with NCS<sup>-</sup>, I = 2.00 M (LiClO<sub>4</sub>)

| [H <sup>+</sup> ]/M                          | $k_{ m f}/{ m M}^{-1}~{ m s}^{-1}$ | $10^{3}k_{\rm aq}/{\rm s}^{-1}$ |
|----------------------------------------------|------------------------------------|---------------------------------|
| First phase $(k_{1f} \text{ and } k_{1ag})$  |                                    |                                 |
| 2.00                                         | 300(10)                            | 100(5)                          |
| 1.50                                         | 320(10)                            | 117(8)                          |
| 1.00                                         | 370(20)                            | 137(15)                         |
| 0.75                                         | 400(20)                            | 156(14)                         |
| 0.50                                         | 440(20)                            | 188(25)                         |
| 0.25                                         | 570(31)                            | 274(20)                         |
| Second phase $(k_{2f} \text{ and } k_{2ag})$ |                                    |                                 |
| 2.00                                         | 24(2)                              | 23(3)                           |
| 1.50                                         | 25(2)                              | 26(3)                           |
| 1.00                                         | 30(1)                              | 29(1)                           |
| 0.75                                         | 35(3)                              | 35(4)                           |
| 0.50                                         | 40(1)                              | 41(1)                           |
| 0.25                                         | 44(2)                              | 62(3)                           |



**Fig. 4** Non-linear dependence of rate constants  $k_{1f}$  (25 °C) on  $[H^+]^{-1}$ for the first stage of the complexing of NCS<sup>-</sup> (formation step) to  $[Mo_2WS_4(H_2O)_9]^{4+}$ , I = 2.00 M (LiClO<sub>4</sub>)



Fig. 5 Linear dependence of rate constants  $k_{1aq}$  (25 °C) on  $[H^+]^{-1}$  for the first (aquation) step in equilibration studies of NCS<sup>-</sup>  $[M_2WS_4(H_2O)_9]^{4+}$ , I = 2.00 M (LiClO<sub>4</sub>) with

Kinetics of MoW<sub>2</sub> Complex with NCS<sup>-</sup>.-Having confirmed the pattern of behaviour for the  $Mo_2W$  complex less-extensive studies were called for with the  $MoW_2$  complex. Equilibration rate constants for the first two stages in 2.00 M HClO<sub>4</sub>,  $k_{3eq}$  and  $k_{4eq}$ , are listed in Table 4. The dependence of  $k_{3eq}$  on [MoW<sub>2</sub>] and [NCS<sup>-</sup>], Fig. 6, defines a statistical factor of unity. The slope and intercept give  $k_{3f} = 171 \pm 6 \text{ M}^{-1} \text{ s}^{-1}$  and  $k_{3aq} =$ 

**Table 4** Equilibration rate constants (25 °C) for the first  $(k_{3eq})$  and second  $(k_{4eq})$  phases of the reaction of  $[MoW_2S_4(H_2O)_9]^{4+}$  with NCS<sup>-</sup>,  $[H^+] = 2.00 \text{ M}$ , I = 2.00 M (HCIO<sub>4</sub>)



Fig. 6 Dependence of equilibration rate constants  $k_{3eq}$  (25 °C) on complex concentration for the first (stopped-flow) stage of the reaction of NCS<sup>-</sup> (> 10-fold excess) with  $[MoW_2S_4(H_2O)_9]^{4+}$  at  $[H^+] = 2.00$  M, I = 2.00 M. ( $\Box$ ) Run with the  $[MoW_2S_4(H_2O)_9]^{4+}$  in 10-fold excess



Fig. 7 Dependence of equilibration rate constants  $k_{4eq}$  (25 °C) on thiocyanate concentration for the second (stopped-flow) stage of the reaction of NCS<sup>-</sup> (>10-fold excess) with  $[MoW_2S_4(H_2O)_9]^{4+}$  at  $[H^+] = 2.00 \text{ M}, I = 2.00 \text{ M}$ . A statistical factor of 2 is assumed for this stage since the factor is demonstrated as equal to 1 for  $k_{3eq}$  in Fig. 6

 $0.036 \pm 0.007 \text{ s}^{-1}$ . A statistical factor of 2 is assumed for the second stage of reaction, Fig. 7, giving  $k_{4f} = 39 \pm 2.3 \text{ M}^{-1} \text{ s}^{-1}$  and  $k_{4aq} = (1.98 \pm 0.16) \times 10^{-2} \text{ s}^{-1}$ , also in 2.00 M HClO<sub>4</sub>.

#### Discussion

An appraisal of the present results is dependent on an understanding of the reactivity of the homonuclear  $[M_3S_4-(H_2O)_9]^{4+}$  clusters (M = Mo or W). In all incomplete cuboidal clusters the H<sub>2</sub>O molecules are of two types c and d depending on whether they are *trans* to core  $\mu_3$ -S or  $\mu$ -S ligands. Previous kinetic studies on the substitution of  $[Mo_3S_4(H_2O)_9]^{4+}$  by NCS<sup>-</sup> have indicated three stages. These are assigned as the (stopped-flow) reaction at the first d-H<sub>2</sub>O,<sup>1</sup> a process which is

**Table 5** Summary of rate constants (25 °C) for the substitution of  $H_2O$  by NCS<sup>-</sup> at Mo and W in the trinuclear complexes  $[M_3S_4(H_2O)_9]^{4+}$ ,  $[H^+] = 2.00 \text{ M}$ , I = 2.00 M (HCIO<sub>4</sub>)

|                                  | $k_{\rm f}/{ m M}^{-1}$ | s <sup>-1</sup> | $k_{aa}/\mathrm{s}^{-1}$ |                | <i>K</i> /M <sup>-1</sup> |      |
|----------------------------------|-------------------------|-----------------|--------------------------|----------------|---------------------------|------|
| Complex                          | Мo                      | w               | Mo                       | w              | Mo                        | W    |
| $[Mo_{3}S_{4}(H_{2}O)_{9}]^{4+}$ | 212ª                    |                 | 0.092ª                   |                | 2300                      |      |
| $[W_{3}S_{4}(H_{2}O)_{9}]^{4+}$  |                         | 38              |                          | 0.025          |                           | 1520 |
| $[Mo_2WS_4(H_2O)_9]^{4+}$        | 300                     |                 | 0.10                     |                | 3000                      |      |
|                                  |                         | 23.7°           |                          | 0.023 <i>*</i> |                           | 1040 |
| $[MoW_2S_4(H_2O)_9]^{4+}$        | 171                     |                 | 0.036                    |                | 4750                      |      |
|                                  |                         | 30              |                          | 0.020          |                           | 1950 |

<sup>a</sup> [NCS<sup>-</sup>]-Dependent and [H<sup>+</sup>]-independent second stage assigned as substitution of second d-H<sub>2</sub>O,  $k_f = 1.24 \text{ M}^{-1} \text{ s}^{-1}$  and  $k_{aq} = 5.8 \times 10^{-4} \text{ s}^{-1}$ , ref. 13. <sup>b</sup> [NCS<sup>-</sup>]-independent second stage assigned as isomerisation of co-ordinated NCS<sup>-</sup>,  $k_1 = 1.0 \times 10^{-4} \text{ s}^{-1}$ , ref. 13.



more favourable if the other d-H<sub>2</sub>O on the same Mo is present in the Mo–OH conjugate-base form (effect of  $[H^+]$ ). Reaction at the second d-H<sub>2</sub>O can be monitored in conventional ( $t_2 > 1$ min) time-range experiments. No conjugate-base pathway is observed since the other d position is already occupied by NCS<sup>-</sup>.<sup>13</sup> The c-H<sub>2</sub>Os do not exhibit any comparable acid dissociation.<sup>14</sup> A third slower stage detected in H<sub>2</sub><sup>17</sup>O exchange studies on  $[Mo_3S_4(H_2O)_9]^{4+}$  is assigned to the  $\approx 10^5$  times slower substitution at the c-H<sub>2</sub>O.<sup>14</sup> For the first stage a statistical factor of 3 has established that reaction is occurring concurrently at all three Mo atoms when NCS<sup>-</sup> is present in excess. No [NCS<sup>-</sup>]-independent step, which has been assigned to the isomerisation of co-ordinated NCS<sup>-</sup>, has been detected in the case of  $[Mo_3S_4(H_2O)_9]^{4+}$ .

in the case of  $[Mo_3S_4(H_2O)_9]^{4+}$ . With  $[W_3S_4(H_2O)_9]^{4+}$  again two kinetic stages are observed, but the  $[NCS^-]$ -independent second stage, is assigned as isomerisation,<sup>13</sup> most likely W-SCN  $\longrightarrow$  W-NCS. While it is reasonable that substitution at the second d-H<sub>2</sub>O should also be occurring, this has not so far been detected in spectrophotometric investigations.

We now consider the stopped-flow results obtained in this study. A comparison of rate constants for [Mo<sub>2</sub>WS<sub>4</sub>- $(H_2O)_9]^{4+}$  and  $[MoW_2S_4(H_2O)_9]^{4+}$  alongside those for  $[Mo_3S_4(H_2O)_9]^{4+}$  and  $[W_3S_4(H_2O)_9]^{4+}$ , all in 2.00 M HClO<sub>4</sub>, is made in Table 5. This approach using a single (high) [H<sup>+</sup>] has been used previously (since it avoids carrying out a very large number of runs), and is justified as long as the  $pK_a$ values are about the same for the molybdenum and tungsten centres, which appears to be the case.<sup>1,2</sup> In total, four formation steps might be anticipated, involving events occurring at the  $d-\hat{H}_2O$  sites of the Mo and W. Much slower substitution at the c-H<sub>2</sub>O sites would be expected to contribute two more steps. In Table 5 we compare the first stages for  $[Mo_3S_4(H_2O)_9]^{4+}$  and  $[W_3S_4(H_2O)_9]^{4+}$  with the two stopped-flow stages studied for each of the Mo/W hetero complexes. The assignments are reasonably straightforward with the first substitution occurring at Mo for both the Mo/W clusters, which is confirmed by the statistical factors of 2 for  $Mo_2W$  and 1 for  $MoW_2$ . The pattern of behaviour with the substitution at Mo about an order of magnitude faster than at W is retained, and there appears to be little or no influence of W on Mo (and vice versa) when the two occur in the same trinuclear unit.



**Fig. 8** Summary of the order of substitution of  $H_2O$  ligands at Mo and W on  $[Mo_2WS_4(H_2O)_9]^{4+}$  and  $[MoW_2S_4(H_2O)_9]^{4+}$ . In the former, the positions 1 and 3, and 2 and 4 respectively are equivalent at the outset. The first stage 1 has a conjugate-base contribution from position 3 (and 2 from 4), but 3 shows no  $[H^+]$  dependence. Processes 5 and 6 are slow and at present less well defined. Similar observations hold for the MoW<sub>2</sub> complex, in which case there may in addition be a thiocyanate isomerisation process at W

A much fuller study was carried out on the Mo<sub>2</sub>W than on the MoW<sub>2</sub> complex, including an investigation of the effect of [H<sup>+</sup>] on  $k_{1eq}$  and  $k_{2eq}$ . Conjugate-base pathways involving Mo–OH and W–OH respectively contribute to both stages. The acid dissociation constant  $K_{1a}$  of 0.27 M from studies on the first stage (Mo) of the Mo<sub>2</sub>W reaction is in very good agreement with the corresponding value for the Mo<sub>3</sub> ion of 0.22 M.<sup>1,14</sup> Likewise  $K_{2a} = 0.45$  M for the second stage (W) compares with 0.35 M from studies on the W<sub>3</sub> ion.<sup>2</sup> The values obtained for W are greater than those for Mo, see also ref. 6. From the treatment given,  $K'_{1a}$  and  $K'_{2a}$  are much smaller and  $\leq 10^{-2}$  M, a trend which can be explained by the presence of NCS<sup>-</sup> in the same co-ordination sphere.

With the information available from these and other studies the order of six substitution processes can be defined for each of the  $Mo_2W$  and  $MoW_2$  ions. Fig. 8 summarises the reaction sequences involved. While it is possible to study the kinetics of at least the third and fourth stages of the  $Mo_2W$  reaction by conventional spectrophotometry, we did not see the need further to establish these processes at this time.

Recent results for the substitution by NCS<sup>-</sup> on the  $\mu$ -oxo trinuclear analogue  $[Mo_2WO_4(H_2O)_9]^{4+}$  are also of interest.<sup>15</sup> Unfortunately only one stage was detected, where it is noted that the rate constant obtained is in this case more like that for substitution on  $[W_3O_4(H_2O)_9]^{4+}$  than on  $[Mo_3O_4(H_2O)_9]^{4+,4,16}$ 

Whereas substitution on  $[Mo_3O_xS_{4-x}(H_2O)_9]^{4+}$  and  $[W_3O_xS_{4-x}(H_2O)_9]^{4+}$  mixed oxo-sulfido bridged trinuclear complexes indicates an influence of oxo and sulfido ligands on substitution at a remote metal centre to which they are not attached,<sup>6</sup> the metals Mo and W in the heterometal Mo<sub>2</sub>W and MoW<sub>2</sub> clusters do not produce similar effects. From Table 5 it would appear that substitution rates at Mo and W remain essentially unchanged. Thus rate constants for the substitution at Mo in Mo<sub>3</sub>, Mo<sub>2</sub>W and MoW<sub>2</sub> complexes are in the range 171–300 M<sup>-1</sup> s<sup>-1</sup>, and those for W in W<sub>3</sub>, Mo<sub>2</sub>W and MoW<sub>2</sub> complexes are in the range 23.7–39.0 M<sup>-1</sup> s<sup>-1</sup>. Also of interest are

the consistently smaller formation constants K for complexing of NCS<sup>-</sup> at W as compared to Mo, Table 5. Finally Mo<sup>IV</sup> and W<sup>IV</sup> have identical radii and there are no

Finally Mo<sup>IV</sup> and  $\hat{W}^{IV}$  have identical radii and there are no structural changes on replacing one metal by another. Thus from X-ray crystallography the dimensions of  $[Mo_3S_4-(H_2O)_9][pts]_4\cdot9H_2O$  (Mo–Mo 2.73, Mo– $\mu_3$ -S 2.33, Mo– $\mu$ -S 2.29 Å)<sup>17</sup> and  $[W_3S_4(H_2O)_9][pts]_4\cdot7H_2O$  (W–W 2.72, W– $\mu_3$ -S 2.35, W– $\mu$ -S 2.28 Å),<sup>18</sup> as well as of the Mo<sub>2</sub>W and MoW<sub>2</sub> complexes (see Introduction) are identical. The differences in substitution rate constants for Mo and W of about an order of magnitude originate in large part from the different sizes of 4d and 5d orbitals respectively.<sup>19</sup> The influence of heterometal atoms from different groups in the Periodic Table remains to be fully appraised for incomplete and cuboidal clusters.<sup>20,21</sup>

## Acknowledgements

We thank the SERC for a Quota Research Studentship and the SCI for the award of the Messel Scholarship (to J. E. V.). We are grateful to Albright and Wilson's for use of ICP facilities.

## References

- 1 B.-L. Ooi and A. G. Sykes, Inorg. Chem., 1989, 28, 3799.
- 2 M. Nasreldin, A. Olatunji, P. W. Dimmock and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1990, 1765.
- 3 B.-L. Ooi, M. Martinez and A. G. Sykes, J. Chem. Soc., Chem. Commun., 1988, 1324.
- 4 B.-L. Ooi, A. L. Petrou and A. G. Sykes, Inorg. Chem., 1988, 27, 3626.
- 5 Y.-J. Li, C. A. Routledge and A. G. Sykes, Inorg. Chem., 1991, 30, 5045.
- 6 G. J. Lamprecht, M. Martinez, M. Nasreldin, C. A. Routledge, N. Al-Shatti and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 747.
- 7 T. Shibahara and M. Yamasaki, Inorg. Chem., 1991, 30, 1687.
- 8 See, for example, T. Shibahara, Adv. Inorg. Chem., 1991, 37, 143.
- 9 J. W. McDonald, G. D. Friesen, L. D. Rosenhein and W. E. Newton, *Phorg. Chim. Acta*, 1983, **72**, 205.
- 10 F. A. Schultz, V. R. Ott and D. S. Swieter, *Inorg. Chem.*, 1977, 16, 2538. 11 T. Shibahara, A. Takeuchi, M. Nakajima and H. Kuroya, *Inorg.*
- Chim. Acta, 1988, 143, 147. 12 A. Patel and D. T. Richens, J. Chem. Soc., Chem. Commun., 1990, 274.
- 13 C. A. Routledge and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1992, 325.
- 14 D. T. Richens, P.-A. Pittet, A. E. Merbach, B.-L. Ooi, M. Humanes, G. J. Lamprecht and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 2305.
- 15 A. Patel, S. Siddiqui, D. T. Richens, M. E. Harman and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1993, 767.
- 16 B.-L. Ooi and A. G. Sykes, Inorg. Chem., 1988, 27, 310.
- 17 H. Akashi, T. Shibahara and H. Kuroya, Polyhedron, 1990, 9, 1671.
- 18 T. Shibahara, A. Takeuchi, A. Ohtsuji, K. Kohda and H. Kuroya,
- Inorg. Chim. Acta, 1987, 127, L45.
- 19 K. S. Pitzer, Acc. Chem. Res., 1979, 12, 271.
- 20 P. W. Dimmock, D. P. E. Dickson and A. G. Sykes, *Inorg. Chem.*, 1990, **29**, 5120.
- 21 P. W. Dimmock, G. J. Lamprecht and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1991, 955.

Received 9th June 1993; Paper 3/03326K