Cluster Chemistry. Part 91.¹ Clusters derived from 1,4-Bis(diphenylphosphino)buta-1,3-diyne and Their Pyrolysis Products: A Route to Complexes containing the Tetracarbon Ligand*

Chris J. Adams, ${ }^{a}$ Michael I. Bruce, ${ }^{a}$ Ernst Horn, ${ }^{a}$ Brian W. Skelton, ${ }^{\boldsymbol{b}}$ Edward R. T. Tiekink ${ }^{\boldsymbol{a}}$ and Allan H. White ${ }^{b}$
${ }^{a}$ Jordan Laboratories, Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
${ }^{b}$ Department of Chemistry, University of Western Australia, Nedlands, Western Australia 6009, Australia

Abstract

Reactions of $\left[\mathrm{M}_{n}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]\left[\mathrm{M}_{n}=\mathrm{Ru}_{3}, \mathrm{Os}_{3}, \mathrm{Re}_{3}(\mu-\mathrm{H})_{3}\right.$, or $\mathrm{Ru}_{4}\left(\mu-\mathrm{H}_{4}\right)_{4}$] with the linear bis(phosphine) $\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh} \mathrm{P}_{2}$ (bdpp) afford the 'barbell' complexes [$\left\{\mathrm{M}_{n}(\mathrm{CO})_{11}\right\}_{2}(\mu-\mathrm{bdpp})$] [$\mathrm{M}_{n}=\mathrm{Ru}_{3} 1$ (38). Os_{3} 2 (68), $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3} 4(44)$, or $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4} 6(39 \%)$]. The monosubstituted complexes [$\mathrm{M}_{n}(\mathrm{CO})_{11}(\mathrm{bdpp})$] $\left[M_{n}=\mathrm{Os}_{3} 3\right.$ or $\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}$ 5] were isolated when an excess of bdpp was used. Reactions of 3 with $\left[\mathrm{M}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]\left[\mathrm{M}_{3}=R \mathrm{u}_{3}\right.$ or $\left.\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}\right]$ afforded the mixed-metal complexes [\{Os $\left.\mathrm{O}_{3}(\mathrm{CO})_{11}\right\}(\mu-$ bdpp) $\left.\left\{\mathrm{M}_{3}(\mathrm{CO})_{11}\right\}\right]\left[\mathrm{M}_{3}=\operatorname{Ru} 7(40)\right.$ or $\left.\operatorname{Re}_{3}(\mu-\mathrm{H})_{3} 8(63 \%)\right]$. In a similar fashion $\left[\left\{\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}(\mu-\right.$ bdpp) $\left.\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\right] 9$ was prepared (38\%) from 5 and $\left[R u_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$. When a solution of 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was gently heated under a nitrogen purge the C_{4} complex $\left[\left\{\mathrm{Ru}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] 10$ was produced in 73% yield. Without purging, the yield is much reduced; a minor product from the reaction is $\left[\left\{R u_{4}(\mu-H)(C O)_{12}\right\}\left\{\mu_{4}-\operatorname{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}_{2}\right\}\left\{R \mathrm{u}_{3}(\mathrm{CO})_{11}\right\}\right]$ 11. Complex 11 contains an $R u_{3}(\mathrm{CO})_{11}$ moiety linked via a $\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ ligand to an Ru -spiked Ru_{3} cluster. One of the C_{2} units is attached in a $\mu-\sigma, \sigma, \eta^{2}$-vinylic mode to the spike $R u$ and to two of the three $R u$ atoms in the closed triangular core. When 11 was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ the complex $\left[\left\{\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{OMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}\left(\mu_{4}-\right.\right.$ $\left.\left.\mathrm{CCH}-\mu-\eta^{2}-\mathrm{C}_{2}\right)\left\{\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right\}\right] 12$ was formed. This complex contains an Ru_{4} rhombus, opposite faces of which carry μ_{3} - OMe and a μ_{4}-vinylidene ligand; the latter is attached via a $\mathrm{C}-\mathrm{C}$ single bond to the binuclear fragment. The complex $\left[\left\{\mathrm{Os}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] 13$ was obtained (78\%) by pyrolysis of 2 in refluxing toluene. The structures of complexes 6 and 10-13 were determined by singlecrystal X-ray studies.

We have described the pyrolysis of complexes containing metal carbonyl cluster fragments attached to each phosphorus atom of 1,2-bis(diphenylphosphino) acetylene $\left(\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{PPh}_{2}\right.$, dppa), such as $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right\}_{2}(\mu\right.$-dppa $\left.)\right]$, which give unusual cluster condensation products formed by cleavage of a $\mathrm{C}(\mathrm{sp})-\mathrm{P}$ bond (to give a $\mu-\mathrm{PPh}_{2}$ group) and incorporation of the $\mathrm{C} \equiv \mathrm{C}$ bond into a medium-sized cluster. ${ }^{2}$ In several subsequent reactions we have shown that clusters containing dicarbon $\left(\mathrm{C}_{2}\right)$ ligands can be obtained. ${ }^{3}$

We have also reported recently some complexes derived from the related ligand 1,3-bis(diphenylphosphino)buta-1,3-diyne($\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}_{2}$, bdpp) in which one transition metal-ligand moiety is attached to each end of the linear diacetylenic tertiary phosphine. ${ }^{4}$ Some of these were shown to react with $\left[\mathrm{Co}_{2}\right.$ $\left.(\mathrm{CO})_{8}\right]$ or $\left[\mathrm{Pt}\left(\eta-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to afford the expected products containing $\mathrm{Co}_{2}(\mathrm{CO})_{6}$ or $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ groups bonded to one of the $\mathrm{C} \equiv \mathrm{C}$ triple bonds. This feature is only rarely available in the chemistry of dppa because of the steric hindrance posed by the bulky phenyl groups about the $\mathrm{C} \equiv \mathrm{C}$ triple bond. ${ }^{5}$

In seeking to extend this synthetic approach to complexes containing other all-carbon ligands, we have studied the syntheses and pyrolytic reactions of complexes of bdpp with ruthenium, osmium and rhenium cluster carbonyls, their transformations to complexes containing the C_{4} ligand, and their reactions with $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ to give a range of hetero-

[^0]nuclear clusters with novel core geometries. This is the first of two papers describing this chemistry, some of which has been described in preliminary fashion. ${ }^{6}$

Results

A complex containing two $\mathrm{Ru}_{3}(\mathrm{CO})_{11}$ groups bridged by a bdpp ligand was readily obtained in about 40% yield from reactions of the ligand with $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$ or directly from $\left[R u_{3}(\mathrm{CO})_{12}\right]$ in tetrahydrofuran (thf) in the presence of $\mathrm{Me}_{3} \mathrm{NO}$. The product, formulated as $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp) $]$ 1 (Scheme 1), formed red crystals which were readily identified from its IR $v(\mathrm{CO})$ spectrum, which was very similar to that of $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-dppa $\left.)\right],{ }^{2}$ both of which resemble that of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPh}_{3}\right)\right],{ }^{7}$ and its FAB mass spectrum, which contained a molecular ion at $m / z 1642$ which fragmented by loss of up to 22 CO groups, producing envelopes of ion clusters between $m / z 1614$ and 1026. The ${ }^{1} \mathrm{H}$ NMR spectrum was not very informative, containing only resonances assigned to the aromatic protons.

The osmium analogue 2 was prepared as orange crystals from bdpp and 2 equivalents of the $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$ precursor in 68% yield. This complex had similar spectral properties to those of 1 , most useful being the observation of a molecular ion in the FAB mass spectrum at m / z 2176. When 2 equivalents of bdpp were employed the monocluster complex [$\left.\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{bdpp})\right] 3$ was obtained in 67% yield, distinguished from 2 by its molecular ion at m / z 1297; the IR $v(\mathrm{CO})$ spectra of the two complexes were virtually identical.

A 44% yield of $\left[\left\{\operatorname{Re}_{3}(\mu-H)_{3}(C O)_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right] 4$ was ob-
tained as a pale yellow solid from the ligand and 2 equivalents of $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$. This complex could be characterised by the molecular ion at $m / z 2158$ in the FAB mass spectrum; the IR $v(\mathrm{CO})$ spectrum was similar to that of $\left[\left\{\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{1_{1}}\right\}_{2}(\mu \text {-dppa) }]^{2 c}\right.$ The mono- Re_{3} derivative 5 was similarly obtained in 49% yield from a reaction using 2 equivalents of the ligand. As found for 2 and 3, the IR v(CO) spectra of the two complexes were similar; the molecular ion of 5 was found at $m / z 1288$.

A complex containing two tetranuclear clusters was formed by reaction of bdpp with $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$. Yellow crystals of $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right] 6$ were formed in 39% yield from a reaction carried out at room temperature. The ${ }^{1} \mathrm{H}$ NMR spectrum contained the expected high-field doublet resonance at $\delta-17.26$, and a molecular ion at $m / z 1853$ which fragmented by stepwise loss of the 22 CO groups was also consistent with the proposed formulation. As the first representative of its type, $\mathbf{6}$ was also characterised by a single-crystal X-ray study, which is described below.

The availability of complexes 3 and 5 , with their uncoordinated P-donor centres, allowed the synthesis of complexes containing two different cluster moieties. Thus the reaction between 3 and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$ afforded a 44% yield of the mixed-cluster complex $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}(\mu\right.$-bdpp $\left.)\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\right] 7$ as red needles. The IR $v(C O)$ spectrum was similar to those of 1 and 2, while the mass spectrum contained M^{+}at m / z 1910 together with ions formed by loss of up to 22 CO

Scheme 1 (i) 0.5 equivalent bdpp; (ii) excess of bdpp; (iii) $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$; (iv) $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$
groups between $m / z 1882$ and 1294. A similar reaction with $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$ afforded yellow $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}\right.$ -$(\mu$-bdpp $\left.)\left\{\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}\right] 8$ in 63% yield, while the red $\mathrm{Re}_{3} / \mathrm{Ru}_{3}$ analogue 9 was obtained from $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11^{-}}\right.$ (bdpp)] and [$\left.\mathrm{Ru}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$ in 38% yield. Both 8 and 9 were identified from their FAB mass spectra which contained highest ions at $m / z 2144\left(M^{+}\right)$and $1816\left([M-3 C O]^{+}\right)$, respectively; the IR $v(\mathrm{CO})$ spectra approximated to an overlap of those of the constituent clusters, suggesting that there was little interaction between them when separated by a ligand as large as bdpp.

Molecular Structure of $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right] 6$.The molecular structure of complex 6 is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. The molecule is centrosymmetric, the two Ru_{4} clusters adopting a transoid disposition about the $\mathrm{PC}_{2} \mathrm{C}_{2} \mathrm{P}$ part of the ligand to minimise steric interactions. The two $\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}$ clusters have the same idealised $D_{2 d}$ geometry found for $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}\right]^{8}$ and some mono- and di-substituted derivatives, such as $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right]^{9}$ and $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{8}$ The intracluster bonds comprise two short $[2.787(1), 2.791(2) \AA]$ and four long $\mathrm{Ru}-\mathrm{Ru}$ separations [2.953(2)-2.978(1) \AA] \{cf. respective average values of $2.786(1)$ and $2.950(1) \AA$ in $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}\right], 2.772(2)$ and $2.966(2) \AA$ in $\left.\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]\right\}$. The long vectors indicate the position of the four $\mu-\mathrm{H}$ ligands, which were not located in the X-ray study. The phosphorus atom of the bdpp ligand co-ordinates to $\mathrm{Ru}(1)[\mathrm{Ru}(1)-\mathrm{P}(1) 2.325(5) \AA]$ which is also bonded to two H ligands. Within the bdpp ligand, the $\mathrm{C} \equiv \mathrm{C}$ distance is $1.19(2) \AA$, which may be compared to the values of 1.192(7) and 1.201(6) \AA found in the two independent molecules of $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}(\mu\right.$-bdpp $\left.)\right] .{ }^{4}$ Similarly, the $\mathrm{PC}_{2} \mathrm{C}_{2} \mathrm{P}$ unit is nearly linear [angles at the carbon atoms are $171(2)$ and $176(2)^{\circ}$, respectively].

Pyrolysis Studies.-(a) $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{1_{1}}\right\}_{2}(\mu\right.$-bdpp $\left.)\right]$. Smooth conversion of complex 1 into $\left[\left\{\mathrm{Ru}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\right.\right.$ C_{4})] $\mathbf{1 0}$ was achieved by heating in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 7 h while purging with a nitrogen stream (Scheme 2). This pale yellow complex, obtained in 73% yield, has M^{+}at $m / z 1530$ and ions formed by loss of up to 18 CO groups therefrom. It was conclusively identified by the X-ray study which has been briefly reported elsewhere; ${ }^{6}$ further discussion is deferred to the description of the analogous osmium complex below.

When the solution of complex 1 was heated for 24 h without a nitrogen purge only 26% of 10 was obtained. It was accompanied by a small amount of $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\left\{\mu-\mathrm{PPh}_{2}-\right.\right.$

Fig. 1 Plot of a molecule of $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp)] 6, showing the atom numbering scheme. For all Figures, non-hydrogen atoms are shown as 20% thermal envelopes; hydrogen atoms when shown have arbitrary radii of $0.1 \AA$

Table 1 Selected bond parameters (distances in \AA, angles in ${ }^{\circ}$) for $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right] 6$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.974(2)$	$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.953(2)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.978(1)$	$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.325(5)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.791(2)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.78(2)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.787(1)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.19(2)$
$\mathrm{Ru}(2)-\mathrm{Ru}(4)$	$2.956(3)$	$\mathrm{C}(2)-\mathrm{C}\left(2^{2}\right)$	$1.38(3)$

$\begin{array}{ll}\mathrm{Ru}-\mathrm{CO} & \text { range } 1.83(1)-1.99(3) \text {, average } 1.89 \\ \mathrm{C}-\mathrm{O} & \text { range } 1.02(3)-1.22(2) \text {, average } 1.14 \\ \mathrm{P}-\mathrm{C}(\mathrm{Ph}) & 1.81(1) \text { and } 1.842(8) \text {, average } 1.83\end{array}$

$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	$111.4(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$171(2)$	

Scheme 2 (i) Heat; (ii) MeOH
$\left.\left.\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})(\mathrm{CO})_{12}\right\}\right] \mathbf{1 1}$ which was identified crystallographically. Recrystallisation of 11 from solvents containing MeOH resulted in its conversion into red $\left[\left\{\mathrm{Ru}_{4}-\right.\right.$ $\left.\left(\mu_{3}-\mathrm{OMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}\left(\mu_{4}-\mathrm{CCH}-\mu-\eta^{2}-\mathrm{C}_{2}\right)\left\{\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)-\right.$ $\left.(\mathrm{CO})_{6}\right\}$] 12, also characterised by X-ray crystallography. Both complexes have all-terminal $v(C O)$ spectra and their mass spectra contained M^{+}ions at $m / z 1771$ and 1506, respectively.
Molecular structure of $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\left\{\mu-\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}\right.\right.$ -
$\left.\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right\}\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})(\mathrm{CO})_{12}\right\}$] 11. Fig. 2 depicts one of two independent molecules of 11 and selected bond parameters are listed in Table 2. In this molecule an intramolecular reaction involving one half of complex 1 has occurred, the $\mathrm{Ru}_{3}-$ $(\mathrm{CO})_{11}\left(\mathrm{PPh}_{2} \mathrm{C}_{2}\right)$ fragment remaining essentially unchanged from that found in 1 and being comparable to the many complexes of the type $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{1_{1}}\left(\mathrm{PR}_{3}\right)\right]$ that have been structurally characterised $[\mathrm{Ru}-\mathrm{Ru} 2.828-2.846(3) ; \mathrm{Ru}(6)-\mathrm{P}(2)$ $2.331(4) \AA] .{ }^{10}$ The C_{2} unit attached to $P(2)$ does not interact with any metal atom and retains the structural characteristics of an alkyne $[\mathrm{C}(3)-\mathrm{C}(4) \quad 1.20(2), 1.19(2) ; \mathrm{C}(4)-\mathrm{P}(2) \mathrm{1.74(1)}$, $1.75(1) \AA ; \mathrm{P}(2)-\mathrm{C}(4)-\mathrm{C}(3) \quad 173(2), \quad 178(1) ; \mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$ $172(2)^{\circ}(\times 2)$ (values for two independent molecules given)].
The other half of the molecule consists of an Ru_{3} triangle, to which a fourth Ru atom is joined. The other $\mathrm{Ru}-\mathrm{Ru}$ bonds have a range of values $[\mathrm{Ru}(1)-\mathrm{Ru}(3) 2.765,2.787(3) ; \mathrm{Ru}(2)-\mathrm{Ru}(3)$ 2.888,2.905(3); $\mathrm{Ru}(1)-\mathrm{Ru}(2) 2.987(3), 2.966(4) \AA]$, the length of the last suggesting it to be bridged by the H atom shown to be present by the high-field doublet at $\delta-19.1$ in the ${ }^{1} \mathrm{H}$ NMR spectrum but not located definitely in the X-ray study. Atom $\mathrm{C}(2)$ bridges $\mathrm{Ru}(1)-\mathrm{Ru}(3)$, and with $\mathrm{C}(1)$ is also attached to $\mathrm{Ru}(3) ; \mathrm{C}(1)$ is σ bonded to $\mathrm{Ru}(4)[\mathrm{Ru}(4)-\mathrm{C}(1) 2.07(1) \AA]$ and to $\mathrm{P}(1)$. The latter is bonded to $\mathrm{Ru}(2)$ by a normal 2e donor bond $[\mathrm{Ru}(2)-\mathrm{P}(1) 2.322(5), 2.327(4) \AA]$ and carries one Ph group and a $\mathrm{C}_{6} \mathrm{H}_{4}$ ring which is also σ bonded to $\mathrm{Ru}(4)[\mathrm{Ru}(4)-\mathrm{C}(112)$ 2.16(1) $(\times 2) \AA]$. Individual electron counts at the four ruthenium atoms indicate that there is a donor bond from $\operatorname{Ru}(3)$ to $\mathrm{Ru}(4)$; the separation [2.938(3), 2.952(3) \AA] is consistent with this feature. The $\mathrm{C}_{2} \mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ part of the bridging ligand acts as an 8e donor, which with the H atom and the 12 CO groups gives a total of 64 e for the Ru_{4} cluster, which has only four Ru -Ru bonds as predicted by the normal electron-counting rules. The two independent molecules of the asymmetric unit have similar but significantly different conformations, as measured by, e.g., the dihedral angles between the two Ru_{3} planes [98.72(6), $95.64(6)^{\circ}$ for molecules 1,2 , respectively].
Molecular structure of $\left[\left\{\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{OMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}\left(\mu_{4^{-}}\right.\right.$ $\left.\left.\mathrm{CCH}-\mu-\eta^{2}-\mathrm{C}_{2}\right)\left\{\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right\}\right]$ 12. This molecule is illustrated in Fig. 3 with some bond lengths and angles summarised in Table 3. The molecule consists of two parts, a conventional $\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{C}_{2} \mathrm{R}\right)(\mathrm{CO})_{6}$ complex, formed by addition of one $\mathrm{C}_{2} \mathrm{PPh}_{2}$ fragment from the bdpp ligand in 2 (or 11) to the Ru_{3} cluster, with concomitant loss of a $\mathrm{Ru}(\mathrm{CO})_{3}$ fragment, and a Ru_{4} cluster also containing a (differently) modified $\mathrm{C}_{2} \mathrm{PPh}_{2}$ fragment. The R group in the binuclear part is the tetranuclear cluster, linked via the $\mathrm{C}(2)-\mathrm{C}(3)$ bond [1.45(2) $\AA]$.
In the latter the four Ru atoms form a rhombus bent about the $\mathrm{Ru}(2) \cdots \mathrm{Ru}(4)$ diagonal [dihedral angle 37.86(5) ${ }^{\circ}$]; the $\mathrm{Ru}-\mathrm{Ru}$ distances range between 2.681 and 2.805(2) \AA. A C_{2} fragment bridges all four metal atoms via $\mathrm{C}(1)[\mathrm{Ru}(1,2,3,4)-\mathrm{C}(1)$ 2.17(1), 2.20(1), 2.10(1), 2.11(2); $\mathrm{Ru}(3)-\mathrm{C}(2) 2.28(1) \AA$] and a PPh_{2} ligand asymmetrically bridges the $\mathrm{Ru}(1)-\mathrm{Ru}(2)$ vector $[\mathrm{Ru}(1,2)-\mathrm{P}(1) 2.299,2.335(4) \AA]$. Three of the Ru atoms are also bridged, on the opposite side of the rhombus, by a μ_{3}-OMe group $[\mathrm{Ru}(1,2,4)-\mathrm{O}(01) 2.10(1), 2.21(1), 2.127(8) \AA]$; the OMe protons resonate at δ 1.62. This high-field shift, compared to normal organic OMe groups, probably results from coordination to the three metal atoms.
The geometry about atom $\mathrm{C}(2)$, e.g. $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) 120^{\circ}$, suggests that this atom also bears a hydrogen atom, so that the ligand linking the Ru_{2} and the Ru_{4} units could be described as an alkynylvinylidene. We have not been able to refine this H atom, but a doublet resonance in the ${ }^{1} \mathrm{H}$ NMR spectrum at δ 4.15, in the region normally associated with vinylidene protons, ${ }^{11}$ supports this assignment.
(b) $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right]$ 2. After heating complex 2 in refluxing toluene for 5 d under a nitrogen purge only one pale yellow complex was isolated in 78% yield after the usual workup. The IR $v(C O)$ spectrum was very similar to that of 10 , and

Fig. 2 Plot of one of the two independent molecules of $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})(\mathrm{CO})_{12}\right\}\left\{\mu_{4}-\mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}_{2}\right\}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\right]$ 11, normal to the $\mathrm{Ru}(1,2, j)$ plane, showing the atom numbering scheme

Table 2 Selected bond parameters (distances in \AA, angles in ${ }^{\circ}$) for $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})(\mathrm{CO})_{12}\right\}\left\{\mu_{4}-\mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}_{2}\right\}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\right] \mathbf{1 1}$ (molecules 1,2)

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.987(3), 2.966(4)$	$\mathrm{Ru}(1)-\mathrm{C}(2)$	$2.09(2), 2.10(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.765(3), 2.787(3)$	$\mathrm{Ru}(3)-\mathrm{C}(1)$	$2.29(1), 2.24(1)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.888(3), 2.905(3)$	$\mathrm{Ru}(3)-\mathrm{C}(2)$	$2.30(1), 2.23(1)$
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.938(3), 2.952(3)$	$\mathrm{Ru}(4)-\mathrm{C}(1)$	$2.07(1), 2.05(2)$
$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$2.848(3), 2.846(3)$	$\mathrm{Ru}(4)-\mathrm{C}(112)$	$2.16(1), 2.16(1)$
$\mathrm{Ru}(5)-\mathrm{Ru}(7)$	$2.829(4), 2.844(3)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.75(1), 1.83(1)$
$\mathrm{Ru}(6)-\mathrm{Ru}(7)$	$2.850(3), 2.828(3)$	$\mathrm{P}(2)-\mathrm{C}(4)$	$1.74(1), 1.75(1)$
$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.322(5), 2.327(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.50(2), 1.39(2)$
$\mathrm{Ru}(6)-\mathrm{P}(2)$	$2.323(5), 2.331(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.42(2), 1.45(2)$
		$\mathrm{C}(3)-\mathrm{C}(4)$	$1.20(2) 1.19(2)$

$\mathrm{Ru}-\mathrm{CO}$	range $1.68-1.99(2)$, average 1.89			
$\mathrm{C}-\mathrm{O}$	range $1.09-1.37(2)$, average 1.15			
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	range $1.75-1.81(2)$, average 1.80			
$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$120.32(7), 119.45(9)$	$\mathrm{Ru}(4)-\mathrm{C}(1)-\mathrm{C}(2)$	$125.1(9), 128(1)$	
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$106.01(7), 107.76(9)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$117(1), 115(1)$	
$\mathrm{Ru}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	$103.7(5), 104.1(4)$	$\mathrm{P}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$173(2), 178(1)$	
$\mathrm{Ru}(2)-\mathrm{P}(1)-\mathrm{C}(111)$	$113.7(5), 114.0(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118(1), 117(1)$	
$\mathrm{Ru}(6)-\mathrm{P}(2)-\mathrm{C}(4)$	$116.1(5), 112.9(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$172(2), 172(2)$	

Dihedral angles
$\mathbf{R u}(1,2,3) / \mathbf{R u}(3,4)$
$\operatorname{Ru}(1,2,3) / R u(1,3) C(2)$
$\mathrm{Ru}(1,2,3) / \mathrm{Ru}(5,6,7)$

30,55(3), 30.00(3)
72.46(5), $72.23(5)$
98.72(6), 95.64(6)
its identity as the osmium analogue 13 was confirmed by a single-crystal X-ray study.

Molecular structures of $\left[\left\{\mathrm{M}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right]$ ($\mathrm{M}=\mathrm{Ru} 10$ or Os 13). As expected, the molecular geometry and dimensions of complex 13 are similar to those of 10: Fig. 4 depicts a molecule each of 10 and 13 and bond parameters for both complexes are collected in Table 4. In each case, one half of the molecule comprises the asymmetric unit; however, the second half is generated by an inversion centre in 10 and a twofold axis in 13. Although the overall aspect of the molecule is slightly changed in consequence, the effect of the cluster geometry is minimal; this is the result of closely similar sizes of
the ruthenium and osmium atoms, as has been remarked before. ${ }^{12}$

The molecules consist of two triangular M_{3} clusters, one edge of each of which is bridged by a $\mu-\mathrm{PPh}_{2}$ group, formed by cleavage of both $\mathrm{C}(\mathrm{sp})-\mathrm{P}$ bonds in the bdpp ligand of the precursor (1 or 2). The resulting C_{4} fragment bridges both \mathbf{M}_{3} cores in a conventional $\mu_{3}-\sigma, 2 \pi(\perp)$ fashion, as a buta-1,3-diyne1,4 -diyl ligand. Thus the complex appears as two $\mathrm{M}_{3}\left(\mu_{3}-\mathrm{C}_{2}\right)(\mu-$ $\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}$ fragments linked by a $\mathrm{C}-\mathrm{C}$ single bond $[1.417(8)$ (10); $1.42(2) \AA(13)]$ with a symmetry element at its centre.

It is worth noting that $\mathbf{M}(1) \cdots \mathrm{M}(3)$ vectors in both cores are long, at $3.452(1)$ and $3.488(3) \AA$, respectively, and are
(a)

(b)

Fig. 3 Plots of a molecule of $\left.\left[\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{OMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}\left(\mu_{4}-\mathrm{CCH}-\mu-\eta^{2}-\mathrm{C}_{2}\right)\left\{\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right\}\right]$ 12, (a) normal and (b) oblique to the Ru_{4} 'plane', showing the atom numbering scheme
essentially non-bonding. This vector is also bridged by the PPh_{2} group $[\mathrm{M}(1,3)-\mathrm{P} 2.393,2.385(1)(10) ; 2.409,2.425(5) \AA(13)]$ and perpendicularly by the C_{2} unit $[\mathrm{M}(1,3)-\mathrm{C}(1) 2.277,2.254(4)$ (10); 2.33, 2.24(2) (13); M(1,3)-C(2) 2.444, 2.450(5) (10); 2.39, $2.37(2) \AA(13)]$. The long distances to $\mathrm{C}(2)$ in 10 are notable.

Both 10 and 13 resemble the 50 e complexes $\left[\mathrm{M}_{3}\left(\mu_{3}-\mathrm{C}_{2} \operatorname{Pr}^{\mathrm{i}}\right)(\mu\right.$ $\left.\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}$] ($\mathrm{M}=\mathrm{Ru}$ or Os), in which the non-bonded M $\cdots M$ separations are $3.466(1)$ and $3.508(1) \AA \AA^{13}$ the angles subtended at the bridging P atoms [92.51(5)(10), 92.4(2) $\left.{ }^{\circ}(13)\right]$ are also similar to those found in Carty's complexes [92.8 (Ru),

Table 3 Selected bond parameters (distances in \AA, angles in ${ }^{\circ}$) for $\left[\left\{\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{OMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}\left(\mu_{4}-\mathrm{CCH}-\mu-\eta^{2}-\mathrm{C}_{2}\right)\left\{\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)-\right.\right.$ (CO$\left.\left.)_{6}\right\}\right] 12$

$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	$2.681(2)$	$\mathrm{Ru}(4)-\mathrm{O}(01)$	$2.127(8)$
$\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$2.768(2)$	$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.17(1)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$2.774(2)$	$\mathrm{Ru}(2)-\mathrm{C}(1)$	$2.20(1)$
$\mathrm{Ru}(2) \cdots \mathrm{Ru}(4)$	$3.427(2)$	$\mathrm{Ru}(3)-\mathrm{C}(1)$	$2.10(1)$
$\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$2.805(2)$	$\mathrm{Ru}(4)-\mathrm{C}(1)$	$2.11(2)$
$\mathrm{Ru}(5)-\mathrm{Ru}(6)$	$2.755(2)$	$\mathrm{Ru}(3)-\mathrm{C}(2)$	$2.28(1)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.299(4)$	$\mathrm{Ru}(5)-\mathrm{C}(3)$	$2.48(2)$
$\mathrm{Ru}(2)-\mathrm{P}(1)$	$2.335(4)$	$\mathrm{Ru}(5)-\mathrm{C}(4)$	$2.27(2)$
$\mathrm{Ru}(5)-\mathrm{P}(2)$	$2.340(4)$	$\mathrm{Ru}(6)-\mathrm{C}(4)$	$2.02(1)$
$\mathrm{Ru}(6)-\mathrm{P}(2)$	$2.328(5)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.45(2)$
$\mathrm{Ru}(1)-\mathrm{O}(01)$	$2.10(1)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.45(2)$
$\mathrm{Ru}(2)-\mathrm{O}(01)$	$2.21(1)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.25(2)$

$\mathrm{Ru}-\mathrm{CO}$	range $1.76-2.01(2)$, average 1.89
$\mathrm{C}-\mathrm{O}$	range $1.10-1.18(2)$, average 1.14
$\mathrm{P}-\mathrm{C}(\mathrm{Ph})$	range $1.77-1.88(2)$, average 1.81

$\mathrm{P}-\mathrm{C}(\mathrm{Ph}) \quad$ range $1.77-1.88(2)$, average 1.81

$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(4)$	$77.93(6)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120(1)$
$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	$96.97(6)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$168(1)$
$\mathrm{Ru}(2)-\mathrm{Ru}(3)-\mathrm{Ru}(4)$	$75.81(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ru}(6)$	$162(1)$

$\mathrm{Ru}(1)-\mathrm{Ru}(4)-\mathrm{Ru}(3)$ 94.29(7)
(2) C(4) Ru(6) 162(1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{Ru}(6) \quad 162(1)$

Table 4 Selected bond parameters (distances in \AA, angles in ${ }^{\circ}$) for $\left[\left\{\mathrm{M}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right](\mathrm{M}=\mathrm{Ru} 10$ or Os 13$)$

	10	13
$\mathrm{M}(1)-\mathrm{M}(2)$	$2.841(1)$	$2.905(2)$
$\mathrm{M}(2)-\mathrm{M}(3)$	$2.846(1)$	$2.883(2)$
$\mathrm{M}(1) \cdots \mathrm{M}(3)$	$3.452(1)$	$3.488(3)$
$\mathrm{M}(1)-\mathrm{P}$	$2.393(1)$	$2.409(5)$
$\mathrm{M}(3)-\mathrm{P}$	$2.385(1)$	$2.425(5)$
$\mathrm{M}(1)-\mathrm{C}(1)$	$2.277(4)$	$2.33(2)$
$\mathrm{M}(1)-\mathrm{C}(2)$	$2.444(4)$	$2.39(1)$
$\mathrm{M}(2)-\mathrm{C}(1)$	$1.936(6)$	$1.93(2)$
$\mathrm{M}(3)-\mathrm{C}(1)$	$2.254(4)$	$2.24(2)$
$\mathrm{M}(3)-\mathrm{C}(2)$	$2.450(5)$	$2.37(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.302(9)$	$1.34(2)$
$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	$1.417(8)$	$1.42(2)$
$\mathrm{P}-\mathrm{C}(101)$	$1.835(5)$	$1.82(1)$
$\mathrm{P}-\mathrm{C}(201)$	$1.836(6)$	$1.83(2)$
$\mathrm{M}-\mathrm{CO}$		
\quad range	$1.881-1.963(6)$	$1.83-1.96(2)$
average	1.913	1.90
$\mathrm{C}-\mathrm{O}$		
\quad range	$1.126-1.144(9)$	$1.11(2)-1.22(3)$
\quad average	1.134	1.14
$\mathrm{M}(1)-\mathrm{M}(2)-\mathrm{M}(3)$	$74.74(3)$	$74.11(7)$
$\mathrm{M}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	$159.2(3)$	$154(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	$149.6(4)$	$138(2)$

$\left.93.2^{\circ}(\mathrm{Os})\right]$. Most structural dimensions are consistent with a difference of $c a .0 .04-0.06 \AA$ in the radii of the Ru and larger Os atoms.

Discussion

Reactions between 1 equivalent of the diacetylenic bis(tertiary phosphine) bdpp and 2 equivalents of cluster carbonyls containing labile ligands have provided ready access to complexes containing one cluster moiety attached to each of the two phosphorus atoms in bdpp (Scheme 1). Using this methodology, we have prepared and characterised complexes containing two $\mathrm{M}_{n}(\mathrm{CO})_{11}\left[\mathrm{M}_{n}=\mathrm{Ru}_{3}, \mathrm{Os}_{3}, \mathrm{Re}_{3}(\mu-\mathrm{H})_{3}\right.$ or $\left.\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}\right]$ clusters. Increasing the ratio of ligand:cluster carbonyl to $2: 1$ allowed the preparation of complexes containing only one cluster unit attached to the bridging ligand, namely $\left[\mathrm{M}_{n}(\mathrm{CO})_{11}(\mathrm{bdpp})\right]\left[\mathrm{M}_{n}=\mathrm{Os}_{3}\right.$ or $\left.\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}\right]$. In turn, these complexes reacted with suitable precursors to give the
$\mathrm{Ru}_{3} / \mathrm{Os}_{3}$ and $\mathrm{M}_{3} / \operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{M}=\mathrm{Os}$ or Ru$)$ species. The properties of these complexes were in no way exceptional, and indicated that there was little, if any, interaction between the two cluster moieties.

Our motivation for these studies was the use of these complexes as possible precursors of (a) C_{4} complexes, formed by cleavage of both $\mathrm{C}(\mathrm{sp})-\mathrm{P}$ bonds in the bridging bdpp ligand, and (b) heterometallic clusters, possibly with novel core geometries, formed by condensation of two different clusters around a single bdpp ligand or its alteration products. The preliminary studies reported above and summarised in Scheme 2 show that pyrolysis of the $\left\{\mathrm{Ru}_{3}\right\}_{2}$ and $\left\{\mathrm{Os}_{3}\right\}_{2}$ complexes does indeed afford novel clusters containing the C_{4} ligand, and that in the former case, other polynuclear derivatives can also be formed. The following paper describes the partial realisation of $(b) .{ }^{14}$

In contrast with derivatives of the acetylenic diphosphine dppa, which on heating readily cleave one of the two $\mathrm{C}(\mathrm{sp})-\mathrm{P}$ bonds, ${ }^{2}$ but require treatment with other chemical reagents to produce complexes containing the C_{2} ligand, ${ }^{3}$ similar complexes containing bdpp undergo ready cleavage of both C(sp)-P bonds. Thus we have obtained complexes 10 and 13 , in which a C_{4} ligand spans two M_{3} clusters, the two units being joined by a $\mathrm{C}-\mathrm{C}$ single bond. The conclusion is that the bdpp derivatives are the more reactive, not surprisingly when the stabilities of the two ligands are compared. The interactions of the C_{4} ligand with the clusters seem to be limited at present to those of the two C_{2} units, which appear to behave independently while remaining joined by the $\mathrm{C}-\mathrm{C}$ bond. Further studies of the chemistry of these species are necessary to clarify this point. However, the nature of the other two complexes, 11 and 12, obtained by pyrolysis of the ruthenium cluster 2, further emphasise this feature.

The formation of these two complexes proceeds by addition of a $\mathbf{C}(\mathrm{sp})-\mathrm{P}$ bond across an $\mathrm{M}-\mathrm{M}$ bond of the triangular cluster, probably by initial co-ordination of the $\mathrm{C} \equiv \mathrm{C}$ triple bond to the metal atom adjacent to the P-co-ordinated metal atom. Cleavage of $\mathrm{C}(\mathrm{sp})-\mathrm{P}$ bonds is known to be a facile process: addition of the C_{2} and PPh_{2} ligands (donating a total of 6e) results in opening of the M_{3} cluster, as shown by the long $\mathbf{M}(1) \cdots \mathbf{M}(3)$ distances. This type of reaction has been extensively investigated by Carty and his co-workers [cf. Scheme 1 in ref. $15(a)$]; our conclusion in the present instance is that these reactions are further examples of those of $\left[\mathrm{M}_{3}(\mathrm{CO})_{11}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)\right\}\right]\left(\mathrm{R}=\mathrm{Pr}^{\mathrm{i}}\right.$ or $\left.\mathrm{Bu}^{\prime}\right)$ reported many years ago, ${ }^{13}$ with 1 and 2 having $R=C_{2}\left[M_{3}(C O)_{11}\right]$.

These reactions show that bdpp, in combination with suitable substrates, can act as a source of the C_{4} ligand. Although there is now a plethora of complexes of various types which contain the C_{2} ligand, ${ }^{16}$ there are few examples containing the next even-numbered all-carbon ligand. First to be described was $\left[\left\{\mathrm{Co}_{3}(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right]$ and its PPh_{3} and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ derivatives: the parent complex was obtained by heating solutions of $\left[\mathrm{Co}_{3}\left(\mu_{3}-\mathrm{CX}\right)(\mathrm{CO})_{9}\right](\mathrm{X}=\mathrm{Cl}$ or Br$)$ in high-boiling arenes, such as xylene or mesitylene. ${ }^{17}$ The four-carbon chain has also been used to link two ML_{n} units, such as $\mathrm{MCl}\left(\mathrm{PBu}_{3}\right)_{2}(\mathrm{M}=\mathrm{Pd}$ or Pt) in complexes obtained from trans- $\left[\mathrm{MCl}_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$ and $\mathrm{HC}_{2} \mathrm{C}_{2} \mathrm{H}^{18}$ Coupling of $\left[\mathrm{M}\left(\mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}\right)_{2}\left(\mathrm{PBu}_{3}\right)_{2}\right]$ with $(\mathrm{CuI} /$ NHMe_{2}) or reactions with [$\mathrm{MCl}_{2}\left(\mathrm{PR}_{3}\right)_{2}$] have given polymers containing $\left\{\mathrm{M}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{C}_{2} \mathrm{C}_{2}\right\}$ units $(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$ or Pt$){ }^{18,19}$

More recently, complexes of the type $\left[\left\{\mathrm{ML}_{n}\right\}_{2}\left(\mu-\mathrm{C}_{4}\right)\right]$ $\left[\mathrm{ML}_{n}=(\mathrm{Mo} / \mathrm{W})(\mathrm{CO})_{2} \mathrm{~L}^{\prime}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ or $\mathrm{Fe}(\mathrm{CO}) \mathrm{L}^{\prime}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, $\mathrm{L}^{\prime}=\mathrm{CO}$ or $\left.\mathrm{PPh}_{3}\right]$ have been obtained from $\mathrm{Li}_{2} \mathrm{C}_{4}$ and the corresponding halides; some examples with two different ML_{n} groups were also prepared. ${ }^{20}$ The complex $\left[\left\{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\eta\right.\right.$ $\left.\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}_{2}\left(\mu-\mathrm{C}_{4}\right)\right]$ exists as two rotamers, both of which have been structurally characterised. ${ }^{21}$

Loss of CO is facilitated by carrying out the reaction under a nitrogen purge, although further loss to give the electronprecise complexes $\left[\left\{\mathbf{M}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}_{2}\left(\mu-\mathrm{C}_{4}\right)\right]$ as found for the analogous $\left[\mathrm{M}_{3}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu_{3}-\mathrm{C}_{2} \mathrm{R}\right)(\mathrm{CO})_{9}\right]$ complexes

Fig. 4 Plots of a molecule of $(a)\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{PPh}_{2}\right)\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] 10$ and (b) its Os_{3} analogue 13 , showing the atom numbering scheme
referred to above $\}$ was not observed. If the released CO is not removed from the solution, however, a further competitive reaction resulted in the formation of $\mathbf{1 1}$. This complex retains one half of 2 intact while an intramolecular reaction occurs within the second half. This generates a novel phosphine ligand bearing both a metallated $\mathrm{C}_{6} \mathrm{H}_{4}$ group and an unusual C_{2} linkage with the cluster; in the course of the reaction a fourth ruthenium atom has been acquired. Formation of this part of
the complex lends further support to the notion that addition of the phosphinoacetylide ligand occurs by co-ordination of the $\mathrm{C} \equiv \mathrm{C}$ triple bond to the cluster. In part also, the complex may be derived from a second reaction, in which the $\mathrm{C}_{2} \mathrm{PPh}_{2}\left\{\mathrm{Ru}_{3}-\right.$ $\left.(\mathrm{CO})_{11}\right\}$ fragment undergoes an internal oxidative addition of the $\mathrm{C}(\mathrm{sp})-\mathrm{P}$ bond across the cluster with concomitant elimination of an $\mathrm{Ru}(\mathrm{CO})_{3}$ group.

This type of reaction also occurs readily on treatment of
complex 11 with methanol, when $\mathbf{1 2}$ is formed. There are several complexes containing μ_{3}-OR groups attached to ruthenium clusters, most notably $\left[\mathrm{Ru}_{4}\left(\mu_{4}-\mathrm{CCHPr}{ }^{\mathrm{i}}\right)\left(\mu_{3}-\mathrm{OEt}\right)\left(\mu-\mathrm{PPh}_{2}\right)-\right.$ $(\mathrm{CO})_{10}$] obtained from $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{2} \mathrm{Pr}^{\mathrm{i}}\right)\right\}\right]$ and an EtOH-thf mixture, described by Carty et al. ${ }^{22}$ many years ago. The geometry of this complex is closely similar to that of $\mathbf{1 2}$, as illustrated in Fig. 3(b). Facile addition of alcohols, probably to a $\mu_{3}-\mathrm{C}_{2} \mathrm{R}$ cluster, results in formation of the CCHR and OR ligands. The binuclear $\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)\left(\mu-\mathrm{C}_{2} \mathrm{R}\right)(\mathrm{CO})_{6}$ fragment also present is probably formed by fragmentation of the $\mathrm{Ru}_{3}-$ $\left(\mathrm{PPh}_{2} \mathrm{C}_{2} \mathrm{R}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{11}$ part of 11: this reaction has direct precedents in the conversion of $\left[\mathrm{M}_{3}(\mathrm{CO})_{11}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{2} \mathrm{R}\right)\right\}\right]$ $\left(\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}\right.$ or $\mathrm{Os} ; \mathrm{R}=\mathrm{Pr}^{\mathrm{i}}, \mathrm{Bu}^{\mathrm{t}}$ or Ph$)$ into $\left[\mathrm{M}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{R}\right)(\mathrm{CO})_{6}\right] .{ }^{15}$ Recent studies of complexes containing dppa bridging different ML_{n} groups also support this view of the course of the reaction: when $\left[\left\{\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}(\mu-\mathrm{dppa})\right.$ $\left.\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{1_{1}}\right\}\right]$ was heated in refluxing toluene it was smoothly transformed to $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\left\{\mathrm{PPh}_{2}-\mu-\sigma, \eta^{2}-\mathrm{C}_{2}-\right.\right.$ $\left.\left.\left[\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right]\right\}\right]$. ${ }^{2 c}$ Similar reactions are probably the source of the extra ruthenium carbonyl unit required for the formation of 11 .

In this work we have demonstrated that the two halves of complexes of type 1 act independently, what happens in one half having little or no effect on the second half. Under our reaction conditions there was no evidence for the formation of complexes of the type $\left[\left\{\mathrm{M}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right\}_{2}\left(\mu: \mu-\mathrm{C}_{4}\right)\right](\mathrm{M}=$ Ru or Os) from 1 or 2 , although we have recently described the reactions of $\left[\left\{\mathrm{Fe}(\mathrm{CO})_{4}\right\}_{2}(\mu\right.$-bdpp $\left.)\right]$ with $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{9}\right]$ to give the iron analogue, a reaction which probably proceeds by coordination of additional $\mathrm{Fe}(\mathrm{CO})_{3}$ units to the $\mathrm{C} \equiv \mathrm{C}$ triple bonds, followed by addition of PPh_{2} and $\mathrm{C}_{2} \mathrm{R}$ units to the $\mathrm{Fe}-\mathrm{Fe}$ bonds. ${ }^{6}$

Conclusion

The main conclusions that can be drawn from this stage of the work are: (a) that it is possible to co-ordinate metal carbonyl clusters in stepwise fashion to the diacetylenic bis(tertiary phosphine) bdpp; (b) that the two cluster units do not seem to interact with each other through the bridging ligand; (c) that co-ordinated bdpp, as in the free state, is considerably more reactive than the monoacetylenic analogue dppa , in the present case with respect to $\mathrm{C}(\mathrm{sp})-\mathrm{P}$ bond breaking to give C_{4} ligands; and (d) that the two C_{2} moieties behave independently, undergoing separate co-ordination and subsequent reactions, but with preservation of the $\mathrm{C}-\mathrm{C}$ single bond.
The present work, together with that affording the complex $\left[\left\{\mathrm{Fe}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right\}_{2}\left(\mu: \mu-\mathrm{C}_{4}\right)\right]$, previously reported, ${ }^{6}$ expands the range of known C_{4} complexes at a time when the chemistry of all-carbon ligands is receiving increasing attention. Their reactions will be described further elsewhere.

Experimental

General Conditions.-All reactions were carried out under dry, high-purity nitrogen using standard Schlenk techniques. Solvents were dried and distilled before use. Elemental analyses were by the Canadian Microanalytical Service, Delta, B.C. Preparative TLC was carried out on glass plates ($20 \times 20 \mathrm{~cm}$) coated with silica gel (Merck $60 \mathrm{GF}_{254}, 0.5 \mathrm{~mm}$ thick).

Instrumentation.-Infrared: Perkin Elmer 1700X FT-IR or 683 double beam, NaCl optics. NMR: Bruker CXP300 $\left({ }^{1} \mathrm{H}\right.$ at $300.13 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 75.47 MHz). FAB mass spectroscopy: VG ZAB 2HF (using 3-nitrobenzyl alcohol as matrix, exciting gas Ar, FAB gun voltage 7.5 kV , current 1 mA , accelerating potential 7 kV).
$\begin{gathered}\text { Reagents.-The compounds }\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right],{ }^{23} \\ (\mathrm{NCMe})],{ }^{24}\end{gathered} \mathrm{Ru}_{3}(\mathrm{CO})_{11^{-}}-$ $\left[\mathrm{Os}_{3}(\mathrm{CO})_{12}\right],{ }^{27} \quad\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]^{28}$ and bdpp^{4} were prepared by the cited methods. Trimethylamine oxide
[$\mathrm{Me}_{3} \mathrm{NO} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Aldrich)] was dehydrated by sublimation $\left[100^{\circ} \mathrm{C}, 0.1 \mathrm{mmHg}(13.3 \mathrm{~Pa})\right]$.

Preparations. $-\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$. The complex $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{12}\right](215 \mathrm{mg}, 0.24 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)-\mathrm{MeCN}\left(3 \mathrm{~cm}^{3}\right)$. Trimethylamine oxide (20 $\mathrm{mg}, 0.26 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise until no $\left[\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{12}\right]$ remained. After filtration through silica the solvents were removed and the residue recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}-\mathrm{MeOH}$ to yield white crystals of $\left[\mathrm{Re}_{3}(\mu-\right.$ $\left.\mathrm{H}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]\left(149 \mathrm{mg}, 68 \%\right.$), m.p. $200-202{ }^{\circ} \mathrm{C}$ (decomp.) [Found: C, $17.15 ; \mathrm{H}, 0.75 ; \mathrm{N}, 1.55 \% ; M 911$ (mass spectrometry). $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{NO}_{11} \mathrm{Re}_{3}$ requires C, $17.15 ; \mathrm{H}, 0.65 ; \mathrm{N}, 1.55 \%$; $\left.M 911\right]$. IR: $v(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2114 \mathrm{w}, 2090 \mathrm{~m}, 2038 \mathrm{~s}, 2017 \mathrm{~s}, 2003 \mathrm{~s}, 1968 \mathrm{~m}$, 1942w and $1930 \mathrm{w} \mathrm{cm}^{-1}$. FAB mass spectrum: $m / z 911, M^{+}$; 883-659, $[M-n \mathrm{CO}]^{+}(n=1-9) ; 870-674,[M-n \mathrm{CO}-$ $\mathrm{NCMe}^{+}(n=0-7)$.
$\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right]$ 1. (a) From $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$. A solution of bdpp ($139 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added dropwise (ca. 20 min) to a cooled ($-78^{\circ} \mathrm{C}$) solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$ [prepared from $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ (500 $\mathrm{mg}, 0.78 \mathrm{mmol}$) and used directly from a chromatotron as a light petroleum- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ (20:4:1) solution]. After warming to room temperature (r.t.) the solvent was removed and the residue chromatographed on an alumina column. Light petroleum eluted $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ ($39 \mathrm{mg}, 8 \%$). Light petroleum$\mathrm{CH}_{2} \mathrm{Cl}_{2}(4: 1)$ eluted an orange-red band which was crystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$, yielding red crystals of $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}_{2}-\right.$ (μ-bdpp)] 1 ($244 \mathrm{mg}, 38 \%$), m.p. $141-144^{\circ} \mathrm{C}$ (decomp.) [Found: C, $36.45 ; \mathrm{H}, 1.35 \% ; M 1642$ (mass spectrometry). $\mathrm{C}_{50} \mathrm{H}_{20^{-}}$ $\mathrm{O}_{22} \mathrm{P}_{2} \mathrm{Ru}_{6}$ requires C, $36.60 ; \mathrm{H}, 1.25 \% ; M$ 1642]. IR: $v(\mathrm{CO})$ (cyclohexane) $2099 \mathrm{~m}, 2048 \mathrm{~s}, 2032 \mathrm{~s}, 2017 \mathrm{~s}, 2000$ (sh), 1991 m , 1980 m and $1968 \mathrm{w} \mathrm{cm}^{-1}$. FAB mass spectrum: $m / z 1642, M^{+}$; 1614-1026, $[M-n \mathrm{CO}]^{+}(n=1-22)$. Further elution with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7: 3)$ yielded a red band comprising two compounds which were further separated by preparative TLC (light petroleum-acetone, 4:1). These compounds ($R_{\mathrm{f}} 0.3 ; 71.2 \mathrm{mg} ; R_{\mathrm{f}} 0.2,17.9 \mathrm{mg}$) have not been identified.
(b) From $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ and $\mathrm{Me}_{3} \mathrm{NO}$. A solution of $\mathrm{Me}_{3} \mathrm{NO}$ ($14 \mathrm{mg}, 0.19 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right.$) was added dropwise to a solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right](116 \mathrm{mg}, 0.182 \mathrm{mmol})$ and bdpp (38 $\mathrm{mg}, 0.091 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. The solvent was removed and the residue purified by preparative TLC (light petroleumacetone, $10: 3$) to yield four bands. The major product $\left(R_{\mathrm{f}} 0.5\right)$ was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield red crystals of complex $1(71 \mathrm{mg}, 39 \%)$. Some $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]\left(R_{\mathrm{f}} 0.8,4 \mathrm{mg}, 3 \%\right)$ was recovered. Two minor red bands ($R_{\mathrm{f}} 0.35,0.30$) have not been identified.
$\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}_{2}\left(\mu\right.\right.$-bdpp)] 2. To a solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11^{-}}\right.$ (NCMe)] ($120 \mathrm{mg}, 0.13 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ was added bdpp ($27 \mathrm{mg}, 0.652 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right.$) dropwise (ca. 20 min .). After 90 min the solvent was removed and the residue purified by preparative TLC (light petroleum- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1$) to yield four bands. The major product ($R_{\mathrm{f}} 0.5$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield orange crystals of $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu-\mathrm{bdpp})\right] 2(96 \mathrm{mg}, 68 \%)$, m.p. $>260^{\circ} \mathrm{C}$ (decomp.) [Found: C, 27.45; H, 1.10%; M 2176 (mass spectrometry). $\mathrm{C}_{50} \mathrm{H}_{20} \mathrm{O}_{22} \mathrm{Os}_{6} \mathrm{P}_{2}$ requires $\mathrm{C}, 27.60 ; \mathrm{H}, 0.95 \%$; M, 2176]. IR: $v(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2109 \mathrm{w}, 2057 \mathrm{~s}, 2037 \mathrm{~m}, 2021 \mathrm{vs}$, $1992 \mathrm{~m}, 1980 \mathrm{~m}$ and $1968(\mathrm{sh}) \mathrm{cm}^{-1}$. FAB mass spectrum: m / z 2176, $M^{+} ; 2120-1560,[M-n \mathrm{CO}]^{+}(n=2,4-22) ; 1483$, $[M-22 \mathrm{CO}-\mathrm{Ph}]^{+} ; 924,\left[\mathrm{Os}_{3}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2}\right)\right]^{+} ; 896-755$, $\left[\mathrm{Os}_{3}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2}\right)-n \mathrm{CO}^{+}(n=1-6) ; 879,\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}\right]^{+}\right.$; $851-683,\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}-n \mathrm{CO}\right]^{+}(n=1-7) ; 577,\left[\mathrm{Os}_{2}(\mathrm{CO})_{7}\right]^{+}$; 739-683, $\left[\mathrm{Os}_{2}(\mathrm{CO})_{7}-n \mathrm{CO}\right]^{+}(n=1-3)$. The other major product ($R_{\mathrm{f}} 0.4$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield a yellow powder which has not been identified. IR: $v($ CO $)$ (cyclohexane) $2109 \mathrm{~m}, 2057 \mathrm{~m}, 2038 \mathrm{~m}, 2022 \mathrm{vs}, 2005 \mathrm{~m}$, $1993 \mathrm{~m}, 1978 \mathrm{~m}$ and $1969(\mathrm{sh}) \mathrm{cm}^{-1}$.
$\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{bdpp})\right]$ 3. A solution of $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$
($100 \mathrm{mg}, 0.109 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of bdpp $(84 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ over $c a .1 \mathrm{~h}$ and the solution was stirred overnight. The solvent was removed and the residue purified by preparative TLC (light petroleum-acetone, $5: 1$) to yield three major bands. The major band yielded $\left[\mathrm{Os}_{3}(\mathrm{CO})_{11}(\mathrm{bdpp})\right] 3\left(R_{\mathrm{f}} 0.4,95 \mathrm{mg}, 67 \%\right)$ [Found: C, $36.05 ; \mathrm{H}, 1.60 \% ; M 1297$ (mass spectrometry). $\mathrm{C}_{39} \mathrm{H}_{20} \mathrm{O}_{11} \mathrm{Os}_{3} \mathrm{P}_{2}$ requires $\mathrm{C}, 36.10 ; \mathrm{H}, 1.55 \% ; M$ 1297]. IR: $v(\mathrm{CO})$ (cyclohexane) $2108 \mathrm{~m}, 2056 \mathrm{~m}, 2036 \mathrm{~m}, 2020 \mathrm{vs}, 2002 \mathrm{~m}$, 1991m, 1980m, 1973w and 1966w cm^{-1}. FAB mass spectrum: m / z 1297, $M ; 1269-989(M-n C O)(n=1-11)$. Some bdpp $\left(R_{f}\right.$ $0.5)$ and complex $2\left(R_{\mathrm{f}} 0.25,38 \mathrm{mg}, 32 \%\right)$ were also recovered.
$\left[\left\{\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right] \quad$ 4. $\quad\left[\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{1_{1}-}\right.$ (NCMe) $](150 \mathrm{mg}, 0.165 \mathrm{mmol})$ and $\operatorname{bdpp}(33 \mathrm{mg}, 0.080 \mathrm{mmol})$ were stirred for 6 d at room temperature in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. After the solvent was removed the residue was purified by
preparative TLC (light petroleum- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 5: 1$). The major band was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ yielding [$\left\{\mathrm{Re}_{3}\right.$ -$\left.(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu$-bdpp)] $4(79 \mathrm{mg}, 44 \%)$ as a pale yellow powder, m.p. $153-154^{\circ} \mathrm{C}$ (decomp.) [Found: $\mathrm{C}, 27.80 ; \mathrm{H}, 1.35 \%$; $M 2158$ (mass spectrometry). $\mathrm{C}_{50} \mathrm{H}_{26} \mathrm{O}_{22} \mathrm{P}_{2} \mathrm{Re}_{6}$ requires C , 27.85; H, $1.20 \% ; M 2158$]. IR: v(CO) (cyclohexane) 2114 w , $2091 \mathrm{~m}, 2055 \mathrm{w}, 2037 \mathrm{~s}, 2018 \mathrm{vs}, 2007$ (sh), 2002s, 1985 (sh), 1972vs, 1953 m and $1945 \mathrm{~m} \mathrm{~cm}^{-1}$. FAB mass spectrum: $m / z 2158, M^{+}$.
$\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{bdpp})\right]$ 5. A solution of $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}-\right.$ $\left.(\mathrm{CO})_{11}(\mathrm{NCMe})\right](98 \mathrm{mg}, 0.108 \mathrm{mmol})$ in benzene $\left(40 \mathrm{~cm}^{3}\right)$ was added dropwise to a solution of bdpp ($84 \mathrm{mg}, 0.20 \mathrm{mmol}$) in benzene ($40 \mathrm{~cm}^{3}$) over ca. 18 h at $50^{\circ} \mathrm{C}$. The solvent was removed and the residue purified by preparative TLC (light petroleum-acetone, $5: 1$) to yield four major bands. The major band yielded $\left[\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{bdpp})\right] 5\left(R_{\mathrm{f}} 0.5,68 \mathrm{mg}, 49 \%\right)$ [Found: C, $36.50 ; \mathrm{H}, 1.90 \% ; M 1288$ (mass spectrometry).

Table 5 Crystal data and refinement details for complexes 6 and 10-13

Complex	6	10	11	12	13
Formula	$\mathrm{C}_{52} \mathrm{H}_{36} \mathrm{O}_{24} \mathrm{P}_{2} \mathrm{Ru}_{8}$	$\mathrm{C}_{46} \mathrm{H}_{20} \mathrm{O}_{18} \mathrm{P}_{2} \mathrm{Ru}_{6}$	$\mathrm{C}_{51} \mathrm{H}_{20} \mathrm{O}_{23} \mathrm{P}_{2} \mathrm{Ru}_{7}$	$\mathrm{C}_{45} \mathrm{H}_{24} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{Ru}_{6}$	$\mathrm{C}_{46} \mathrm{H}_{20} \mathrm{O}_{18} \mathrm{Os}_{6} \mathrm{P}_{2}$
M	1915.4	1529.0	1770.2	1505.1	2063.8
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	$P \overline{1}$ (no. 2)	$P 2_{1} / \mathrm{c}$ (no. 14)	$P \overline{1}$ (no. 2)	$P \bar{I}$ (no. 2)	$C 2 / c$ (no. 15)
a / \AA	10.109(2)	15.177(2)	21.38(1)	18.69(2)	25.27(2)
b / \AA	12.833(2)	9.752(4)	19.71(2)	16.16(2)	9.785(9)
c / \AA	13.923(6)	19.622(7)	15.79(2)	9.736(9)	20.20(2)
$x /{ }^{\circ}$	99.98(2)		70.27(10)	74.71(9)	
$\beta /{ }^{\circ}$	98.23(2)	121.55(2)	87.14(8)	87.06(8)	96.94(5)
$\gamma{ }^{\circ}$	102.24(1)		71.82(7)	74.28(8)	
U / \AA^{3}	1707.8	2474.8	5938	2731	4958
Z	1	2	4	2	4
$D_{\text {c } / \mathrm{g} \mathrm{cm}^{3}}$	1.86	2.05	1.98	1.83	2.76
$F(000)$	922	1468	3392	1448	3704
Crystal size/mm	$0.09 \times 0.20 \times 0.21$	$0.18 \times 0.27 \times 0.32$	$0.13 \times 0.50 \times 0.06$	$0.35 \times 0.08 \times 0.31$	$0.16 \times 0.42 \times 0.33$
A^{*} (minimum, maximum)	$\begin{aligned} & 1.35,1.95 \\ & \text { (analytical) } \end{aligned}$	$\begin{aligned} & 1.34,1.53 \\ & \text { (gaussian) } \end{aligned}$	$\begin{aligned} & 1.37,1.84 \\ & \text { (gaussian) } \end{aligned}$	$\begin{aligned} & 1.12,1.75 \\ & \text { (gaussian) } \end{aligned}$	$9.5,55.4$ (analytical)
μ / cm^{1}	17.7	19.2	16.9	15.6	171.1
$2 \theta_{\text {max }}{ }^{\circ}$	45	50	45	50	55
N	2758	4343	15507	9064	5733
$N_{\text {o }}$	2187	3525	9524	4959	3457
R	0.058	0.028	0.053	0.057	0.052
R^{\prime}	0.068	0.033	0.054	0.057	0.050

Table 6 Non-hydrogen atomic coordinates for $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp) $] 6$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Ru}(1)$	-0.1411(1)	0.5994(1)	0.1860(1)	C(31)	-0.1858(14)	0.9479(11)	$0.3182(16)$
Ru(2)	$0.0342(1)$	0.7846(1)	0.3425 (1)	C(32)	-0.3966(20)	0.7922(16)	$0.1731(22)$
Ru(3)	-0.2267(1)	0.8019(1)	$0.2612(1)$	C(33)	-0.3049(18)	0.7700 (13)	$0.3680(21)$
$\mathrm{Ru}(4)$	$-0.0230(1)$	0.7913(1)	0.1297(1)	C(41)	$0.1100(14)$	0.7240 (11)	0.0829 (16)
$\mathrm{P}(1)$	-0.0234(1)	0.0464(1)	$0.0265(1)$	C(42)	$0.0545(15)$	0.9318(12)	$0.1148(17)$
$\mathrm{O}(11)$	$0.0574(9)$	0.4729 (7)	$0.1135(10)$	C(43)	-0.1491(18)	0.7482(13)	0.0005 (20)
$\mathrm{O}(12)$	-0.3439(11)	0.5037(8)	-0.0097(11)	C(111)	-0.2419(10)	0.3229 (7)	$0.2036(11)$
$\mathrm{O}(21)$	$0.3092(16)$	0.7281 (12)	$0.3972(15)$	C(112)	-0.1256(10)	0.2810 (7)	0.2170 (11)
$\mathrm{O}(22)$	0.1352(11)	1.0260(9)	0.4291(12)	C(113)	-0.1291(10)	0.1766(7)	$0.1657(11)$
O(23)	-0.0672(14)	0.7389(11)	$0.5274(15)$	C(114)	-0.2488(10)	$0.1142(7)$	$0.1009(11)$
$\mathrm{O}(31)$	-0.1683(13)	1.0410(11)	$0.3528(13)$	C(115)	-0.3651(10)	0.1561 (7)	$0.0875(11)$
$\mathrm{O}(32)$	-0.4967 (20)	0.7810 (14)	$0.1185(17)$	C(116)	-0.3616(10)	0.2604 (7)	$0.1388(11)$
$\mathrm{O}(33)$	-0.3619(15)	$0.7448(11)$	0.4271(14)	C(121)	-0.4040(8)	0.4557(8)	0.2950 (12)
$\mathrm{O}(41)$	0.1901 (12)	0.6843(9)	$0.0556(12)$	C(122)	-0.4993(8)	0.4938(8)	0.2364 (12)
$\mathrm{O}(42)$	$0.1078(13)$	1.0184(10)	0.0959(13)	C(123)	-0.6317(8)	0.4863(8)	$0.2569(12)$
$\mathrm{O}(43)$	-0.2201(15)	$0.7302(10)$	-0.0651(14)	C(124)	-0.6687(8)	0.4407(8)	$0.3361(12)$
C(1)	-0.1292(13)	0.4740 (10)	$0.3822(16)$	C(125)	-0.5734(8)	0.4026(8)	$0.3947(12)$
C(2)	-0.0459(12)	0.4890 (10)	0.4556(15)	C(126)	-0.4411(8)	0.4101(8)	0.3741 (12)
C(11)	-0.0168(11)	$0.5258(9)$	$0.1430(13)$	$\mathrm{O}(\mathrm{mel})^{*}$	0.4169(24)	-0.0174(20)	$0.2373(25)$
C(12)	-0.2657(12)	0.5419(9)	$0.0668(16)$	$\mathrm{O}(\mathrm{me} 2)^{*}$	0.5050(28)	0.0129(22)	$0.3965(29)$
$\mathrm{C}(21)$	0.2040 (15)	0.7520 (12)	$0.3765(17)$	C (mel)*	$0.3818(45)$	$0.1067(36)$	$0.2803(45)$
$\mathrm{C}(22)$	$0.0983(13)$	$0.9356(11)$	$0.3953(16)$	C(me2)*	$0.4957(40)$	$0.1036(33)$	$0.3716(42)$
$\mathrm{C}(23)$	-0.0281(18)	0.7541(13)	$0.4664(22)$				

[^1]$\mathrm{C}_{39} \mathrm{H}_{23} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{Re}_{3}$ requires $\mathrm{C}, 36.35 ; \mathrm{H}, 1.80 \%$; M 1288]. IR $v(C O)$ (cyclohexane) $2113 \mathrm{~m}, 2091 \mathrm{~m}, 2053 \mathrm{w}$, 2036vs, 2019(sh), 2015vs, 2008m, 2001s, 1987m, 1972vs, 1967 (sh), 1951 m and $1943 \mathrm{~m} \mathrm{~cm}^{-1}$. FAB mass spectrum: $m / z 1288, M ; 1260-980(M-$ $n \mathrm{CO}$) ($n=1-11$). Some bdpp ($R_{\mathrm{f}} 0.6,42 \mathrm{mg}, 50 \%$), complex 4 ($R_{\mathrm{f}} 0.35,21 \mathrm{mg}, 18 \%$) and 15.7 mg of an unidentified compound were also isolated.
$\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right]$ 6. To a solution of $\left[\mathrm{Ru}_{4}(\mu-\right.$ $\left.\mathrm{H})_{4}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]$ in light petroleum- $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ \{from $\left[\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{12}\right](210 \mathrm{mg}, 0.282 \mathrm{mmol}\}$, cooled to $-64^{\circ} \mathrm{C}$, was added bdpp ($47 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ dropwise over $c a .25 \mathrm{~min}$. After warming to room temperature the solvents were removed and the residue purified by preparative TLC (light petroleum- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1$). The major product ($R_{f} 0.5$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield yellow crystals of $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})_{4}(\mathrm{CO})_{11}\right\}_{2}(\mu\right.$-bdpp $\left.)\right] 6$ (102 $\mathrm{mg}, 39 \%$), m.p. $136-138{ }^{\circ} \mathrm{C}$ (decomp.) [Found: C, 32.30 ; H, $1.45 \% ; M, 1853$ (mass spectrometry). $\mathrm{C}_{50} \mathrm{H}_{28} \mathrm{O}_{22} \mathrm{P}_{2} \mathrm{Ru}_{8}$ requires C, $32.45 ; \mathrm{H}, 1.50 \%$; $M 1853$]. IR: v(CO) (cyclohexane) 2096m, 2069vs, 2059s, 2030s, 2011s, 1999(sh), 1994(sh) and $1970 \mathrm{w} \mathrm{cm}{ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-17.26\left(8 \mathrm{H}, \mathrm{d}, J_{\mathrm{HP}}=6.3\right.$ $\mathrm{Hz}, \mathrm{RuH})$ and 7.49-7.74 ($20 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). FAB mass spectrum: $m / z 1853, M^{+} ; 1236,[M-22 C O]^{+}$
$\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}(\mu\right.$-bdpp $\left.)\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}\right]$ 7. A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right]\left\{\right.$ ca. 0.13 mmol ; from $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]$ (100 $\mathrm{mg}, 0.16 \mathrm{mmol})\}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeCN}\left(5 \mathrm{~cm}^{3}\right)$ was added to a solution of complex $3(95 \mathrm{mg}, 0.073 \mathrm{mmol})$. The solvent was removed and the residue purified by preparative TLC (light petroleum-acetone, $4: 1$) to yield at least four bands. The first band was $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]\left(R_{\mathrm{f}} 0.8,19 \mathrm{mg}, 19 \%\right)$. The major band ($R_{\mathrm{f}} 0.5$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield red needles of $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\left(\mu\right.\right.$-bdpp) $\left.\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}\right] 7$ (56 $\mathrm{mg}, 40 \%$), m.p. $146-149{ }^{\circ} \mathrm{C}$ (decomp.) [Found: C, 31.35 ; H, 1.30%; $M 1910$ (mass spectrometry). $\mathrm{C}_{50} \mathrm{H}_{20} \mathrm{O}_{22} \mathrm{Os}_{3} \mathrm{P}_{2} \mathrm{Ru}_{3}$ requires C, $31.45 ; \mathrm{H}, 1.05 \%$; M 1910]. IR: $v(\mathrm{CO})$ (cyclohexane) 2109w, 2099w, 2084vw, 2057m, 2049m, 2033m, 2021vs, 2005(sh), 1993m, 1979m and $1969(\mathrm{sh}) \mathrm{cm}^{-1}$. FAB mass spectrum: $m / z 1910, M^{+} ; 1882-1294,[M-n \mathrm{CO}]^{+}(n=1-22)$. A third red band ($R_{\mathrm{f}} 0.3,14 \mathrm{mg}$) has not been identified.
$\left[\left\{\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}(\mu-\mathrm{bdpp})\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}\right]$ 8. A solution of $\left[\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}(\mathrm{NCMe})\right](127 \mathrm{mg}, 0.14 \mathrm{mmol})$ and complex $3(171 \mathrm{mg}, 0.13 \mathrm{mmol})$ in benzene $\left(40 \mathrm{~cm}^{3}\right)$ were heated (oil-bath at $65^{\circ} \mathrm{C}$) for 2 h . The solvent was removed and the residue purified by preparative TLC (light petroleum-acetone, 10:3) to yield three major bands. The major band ($R_{\mathrm{f}} 0.5$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield $\left[\left\{\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}-\right.\right.$ $\left.\left.(\mathrm{CO})_{11}\right\}(\mu-\mathrm{bdpp})\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}\right] 8(177 \mathrm{mg}, 63 \%)$ as a yellow powder, m.p. $98-102{ }^{\circ} \mathrm{C}$ [Found: C, 27.00 ; H, $1.15 \% ;$ M 2144 (mass spectrometry). $\mathrm{C}_{50} \mathrm{H}_{23} \mathrm{O}_{22} \mathrm{Os}_{3} \mathrm{P}_{2} \mathrm{Re}_{3}$ requires C, 27.70;

H, 1.05%; M 2144]. IR: $v(C O)$ (cyclohexane) $2110 \mathrm{w}, 2091 \mathrm{~m}$, $2057 \mathrm{~m}, 2038 \mathrm{~m}, 2021 \mathrm{vs}, 2001 \mathrm{~m}, 1973 \mathrm{~s}, 1948 \mathrm{~m}$ and $1944(\mathrm{sh}) \mathrm{cm}^{-1}$. FAB mass spectrum: $m / z 2144, M^{+} ; 2116-1528,[M-n \mathrm{CO}]^{+}$ ($n=1-22$). The two other bands, colourless ($R_{\mathrm{f}} 0.6,27 \mathrm{mg}$) and yellow ($R_{\mathrm{f}} 0.2,18 \mathrm{mg}$), have not been identified.
$\left[\left\{\operatorname{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}(\mu-\mathrm{bdpp})\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\right]$ 9. A solution of $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{1_{1}}(\mathrm{NCMe})\right]\left\{\right.$ ca. 0.064 mmol ; from $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{1_{2}}\right]$ (51 $\mathrm{mg}, 0.080 \mathrm{mmol})\}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ and $\mathrm{MeCN}\left(5 \mathrm{~cm}^{3}\right)$ was added to a solution of complex $5(68 \mathrm{mg}, 0.053 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ at $-64^{\circ} \mathrm{C}$. After warming to room temperature the solvent was removed and the residue purified by preparative TLC (light petroleum-acetone, 10:3) to yield three major bands. The first band was $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{12}\right]\left(R_{\mathrm{f}} 0.8,29\right.$ $\mathrm{mg}, 57 \%$). The second band ($R_{f} 0.5$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield $\left[\left\{\mathrm{Re}_{3}(\mu-\mathrm{H})_{3}(\mathrm{CO})_{11}\right\}\left(\mu\right.\right.$-bdpp) $\left\{\mathrm{Ru}_{3}-\right.$ $\left.\left.(\mathrm{CO})_{11}\right\}\right] 9(38 \mathrm{mg}, 38 \%)$ as a red powder [Found: C, $31.40 ; \mathrm{H}$, 1.30%; $[M-3 \mathrm{CO}]^{+} 1816$ (mass spectrometry). $\mathrm{C}_{50} \mathrm{H}_{23} \mathrm{O}_{22}{ }^{-}$ $\mathrm{P}_{2} \mathrm{Re}_{3} \mathrm{Ru}_{3}$ requires C, $31.60 ; \mathrm{H}, 1.20 \% ; M-3 \mathrm{CO}$ 1816. IR: $\mathrm{v}(\mathrm{CO})$ (cyclohexane) $2113 \mathrm{~m}, 2099 \mathrm{w}, 2090 \mathrm{~m}, 2077 \mathrm{~m}, 2049 \mathrm{~m}$, 2036s, 2032(sh), 2016vs, 2007s, 2000s, 1987 (sh), 1971s, 1951m, 1944m, 1740w and 1719vw cm ${ }^{-1}$. FAB mass spectrum: m / z 1816-1284, $[M-n \mathrm{CO}]^{+}(n=3-22)$. The third red band (R_{f} $0.3,23 \mathrm{mg}$) has not been identified.

Pyrolyses.-Complex 1. (i) With nitrogen purge and 6 h reaction time. Nitrogen was bubbled through a refluxing solution of complex $1(100 \mathrm{mg}, 0.061 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ for 7 h . The solvent volume was reduced to $15 \mathrm{~cm}^{3}$ and MeOH $\left(15 \mathrm{~cm}^{3}\right)$ added. After 24 h at $-10^{\circ} \mathrm{C}$ the pale yellow crystals of $\left[\left\{\mathrm{Ru}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] \mathbf{1 0}(45 \mathrm{mg})$ were filtered off. The solvent was removed from the eluent purified by preparative TLC (light petroleum-acetone, 3:1) to yield further $2\left(R_{\mathrm{f}} 0.5,23 \mathrm{mg}\right.$) [total yield $68 \mathrm{mg}(73 \%)$], m.p. $250-256^{\circ} \mathrm{C}$ (decomp.) [Found: C, $35.90 ; \mathbf{H}, 1.45 \% ; M 1530$ (mass spectrometry). $\mathrm{C}_{46} \mathrm{H}_{20} \mathrm{O}_{18} \mathrm{P}_{2} \mathrm{Ru}_{6}$ requires C, $36.15 ; \mathrm{H}, 1.30 \%$; M 1530]. IR: $v(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ 2078(sh), 2071vs, 2046 m , $2024 \mathrm{~m}, 2004 \mathrm{~m}$ and $1985 \mathrm{~m} \mathrm{~cm}^{-1}$. FAB mass spectrum: m / z 1530, M^{+}; 1502-1026, [$\left.M-n \mathrm{CO}\right]^{+}(n=1-18)$; 949, $[M-$ $18 \mathrm{CO}-\mathrm{Ph}]^{+}$
(ii) With no nitrogen purge and 24 h reaction time. A solution of complex $1(160 \mathrm{mg}, 0.097 \mathrm{mmol})$ was heated in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(40 \mathrm{~cm}^{3}\right)$ for 24 h . The solvent was removed and the residue purified by preparative TLC (light petroleum-acetone, $5: 2$) to yield two major bands. A yellow band ($R_{\mathrm{f}} 0.7$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ to yield $\left[\left\{\mathrm{Ru}_{3}\left(\mu-\mathrm{PPh}_{2}\right)\right.\right.$ $\left.\left.(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] 10(39 \mathrm{mg}, 26 \%)$. An orange band ($R_{\mathrm{f}} 0.6$) was recrystallised from toluene-hexane to yield red crystals of $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})(\mathrm{CO})_{12}\right\}\left\{\mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}_{2}\right\}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\right]$

Table 7 Non-hydrogen atomic coordinates for $\left[\left\{\mathrm{Ru}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] \mathbf{1 0}$

Atom	x	y	z	Atom	x	y	z
$\operatorname{Ru}(1)$	$0.66063(3)$	$0.70885(4)$	$0.04248(2)$	$\mathrm{O}(32)$	$0.5513(3)$	$0.1800(4)$	$-0.1372(2)$
$\mathrm{Ru}(2)$	$0.67081(3)$	$0.59241(4)$	$-0.08596(2)$	$\mathrm{C}(33)$	$0.6981(4)$	$0.2238(5)$	$0.0823(3)$
$\mathrm{Ru}(3)$	$0.68103(3)$	$0.36585(4)$	$0.00939(2)$	$\mathrm{O}(33)$	$0.7145(3)$	$0.1361(4)$	$0.1255(3)$
$\mathrm{C}(11)$	$0.7576(4)$	$0.8373(5)$	$0.0496(3)$	$\mathrm{C}(1)$	$0.5749(3)$	$0.5452(5)$	$-0.0527(3)$
$\mathrm{O}(11)$	$0.8113(3)$	$0.9212(4)$	$0.0518(3)$	$\mathrm{C}(2)$	$0.5417(3)$	$0.5141(5)$	$-0.0054(3)$
$\mathrm{C}(12)$	$0.5544(4)$	$0.8375(6)$	$-0.0282(3)$	P	$0.77726(9)$	$0.5254(1)$	$0.11518(7)$
$\mathrm{O}(12)$	$0.4991(3)$	$0.9197(5)$	$-0.0684(3)$	$\mathrm{C}(101)$	$0.9154(3)$	$0.5298(5)$	$0.1499(3)$
$\mathrm{C}(13)$	$0.6611(4)$	$0.7629(5)$	$0.1369(3)$	$\mathrm{C}(102)$	$0.9696(4)$	$0.4069(6)$	$0.1761(3)$
$\mathrm{O}(13)$	$0.6690(3)$	$0.7974(4)$	$0.1947(2)$	$\mathrm{C}(103)$	$1.0737(4)$	$0.4019(6)$	$0.2035(4)$
$\mathrm{C}(21)$	$0.8115(4)$	$0.6316(7)$	$-0.0560(3)$	$\mathrm{C}(104)$	$1.1253(4)$	$0.5172(7)$	$0.2063(3)$
$\mathrm{O}(21)$	$0.8937(3)$	$0.6572(6)$	$-0.0372(3)$	$\mathrm{C}(105)$	$1.0734(4)$	$0.6387(6)$	$0.1818(4)$
$\mathrm{C}(22)$	$0.6463(4)$	$0.4807(6)$	$-0.1735(3)$	$\mathrm{C}(106)$	$0.9690(4)$	$0.6448(6)$	$0.1546(3)$
$\mathrm{O}(22)$	$0.6338(3)$	$0.4132(5)$	$-0.2250(2)$	$\mathrm{C}(201)$	$0.7845(4)$	$0.4906(5)$	$0.2100(3)$
$\mathrm{C}(23)$	$0.6174(4)$	$0.7506(6)$	$-0.1499(3)$	$\mathrm{C}(202)$	$0.6969(4)$	$0.4395(6)$	$0.2087(3)$
$\mathrm{O}(23)$	$0.5826(3)$	$0.8446(5)$	$-0.1901(3)$	$\mathrm{C}(203)$	$0.6994(5)$	$0.4251(7)$	$0.2799(4)$
$\mathrm{C}(31)$	$0.7964(4)$	$0.3243(6)$	$0.0012(3)$	$\mathrm{C}(204)$	$0.7840(6)$	$0.4584(7)$	$0.3508(4)$
$\mathrm{O}(31)$	$0.8644(3)$	$0.2893(5)$	$-0.0042(3)$	$\mathrm{C}(205)$	$0.8699(5)$	$0.5094(7)$	$0.3528(3)$
$\mathrm{C}(32)$	$0.5931(4)$	$0.2520(5)$	$-0.0850(3)$	$\mathrm{C}(206)$	$0.8720(4)$	$0.5232(6)$	$0.2839(3)$

Table 8 Non-hydrogen atomic coordinates for $\left[\left\{\mathrm{Ru}_{4}(\mu-\mathrm{H})(\mathrm{CO})_{12}\right\}\left\{\mu-\mathrm{PPh}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right) \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{PPh}_{2}\right\}\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}\right] 11$

Atom	Molecule 1			Molecule 2*		
	x	y	z	x	y	z
$\mathrm{Ru}(11)$	0.144 44(6)	$0.22596(7)$	0.575 28(8)	0.344 80(6)	0.569 35(7)	0.889 79(8)
$\mathrm{Ru}(12)$	0.217 20(6)	0.277 20(7)	$0.41178(8)$	0.266 23(6)	0.565 12(7)	1.050 68(8)
$\mathrm{Ru}(13)$	$0.14170(6)$	0.375 86(6)	$0.50578(8)$	$0.34113(6)$	0.670 27(7)	0.979 54(8)
$\mathrm{Ru}(14)$	$0.23686(7)$	0.426 72(7)	0.576 28(8)	0.246 42(6)	0.825 20(7)	0.913 51(8)
C(111)	0.0862 (7)	0.2070 (7)	0.503(1)	0.3983 (8)	0.463 4(9)	$0.953(1)$
O(111)	0.0498 (6)	0.198 6(7)	0.4606 (8)	0.428 5(6)	0.4019 (6)	0.9857 (8)
C(112)	0.0781 (7)	0.2411 (9)	0.656(1)	0.415 4(8)	0.586 5(8)	0.820(1)
$\mathrm{O}(112)$	0.034 9(5)	0.254 8(8)	$0.7012(8)$	0.459 4(5)	0.597 7(7)	0.778 2(8)
C(113)	0.1825 (7)	$0.1209(9)$	$0.645(1)$	0.308 4(8)	0.5458 (8)	0.8033 (9)
$\mathrm{O}(113)$	0.2046 (6)	0.059 2(6)	0.686 4(8)	0.2850 (6)	0.5321 (6)	0.750 5(8)
C(121)	0.146 (8)	0.285(1)	0.337(1)	0.338 8(7)	0.476 4(8)	$1.124(1)$
$\mathrm{O}(121)$	$0.1059(6)$	0.290 2(8)	0.2859 (8)	0.380 3(5)	0.4257 (6)	1.163 2(8)
C(122)	0.2789 9(7)	0.2033 (9)	$0.3717(9)$	0.204 5(7)	0.508 6(9)	$1.069(1)$
$\mathrm{O}(122)$	0.3162 (6)	0.1606 (7)	0.3468 (8)	0.1689 (6)	0.4760 (7)	1.080 8(8)
C(123)	0.233 7(8)	0.361(1)	$0.322(1)$	0.245 7(8)	$0.5947(9)$	$1.153(1)$
$\mathrm{O}(123)$	0.244 5(7)	0.409 3(7)	0.266 4(7)	0.2320 (6)	0.6115 (7)	$1.2165(7)$
C(131)	0.0714 (8)	0.373 5(8)	$0.444(1)$	0.4112 (7)	0.580 4(8)	1.041(1)
$\mathrm{O}(131)$	0.0259 (6)	0.3800 (6)	0.400 0(8)	0.4558 (6)	0.5335 (6)	1.0813 (9)
C(132)	$0.1487(8)$	0.4656 (9)	0.414(1)	0.3259 (8)	0.7047 (9)	$1.079(1)$
$\mathrm{O}(132)$	$0.1455(7)$	0.5201 (6)	0.357 8(8)	0.3211 (7)	0.720 6(9)	1.144 1(8)
C(133)	0.0803 (7)	0.422 6(8)	0.574(1)	0.403 3(7)	0.724 9(8)	0.924 7(9)
O(133)	0.0387 76)	0.4521 (7)	0.610 5(8)	0.443 2(5)	0.748 5(7)	$0.9005(8)$
C(141)	0.1840 (8)	0.4360 (8)	$0.677(1)$	0.299 4(7)	0.8607 7(8)	0.816 (1)
O(141)	0.157 2(6)	0.449 4(6)	0.738 (8)	0.3250 (6)	0.8940 (6)	0.758 6(8)
C(142)	0.313 5(8)	0.413 6(8)	0.639(1)	$0.1707(8)$	0.899 2(9)	0.852(1)
$\mathrm{O}(142)$	0.3613 (6)	0.4046 (7)	0.674 9(8)	0.1229 (6)	0.942 2(7)	0.817 4(8)
C(143)	0.212 6(9)	0.537 3(9)	$0.524(1)$	0.2629 (9)	0.888(1)	0.973(1)
$\mathrm{O}(143)$	0.1983 (8)	0.5989 9(6)	0.493(1)	0.2761 (8)	0.922 4(9)	1.012 0(9)
$\mathrm{C}(11)$	0.2414 (7)	0.3177 (7)	0.5861 (9)	0.248 6(6)	0.728 6(7)	0.889 2(8)
$\mathrm{C}(12)$	0.193 7(6)	0.2777 (7)	0.633 4(8)	0.2960 (6)	0.6868 (7)	0.846 8(9)
C(13)	0.1810 (6)	0.275 1(7)	0.723 1(9)	0.3141 (6)	0.728 9(7)	0.760 2(8)
C(14)	$0.1692(6)$	0.264 3(7)	0.800 6(9)	0.328 0(6)	0.757 2(7)	0.685 4(9)
$\mathrm{P}(11)$	$0.2917(2)$	0.279 3(2)	0.5123 (2)	0.194 3(2)	0.678 8(2)	0.957 0(3)
C(111)	0.334 5(7)	0.3481 (8)	$0.4630(9)$	$0.1535(7)$	0.7425 (8)	1.013 3(9)
C(1112)	0.3080 07)	0.415 8(8)	0.475 5(9)	0.173 5(6)	0.803 6(8)	1.009 4(8)
C(1113)	0.3340 (8)	0.473(1)	0.426(1)	$0.1507(8)$	0.844(1)	$1.063(1)$
C(1114)	0.386(1)	0.460(1)	0.376(1)	0.1000 (9)	0.829(1)	$1.120(1)$
C(1115)	0.413 2(9)	0.389(1)	0.367(1)	0.078 2(9)	0.770(1)	$1.125(1)$
C(1116)	0.3869 97)	$0.3298(9)$	0.410(1)	0.1018 (8)	0.727 5(9)	1.071(1)
C(1121)	$0.3547(6)$	0.193 5(7)	0.578 2(9)	$0.1352(6)$	0.6802 (7)	0.879 1(9)
$\mathrm{C}(1122)$	$0.4060(7)$	0.198 8(9)	$0.6218(9)$	$0.0862(8)$	0.7470 (9)	0.837(1)
C(1123)	0.453 9(7)	$0.133(1)$	$0.675(1)$	0.044 3(8)	0.749(1)	0.770(1)
C(1124)	0.4470 (8)	0.063 8(9)	0.688(1)	0.0489 9(8)	0.692(1)	0.745(1)
$\mathrm{C}(1125)$	0.395 2(7)	0.0559 (8)	0.649(1)	0.0959 9)	0.622(1)	0.786(1)
C(1126)	0.348 4(7)	0.1231 (8)	0.595(1)	0.139 2(7)	0.617 6(9)	0.855(1)
$\mathrm{P}(12)$	0.158 5(2)	0.2550 (2)	0.913 8(2)	0.345 2(2)	$0.8007(2)$	0.574 4(2)
C(1211)	0.0961 (7)	0.340 0(9)	0.905(1)	0.4142 (6)	0.8323 (8)	0.590 9(9)
C(1212)	0.099 2(7)	0.394 2(9)	0.939(1)	0.4281 (8)	0.890 4(9)	0.515(1)
C(1213)	0.049 8(8)	0.4649 (9)	0.922(1)	0.482 4(8)	0.910(1)	0.526(1)
C(1214)	-0.004 4(8)	0.481(1)	0.871(1)	0.519 6(8)	0.882(1)	0.603(1)
C(1215)	-0.009 8(8)	0.431(1)	0.834(1)	0.503 8(8)	0.829(1)	0.675(1)
C(1216)	0.0397 77)	0.361 4(9)	0.850(1)	$0.4515(7)$	0.802 6(9)	0.667(1)
C(1221)	0.1147 (7)	0.1860 (8)	$0.9505(9)$	0.348 3(7)	0.722 4(8)	$0.5347(9)$
C(1222)	0.078 8(8)	0.1800 (9)	$1.028(1)$	$0.4278(8)$	0.728 5(9)	0.469(1)
C(1223)	0.050 5(9)	$0.125(1)$	1.063(1)	0.455(1)	0.670(1)	0.435(1)
C(1224)	$0.0598(9)$	0.071(1)	1.022(1)	0.440(1)	0.605(1)	0.468(1)
C(1225)	0.0929 (9)	0.073 7(9)	0.948(1)	0.399(1)	0.598(1)	0.537(1)
C(1226)	0.1230 (8)	0.1297 (9)	0.913(1)	$0.3683(8)$	0.656(1)	0.567(1)
$\mathrm{Ru}(15)$	0.351 37(7)	0.116 96(8)	0.942 78(9)	0.162 75(7)	0.819 84(8)	$0.4674(1)$
$\mathrm{Ru}(16)$	0.253 57(7)	0.224 34(7)	1.002 15(9)	0.252 94(6)	0.893 90(7)	0.488 28(8)
Ru(17)	0.388 24(7)	$0.17692(8)$	1.064 9(1)	0.140 12(8)	$0.97631(8)$	0.367 9(1)
C(151)	0.349 7(7)	$0.0468(9)$	$1.039(1)$	0.230(1)	$0.786(1)$	0.400 (1)
O(151)	0.3670 (5)	-0.0272(7)	1.0963 (8)	0.272 7(6)	0.755 6(7)	0.359 8(8)
C(152)	0.3321 (8)	0.213 4(9)	0.847(1)	$0.0939(8)$	0.864 3(9)	0.531(1)
$\mathrm{O}(152)$	0.3291 (5)	$0.2603(6)$	$0.7812(7)$	0.0505 (6)	$0.8861(8)$	0.571(1)
C(153)	0.4398 (7)	0.079 9(9)	$0.917(1)$	$0.1039(9)$	0.797 (1)	0.406(1)
O(153)	0.4916 (6)	0.060 4(7)	0.8961 (9)	0.066 8(8)	$0.783(1)$	0.369(1)
C(154)	0.308 2(8)	0.0821 (9)	0.873(1)	0.1913 (9)	$0.7318(9)$	$0.571(1)$
$\mathrm{O}(154)$	0.2843 (6)	0.0590 (8)	0.830 9(9)	0.2051 (7)	0.680 8(7)	0.633 2(9)
C(161)	0.2417 (8)	0.124 6(9)	1.072(1)	0.2960 07)	0.896 4(8)	0.378 0(9)
$\mathrm{O}(161)$	0.227 7(6)	0.072 3(6)	$1.1154(8)$	0.326 9(6)	0.8958 (7)	0.317 6(7)

Table 8 (continued)

	Molecule 1		
Atom	x	y	z
$\mathrm{C}(162)$	$0.2687(8)$	$0.319(1)$	$0.931(1)$
$\mathrm{O}(162)$	$0.2727(7)$	$0.3766(7)$	$0.892(1)$
$\mathrm{C}(163)$	$0.2206(9)$	$0.261(1)$	$1.095(1)$
$\mathrm{O}(163)$	$0.2016(8)$	$0.2859(8)$	$1.1517(8)$
$\mathrm{C}(171)$	$0.3652(9)$	$0.1019(9)$	$1.168(1)$
$\mathrm{O}(171)$	$0.3558(7)$	$0.0597(7)$	$1.2311(8)$
$\mathrm{C}(172)$	$0.4101(8)$	$0.245(1)$	$0.958(1)$
$\mathrm{O}(172)$	$0.4292(6)$	$0.2837(8)$	$0.8978(9)$
$\mathrm{C}(173)$	$0.3697(9)$	$0.2466(9)$	$1.124(1)$
$\mathrm{O}(173)$	$0.3574(7)$	$0.2884(7)$	$1.1623(9)$
$\mathrm{C}(174)$	$0.4806(8)$	$0.125(1)$	$1.090(1)$
$\mathrm{O}(174)$	$0.5342(6)$	$0.0967(7)$	$1.108(1)$

Molecule 2*		
x	y	z
$0.2055(7)$	$0.8856(8)$	$0.595(1)$
$0.1827(5)$	$0.8798(7)$	$0.6643(7)$
$0.2694(9)$	$0.9808(9)$	$0.491(1)$
$0.2771(8)$	$1.0334(7)$	$0.497(1)$
$0.1767(9)$	$0.935(1)$	$0.275(1)$
$0.1953(7)$	$0.9155(7)$	$0.2155(8)$
$0.1139(9)$	$1.004(1)$	$0.467(1)$
$0.0926(6)$	$1.0295(7)$	$0.5241(9)$
$0.160(1)$	$1.070(1)$	$0.311(1)$
$0.1698(9)$	$1.1237(8)$	$0.277(1)$
$0.053(1)$	$1.001(1)$	$0.318(1)$
$0.0017(7)$	$1.015(1)$	$0.289(1)$

* For molecule 2 read the first digit of the atom number as 2.

Table 9 Non-hydrogen atomic coordinates for $\left[\left\{\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{OMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}\left(\mu_{4}-\mathrm{CCH}-\mu-\eta^{2}-\mathrm{C}_{2}\right)\left\{\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right\}\right] 12$

Atom	x	y	z	Atom	x	y	z
$\mathrm{Ru}(1)$	$0.26043(7)$	0.745 35(8)	0.487 9(1)	O(61)	0.5489 9(7)	0.363 6(9)	0.727(2)
$\mathrm{Ru}(2)$	0.158 53(7)	$0.77311(8)$	$0.6861(1)$	C(62)	0.440(1)	0.274(2)	1.057(2)
$\mathrm{Ru}(3)$	0.237 69(7)	0.644 45(8)	0.914 (1)	O(62)	$0.4508(9)$	$0.267(1)$	1.171(1)
$\mathrm{Ru}(4)$	0.347 41(7)	$0.69771(9)$	0.7323 (1)	C(63)	0.462(1)	0.177(1)	0.842(2)
$\mathrm{Ru}(5)$	0.314 82(8)	0.375 19(8)	0.633 4(1)	O(63)	0.4909 (9)	0.106 9(9)	0.834(2)
$\mathrm{Ru}(6)$	0.41580 (7)	0.295 40(9)	0.856 6(1)	C(1)	0.2537 (8)	0.656 4(9)	0.696(1)
O(01)	0.262 4(5)	0.8146 (6)	0.642 0(9)	C(2)	0.2389 (8)	0.569 8(9)	0.745(1)
C(01)	0.274 5(9)	0.900(1)	0.612(2)	C(3)	0.2995 (8)	0.490(1)	0.767(1)
C(11)	0.2547 (8)	0.665(1)	0.391(2)	C(4)	0.351 6(8)	0.422(1)	0.812(1)
$\mathrm{O}(11)$	0.2518 (7)	$0.6137(7)$	0.329(1)	$\mathrm{P}(1)$	0.1419 (2)	0.835 9(2)	0.440 9(4)
C(12)	0.314 9(9)	0.799(1)	0.339(2)	C(111)	0.1311 (8)	0.953 2(9)	0.375(1)
$\mathrm{O}(12)$	$0.3467(6)$	0.832 5(8)	0.250(1)	C(112)	0.0911 (8)	1.014(1)	0.450(1)
C(21)	0.086(1)	0.721 (1)	0.704(2)	C(113)	0.084(1)	1.104(1)	0.402(2)
O(21)	$0.0389(6)$	0.6837 (8)	0.714(1)	C(114)	$0.116(1)$	1.138(1)	0.277(2)
C(22)	$0.1019(9)$	0.858(1)	0.778(2)	C(115)	0.153(1)	1.080(1)	0.200(2)
$\mathrm{O}(22)$	0.068 9(7)	0.907 7(8)	0.837(1)	C(116)	0.1611 (9)	0.990(1)	0.248(2)
C(31)	$0.1508(9)$	0.614(1)	0.997(2)	C(121)	0.077 8(8)	0.813(1)	0.337(1)
O(31)	0.097 4(7)	0.598 6(9)	1.045(1)	C(122)	0.074(1)	0.727(1)	0.360(2)
C(32)	0.2273 (9)	$0.738(1)$	1.003(2)	C(123)	0.026(1)	0.706(1)	0.283(3)
O(32)	0.218 2(7)	0.793 9(8)	1.057(1)	C(124)	-0.019(1)	0.767(2)	0.178(2)
C(33)	$0.305(1)$	0.551(1)	1.048(2)	C(125)	-0.014(1)	0.849(2)	0.153(2)
O(33)	0.345 2(8)	$0.4928(9)$	1.123(1)	C(126)	0.033 9(9)	0.877(1)	0.231(2)
C(41)	0.375 2(9)	$0.738(1)$	0.878(2)	$\mathrm{P}(2)$	0.2961 (2)	0.279 5(3)	0.850 5(4)
$\mathrm{O}(41)$	$0.3912(7)$	0.768(1)	0.965(1)	C(211)	0.224 (9)	0.326(1)	0.970(2)
$\mathrm{C}(42)$	0.421 (1)	0.733(1)	0.598(2)	C(212)	0.243(1)	0.320(2)	1.109(2)
$\mathrm{O}(42)$	0.465 6(7)	0.748 5(9)	0.524(1)	C(213)	0.187(1)	0.353(2)	1.194(2)
$\mathrm{C}(43)$	0.413 8(9)	0.591 (1)	0.801(2)	C(214)	0.117(1)	0.388(1)	1.144(3)
$\mathrm{O}(43)$	0.4613 (6)	0.5259 (8)	0.844(1)	C(215)	0.098(1)	0.394(2)	1.009(3)
C(51)	0.223(1)	0.432(1)	0.555(2)	C(216)	0.153 4(9)	0.361(1)	0.920(2)
$\mathrm{O}(51)$	0.1630 (8)	0.468(1)	0.503(1)	C(221)	0.281(1)	0.174(1)	0.867(2)
C(52)	0.380(1)	0.439(1)	0.502(2)	C(222)	0.322(1)	0.097(1)	0.961(2)
$\mathrm{O}(52)$	$0.4194(8)$	0.4711 (9)	0.435(1)	C(223)	0.307(1)	0.015(2)	0.970(3)
O (53)	0.349 (1)	0.2251 (9)	0.489(2)	C(224)	0.250(2)	0.012(2)	0.896(3)
C(53)	$0.335(1)$	0.281(1)	0.542(2)	C(225)	0.212(1)	0.085(2)	0.793(3)
C(61)	0.500(1)	0.340(1)	0.775(2)	C(226)	0.229(1)	0.166(1)	0.783(2)

11 (14 mg, 9\%) [Found: C, 35.35; H, $1.35 \% ; M 1771$ (mass spectrometry). $\mathrm{C}_{51} \mathrm{H}_{20} \mathrm{O}_{23} \mathrm{P}_{2} \mathrm{Ru}_{7}$ requires $\mathrm{C}, 34.60 ; \mathrm{H}, 1.15 \%$; M 1771]. IR: $v(\mathrm{CO})$ (cyclohexane) 2096m, 2077vs, 2074vs, 2046s, 2032vs, 2026vs, 2012s, 1997m, 1987m, 1975m and 1916vw $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-19.07\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HP}} 17.1 \mathrm{~Hz}, \mathrm{RuH}\right)$ and 7.10-7.82 ($19 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$). FAB mass spectrum: $m / z 1771$, $M^{+} ; 1743-1127,[M-n C O]^{+}(n=1,6-23) ; 1050$, [M$23 \mathrm{CO}-\mathrm{Ph}]^{+}$. When recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ red crystals of $\left[\left\{\mathrm{Ru}_{4}\left(\mu_{3}-\mathrm{OMe}\right)\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{10}\right\}\left(\mu_{4}-\mathrm{CCH}-\mu-\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{2}\right)\left\{\mathrm{Ru}_{2}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}\right\}\right] 12$ were obtained, m.p. $>300^{\circ} \mathrm{C}$ (decomp.) [Found: C, 35.95; H, $1.70 \% ; M 1506$ (mass spectrometry). $\mathrm{C}_{45} \mathrm{H}_{24} \mathrm{O}_{17} \mathrm{P}_{2} \mathrm{Ru}_{6}$ requires $\mathrm{C}, 35.90 ; \mathrm{H}, 1.60 \%$; M 1506]. IR: v(CO) (cyclohexane) $2118 \mathrm{vw}, 2083 \mathrm{~s}, 2072 \mathrm{~s}, 2050 \mathrm{~s}$, $2043 \mathrm{vs}, 2027 \mathrm{~s}, 2011 \mathrm{~s}, 2007 \mathrm{~s}, 1997 \mathrm{~s}, 1988 \mathrm{~m}, 1979 \mathrm{~m}$ and 1967 m
$\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.15\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{HP}}\right.$ $2.0 \mathrm{~Hz}, \mathrm{CCHCC})$ and $7.00-8.09(20 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$. FAB mass spectrum: m / z 1506, $M^{+} ; 1420-1028,[M-n C O-O M e]^{+}$ ($n=3-16$).

Complex 2. Nitrogen was bubbled through a solution of complex $2(205 \mathrm{mg}, 0.094 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ and heated at $105-110^{\circ} \mathrm{C}$ for 5 d . The solvent was removed and the residue purified by preparative TLC (light petroleum-acetone, 10:3). The major band ($R_{\mathrm{f}} 0.5$) was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ MeOH to yield pale yellow crystals of $\left[\left\{\mathrm{Os}_{3}\left(\mu-\mathrm{PPh}_{2}\right)\right.\right.$ $\left.\left.(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] \quad 13(151 \mathrm{mg}, 78 \%)$, m.p. $258-261{ }^{\circ} \mathrm{C}$ (decomp.) [Found: C, 26.65; H, 1.15%; M 2064 (mass spectrometry). $\mathrm{C}_{46} \mathrm{H}_{20} \mathrm{O}_{18} \mathrm{Os}_{6} \mathrm{P}_{2}$ requires $\mathrm{C}, 26.75 ; \mathrm{H}, 1.00 \%$; M 2064]. IR: $v(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2081 \mathrm{~m}, 2073 \mathrm{vs}, 2062 \mathrm{w}, 2046 \mathrm{~m}$,

Table 10 Non-hydrogen atomic coordinates for $\left[\left\{\mathrm{Os}_{3}\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{9}\right\}_{2}\left(\mu_{3}: \mu_{3}-\mathrm{C}_{4}\right)\right] 13$

Atom	x	y	z	Atom	x	y	z
Os(1)	$0.41662(3)$	$0.63755(8)$	$0.67684(3)$	$\mathrm{O}(32)$	$0.4813(5)$	$1.222(2)$	$0.6723(7)$
$\mathrm{Os}(2)$	$0.41255(3)$	$0.86340(9)$	$0.58302(3)$	$\mathrm{C}(33)$	$0.4166(7)$	$1.026(6)$	$0.8074(8)$
$\mathrm{Os}(3)$	$0.41242(3)$	$0.98571(7)$	$0.71283(3)$	$\mathrm{O}(33)$	$0.4228(5)$	$1.045(2)$	$0.8620(6)$
$\mathrm{C}(11)$	$0.3598(8)$	$0.558(2)$	$0.616(1)$	$\mathrm{C}(1)$	$0.4626(6)$	$0.839(2)$	$0.6625(8)$
$\mathrm{O}(11)$	$0.3295(6)$	$0.509(2)$	$0.5802(8)$	$\mathrm{C}(2)$	$0.4766(6)$	$0.808(2)$	$0.7267(8)$
$\mathrm{C}(12)$	$0.4688(8)$	$0.549(2)$	$0.6297(9)$	P	$0.3579(2)$	$0.7870(5)$	$0.7285(2)$
$\mathrm{O}(12)$	$0.4977(6)$	$0.494(2)$	$0.5987(7)$	$\mathrm{C}(101)$	$0.2883(6)$	$0.779(2)$	$0.6929(8)$
$\mathrm{C}(13)$	$0.4169(7)$	$0.497(2)$	$0.742(1)$	$\mathrm{C}(102)$	$0.2583(7)$	$0.900(2)$	$0.6795(9)$
$\mathrm{O}(13)$	$0.4180(6)$	$0.409(1)$	$0.7800(7)$	$\mathrm{C}(103)$	$0.2051(7)$	$0.891(2)$	$0.654(1)$
$\mathrm{C}(21)$	$0.3390(8)$	$0.884(3)$	$0.5460(9)$	$\mathrm{C}(104)$	$0.1802(8)$	$0.767(2)$	$0.6421(9)$
$\mathrm{O}(21)$	$0.2952(6)$	$0.903(2)$	$0.5267(8)$	$\mathrm{C}(105)$	$0.2091(7)$	$0.649(2)$	$0.6586(9)$
$\mathrm{C}(22)$	$0.4363(8)$	$1.017(2)$	$0.544(1)$	$\mathrm{C}(106)$	$0.2623(7)$	$0.658(2)$	$0.6837(9)$
$\mathrm{O}(22)$	$0.4557(7)$	$1.112(2)$	$0.5225(8)$	$\mathrm{C}(201)$	$0.3503(7)$	$0.753(2)$	$0.8158(8)$
$\mathrm{C}(23)$	$0.4287(8)$	$0.760(3)$	$0.5123(9)$	$\mathrm{C}(202)$	$0.3969(8)$	$0.707(2)$	$0.8599(9)$
$\mathrm{O}(23)$	$0.4373(7)$	$0.676(2)$	$0.4703(7)$	$\mathrm{C}(203)$	$0.3929(9)$	$0.687(2)$	$0.9268(9)$
$\mathrm{C}(31)$	$0.3583(7)$	$1.112(2)$	$0.6831(9)$	$\mathrm{C}(204)$	$0.345(1)$	$0.710(2)$	$0.9514(9)$
$\mathrm{O}(31)$	$0.3283(5)$	$1.196(1)$	$0.6643(8)$	$\mathrm{C}(205)$	$0.2997(9)$	$0.756(2)$	$0.9084(9)$
$\mathrm{C}(32)$	$0.4593(7)$	$1.132(2)$	$0.688(1)$	$\mathrm{C}(206)$	$0.3030(7)$	$0.774(2)$	$0.8428(9)$

$2017 \mathrm{~m}, 2000 \mathrm{~m}, 1981 \mathrm{~m}$ and $1974(\mathrm{sh}) \mathrm{cm}^{-1}$. FAB mass spectrum: $m / z 2064, M^{+} ; 2036-1560,[M-n \mathrm{CO}]^{+}(n=1-18) ; 148$, $[M-18 \mathrm{CO}-\mathrm{Ph}]^{+}$.

Crystallography.-Unique data sets were measured at $c a$. 295 K within the specified $2 \theta_{\text {max }}$ limits using an Enraf-Nonius CAD4 diffractometer ($2 \theta-\theta$ scan mode; monochromatic Mo-K α radiation, $\left.\lambda 0.7107_{3} \AA\right) ; N$ independent reflections were obtained, N_{o} with $I>3 \sigma(I)$ being considered 'observed' and used in the full-matrix least-squares refinement after absorption correction. Anisotropic thermal parameters were refined for the non-hydrogen atoms; $\left(x, y, z, U_{\mathrm{iso}}\right)_{\mathrm{H}}$ were included constrained at estimated values. Conventional residuals R, R^{\prime} on $|F|$ are quoted, statistical weights derivative of $\sigma^{2}(I)=\sigma^{2}\left(I_{\text {diff }}\right)$ $+0.0004 \sigma^{2}\left(I_{\text {diff }}\right)$ being used. Computation used the XTAL 2.6 program system implemented by S. R. Hall; ${ }^{29}$ neutral atom complex scattering factors were employed. Crystal data are summarised in Table 5, final atomic coordinates in Tables 6-10.

Abnormal features/variations in procedure. Data for complex 6, as a MeOH solvate, were collected at 195 K ; nevertheless the data set was halted at $l=7$ owing to severe decomposition. Data with $I \geqslant 2.5 \sigma(I)$ were considered observed and structure solution and refinement \{anisotropic Ru and P ; weighting scheme $\left.w=\left[\sigma^{2}(F)+g F^{2}\right]\right\}$ were performed with SHELX 76. ${ }^{30}$ Hydrogen atoms were not located. Four residual electrondensity peaks were modelled as a disordered molecule of methanol (solvent) such that each component has 0.5 occupancy.

Data for complexes 11 and 12 were less than optimal, being limited in extent, with profiles being broad and unsymmetrical. The existence and location of the core hydrogens in 11 could not be established with any confidence; in 12 the μ_{3} species was modelled as methoxide following an NMR assignment. In 11 the behaviour of $\mathrm{CO}(51)$ was anomalous, meaningful thermal parameter refinement of $C(151)$ occurring only with the isotropic form. This may be a consequence of deficiencies in the data; however, that CO group has some suggestion of disorder and may be incipiently bridging.

In complex 13 an ill behaved ellipsoid for $\mathrm{C}(33)$ was refined using the isotropic form.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Australian Research Council for financial support and Johnson Matthey Technology Centre for a generous loan of $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$.

References

1 Part 90, C. J. Adams, P. Braunstein, M. I. Bruce, S. Coco Cea, W. R. Cullen, P. A. Duckworth, P. A. Humphrey, O. Kühl, B. W. Skelton, E. R. T. Tiekink and A. H. White, J. Organomet. Chem., in the press.
2 (a) M. I. Bruce, J. M. Patrick, A. H. White and M. L. Williams, J. Chem. Soc., Dalton Trans., 1985, 1229; (b) J.-C. Daran, E. Cabrera, M. I. Bruce and M. L. Williams, J. Organomet. Chem., 1987, 319, 239; (c) C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Organomet. Chem., 1993, 447, 91.

3 M. I. Bruce, M. R. Snow, E. R. T. Tiekink and M. L. Williams, J. Chem. Soc., Chem. Commun., 1986, 701; C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1992, 26; J. Organomet. Chem., 1992, 423, 97.
4 C. J. Adams, M. I. Bruce, E. Horn and E. R. T. Tiekink, J. Chem. Soc., Dalton Trans., 1992, 1157.
5 A. J. Carty and T. W. Ng, Chem. Commun., 1970, 149; B. C. Ward and J. L. Templeton, J. Am. Chem. Soc., 1980, 102, 1532; A. K. Powell and M. J. Went, J. Chem. Soc., Dalton Trans., 1992, 439.

6 C. J. Adams, M. I. Bruce, B. W. Skelton and A. H. White, J. Organomet. Chem., 1993, 450, C9.

7 M. I. Bruce, J. G. Matisons and B. K. Nicholson, J. Organomet. Chem., 1983, 247, 321.
8 R. D. Wilson, S. M. Wu, R. A. Love and R. Bau, Inorg. Chem., 1978, 17, 1271.
9 R. D. Wilson and R. Bau, J. Am. Chem. Soc., 1976, 98, 2434.
10 M. I. Bruce, M. J. Liddell, C. A. Hughes, B. W. Skelton and A. H. White, J. Organomet. Chem., 1988, 347, 157 and refs. therein.
11 M. I. Bruce, Chem. Rev., 1991, 91, 197.
12 M. I. Bruce, M. L. Williams, J. M. Patrick and A. H. White, Aust. J. Chem., 1983, 36, 1353.
13 A. J. Carty, S. A. MacLaughlin and N. J. Taylor, J. Organomet. Chem., 1981, 204, C27.
14 C. J. Adams, M. I. Bruce, E. Horn, B. W. Skelton, E. R. T. Tiekink and A. H. White, following paper.
15 (a) A. A. Cherkas, L. H. Randall, S. A. MacLaughlin, G. N. Mott, N. J. Taylor and A. J. Carty, Organometallics, 1988, 7, 969; (b) D. Nucciarone, S. A. MacLaughlin, N. J. Taylor and A. J. Carty, Organometallics., 1988, 7, 106; (c) W. F. Smith, J. Yule, N. J. Taylor, H. N. Paik and A. J. Carty, Inorg. Chem., 1977, 16, 1593.

16 M. Akita, S. Sugimoto, M. Tanaka and Y. Moro-oka, J. Am. Chem. Soc., 1992, 114, 7581 and refs. therein.
17 R. J. Dellaca, B. R. Penfold, B. H. Robinson, W. T. Robinson and J. T. Spencer, Inorg. Chem., 1970, 9, 2204.

18 H. Ogawa, T. Joh, S. Takahashi and K. Sonogashira, J. Chem. Soc., Chem. Commun., 1985, 1220; H. Ogawa, K. Onitsuka, T. Joh, S. Takahashi and H. Yamazaki, Organometallics, 1988, 7, 2257; H. Ogawa, T. Joh and S. Takahashi, Bull. Chem. Soc. Jpn., 1992, 65, 1179.

19 K. Sonogashira, S. Takahashi and N. Hagihara, Macromolecules, 1977, 10, 879; S. Takahashi, M. Kariya, T. Yatake, K. Sonogashira and N. Hagihara, Macromolecules, 1978, 11, 1063; K. Sonogashira, K. Ohga, S. Takahashi and N. Hagihara, J. Organomet. Chem., 1980, 188, 237; S. Takahashi, E. Murata, K. Sonogashira and N. Hagihara,
J. Polym. Sci., Polym. Chem. Ed., 1980, 18, 661; S. Takahashi, H. Morimoto, E. Murata, S. Kataoka, K. Sonogashira and N. Hagihara, J. Polym. Sci., Polym. Chem. Ed., 1982, 20, 565.

20 A. Wong, P. C. W. Kang, C. D. Tagge and D. R. Leon, Organometallics, 1990, 9, 1992.
21 M. I. Bruce, P. Hinterding, E. R. T. Tiekink, B. W. Skelton and A. H. White, J. Organomet. Chem., 1993, 450, 209.
22 A. J. Carty, S. A. MacLaughlin and N. J. Taylor, J. Chem. Soc., Chem. Соттип., 1981, 476.
23 M. I. Bruce, C. M. Jensen and N. L. Jones, Inorg. Synth., 1989, 26, 259; 1990, 28, 216.
24 S. R. Drake and R. Khattar, Organomet. Synth., 1988, 4, 234.
25 M. I. Bruce and M. L. Williams, Inorg. Synth., 1989, 26, 262; 1990, 28, 219.

26 M. A. Andrews, H. D. Kaesz and S. W. Kirtley, Inorg. Synth., 1977, 17, 66.
27 B. F. G. Johnson and J. Lewis, Inorg. Synth., 1972, 13, 93; S. R. Drake and P. A. Loveday, Inorg. Synth., 1990, 28, 230.
28 J. N. Nicholls and M. D. Vargas, Inorg. Synth., 1989, 26, 289; 1990, 28, 232.
29 S. R. Hall and J. M. Stewart (Editors), XTAL Users' Manual, Version 2.6, Universities of Western Australia and Maryland, 1989.

30 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1993, Issue 1, pp. xxiii-xxviii.

[^1]: * Atom has a 0.5 occupancy factor.

