Di-, Tri- and Tetra-nuclear Gold(1) Complexes with Tris(diphenylphosphino)-methane or -methanide as Ligand. Crystal Structures of Two Modifications of $\left[(\mathrm{O}) \mathrm{Ph}_{\mathbf{2}} \mathbf{P C}\left(\mathrm{PPh}_{\mathbf{2}} \mathbf{A u P P h _ { 2 }}\right)_{\mathbf{2}} \mathrm{CPPh}_{\mathbf{2}}(\mathrm{O})\right] \cdot \mathbf{4} \mathrm{CH}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}} \dagger$

Eduardo J. Fernández, ${ }^{a}$ M. Concepción Gimeno, ${ }^{b}$ Peter G. Jones, ${ }^{c}$ Antonio Laguna, ${ }^{*}$, Mariano Laguna ${ }^{\text {b }}$ and José M. López-de-Luzuriaga ${ }^{\text {b }}$
${ }^{a}$ Departmento de Química, Universidad de La Rioja, Obispo Bustamente 3, 26001 Logroño, Spain
${ }^{\text {b }}$ Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
${ }^{\text {c }}$ Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, 38023 Braunschweig, Germany

Abstract

The reaction of $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$ or $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ (tht $=$ tetrahydrothiophene, acac $=$ acetylacetonate) with $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}$ led to dinuclear complexes, $\left[\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CHPPh}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ or $\left[\mathrm{Ph}_{2} \mathrm{PC}\right.$ $\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh} h_{2}$, with react further with $[\mathrm{AuX}(\mathrm{tht})]\left(\mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ or Cl$)$ or $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{tht})\right] \mathrm{ClO}_{4}$ to give tetranuclear cationic, $\left[\mathrm{XAuPPh}{ }_{2} \mathrm{CH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CHPPh} \mathrm{AuX}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ or $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuPPh} \mathrm{Al}_{2} \mathrm{C}\left(\mathrm{PPh}_{2} \mathrm{Au}-\right.\right.$ $\left.\left.\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2} \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$, or neutral complexes. [$\mathrm{XAuPPh} \mathrm{Cl}_{2} \mathrm{C}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2} \mathrm{AuX}$]. Trinuclear complexes, such as $\left[\mathrm{CH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{3} \mathrm{CH}\right]\left[\mathrm{ClO}_{4}\right]_{3}$ or $\left[\mathrm{CH}\left\{\mathrm{PPh}_{2} \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}_{3}\right]$, were obtained by reaction of $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$ or $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right]$ with $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}$. Oxidation of $\left[\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right.$] with $\mathrm{H}_{2} \mathrm{O}_{2}$ gives [(O) $\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}(\mathrm{O})$]. The structures of two forms of the latter compound have been established by X -ray crystallography. Both involve an eight-membered ring with a very short transannular gold-gold contact.

Abstract

Although in recent years the chemistry of the bis(diphenyl-phosphino)-methane or -methanide ligand has received a great deal of attention, ${ }^{1.3}$ and some examples of gold derivatives have been prepared, ${ }^{3-5}$ no systematic study of the tris(diphenylphosphino)methane ligand has been carried out until now. A few transition-metal complexes with $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}$ have been prepared, ${ }^{6-8}$ but only very few examples such as $\left[\mathrm{CH}\left(\mathrm{PPh}_{2}-\right.\right.$ $\left.\mathrm{AuCl})_{3}\right]^{9}$ and $\left[\mathrm{Au}_{3} \mathrm{Cl}\left\{\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}{ }^{10}$ are known with gold.

Here we describe the preparation of the dinuclear $\left[\mathrm{Ph}_{2}-\right.$ $\left.\mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right]$ or $\left[\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CH}-\right.$ $\left.\mathrm{PPh}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$, or trinuclear complexes $\left[\mathrm{CH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{3}-\right.$ $\mathrm{CH}]\left[\mathrm{ClO}_{4}\right]_{3}$, by reaction of $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right] \quad(\mathrm{acac}=$ acetylacetonate) or $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$ (tht $=$ tetrahydrothiophene) with the triphosphine and their reactions with other gold(I) complexes. The structures of two forms of $\left[(\mathrm{O}) \mathrm{Ph}_{2} \mathrm{P}-\right.$ $\left.\mathrm{C}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}(\mathrm{O})\right]$ have been established by singlecrystal X-ray analysis.

Results and Discussion

The tetrahydrothiophene ligand in $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$ can easily be displaced by the triphosphine $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}$ to give dinuclear, $\left[\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CHPPh}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} 1$ (molar ratio $1: 1)$, or trinuclear complexes, $\left[\mathrm{CH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{3} \mathrm{CH}\right]$ [$\left.\mathrm{ClO}_{4}\right]_{3} 2$ (molar ratio 3:2) (see Scheme 1). Complex 2 can also be obtained by equimolecular reaction of 1 and $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$. It has been reported ${ }^{10}$ that complex 2 could not be obtained
\dagger Supplementary data available: Further details of the structure determination (complete bond lengths and angles, H -atom coordinates, structure factors, thermal parameters) have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlichtechnische Information $\mathrm{mbH}, 76344$ Eggenstein-Leopoldshafen, Germany. Any request for this material should quote a full literature citation and the reference numbers CSD 400362 and 400363.
either by prolonged heating of $\left[\mathrm{AuCl}_{4}\right]^{-}$and $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}$ in the presence of $2,2^{\prime}$-thiodiethanol, or by reaction of $\left[\mathrm{Au}_{3} \mathrm{Cl}-\right.$ $\left.\left\{\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ with silver(I$)$.

Complex 1 reacts with NaH or $\mathrm{NBu}_{4}(\mathrm{acac})$ in diethyl ether to give the neutral methanide complex 3 (see Scheme 1) as the result of the precipitation of the perchlorate anion (as the sodium or NBu_{4} salt) and the simultaneous deprotonation of the CH group. The protonation of complex 3 with HClO_{4} gives the cationic complex 1. The same methanide complex 3 can also be obtained by reaction of $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]$ and the triphosphine.
The presence of a free PPh_{2} group in complexes $\mathbf{1}$ or $\mathbf{3}$ can be confirmed through reactions with gold(I) derivatives containing one weakly co-ordinated ligand such as tetrahydrothiophene $\left\{\right.$ e.g. $[\mathrm{AuX}(\mathrm{tht})]\left(\mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5}\right.$ or Cl$)$ or $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\right.$ tht $\left.\left.)\right] \mathrm{ClO}_{4}\right\}$, which afford neutral ($\mathbf{4}$ or 5) or cationic (6 or 7) tetranuclear complexes. No co-ordination to the C-methanide of complex 3 , such as occurs for other methanide complexes of gold, ${ }^{3}$ has been observed. The reaction of complex 1 with [$\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)$] leads to the deprotonation of the CH group and formation of acetylacetone, but the fragment $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right]^{+}$is co-ordinated to the free phosphorus instead of the C -methanide as observed for other derivatives, ${ }^{5,11}$ and the tetranuclear complex 6 is formed.

The free terminal PPh_{2} of the triphosphine of complex 3 can be oxidized; thus the reaction with $\mathrm{H}_{2} \mathrm{O}_{2}$ leads to complex 8 .

The reaction of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ (tht) $]$ with the triphosphine leads to the displacement of the tetrahydrothiophene ligand and formation of a trinuclear complex 9 , Scheme 2.

Complexes 1, 2 and 4-9 are air- and moisture-stable white (1, 2, 7-9) or pale yellow (4-6) solids. The yellow complex 3 slowly oxidizes in solution or in solid state to give complex 8. The cationic derivatives 1, $\mathbf{6}$ or $\mathbf{7}$ behave as $1: 2$ electrolytes in acetone solutions (complex 2 is insoluble in acetone), and their IR spectra show bands at $1100 \mathrm{~s}(\mathrm{br})$ and $620 \mathrm{~m} \mathrm{~cm}^{-1}$, which are characteristic of the $\mathrm{ClO}_{4}{ }^{-}$anion. In contrast, acetone solutions of complexes 3-5, 8 and 9 are non-conducting.

Scheme 1 (i) $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}$ ($1: 1$), (ii) $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}\left(3: 2\right.$), (iii) [$\left.\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}$, (iv) NaH or $\mathrm{NBu}_{4}(\mathrm{acac})$, (v) HClO_{4}, (vi) [$\left.\mathrm{AuX}(\mathrm{tht})\right]$, (vii) $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{tht})\right] \mathrm{ClO}_{4}$, (viii) $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right]$, (ix) $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right],(x) \mathrm{H}_{2} \mathrm{O}_{2}$

Scheme 2

The methanide group in complexes $3-6$ and 8 gives rise to a strong absorption in the IR spectra (at $8963,9034,9025,9096$ or $9108 \mathrm{~cm}^{-1}$), probably assignable to the CP_{3} system, ${ }^{12,13}$ which is absent in the protonated complexes $1,2,7$ and 9 . The IR spectra of the pentafluorophenyl complexes 4,7 and 9 show
bands at approximately $1500 \mathrm{vs}, 955 \mathrm{vs}$ and $790 \mathrm{~m} \mathrm{~cm}^{-1}$ arising from the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group. Complex 5 has a medium $v(\mathrm{Au}-\mathrm{Cl})$ band at $325 \mathrm{~cm}^{-1}$ and complex 8 has a strong $v(P=O)$ band at $1153 \mathrm{~cm}^{-1}$.

Compound 3 was also characterized by fast atom bombardment (FAB) mass spectrometry. The highest peak at $m / z=$ $1529(12 \%)$ corresponds to the parent ion; other peaks appear at $m / z=961\left(\left[\mathrm{Au}_{2} \mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{+}\right)$or $841\left(\left[\mathrm{AuC}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{+}\right)$.

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of complexes $\mathbf{3}, 5$ and 8 show a triplet and a quintuplet for the phosphorus of the ring $\mathrm{C}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{C}$ and the other PPh_{2} respectively (see Table 2), probably due to a virtual coupling between the two different phosphorus environments; the coupling constant for the methanide complex $3(26.5 \mathrm{~Hz})$ is higher than for complexes 5 and 8 (6.4 and 6.0 , respectively). Complex 7 shows a similar
pattern with a triplet and a multiplet due to the coupling with the fluorine atoms of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups. The spectrum of complex 1 at room temperature shows only a broad singlet at $\delta 26.5$, but

Fig. 1 The molecule of complex 8a in the crystal, showing the numbering scheme of the asymmetric unit. Radii are arbitrary
on cooling to $-55^{\circ} \mathrm{C}$ the signal splits into two broad singlets. The coupling constants for complexes $1\left(\mathrm{at}-55^{\circ} \mathrm{C}\right.$) and $\mathbf{4}$ are probably so small that only broad singlets are observed. The

Fig. 2 The molecule of complex $\mathbf{8 b}$ in the crystal, showing the numbering scheme of the asymmetric unit. Radii are arbitrary

Table 1 Analytical and physical data of the complexes

Complex	$\begin{aligned} & \text { Yield } \\ & \text { (\%) } \end{aligned}$	M.p. ${ }^{\prime} /{ }^{\circ} \mathrm{C}$	Analysis ${ }^{\text {a }}$ (\%)		$\Lambda_{M}{ }^{\text {c }}$
			C	H	
$\left[\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CHPPh}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} 1$	95	208	$\begin{gathered} 50.75 \\ (51.35) \end{gathered}$	$\begin{gathered} 3.4 \\ (3.6) \end{gathered}$	189
$\left[\mathrm{CH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{3} \mathrm{CH}\right]\left[\mathrm{ClO}_{4}\right]_{3} 2$	93	240	$\begin{array}{r} 43.45 \\ (43.8) \end{array}$	$\begin{aligned} & 2.95 \\ & (3.1) \end{aligned}$	d
$\left[\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right] 3$	87	134	$\begin{gathered} 57.6 \\ (58.1) \end{gathered}$	$\begin{aligned} & 4.0 \\ & (3.95) \end{aligned}$	10
$\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\right\} \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}\right] 4$	60	170	$\begin{gathered} 45.35 \\ (45.7) \end{gathered}$	$\begin{gathered} 2.6 \\ (2.65) \end{gathered}$	12
$\left[(\mathrm{ClAu}) \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}(\mathrm{AuCl})\right] 5$	74	188	$\begin{gathered} 44.75 \\ (44.55) \end{gathered}$	$\begin{gathered} 3.5 \\ (3.55) \end{gathered}$	8
$\left[\left(\mathrm{Ph}_{3} \mathrm{PAu}\right) \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\left(\mathrm{AuPPh}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2} 6$	80	168	$\begin{gathered} 50.35 \\ (49.95) \end{gathered}$	$\begin{array}{r} 3.65 \\ (3.4) \end{array}$	255
$\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\right\} \mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CHPPh}_{2}\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}\right]\left[\mathrm{ClO}_{4}\right]_{2} 78$		228	$\begin{gathered} 41.6 \\ (42.0) \end{gathered}$	$\begin{gathered} 2.55 \\ (2.55) \end{gathered}$	198
$\left[(\mathrm{O}) \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}(\mathrm{O})\right] 8$	60	130	$\begin{gathered} 57.35 \\ (56.95) \end{gathered}$	$\begin{gathered} 3.0 \\ (3.85) \end{gathered}$	19
$\left[\mathrm{CH}\left\{\mathrm{PPh}_{2} \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}_{3}\right] 9$	83	220	$\begin{gathered} 39.4 \\ (39.75) \end{gathered}$	$\begin{gathered} 1.85 \\ (1.9) \end{gathered}$	1

${ }^{a}$ Calculated values in parentheses. ${ }^{b}$ With decomposition. ${ }^{c}$ In acetone, $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1} .{ }^{d}$ Insoluble in acetone.

Table 2 NMR data of the complexes

		$\delta_{\mathbf{P}}{ }^{\text {b }}$		$\delta_{F}{ }^{\text {c }}$		
Compound	$\delta_{\mathrm{H}}{ }^{\text {a }}$ (CH)	Au-P	PPh_{2}	o-F	p-F	m-F
1	6.73 (m)	4.44 (br s) ${ }^{\text {d }}$	$-14.5(\mathrm{br} \mathrm{s})^{\text {d }}$			
2	6.34 (m)	45.8 (s)				
3		$\begin{aligned} & 50.3(t) \\ & (26.5) \end{aligned}$	5.1 (q)			
4		48.3 (br s)	43.1 (br s)	- 115.2 (m)	$\begin{aligned} & -159.6(t) \\ & (20.6) \end{aligned}$	-162.8(m)
5		$\begin{aligned} & 47.5(t) \\ & (6.4) \end{aligned}$	30.3 (q)			
6		47.7 (s)	e			
7	6.88 (m)	$\begin{aligned} & 50.8(t) \\ & (16.2) \end{aligned}$	39.8 (q)	-114.5 (m)	$\begin{aligned} & -156.5(\mathrm{t}) \\ & (20.7) \end{aligned}$	-160.7(m)
8		$\begin{aligned} & 44.2(\mathrm{t}) \\ & (6.0) \end{aligned}$	34.2 (q)			
9	$\begin{aligned} & 6.04(q) \\ & (10.2) \end{aligned}$	40.3 (m)		-115.9(m)	$\begin{aligned} & -158.9(\mathrm{t}) \\ & (19.5) \end{aligned}$	-163.6(m)

${ }^{a}$ Recorded in CDCl_{3} at 300 MHz referenced to internal SiMe_{4}. Coupling constants in Hz are given in parentheses; $\mathrm{s}=$ singlet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quintet, $\mathrm{m}=$ multiplet. ${ }^{b}$ Referenced to external $\mathrm{H}_{3} \mathrm{PO}_{4} \cdot{ }^{c}$ Referenced to external $\mathrm{CFCl}_{3} .{ }^{d} \mathrm{At}-55^{\circ} \mathrm{C} .{ }^{e} \mathrm{AB}$ system $\delta_{\mathrm{A}} 45.7, \delta_{\mathrm{B}} 45.3, J(\mathrm{AB}) 302 \mathrm{~Hz}$.
spectrum of complex 6 corresponds to an ABX_{2} system with $J(\mathrm{AX})$ and $J(\mathrm{BX}) \approx 0$. In complexes $\mathbf{2}$ and $\mathbf{9}$ only one resonance is observed and appears as a singlet (2) or as multiplet (9), due to the coupling with the fluorine atoms of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups.
The ${ }^{1} \mathrm{H}$ NMR spectra of complexes $1,2,7$ and 9 show a multiplet at $c a . \delta 6.8$ corresponding to a CH proton. The ${ }^{19} \mathrm{~F}$ NMR spectra show three groups of signals in all the pentafluorophenyl complexes ($\mathbf{4}, 7$ and 9), as expected for one $\mathrm{C}_{6} \mathrm{~F}_{5}$ group.
The structures of two forms of complex $8(8 a$ and $8 b)$ have been established by X-ray diffraction (Figs. 1 and 2). Both are monoclinic, possess a symmetry centre and crystallize as 1:4 dichloromethane solvates. The two modifications display very similar molecular structures; the major difference lies in the conformations of the eight membered rings, which are chair forms in both modifications but much flatter for 8a than 8b (mean absolute torsion angle excluding Au atoms being 23 and 37°, respectively).
The co-ordination at the gold atoms is slightly distorted from

Table 3 Details of data collection and structure refinement for $\mathbf{8 a} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{8 b} \cdot 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}$

	$\mathbf{8 a}$	$\mathbf{8 b}$
Space group	$P 2_{1} / c$	$P 2_{1} / n$
a / \AA	$11.245(4)$	$12.866(5)$
b / \AA	$13.795(4)$	$19.842(7)$
c / \AA	$23.806(6)$	$14.519(6)$
$\beta /{ }^{\circ}$	$93.27(2)$	$95.09(3)$
U / \AA^{3}	$3687(2)$	$3692(3)$
$D_{c} / \mathrm{Mg} \mathrm{m}^{-3}$	1.712	1.710
$\mu\left(\mathrm{Mo}^{-}-\mathrm{K}_{2}\right) / \mathrm{mm}^{-1}$	4.44	4.4
Crystal size $/ \mathrm{mm}^{2}$	$0.40 \times 0.20 \times 0.15$	$0.84 \times 0.44 \times 0.28$
Transmission	$0.77-0.82$	$0.49-0.91$
Reflections measured	7880	7064
Unique reflections	6519	6490
$R_{\text {int }}$	0.038	0.031
Weighting scheme, a, b	$0.0501,22.0572$	$0.1084,42.6653$
$R[F>4 \sigma(F)]$	0.041	0.060
$R^{\prime}\left(F^{2}\right.$, all reflections $)$	0.123	0.180
$R e s t r a i n t s$	342	354
Parameters	433	423
$S\left(F^{2}\right)$	1.025	1.021
Detill		

Details in common: molecular formula $\mathrm{C}_{78} \mathrm{H}_{68} \mathrm{Au}_{2} \mathrm{Cl}_{8} \mathrm{O}_{2} \mathrm{P}_{6}, M=$
1900.7, monoclinic, $Z=2, F(000)=1872,2 \theta_{\max }=50^{\circ}$.
linear with $P(2)-A u-P\left(1^{\prime}\right) \quad 172.17(7)^{\circ}$ (modification 8a), $174.64(8)^{\circ}$ (modification 8 b) probably because of the very short $\mathrm{Au} \cdots$ Au contacts $2.7639(11)(8 \mathrm{a})$ and $2.7988(12)(8 \mathbf{b}) \AA$. The $\mathrm{Au} \cdot \mathrm{Au}$ interaction in modification 8 a is similar to that found in the complex $\left[\operatorname{Pr}_{2} \mathrm{NC}(\mathrm{SAuS})_{2} \mathrm{CNPr}_{2}\right], 2.76(1) \AA ;{ }^{14}$ these are among the shortest in gold(I) dimers bridged by difunctional ligands. ${ }^{15-17}$
The Au-P distances are slightly longer in the modification $\mathbf{8 b}$ $2.335(2)$ and $2.335(2) \AA$ [compared with 2.324(2) and $2.326(2)$ $\AA]$, although the differences are not highly significant, and are similar to those found in gold phosphine complexes. The $\mathrm{P}-\mathrm{C}(1)$ bond lengths lie in the range $1.746(9)-1.794(9) \AA$ and are shorter than the $\mathrm{P}-\mathrm{C}$ distances in free $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}{ }^{18}[1.867(1)-$ $1.877(1) \AA]$ or in other phosphine derivatives. This difference arises from a certain degree of multiple $\mathbf{P}-\mathrm{C}$ bonding in the methanide ligand. The angles around the central methanide carbon fall in the range $116.1(5)-127.0(6) \AA$, close to the ideal value of 120° for sp^{2} hybridisation. The smallest angles are observed for the $\mathrm{P}-\mathrm{C}(1)-\mathrm{P}$ units that bridge both gold atoms. $\mathrm{C}(1)$ lies $0.02(\mathbf{8 a}), 0.09(\mathbf{8 b}) \AA$ out of the plane formed by the three phosphorus atoms. The distances $\mathrm{P}-\mathrm{O} 1.491(6)$ (8a) and $1.495(7)(8 b) \AA$ compare well with the values reported for other phosphine oxides and correspond to normal double bonds. ${ }^{19}$

Experimental

The instrumentation and general experimental techniques were as described earlier. ${ }^{5}$ The NMR spectra were recorded on Varian XL 200 and 300 spectrometers in CDCl_{3}. Chemical shifts are cited relative to $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right), 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (external ${ }^{31} \mathrm{P}$) and CFCl_{3} (external, ${ }^{19} \mathrm{~F}$). Mass spectra were recorded on a VG Autospec. The yields, melting points, elemental analyses and conductivities for the new complexes are listed in Table 1 and the NMR data in Table 2. All reactions were carried out at room temperature and, except for complex 8, under a nitrogen atmosphere.

Syntheses.- $\left[\mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CHPPh} \mathrm{P}_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2} 1$. To a dichloromethane solution ($30 \mathrm{~cm}^{3}$) of $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}{ }^{20}$ $(0.236 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}(0.284 \mathrm{~g}, 0.5 \mathrm{mmol})$. After stirring for 1 h a white precipitate of complex 1 was filtered off. Evaporation of the filtrate to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether ($15 \mathrm{~cm}^{3}$) rendered a second crop.
$\left[\mathrm{CH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{3} \mathrm{CH}\right]\left[\mathrm{ClO}_{4}\right]_{3}$ 2. (a) To a dichloro-

Table 4 Atomic coordinates $\left(\times 10^{4}\right)$ for complex $8 \mathbf{a}$

Atom	x	y	z	Atom	x	y	z
Au	$6149.9(3)$	$5356.9(2)$	5043.0 (1)	C(41)	7 081(7)	5 620(6)	$3756(3)$
$\mathrm{P}(1)$	$4097(2)$	$3988(2)$	$4071.0(8)$	$\mathrm{C}(42)$	7 994(8)	6258(6)	3 947(4)
$\mathrm{P}(2)$	$6651(2)$	4 633(2)	4207.0 (8)	C(43)	8 237(9)	7071 (7)	3 630(4)
$\mathrm{P}(3)$	5 898(2)	2992(2)	3 352.7(9)	$\mathrm{C}(44)$	7 557(9)	7 293(8)	$3153(4)$
\bigcirc	$5135(5)$	$3063(5)$	2821 (2)	C(45)	6 662(9)	6 680(7)	2 962(4)
C(1)	5 579(6)	3850 (6)	$3876(3)$	C(46)	$6422(8)$	$5852(7)$	$3256(3)$
C(11)	3 357(7)	$2809(6)$	4045 (3)	C(51)	$5803(8)$	$1783(7)$	3 654(4)
C(12)	3 260(8)	2 292(6)	4 540(4)	C(52)	$5985(8)$	1 591(7)	4 227(4)
C(13)	2 766(9)	$1372(7)$	4 536(5)	C(53)	4 929(10)	639(8)	4 425(5)
C(14)	2376 (9)	964(7)	4 030(5)	C(54)	5 681(10)	- 107(8)	4 053(5)
C(15)	2 438(8)	$1457(7)$	3 535(5)	C(55)	5 503(10)	64(7)	3 491(5)
C(16)	2 919(8)	2390 (7)	3 545(4)	C(56)	5 550(8)	1013 (7)	3 280(4)
C(21)	3 129(7)	4 697(6)	3 578(3)	C(61)	7 463(8)	3 095(7)	$3190(4)$
C(22)	2 205(7)	5 223(6)	$3802(4)$	C(62)	$7757(9)$	$3797(8)$	2 813(4)
C(23)	$1396(8)$	5 731(7)	$3451(4)$	C(63)	8 923(9)	$3874(10)$	2 653(4)
C(24)	1500 (8)	$5733(8)$	2 876(4)	C(64)	9790 (10)	$3250(9)$	2 867(5)
C(25)	2 418(8)	$5238(8)$	2 652(4)	C(65)	9 484(9)	2 533(9)	3 226(6)
C(26)	3 244(8)	$4718(7)$	2 994(3)	C(66)	$8313(8)$	2443(8)	3 391(5)
C(31)	8030 (7)	3 988(6)	4436(3)	C(2)	$3814(10)$	7484 (8)	3 522(4)
C(32)	7 944(8)	3356 (6)	4886 (3)	$\mathrm{Cl}(1)$	$2709(3)$	8320 (3)	3670.1 (15)
C(33)	8 942(8)	2854(7)	$5097(4)$	$\mathrm{Cl}(2)$	4 657(3)	$7162(2)$	$4135.5(13)$
C(34)	$10021(8)$	$3008(7)$	$4864(4)$	C(3)	385(19)	4378 (13)	712(7)
C(35)	$10123(8)$	$3645(7)$	4 427(4)	$\mathrm{Cl}(3)$	345(23)	$5130(22)$	282(9)
C(36)	9 129(7)	4142 (7)	4 205(4)	$\mathrm{Cl}(4)$	793(13)	$4786(10)$	$1287(6)$

methane solution ($30 \mathrm{~cm}^{3}$) of $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}(0.284 \mathrm{~g}, 0.50 \mathrm{mmol})$ was added $\left[\mathrm{Au}(\mathrm{tht})_{2}\right] \mathrm{ClO}_{4}(0.354 \mathrm{~g}, 0.75 \mathrm{mmol})$. After stirring for 30 min the solvent was evaporated, the white precipitate of complex 2 was filtered off and washed with dichloromethane ($2 \times 2 \mathrm{~cm}^{3}$).
(b) This complex can also be prepared by treatment of a dichloromethane suspension $\left(20 \mathrm{~cm}^{3}\right)$ of complex $1(0.432 \mathrm{~g}$, $0.25 \mathrm{mmol})$ with $\left[\mathrm{Au}(\mathrm{tht})_{2}\right]_{\mathrm{ClO}_{4}}(0.118 \mathrm{~g}, 0.25 \mathrm{mmol})$. The resulting clear solution was stirred for 30 min and a white precipitate of 2 was formed when the solvent was evaporated.
$\left[\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right]$ 3. To a solution of $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}(0.284 \mathrm{~g}, 0.5 \mathrm{mmol})$ in diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right]^{21} \quad(0.279 \mathrm{~g}, 0.5 \mathrm{mmol})$. After stirring the mixture for 2 h the solvent was concentrated to $c a .5$ cm^{3}. Addition of n-hexane ($20 \mathrm{~cm}^{3}$) gave complex 3 as a yellow solid.
$\left[(\mathrm{XAu}) \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}(\mathrm{AuX})\right]\left(\mathrm{X}=\mathrm{C}_{6} \mathrm{~F}_{5} 4\right.$ or Cl 5$)$. To a solution of complex $3(0.39 \mathrm{~g}, 0.25 \mathrm{mmol})$ in dichloromethane $\left(20 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right]^{22,23}$ $(0.226 \mathrm{~g}, 0.5 \mathrm{mmol})$ or $[\mathrm{AuCl}(\mathrm{tht})]^{23}(0.16 \mathrm{~g}, 0.5 \mathrm{mmol})$. After stirring for 1 h the solution was evaporated to $c a .5 \mathrm{~cm}^{3}$ and

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 8a

$\mathrm{Au}-\mathrm{P}(2)$	$2.324(2)$	$\mathrm{Au}-\mathrm{P}\left(1^{\prime}\right)$	$2.326(2)$
$\mathrm{Au} \cdots \mathrm{Au}$	$2.7639(11)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.766(7)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.826(9)$	$\mathrm{P}(1)-\mathrm{C}(21)$	$1.838(8)$
$\mathrm{P}(2)-\mathrm{C}(1)$	$1.770(8)$	$\mathrm{P}(2)-\mathrm{C}(41)$	$1.817(8)$
$\mathrm{P}(2)-\mathrm{C}(31)$	$1.844(8)$	$\mathrm{P}(3)-\mathrm{O}$	$1.491(6)$
$\mathrm{P}(3)-\mathrm{C}(1)$	$1.770(8)$	$\mathrm{P}(3)-\mathrm{C}(51)$	$1.820(10)$
$\mathrm{P}(3)-\mathrm{C}(61)$	$1.830(9)$		
$\mathrm{P}(2)-\mathrm{Au}-\mathrm{P}\left(1^{\prime}\right)$	$172.17(7)$	$\mathrm{P}(2)-\mathrm{Au}-\mathrm{Au}$	$93.14(5)$
$\mathrm{P}\left(1^{\prime}\right)-\mathrm{Au}-\mathrm{Au}^{\prime}$	$92.65(6)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$109.3(4)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	$115.0(4)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$101.6(4)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Au}^{\prime}$	$116.3(3)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{Au}$	$107.4(3)$
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{Au}$	$106.0(2)$	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(41)$	$113.1(4)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	$112.2(4)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(31)$	$106.8(4)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{Au}$	$116.8(2)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{Au}$	$105.6(3)$
$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{Au}$	$101.2(2)$	$\mathrm{O}-\mathrm{P}(3)-\mathrm{C}(1)$	$115.0(4)$
$\mathrm{O}-\mathrm{P}(3)-\mathrm{C}(51)$	$110.6(4)$	$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(51)$	$108.5(4)$
$\mathrm{O}-\mathrm{P}(3)-\mathrm{C}(61)$	$109.2(4)$	$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(61)$	$109.5(4)$
$\mathrm{C}(51)-\mathrm{P}(3)-\mathrm{C}(61)$	$103.5(4)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3)$	$119.3(4)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(2)$	$116.5(4)$	$\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{P}(2)$	$124.2(4)$

Primed atoms related to equivalent unprimed atoms by symmetry operation $-x+1,-y+1,-z+1$.
addition of n-hexane ($20 \mathrm{~cm}^{3}$) led to precipitation of complexes 4 or 5 as pale yellow solids.
$\left[\left(\mathrm{Ph}_{3} \mathrm{PAu}\right) \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\left(\mathrm{AuPPh}_{3}\right)\right]\left[\mathrm{ClO}_{4}\right]_{2}$ 6. (a) To a dichloromethane solution ($20 \mathrm{~cm}^{3}$) of complex 3 $(0.39 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added $\left[\mathrm{Au}\left(\mathrm{PPh}_{3}\right)(\mathrm{tht})\right] \mathrm{ClO}_{4}{ }^{20}(0.323 \mathrm{~g}$, 0.5 mmol) and the mixture stirred for 1 h . Concentration of the solution to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether $\left(15 \mathrm{~cm}^{3}\right)$ gave a pale yellow solid of complex 6.
(b) A dichloromethane suspension ($20 \mathrm{~cm}^{3}$) of complex 1 $(0.432 \mathrm{~g}, 0.25 \mathrm{mmol})$ and $\left[\mathrm{Au}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)\right](0.279 \mathrm{~g}, 0.5 \mathrm{mmol})$ was stirred for 2 h . The solution was evaporated to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ led to complex 6.
$\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right) \mathrm{Au}\right\} \mathrm{Ph}_{2} \mathrm{PCH}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CHPPh}_{2}\left\{\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}\right]$ $\left[\mathrm{ClO}_{4}\right]_{2}$ 7. To a suspension of complex $1(0.432 \mathrm{~g}, 0.25 \mathrm{mmol})$ in dichloromethane $\left(30 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{tht})\right](0.226$ $\mathrm{g}, 0.5 \mathrm{mmol})$. The resulting clear solution was stirred for 1 h and the solution was concentrated to $c a .5 \mathrm{~cm}^{3}$. Addition of $20 \mathrm{~cm}^{3}$ of diethyl ether gave 7 as a white solid.
$\left[(\mathrm{O}) \mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{PPh}_{2} \mathrm{AuPPh}_{2}\right)_{2} \mathrm{CPPh}_{2}(\mathrm{O})\right]$ 8. To a dichloromethane solution of complex $3(0.39 \mathrm{~g}, 0.25 \mathrm{mmol})$ was added two drops of $\mathrm{H}_{2} \mathrm{O}_{2}\left(30 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The solution was stirred for 30 min and filtered through a 1 cm layer of anhydrous magnesium sulfate. The solution was concentrated to $c a .5 \mathrm{~cm}^{3}$. Addition of diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$ led to precipitation of 8 as a white solid.
$\left[\mathrm{CH}\left\{\mathrm{PPh}_{2} \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right\}_{3}\right]$ 9. To a diethyl ether solution of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\right.$ tht $\left.)\right](0.407 \mathrm{~g}, 0.9 \mathrm{mmol})$ was added $\mathrm{CH}\left(\mathrm{PPh}_{2}\right)_{3}$ ($0.17 \mathrm{~g}, 0.3 \mathrm{mmol}$). After stirring the mixture for 1 h the resulting white solid 9 was filtered off and washed with diethyl ether $\left(2 \times 5 \mathrm{~cm}^{3}\right)$.
X-Ray Structure Determination of Complex 8.-The following conditions were common to the structure determinations of both modifications: Simens R3 diffractometer with an LT-2 low-temperature attachment, monochromated Mo-K α radiation, absorption correction based on ψ scans, and cell constants refined from 2θ values of 50 reflections in the range 2θ $20-23^{\circ}$. Solutions by heavy-atom method, full-matrix leastsquares refinement on F^{2} (program system SHELXL 92); ${ }^{24}$ non-hydrogen atoms were refined anisotropically, phenyl rings were constrained to be planar and to have two-fold symmetry, H atoms were included using a riding model. Weighting schemes were of the form $w^{-1}=\sigma^{2}\left(F^{2}\right)+(a P)^{2}+b P$, where

Table 6 Atomic coordinates $\left(\times 10^{4}\right)$ for complex $\mathbf{8 b}$

Atom	x	y	z	Atom	x	y	z
Au	$5981.2(3)$	$5110.0(2)$	$4681.6(2)$	$\mathrm{C}(41)$	$6272(7)$	$4652(5)$	$2570(7)$
$\mathrm{P}(1)$	$3708(2)$	$3983.9(12)$	$4305(2)$	$\mathrm{C}(42)$	$5868(8)$	$5288(5)$	$2291(7)$
$\mathrm{P}(2)$	$5761(2)$	$4258.4(12)$	$3572(2)$	$\mathrm{C}(43)$	$6257(9)$	$5630(5)$	$1562(7)$
$\mathrm{P}(3)$	$3902(2)$	$3587.8(12)$	$2317(2)$	$\mathrm{C}(44)$	$7048(9)$	$5344(6)$	$1095(8)$
O	$3447(6)$	$2905(3)$	$2450(5)$	$\mathrm{C}(45)$	$7475(9)$	$4728(6)$	$1382(8)$
$\mathrm{C}(1)$	$4473(7)$	$3984(4)$	$3352(6)$	$\mathrm{C}(46)$	$7088(8)$	$4382(5)$	$2114(7)$
$\mathrm{C}(11)$	$3816(7)$	$3195(5)$	$4998(7)$	$\mathrm{C}(51)$	$2900(7)$	$4148(5)$	$1767(6)$
$\mathrm{C}(12)$	$3754(8)$	$3239(5)$	$5945(7)$	$\mathrm{C}(52)$	$2039(7)$	$3858(5)$	$1290(7)$
$\mathrm{C}(13)$	$3827(10)$	$2661(6)$	$6484(8)$	$\mathrm{C}(53)$	$1255(8)$	$4256(6)$	$855(8)$
$\mathrm{C}(14)$	$3978(9)$	$2045(6)$	$6081(7)$	$\mathrm{C}(54)$	$1338(9)$	$4950(5)$	$897(8)$
$\mathrm{C}(15)$	$4038(8)$	$1998(5)$	$5143(8)$	$\mathrm{C}(55)$	$2199(8)$	$5244(5)$	$1371(8)$
$\mathrm{C}(16)$	$3963(8)$	$2577(5)$	$4591(7)$	$\mathrm{C}(56)$	$2971(8)$	$4843(5)$	$1811(7)$
$\mathrm{C}(21)$	$2324(7)$	$4004(4)$	$3899(6)$	$\mathrm{C}(62)$	$4837(8)$	$3535(4)$	$1452(6)$
$\mathrm{C}(22)$	$1869(8)$	$4628(6)$	$3743(8)$	$4964(8)$	$4013(5)$	$781(7)$	
$\mathrm{C}(23)$	$818(9)$	$4664(7)$	$3442(10)$	$\mathrm{C}(63)$	$5661(9)$	$3908(6)$	$127(7)$
$\mathrm{C}(24)$	$244(9)$	$4105(6)$	$3307(10)$	$\mathrm{C}(64)$	$6230(10)$	$3326(6)$	$122(8)$
$\mathrm{C}(25)$	$682(8)$	$3482(6)$	$3456(8)$	$\mathrm{C}(66)$	$6110(10)$	$2844(6)$	$792(8)$
$\mathrm{C}(26)$	$1728(7)$	$3427(5)$	$3762(7)$	$\mathrm{C}(2)$	$651(9)$	$2943(6)$	$1456(8)$
$\mathrm{C}(31)$	$6685(7)$	$3578(5)$	$3890(7)$	$\mathrm{Cl}(1)$	$6080(5)$	$3081(9)$	$6887(11)$
$\mathrm{C}(32)$	$7695(7)$	$3747(5)$	$4275(7)$	$\mathrm{Cl}(2)$	$6445(5)$	$3231(2)$	$7929(3)$
$\mathrm{C}(33)$	$8376(8)$	$3248(6)$	$4595(8)$	$\mathrm{Cl})$	$1378(16)$	$3820(3)$	$6212(3)$
$\mathrm{C}(34)$	$8090(9)$	$2574(6)$	$4548(9)$	$\mathrm{Cl}(4)$	$1153(4)$	$4080(12)$	$7152(14)$
$\mathrm{C}(35)$	$7090(9)$	$2402(5)$	$4164(9)$	$236(5)$	$3746(3)$	$6027(4)$	
$\mathrm{C}(36)$	$6399(8)$	$2909(5)$	$3850(7)$		$7752(4)$		

Table 7 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex $\mathbf{8 b}$

$\mathrm{Au}-\mathrm{P}(2)$	$2.335(2)$	$\mathrm{Au}-\mathrm{P}\left(1^{\prime}\right)$	$2.335(2)$
$\mathrm{Au} \cdots \mathrm{Au}^{\prime}$	$2.7988(12)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.768(10)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.827(10)$	$\mathrm{P}(1)-\mathrm{C}(11)$	$1.859(10)$
$\mathrm{P}(2)-\mathrm{C}(1)$	$1.746(9)$	$\mathrm{P}(2)-\mathrm{C}(41)$	$1.824(10)$
$\mathrm{P}(2)-\mathrm{C}(31)$	$1.831(10)$	$\mathrm{P}(3)-\mathrm{O}$	$1.495(7)$
$\mathrm{P}(3)-\mathrm{C}(1)$	$1.794(9)$	$\mathrm{P}(3)-\mathrm{C}(61)$	$1.817(11)$
$\mathrm{P}(3)-\mathrm{C}(51)$	$1.831(10)$		
$\mathrm{P}(2)-\mathrm{Au}-\mathrm{P}\left(1^{\prime}\right)$	$174.64(8)$	$\mathrm{P}(2)-\mathrm{Au}-\mathrm{Au}^{\prime}$	$93.27(6)$
$\mathrm{P}\left(1^{\prime}\right)-\mathrm{Au}-\mathrm{Au}^{\prime}$	$91.21(6)$	$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	$110.0(4)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}^{\prime}(11)$	$113.8(4)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(11)$	$102.5(4)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Au}^{\prime}$	$114.7(3)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{Au}^{\prime}$	$107.1(3)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{Au}^{\prime}$	$107.9(3)$	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(41)$	$113.0(4)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(31)$	$113.6(4)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(31)$	$104.1(4)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{Au}$	$114.0(3)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{Au}$	$102.1(3)$
$\mathrm{C}(31)-\mathrm{P}(2)-\mathrm{Au}$	$108.8(3)$	$\mathrm{O}-\mathrm{P}(3)-\mathrm{C}(1)$	$115.2(4)$
$\mathrm{O}-\mathrm{P}(3)-\mathrm{C}(61)$	$109.1(4)$	$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(61)$	$111.0(4)$
$\mathrm{O}-\mathrm{P}(3)-\mathrm{C}(51)$	$109.7(4)$	$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(51)$	$108.6(4)$
$\mathrm{C}(61)-\mathrm{P}(3)-\mathrm{C}(51)$	$102.5(4)$	$\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{P}(1)$	$116.2(5)$
$\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{P}(3)$	$127.0(6)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3)$	$116.1(5)$
P			

Primed atoms related to equivalent unprimed atoms by symmetry operation $-x+1,-y+1,-z+1$.
$P=\left[F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right] / 3$. Further details are given in Table 3, atom coordinates for $8 \mathbf{8}$ in Table 4 and selected bond lengths and angles in Table 5 and for $\mathbf{8 b}$ atom coordinates in Table 6 and selected bond lengths and angles in Table 7.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (no. PB91-0122), the Instituto de Estudios Riojanos and the Fonds der Chemischen Industrie for financial support.

2 B. Chaudret, B. Delavaux and R. Poilblanc, Coord. Chem. Rev., 1988, 86, 193.
3 A. Laguna and M. Laguna, J. Organomet. Chem., 1990, 394, 743.
4 H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G. Huttner, Chem. Ber., 1977, 110, 2751, 2758
5 E. J. Fernández, M. C. Gimeno, P. G. Jones, A. Laguna, M. Laguna and J. M. Lopez de Luzuriaga, J. Chem. Soc., Dalton Trans., 1992, 3365.

6 H. El-Amouri, A. A. Bahsoun, J. Fischer, J. A. Osborn and M. T. Youinou, Organometallics, 1991, 10, 3582.
7 J. Forniés, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., 1993, 452, 241.
8 K. J. Beckett and S. J. Loeb, Can. J. Chem., 1988, 66, 1073.
9 A. Stützer, P. Bissinger and H. Schmidbaur, Chem. Ber., 1992, 125, 367.

10 C. M. Che, H. K. Yip, V. W. W. Yam, P. Y. Cheung, T. F. Lai, S. J. Shieh and S. M. Peng, J. Chem. Soc., Dalton Trans., 1992, 427.
11 J. Vicente, M. T. Chicote, I. Saura-Llamas, P. G. Jones, K. MeyerBäse and C. Freire Erdbrügger, Organometallics, 1988, 7, 997.
12 R. Usón, A. Laguna, M. Laguna and I. Lázaro, Organometallics, 1987, 6, 2326.
13 R. Usón, A. Laguna, M. Laguna and M. C. Gimeno, J. Chem. Soc., Dalton Trans., 1989, 1883.
14 R. Hesse and P. Jennische, Acta Chem. Scand., 1972, 26, 3825.
15 Y. Inoguchi, B. Milewski-Mahrla and H. Schmidbaur, Chem. Ber., 1982, 115, 3085.
16 C. M. Briant, K. P. Hall and D. M. P. Mingos, J. Organomet. Chem., 1982, 229, C5.
17 J. D. Basil, H. H. Murray, B. Trczinska-Bancroft, H. Knachel, D. Dudis, T. J. De Lord and D. O. Marler, J. Am. Chem. Soc., 1985, 107, 6908.

18 H. Schmidbaur, A. Stützer and E. Heidtweck, Chem. Ber., 1991, 124, 1095.

19 F. H. Allen, A. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
20 R. Usón, A. Laguna, M. Laguna, J. Jiménez, M. P. Gómez, A. Sainz and P. G. Jones, J. Chem. Soc., Dalton Trans., 1990, 3457.
21 D. Gibson, B. F. G. Johnson and J. Lewis, J. Chem. Soc. A, 1970, 367.
22 R. Usón, A. Laguna and J. Vicente, J. Organomet. Chem., 1977, 131, 471.

23 R. Usón, A. Laguna and M. Laguna, Inorg. Synth., 1990, 26, 85.
24 G. M. Sheldrick, SHELXL 92. A Program for Crystal Structure Refinement (pre-release version), University of Göttingen, 1992.

References

1 R. J. Puddephatt, Chem. Soc. Rev., 1983, 12, 99.

