Reactions of Co-ordinated Ligands. Part 57.¹ Synthesis, Structure and Interrelationship of $2 \cdot \sigma$ -Butadienyl and Cationic $(1,2,3-\eta)$ -*trans*-Butadienyl-platinum and -palladium Complexes; Crystal Structures of *cis*-[PtCl{ σ -C(CH₂)C(Et)=CH₂}(dppf)] and [Pt{ $(1,2,3-\eta)$ -*trans*-CH₂C(Et)C=CH₂}(PPh₃)₂][PF₆] [dppf = 1,1'-bis(diphenylphosphino)ferrocene]*

Stephen A. Benyunes,^a Lutz Brandt,^a Arno Fries,^b Michael Green,^{a,b} Mary F. Mahon^b and Trevor M. T. Papworth^{a,b}

^a Department of Chemistry, King's College London, Strand, London WC2R 2LS, UK

^b School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

Reaction of the platinum(0) complexes $[Pt(C_2H_4)(PPh_3)_2]$, $[Pt(C_2H_4)(dppf)]$ [dppf = 1,1-bis(diphenylphosphino)ferrocene], $[Pt(cod)_2]$ (cod = cyclocta-1,5-diene) and the palladium(0) complex $[Pd(PPh_3)_4]$ with the 4-chlorobuta-1,2-dienes $CH_2=C=C(R)CH_2CI$ (R = Me or Et) affords *trans* or *cis* 2- σ -butadienyl complexes of the general formula $[MCl\{\sigma-C(CH_2)C(R)=CH_2\}L_2]$; the structural identity of *cis*-[PtCl{ σ -C(CH_2)C(Et)=CH_2}(dppf)] was confirmed by single-crystal X-ray diffraction. Treatment of $[Pt(C_2H_4)(PPh_3)_2]$ or $[Pt(C_2H_4)(dppf)]$ with an excess of 2-chlorobuta-1,3-diene leads to the formation of the corresponding unsubstituted 2- σ -butadienyl platinum complexes. Addition of thallium hexafluorophosphate to these 2- σ -butadienyl complexes results in elimination of TICI and formation in high yield of a range of cationic $(1,2,3-\eta)$ -*trans*-butadienyl complexes characterised by NMR spectroscopy, and in the case of $[Pt\{1,2,3-\eta)$ -*trans*-CH₂C(Et)C=CH₂}(PPh_3)_2][PF_6] by single crystal X-ray diffraction.

As part of a developing interest ^{2,3} in the chemistry of transitionmetal complexes containing the (1,2,3-n)-trans-butadienyl ligand our attention focused on the X-ray crystallographically identified cationic complex [Pt{ $(1,2,3-\eta)$ -trans-CH(Ph)C(Ph)-C=CH₂}(PPh₃)₂][BF₄] reported⁴ to be formed on reaction of $[Pt(C_2H_4)(PPh_3)_2]$ with the cyclopropenium cation $[C_3(Me)-$ Ph₂][BF₄]. The reactivity of such a cationic complex towards nucleophilic reagents and the site of attack was clearly of interest; however, before such studies could be undertaken it was obviously important to try to develop a more versatile synthetic approach to such species. The report⁵ that certain metal carbonyl anions react with the allene (CF₃)₂C=C=C- $(CF_3)_2$, to give initially a 2- σ -bonded butadienyl species, which can then be transformed via CO loss into $(1,2,3-\eta)$ -trans- $C(CF_3)_2C(CF_3)C=CF_2$ -substituted complexes, suggested that it might be possible to access the sought for $(1,2,3-\eta)$ -transbutadienyl-substituted platinum cations by halide abstraction from 2-σ-butadienyl species such as cis- or trans-[PtCl{σ- $C(CH_2)C(R)=CH_2 L_2$. An alternative approach to cationic $(1,2,3-\eta)$ -trans-butadienyl complexes was to attempt a similar halide abstraction from a σ -bonded allenyl complex, for example, *trans*-[PtCl{ σ -CH₂C(R)=C=CH₂}L₂]. This paper describes our detailed ³ exploration of these ideas.

Results and Discussion

These two alternative synthetic pathways are summarised in Scheme 1. A literature search for 2- σ -bonded butadienyl platinum(II) complexes revealed that the complex *trans*-[PtCl-{ σ -C(CH₂)C(Me)=CH₂}(PPh₃)₂] is reported ⁶ to be one of the

Scheme 1 X = Halogen. (i) + [M^o]; (ii) AgBF₄ or Tl[PF₆]

products of the reaction of cis-[PtCl₂(PPh₃)₂] with hydrazine hydrate and isopropenylacetylene. However, the reaction is not selective and only moderate yields are reported. We therefore began to explore the reaction of zerovalent platinum complexes

^{*} Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., Issue 1, pp. xxxiii-xxviii.

with allenyl halides as a possible route to either 2-o-bonded butadienyl or σ -allenyl complexes, *i.e.* A and B in Scheme 1. Additions of $[Pt(C_2H_4)(PPh_3)_2]$ to a solution of $CH_2=C=C$ -(Me)CH₂Cl⁷ in tetrahydrofuran (thf) resulted in a rapid reaction at room temperature and the formation in high yield (89%) of the colourless crystalline complex trans-[PtCl{ σ - $C(CH_2)C(Me)=CH_2$ (PPh₃)₂ 1 (Scheme 2). Elemental analysis, ¹H, ¹³C-{¹H} and ³¹P-{¹H} NMR spectroscopy confirmed the structural identity of the complex. When the reaction was conducted at low temperature $(-78 \text{ °C} \longrightarrow -30 \text{ °C})$ in an NMR tube, ¹H resonances attributable to cis-[PtCl{ σ -C- $(CH_2)C(Me)=CH_2$ (PPh₃)₂ 2 were observed, and on warming to room temperature these were replaced by resonances corresponding to the isolated trans isomer 1. A plausible rationale for these observations is illustrated in Scheme 2 and requires that the unsubstituted end of the allene is initially coordinated onto the Pt⁰ centre with displacement of ethylene. This is followed by an intramolecular movement of the Pt(PPh₃)₂ fragment onto the substituted allenic double bond, thus accessing the thermodynamically less stable but more reactive η^2 -allene complex C. Backside intramolecular nucleophilic attack by the Pt⁰ centre on the carbon-chlorine bond would then afford the cation **D**, which apparently collapses to give initially a cis-2- σ -butadienyl complex isomerising to the thermodynamically more stable isolated trans-2-o-butadienyl complexes. Although, in principle D could alternatively collapse to give a σ -bonded allenyl species, *i.e.* **B** in Scheme 1, this was not observed.

The synthetic pathway to 1 proved to be capable of generalisation. Thus, reaction of $[Pt(C_2H_4)(PPh_3)_2]$ with $CH_2=C=C(Et)CH_2Cl^8$ gave 3, and it was found that the palladium analogues 4 and 5 could also be formed in good yield by treating the corresponding allenyl halide with $[Pd(PPh_3)_4]$.

Scheme 2 (*i*) $[Pt(C_2H_4)(PPh_3)_2]$, (*ii*) $[Pd(PPh_3)_4]$, (*iii*) $[Pt(C_2H_4)(dppf)]$. dppf = 1,1'-Bis(diphenylphosphino)ferrocene, dppe = 1,2-bis(diphenylphosphino)ethane,dppm = bis(diphenylphosphino)-methane, cod = cycloocta-1,5-diene

Similarly, reaction of $[Pt(C_2H_4)(dppf)]^9$ with $CH_2=C=C(Me)CH_2Cl$ or $CH_2=C=C(Et)CH_2Cl$ afforded excellent yields of the stable *cis*- σ -butadienylplatinum complexes 6 and 7 respectively. Alternatively, it was found that *cis*-2- σ -butadienyl complexes could be prepared by treating $[Pt(cod)_2]^{10}$ with allenyl halides. Thus, reactions with $CH_2=C=C(Me)CH_2Cl$ or $CH_2=C=C(Et)CH_2Cl$ in pentane gave good yields of the cream coloured crystalline complexes 8 and 9 (Scheme 2). Unlike the related σ -allyl complexes¹¹ prepared by reacting allyl halides with $[Pt(cod)_2]$, the 2- σ -butadienyl complexes showed no fluxional behaviour in solution at room temperature. As might be expected the cycloocta-1,5-diene ligand was labile and reaction of 8 with 2 molar equivalents of triphenylphosphine gave 1. In a similar way treatment of 8 with the chelating ligands dppe and dppm afforded the complexes 10 and 11, again in good yield.

A potential alternative route to $2-\sigma$ -butadienylplatinum(II) complexes is to react a 2-halogenobuta-1,3-diene with a Pt⁰ complex (see Schemes 1 and 3). This idea is based on the well known^{9,12} ability of vinyl halides to react with, for example, [Pt(C₂H₄)(PPh₃)₂] to give initially η^2 -vinylhalide substituted Pt⁰ moieties, which then readily rearrange to form σ -vinylhaloplatinum(II) complexes. Treatment of [Pt(C₂H₄)(PPh₃)₂] with an excess of 2-chlorobuta-1,3-diene in chloroform led to the formation of the unsubstituted 2- σ -butadienyl *trans*-complex 12 in good yield. A similar reaction between [Pt(C₂H₄)(dppf)] and 2-chlorobuta-1,3-diene gave an excellent yield of 13.

Thus, two new synthetic pathways to $2-\sigma$ -butadienyl complexes have been established. All of these new compounds were obtained as colourless or pale yellow crystalline, air-stable materials and they were characterised by elemental analysis, ¹H, ¹³C-{¹H} and ³¹P-{¹H} NMR spectroscopy (see Experimental section for details).

In order to establish firmly the structural identity of the complexes 1–13 it was thought important to carry out a single crystal X-ray diffraction study with a representative example. Since the previous X-ray studies ⁶ with 2- σ -butadienylplatinum-(II) complexes were with the *trans* species [PtCl{ σ -C(CH₂)C-(Me)=CH₂}(PPh₃)₂] and [Pt{ σ -C₂C(Me)=CH₂}{ σ -C(CH₂)C-(Me)=CH₂}(PPh₃)₂], crystals of the *cis*-2- σ -butadienylplatinum complex 7 were chosen for detailed study. A suitable crystal of 7 was obtained by slow solvent diffusion using dichlormethane and diethyl ether. The overall structure converged well (R = R' = 0.0587), with final shift/estimated standard deviation ratios averaging 0.001. However, the errors associated with the positional parameters of the carbon atoms in the 2- σ -butadienyl moiety remained disappointingly high. As a consequence, errors in the lengths and angles were also large.

Scheme 3 (*i*) $[Pt(C_2H_4)(PPh_3)_2];$ (*ii*) $[Pt(C_2H_4)(dppf)]$

Fig. 1 shows the geometry of the molecule and the atomic numbering scheme used and Table 1 lists selected bond lengths, angles and important dihedral angles. The complex is monomeric with the chelating dppf ligand ensuring a *cis* configuration of the other two co-ordination sites, which are occupied by a chlorine atom, and a σ -bonded carbon atom from the butadienyl ligand to give an overall co-ordination that is nearly square planar, in agreement with the NMR spectral data.

The Pt–Cl distance of 2.374(5) Å, is comparable with those found ¹³ in [PtCl₂(dppf)] and other *cis*-platinum(II) complexes. The Pt–P(1) and Pt–P(2) bond distances are 2.326(5) and 2.224(5) Å respectively, which compare well with those reported for the dichloroplatinum(II) system. The P(1)–Pt–P(2) angle of 100.3(2)° is the most striking feature of the bidentate ligand. The large angle is due to the bulk of the dppf moiety, where the two cyclopentadienyl rings can be seen to be staggered. This has the effect of forcing C(35) and the C(1) atom closer together, which

Table 1 Selected bond lengths (Å), and selected interbond and dihedral angles (°) for complex 7

Pt-Cl	2.374(5)	C(35)-C(37)	1.27(4)
Pt-P(1)	2.326(5)	C(37) - C(38)	1.27(4)
Pt-P(2)	2.224(5)	C(37)-C(39)	1.69(4)
Pt-C(35)	2.08(3)	C(39)-C(40)	1.57(4)
C(35) - C(36)	1.55(4)		
P(1)-Pt-Cl	85.2(2)	C(39)-C(37)-C(38)	126(3)
P(2)-Pt-Cl	174.5(2)	C(40)-C(39)-C(37)	108(2)
P(2) - Pt - P(1)	100.3(2)	C(36)-C(35)-Pt-P(1)	78.05
C(35)-Pt-Cl	85.2(8)	C(37)-C(35)-Pt-P(1)	89.22
C(35) - Pt - P(1)	170.3(8)	C(36)-C(35)-Pt-P(2)	87.98
C(35)-Pt-P(2)	89.3(8)	C(37)-C(35)-Pt-P(2)	104.75
C(36)-C(35)-Pt	113(2)	C(36)-C(35)-Pt-Cl	91.72
C(37)-C(35)-Pt	122(3)	C(37)-C(35)-Pt-Cl	75.55
C(37)-C(35)-C(36)	123(3)	C(36)-C(35)-C(37)-C(39)	0.23
C(38)-C(37)-C(35)	120(3)	C(36)-C(35)-C(37)-C(38)	174.19
C(39)-C(37)-C(35)	113(3)	C(40)-C(39)-C(37)-C(35)	85.47

Fig. 1 Molecular structure showing the labelling scheme of the complex 7

can be seen from the C(35)-Pt-Cl bond angle of $85.2(8)^{\circ}$. The butadienyl ligand lies essentially perpendicular to the coordination plane as evidenced by a dihedral angle for C(37)-C(35)-Pt-P(1) of 89.22° . The dihedral angle for C(36)-C(35)-C(37)-C(38) of 174.19° shows that there is also slight twisting of the butadienyl possibly because the ethyl substituent is almost at right angles [C(40)-C(39)-C(37)-C(35) 85.47^{\circ}] to the butadienyl plane. However, the most interesting feature, which is difficult to explain, is the bond lengths C(35)-C(36) 1.55(4), C(35)-C(37) 1.27(4) and C(37)-C(38) 1.27(4) Å, implying that despite the larger than desirable errors, there is a considerable shortening of the central C-C bond of the butadienyl ligand.

With the establishment of a satisfactory synthetic route to 2- σ -butadienyl complexes attention was then turned to their transformation into cationic (1,2,3-n)-trans-butadienyl complexes. In our preliminary investigations³ it was observed that reaction of 1 and 12 with $AgPF_6$ led to precipitation of AgCl and formation of cationic platinum complexes in reasonable yield; however, further work showed that the use of thallium hexafluorophosphate as a halide abstracting agent led to higher and more reproducible yields. Thus, as summarised in Scheme 4 high yields of the cationic $(1,2,3-\eta)$ -trans-butadienyl platinum and palladium complexes 14-20 were obtained by treating the corresponding 2- σ -butadienyl complex with Tl[PF₆] in dichloromethane as solvent. These cations were obtained as white to colourless air-stable crystalline materials soluble in dichloromethane. They were all characterised by elemental analysis, ${}^{1}H$, ${}^{13}C-{}^{1}H$ and ${}^{31}P-{}^{1}H$ NMR spectroscopy (see Experimental section), and in one case by single-crystal X-ray crystallography.

The ³¹P NMR spectra were the simplest to interpret and all showed the presence of two inequivalent phosphorus atoms in the form of two doublets with their respective ¹⁹⁵Pt satellites. The complexes containing the dppf ligand showed larger J(PP)and J(PPt) coupling constants than those species containing PPh₃ ligands. The ¹H NMR spectra of these complexes were complicated, since splitting patterns for two inequivalent ³¹P ligands accompanied by ¹H couplings and respective ¹⁹⁵Pt satellites were observed. The olefinic protons H^d and H^e resonated between δ 5.67 and 3.93 with their respective ³¹P and ¹⁹⁵Pt couplings. The proton H^d, being *trans* to a ³¹P atom, experiences a larger J(HP) coupling than H^e, allowing these two protons to be differentiated. The *anti*- and *syn*-protons (H^a and

Scheme 4 (i) $Tl[PF_6]$, CH_2Cl_2 , -TlCl

H^b) of the allyl function of the butadienyl moiety were assigned assuming that the anti H^a proton would appear further upfield than the syn H^b proton, due to the shielding effect of the platinum fragment on the anti proton. Signals due to H^a and H^b appear between δ 4.36 and 3.26. Proton H^c in complex 17 resonated at δ 5.32 as a broad singlet. The presence of the dppf ligand in complexes 17-19 further complicated the ¹H NMR spectra. The phenyl protons resonated in the aromatic region between δ 8.11 and 7.02, and the cyclopentadienyl protons appeared between δ 4.61 and 4.00. The ¹³C NMR spectra were also complicated, but the assignment of the carbon atoms C¹ C^2 , C^3 and C^4 of the butadienyl moiety was possible. The ³¹P splittings in conjunction with the ¹⁹⁵Pt couplings lead to a considerable signal-to-noise ratio. This had the two-fold effect of making J(CP) and J(CPt) couplings difficult to elucidate and detect. Distortionless enhancement polarisation transfer (DEPT) experiments proved very useful in characterising these complexes. The CH₂ groups could be differentiated from other carbon groups, for instance, C¹ of complex 18 could be detected by DEPT. This carbon atom resonated in the cyclopentadienyl region and could not otherwise have been identified. The DEPT experiments also confirmed the presence of the quaternary carbons, C^2 and C^3 , and the other CH_2 group of the butadienyl ligand, C^4 . The C^3 resonances occurred at relatively low field and the possible significance of this is discussed later in relationship to the X-ray crystal structure of 16. The ethyl substituents in complexes 16 and 19 also exhibited interesting ${}^{13}C$ NMR spectra, the J(CPt) couplings for the CH₃ carbon atoms being considerably larger than the J(CPt) couplings for the CH₂ carbon atoms.

As mentioned previously a single-crystal X-ray diffraction study with 16 was also carried out with the objective of defining the stereochemistry of the $(1,2,3-\eta)$ -*trans*-butadienyl ligand and to provide a basis for a theoretical extended-Huckel molecular orbital (EHMO) study of the reactivity of these cations towards nucleophilic reagents. Fig. 2 shows the geometry of the molecule and the atomic numbering scheme used, while Fig. 3 shows an alternative view of 16 omitting the phenyl rings. Selected bond lengths and angles are given in Table 2 with various dihedral angles.

Complex 16 is monomeric and four-co-ordinate around the platinum atom. Two triphenylphosphine ligands are coordinated *cis* to the metal centre which is in agreement with the NMR spectral data. The other two co-ordination sites are occupied by the butadienyl ligand. The butadienyl ligand is bonded *via* C(37), C(38) and C(39) to the platinum, with C(40) bent away from the platinum at a non-bonding distance of 3.19 Å with a C(38)–C(39)–C(40) angle of 141(2)°. The allylic double bond distance in 16 and the complex $[Pt{(1,2,3-\eta)-trans-CH(Ph)C(Ph)C=CH_2}(PPh_3)_2][BF_4] 21, prepared by Hughes$ *et al.*,⁴ are 1.26(4) and 1.31(2) Å respectively, which are in the

Table 2 Selected bond lengths (Å), and selected interbond and dihedral angles (°) for complex 16

Pt-P(1)	2 299(5)	C(37) - C(38)	1 42(3)
Pt-P(2)	2.294(5)	C(38) = C(39)	1.44(3)
Pt-C(37)	2.20(2)	C(39)-C(40)	1.26(4)
Pt-C(38)	2.20(2)	C(38)-C(41)	1.56(3)
Pt-C(39)	2.09(2)	C(41) - C(42)	1.45(5)
Pt-C(40)	3.19(2)		
P(1)-Pt-P(2)	100.3(2)	C(37)-C(38)-C(39)	117(2)
C(37) - Pt - P(1)	94.2(6)	C(38)-C(39)-C(40)	141(2)
C(37) - Pt - P(2)	163.6(6)	C(41) - C(38) - C(37)	122(2)
C(38)-Pt-P(1)	125.8(6)	C(41) - C(38) - C(39)	120(2)
C(38) - Pt - P(2)	131.9(6)	C(37)-C(38)-C(39)-C(40)	137.06
C(38) - Pt - C(37)	37.5(7)	C(37)-C(38)-C(41)-C(42)	22.72
C(39)-Pt-C(38)	39.1(9)	C(41) - C(38) - C(39) - C(40)	53.75
C(37)-Pt-C(39)	69.1(8)	C(39)-C(38)-C(41)-C(42)	145.63
P(1)-Pt-P(2) C(37)-Pt-P(1) C(37)-Pt-P(2) C(38)-Pt-P(1) C(38)-Pt-P(2) C(38)-Pt-C(37) C(39)-Pt-C(38) C(37)-Pt-C(39)	100.3(2) 94.2(6) 163.6(6) 125.8(6) 131.9(6) 37.5(7) 39.1(9) 69.1(8)	C(37)-C(38)-C(39) C(38)-C(39)-C(40) C(41)-C(38)-C(37) C(41)-C(38)-C(39) C(37)-C(38)-C(39)-C(40) C(37)-C(38)-C(41)-C(42) C(41)-C(38)-C(39)-C(40) C(39)-C(38)-C(41)-C(42)	117(2) 141(2) 122(2) 120(2) 137.06 22.72 53.75 145.63

range expected for the terminal C–C bond length in free buta-1,3-diene¹⁴ and the unco-ordinated C=CH₂ bond of ligated allene complexes.^{15–17} It is these two features which suggest a significant contribution from formalism **E** (Scheme 5) to the bonding in **16** and also in **21**. Scheme 5 shows the corresponding data for co-ordinated allene complexes, which can be seen to exhibit close similarities. The allyl function of the butadienyl ligand in **16** has a C(37)–C(38)–C(39) angle of 117(2) °, which is *ca*. 8° less than in cationic platinum η^3 -allyl complexes,¹⁸ but is

Fig. 2 Molecular structure showing the labelling scheme of the cation contained within the complex 16

Fig. 3 Alternative simplified view of the cation contained within the complex 16

similar to the equivalent angle in **21** [115(1) Å]. The carboncarbon interatomic distances C(37)-C(38) and C(38)-C(39)are 1.42(3) and 1.44(3) Å respectively, which are slightly unsymmetrical. The equivalent bond distances in **21** are 1.40(2) and 1.46(2) Å respectively, which can be seen to be even more unsymmetrical. This coupled with the metal-carbon separations of 2.20(2), 2.20(2) and 2.10(2) Å in **16** and 2.29(1), 2.20(1), 2.07(1) Å in **21**, implies some degree of localised bonding from the platinum to C(39) in **16** and to the equivalent carbon atom in **21**, as shown in formalism F in Scheme 6.

Examination of Fig. 3 shows that the geometry about the platinum atom is essentially square planar. There is a maximum deviation for C(37) of 0.086 Å from the least squares plane containing Pt(1), P(1), P(2), C(37) and C(39). The tilt angle (τ) and bow angle (β) are 122.85 and 93.17 ° respectively. These values are comparable with the tilt and bow angles for the cationic species [Pt(η^3 -C₃H₅){P(C₆H₁₁)₃}₂]⁺, which are 118.8 and 92.3 ° respectively.¹⁸ The allyl function of the butadienyl moiety is essentially planar. The methyl group of the ethyl substituent is bent out of the allyl plane [dihedral angle C(37)–C(38)–C(41)–C(42) 22.72 °] onto the opposite side to the olefinic functional group. This olefinic group is also bent away from the allyl plane and away from the metal [dihedral angle C(37)–C(38)–C(39)–C(40) 137.06 °].

These same structural features as exhibited by 16 and 21 are also found in other $(1,2,3-\eta)$ -trans-butadienyl complexes.² All have shorter metal-carbon bonds consistent with formalism **F**, but a significant contribution from **E** (Scheme 5) is also implied upon examination of the carbon-carbon interatomic distances (Table 2). It has been suggested¹⁹ that, since the quaternary carbon in the butadienyl moiety has a low field chemical shift and a short metal-carbon bond distance, a small degree of carbenoid character for C(39) in 16 is implied, indicating a contribution from the zwitterionic formalism **G** (Scheme 6). Obviously the relative contribution from **E**, **F** and **G** in different complexes will be dependent on the metal, the butadienyl substituents and the other ligands.

In summary, a new synthetic pathway to cationic $(1,2,3-\eta)$ trans-butadienyl palladium and platinum complexes has been established, and their structural identity confirmed by NMR spectroscopy and single-crystal X-ray crystallography.

Experimental

All reactions were carried out under an atmosphere of dry, oxygen-free dinitrogen, using standard Schlenk techniques. Solvents were freshly distilled over an appropriate drying agent and further degassed before use where necessary. Reagents were obtained from commercial sources unless otherwise indicated. The ¹H, ¹³C-{¹H} and ³¹P-{¹H} NMR spectra were recorded on Bruker AM360, JEOL GX270 and GX400 MHz FT spectrometers, as appropriate. Chemical shifts are referenced relative to tetramethylsilane and external H₃PO₄ respectively, with coupling constants in Hz. Data given are for roometemperature measurements unless otherwise stated. Infrared spectra were measured using a Perkin Elmer 983G spectrometer. Mass spectra (AE1 MS902) and analytical data were obtained courtesy of the University of London and Bath Services.

Reaction of $[Pt(C_2H_4)(PPh_3)_2]$ with $CH_2=C=C(Me)CH_2$ -

Cl.—(a) At room temperature. A solution of $[Pt(C_2H_4)(PPh_3)_2]$ (0.20 g, 0.27 mmol) in tetrahydrofuran (thf) (10 cm³) was stirred at room temperature for 15 min in the presence of a slight excess of the 4-chloro-3-methylbuta-1,2-diene, CH₂=C=C(Me)CH₂Cl (0.032 g, 0.32 mmol). Volatile material was removed *in vacuo*, the residue dissolved in toluene (2 cm³) and filtered through Celite. The solvent was removed *in vacuo* and the residue washed with diethyl ether-pentane (1:1) to give colourless microcrystals of *trans*-[PtCl{ σ -C(CH₂)C(Me)=CH₂}(PPh₃)₂] 1 (0.195 g, 89%) (Found: C, 595; H, 4.6. C₄₁H₃₇ClP₂Pt requires C, 59.9; H, 4.5%). NMR (CD₂Cl₂): ¹H, δ 7.77–7.36 (m, 30 H, C₆H₅), 5.99 [bd, 1 H, H^e, J(H^eH⁴) 3.2], 5.18 [s, 1 H, H^e, J(HPt) 125.0], 4.77 [br s, 1 H, H^a, J(HPt) 72.0], 4.60 (br s, 1 H, H^d) and 1.01 (s, 3 H, Me); ¹³C-{¹H}, δ 150.0 (br s, C³), 148.2 [t, C², J(CP) 8.9], 135.5–128.0 (C₆H₅), 118.9 [s, C¹, J(CPt) 62.3], 117.3 (br s, C⁴) and 19.6 (s, Me); ³¹P-{¹H} δ 24.9 [s, PPh₃, J(PPt) 3227.5].

(b) At low temperature. A cooled $(-78 \,^{\circ}\text{C})$ solution of $[Pt(C_2H_4)(PPh_3)_2]$ (0.03 g, 0.04 mmol) in CD_2Cl_2 (0.5 cm³) contained in a 5 mm NMR tube was treated with CH_2 =C=C(Me)CH₂Cl (0.005 g, 0.05 mmol). The tube and contents was allowed to warm to $-30 \,^{\circ}\text{C}$ over a period of 30 min. Examination of the NMR spectra revealed resonances attributable to *cis*-[PtCl{ σ -C(CH₂)C(Me)=CH₂}(PPh_3)₂] **2**. NMR (CD₂Cl₂): ¹H, δ 7.51–7.13 (m, 30 H, C₆H₅), 6.01 [br d, 1 H, H^e, J(H^eH^d) 3.6], 5.47 [br d, 1 H, H^b, J (HP) 25.2], 5.06 [br d, 1 H, H^a, J(HP) 10.8], 4.97 (br s, 1 H, H^d) and 1.33 (s, 3 H, Me); ¹³C-{¹H}, δ 164.8 [dd, C², J(CP) 110.3, J(CP), 9.1], 149.6 (s, C³), 134–129.7 (m, C₆H₅), 118.0 (C⁴), 115.8 (C¹) and 20.7 (Me). On warming to room temperature the signals due to **2** were clearly replaced by resonances corresponding to the *trans*-isomer **1**.

Preparations of Other 2–σ-Bonded 3-Alkylbutadienyl Complexes.—trans-[PtCl{σ-C(CH₂)C(Et)=CH₂}(PPh₃)₂] 3. Similarly, reaction (room temperature) of [Pt(C₂H₄)(PPh₃)₂] (0.463 g, 0.62 mmol) with CH₂=C=C(Et)CH₂Cl (0.075 g, 0.64 mmol) in thf (10 cm³) gave white crystals of 3 (0.42 g, 81%) (Found: C, 60.0; H, 4.7. C₄₂H₃₉ClP₂Pt requires C, 60.3; H, 4.7%). NMR (CD₂Cl₂): ¹H, δ 7.86–7.41 (m, 30 H, C₆H₅), 6.20 [br d, 1 H, H^e, J(H^eH^d) 2.38], 5.36 [s, 1 H, H^b, J(HPt) 75.1], 4.88 [s, 1 H, H^a, J(HPt), 70.3], 4.71 (br s, 1 H, H^d), 1.31 [q, 2 H, CH₂CH₃, J(HH) 7.33] and 0.63 [t, 3 H, CH₂CH₃, J(HH) 7.33]; ¹³C-{¹H}, δ 154.8 [C³, J(CPt) 30.9], 148.3 [t, C², J(CP) 8.8], 135.3–127.7 (C₆H₅), 116.6 [C¹, J(CPt) 62.7], 115.9 [br t, C⁴ J(CP) 8.8], 24.9 [CH₂CH₃, J(CPt) 27.5] and 12.4 (CH₂CH₃); ³¹P-{¹H}, δ 24.2 [J (PPt) 3234.1].

trans-[PdCl{ σ -C(CH₂)C(Et)=CH₂}(PPh₃)₂] 4. To a suspension of [Pd(PPh₃)₄] (0.726 g, 0.62 mmol) in thf (20 cm³) was slowly added CH₂=C=C(Et)CH₂Cl (0. 10 g, 0.85 mmol). After 40 min stirring at room temperature the volatile material was removed *in vacuo* from the resulting dark grey suspension. The residue was dissolved in toluene and filtered through Celite. Removal of the solvent afforded an off-white solid which was washed with diethyl ether (4 × 30 cm³) to give on drying *in vacuo* white *microcrystals* of 4 (0.35 g, 72%) (Found: C, 67.5; H, 4.6. C₄₂H₃₉ClP₂Pd requires C, 67.5; H 5.3%). NMR (CD₂Cl₂): ¹H, δ 7.71–7.30 (m, 30 H, C₆H₅), 6.06 (br s, 1 H, H^e), 4.77 (br s, 1 H, H^b), 4.68 (br s, 2 H, H^a and H^d), 1.20 [br q, 2 H, CH₂CH₃, *J*(HH) 7.32]; ¹³C-{¹H}, δ 163.2 (C³), 153.7 (C²), 135.1–127.9 (C₆H₅), 117.1 (C¹), 115.9 (C⁴), 25.3 (CH₂CH₃) and 12.0 (CH₂CH₃); ³¹P-{¹H}, δ 24.4 (s, PPh₃).

trans-[PdCl{ σ -C(CH₂)C(Me)=CH₂}(PPh₃)₂] 5. A similar reaction between [Pd(PPh₃)₄] (0.03 g, 0.2 mmol) and CH₂=C=C(Me)CH₂Cl (0.032 g, 0.032 mmol) in thf (10 cm³) afforded colourless crystals of 5 (0.17 g, 90%). NMR (CD₂Cl₂): ¹H, δ 7.76–7.35 (m, 30 H, C₆H₅), 5.85 [br d, 1 H, H^e, J (HP) 2.6], 4.70 (s, 1 H, H^b) 4.65 (br s, 2 H, H³) and 0.98 (s, 3 H, Me); ¹³C-{¹H}, δ 163.2(C³), 149.0(C²), 135.4–128.2 (C₆H₅), 119.6 (C¹), 117.4 (C⁴) and 19.9 (Me); ³¹P-{¹H}, δ 25.0 (s, PPh₃).

cis-[PtCl{ σ -C(CH₂)C(Me)=CH₂}(dppf)] **6**. To a solution of [Pt(C₂H₄)(dppf)] (0.40 g, 0.52 mmol) in thf (10 cm³) was added slowly CH₂=C=C(Me)CH₂Cl (0.06, 0.58 mmol). The colour changed from orange to pale orange. After 1 h at room temperature the volatiles were removed *in vacuo*. The residue was dissolved in CH₂Cl₂ and filtered through Celite. Reduction of the volume of the solvent and addition of diethyl ether gave a yellow solid. This was collected and recrystallised from CH₂Cl₂-Et₂O to give yellow-orange *crystals* of **6** (0.36 g, 81%) (Found: C, 54.7; H, 4.3; C₃₉H₃₅ClFeP₂Pt requires C, 55.0; H, 4.1%). NMR (CD₂Cl₂): ¹H, δ 8.05–7.05 (m, 20 H, Ph), 5.79 [br d, 1 H, H^e, J (H^eH^d) 3.11], 5.45 [d, 1 H, H^b, J(HP) 21.6, J(HPt) 51.3], 4.91 [d, 1 H, H^a, J (HP) 10.62, J (HPt) 43.18], 4.81 (br s, 2 H, C₅H₄), 4.76 (br s, 1 H, H^d), 4.52 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 7 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 4.13 (br s, 2 H, C₅H₄), 3.54 (br s, 2 H, C₅H₄), 3.17.7 [C¹, J(CPt) 41.8], 115.7 (C⁴), 76.6–52.8 (C₅H₄) and 20.8 [d, Me, J(CP) 6.7]; ³¹P-{¹H}, \delta 15.9 [d, J(PP) 15.8, J(PPt) 4573.7] and 14.5 [d, J (PP) 15.8, J(PPt) 1630.9].

cis-[PtCl{ σ -C(CH₂)C(Et)=CH₂}(dppf)] 7. Similarly, reaction of [Pt(C₂H₄)(dppf)] (0.30 g, 0.38 mmol) with CH₂=C=C(Et)CH₂Cl (0.06 g, 0.51 mmol) in thf (10 cm³) gave on recrystallisation from CH₂Cl₂-Et₂O yellow-orange crystals of 7 (0.308 g, 92%) (Found: C, 55.5; H, 4.5. C₄₀H₃₇ClFeP₂Pt requires C, 55.5; H, 4.3%). NMR (CD₂Cl₂): ¹H, δ 8.03–7.14 (m, 20 H, C₆H₅), 5.80 [d, 1 H, H^e, J (H^eH^d) 2.57], 5.49 [d, 1 H, H^b, J (HP) 22.17, J(HPt) 73.64], 4.88 [d, 1 H, H^a, J(HP) 10.8, J(HPt) 41.4], 4.75 (m, 3 H, 2 × C₅H₄, H^d), 4.50 (br s, 2 H, C₅H₄), 4.15 (br s, 2 H, C₅H₄), 3.43 (br s, 2 H, C₅H₄), 1.88 (br m, 1 H,

CH₂CH₃) and 0.75 [t, 3 H, CH₂CH₃, J(HH), 7.33]; ¹³C-{¹H}, δ 164.4 [dd, C², J(CP) 115.6, J(CP) 8.8], 163.5 [d, C³, J(CP) 4.4], 135.6–127.0 (C₆H₅), 115.2 [C¹, J(CPt) 41.9], 114.2 [C⁴, J(CP) 3.3], 76.6–71.9 (C₅H₄), 26.0 [CH₂CH₃, J(CP) 5.5] and 12.5 (CH₂CH₃); ³¹P-{¹H} δ 15.8 [d, J(PP) 15.8, J(PPt) 29.3] and 14.6 [d, J(PP) 15.8, J(PPt) 3293.5].

[PtCl{ σ -C(CH₂)C(Me)=CH₂}(cod)] **8**. An excess of CH₂= C=C(Me)CH₂Cl (0.199 g, 1.94 mmol) was added dropwise to a stirred solution of [Pt(cod)₂] (0.40 g, 0.97 mmol) in pentane (10 cm³). After 10 min the supernatant liquid was removed, and the precipitate washed with pentane (3 × 5 cm³) and dried *in vacuo* to give cream coloured *crystals* of **8** (0.304 g, 77%) (Found: C, 38.0; H, 4.4 C₁₃H₁₉ClPt requires C, 38.5; H 4.7%). NMR (CD₂Cl₂): ¹H, δ 5.82 [s, 1 H, H^b, J(HPt) 81.0], 5.64 [m, 2 H, CH=CH of cod, J(HPt) 79.0], 5.46 [br d, 1 H, H^e, $J(H^{e}H^{d})$ 2.6], 5.01 [br d, 1 H, H^d, $J(H^{d}H^{e})$ 2.6], 4.87 [s, 1H, H^a, J(HPt) 41.1], 4.53 [m, 2 H, CH=CH of cod, J(HPt) 76.6], 2.44 (m, 8 H, CH₂CH₂ of cod) and 1.93 (s, 3 H, Me); ¹³C-{¹H}, δ 153.6 (C²), 149.1 (C³), 117.1 [C¹, J(HPt) 40.5], 115.7 (C⁴), 100.7 [C⁶, J(CPt) 153.5], 87.4 [C⁵, J(CPt) 211.7], 32.0 [C⁸, J(CPt) 25.0], 27.9 [C⁷, J(CPt) 24.5] and 22.1 (Me). Mass spectrum: m/z 406 [M]⁺ and 371 [M - CI]⁺.

[PtCl{σ-C($\dot{C}H_2$)C(Et)=CH₂}(cod)] 9. Similarly, reaction of an excess of CH₂=C=C(Et)CH₂Cl (0.096 g, 0.82 mmol) with [Pt(cod)₂] (0.170 g, 0.41 mmol) in pentane (5 cm³) gave cream coloured *crystals* of 9 (0.094 g, 54%). NMR (CD₂Cl₂): ¹H, δ 5.79 [s, 1 H, H^b, J(HPt) 84.7], 5.67 [br d, 1 H, H^e, J(H^eH^d) 2.8], 5.58 [m, 2 H, CH=CH of cod, J(HPt) 68.8], 4.92 [br d, 1 H, H^d, J(H^dH^e) 2.8], 4.83 [s, 1 H, H^a, J(HPt) 42.5], 4.53 (m, 2 H, CH=CH of cod, J(HPt) 78.9], 2.45 (m, 8 H, CH₂CH₂ of cod), 2.19 [q, 2 H, CH₂CH₃, J(HH) 7.3] and 1.05 [t, 3 H, CH₂CH₃) 7.3]; ¹³C-{¹H}, δ 156.0 (C²), 148.9 (C³), 115.6 [C¹, J(CPt) 42.5], 113.4 (C⁴), 100.7 [C⁶, J(CPt) 152.0], 87.5 [C⁵, J(CPt) 213.7], 32.0 [C⁸, J(CPt) 28.7], 27.9 [C⁷, J(CPt) 25.8], 26.2 (CH₂CH₃) and 13.3 (CH₂CH₃).

Reactions of Complex 8.—With triphenylphosphine. To a solution of 8 (0.15 g, 0.37 mmol) in CH_2Cl_2 (10 cm³) was added PPh₃ (0.194 g, 0.74 mmol). After stirring for 30 min at room temperature the volatiles were removed *in vacuo*, and the residue redissolved in toluene (5 cm³) and filtered through Celite. Removal of the solvent under reduced pressure and washing the residue with diethyl ether-pentane (1:1) (3 × 10 cm³) afforded colourless crystals of 1 (0.243 g, 80%), identical (¹H and ³¹P-{¹H} NMR) with an authentic sample.

With 1,2-bis(diphenylphosphino)ethane. A similar reaction between **8** (0.14 g, 0.34 mmol) and (dppe) (0.147 g, 0.37 mmol) in CH₂Cl₂ (10 cm³) afforded pale yellow microcrystals of [PtCl{ σ -C(CH₂)C(Me)=CH₂} (dppe)] **10** (0.192 g, 80%) (Found: C, 53.1; H, 4.4. C₃₀H₃₁ClP₂Pt requires C, 53.5; H, 4.4%). NMR (CD₂Cl₂): ¹H, δ 7.90–7.46 (m, 20 H, Ph), 5.86 [br d, 1 H, H^b, J(HP) 21.3, J (HPt) 80.6], 5.21 [br d, 1 H, H^e, J(H^eH^d) 3.5], 4.96 [br d, 1 H, H^a, J(HP) 14.8, J(HPt) 45.3], 4.53 (br s, 1 H, H^d), 2.18 (m, 4 H, Ph₂PCH₂CH₂) and 1.58 (s, 3 H, Me); ¹³C-{¹H}, δ 167.3 [dd, C², J(CP) 108.4, J(CP) 7.3], 150.4 (C³), 134.1–128.4 (m, C₆H₅), 118.6 [C¹, J(CPt) 45.0], 116.2 (C⁴), 28.79 (Ph₂PCH₂) and 22.0 [d, Me, J(CP) 4.4]; ³¹P-{¹H}, δ 38.7 [J(PPt) 1661] and 35.7 [J(PPt) 4219].

With bis(diphenylphosphino)methane. Similarly, reaction of **8** (0.13 g, 0.32 mmol) with dppm (0.135 g, 0.35 mmol) in CH₂Cl₂ (10 cm³) gave yellow microcrystals of [PtCl{ σ -C(CH₂)C-(Me)=CH₂}(dppm)] **11** (0.166 g, 76%) (Found: C, 52.9; H, 4.4. C₂₉H₂₉ClP₂Pt requires C, 52.8; H, 4.3%). NMR: ¹H (CDCl₃), δ 8.01–6.95 (m, 20 H, Ph), 5.73 [br d, 1 H^b, J(HP) 24.8, J(HPt) 79.3], 5.51 [br d, 1 H, H^e, J(H^eH^d) 3.5], 4.93 [br d, 1 H, H^a, J(HP) 17.5, J(HPt) 41.6], 47.9 (br s, 1 H, H^d), 4.26 (m, 2 H, Ph₂PCH₂), and 1.83 (s, 3 H, Me); ¹³C-{¹H} (CDCl₃), δ 165.8 [dd, C², J(CP) 106.9, J(CP) 7.7], 149.0 (C³), 135.3–129.6 (C₆H₅), 117.9 [C¹, J(CPt), 43.6], 115.8 (C⁴), 43.2 (Ph₂ PCH₂) and 21.8 [d, Me, J(CP), 5.1]; ³¹P-{¹H} (CD₂Cl₂), δ 43.2 [d, J(PP), 40.1, J(PPt) 1222] and 44.1 [d, J(PP) 40.1, J(PPt) 3799].

Preparation of 2-σ-Bonded Butadienyl Complexes.—trans-[PtCl{ σ -C(CH₂)CH=CH₂}(PPh₃)₂] **12**. An excess of 2-chlorobuta-1,3-diene (0.04 g, 0.45 mmol) was added to a solution of [Pt(C₂H₄)(PPh₃)₂] (0.14 g, 0.19 mmol) in chloroform (10 cm³). The resulting mixture was stirred at room temperature for 2 h. The volatile material was removed *in vacuo*, and the residue extracted into CH₂Cl₂. Filtration through Celite, reduction of the volume of the solvent, followed by addition of diethyl ether gave a colourless solid. This was recrystallised from CH₂Cl₂diethyl ether to give colourless *crystals* of **12** (0.091 g, 60%) (Found: C, 59.5; H, 4.3. C₄₀H₃₅ClP₂Pt requires C, 59.4; H, 4.4%). NMR (CD₂Cl₂): ¹H, δ 7.80–7.35 (m, 30 H, C₆H₅), 5.67 [dd, 1 H, H^e, J(H^eH^c) 16.9, J(H^eH^d) 2.4], 5.33 [dd, 1 H, H^e,

 $J(H^{c}H^{e})$ 16.9, $J(H^{c}H^{d})$ 10.0, J(HPt) 64.8], 5.11 [br s, 1 H, H^b, J(HPt) 126.2], 4.69 [br s, 1 H, H^a, J(HPt) 67.1] and 4.39 [dd, 1 H, H^d, $J(H^{d}H^{c})$ 10.0, $J(H^{d}H^{e})$ 2.1]; ¹³C-{¹H}, δ 148.6 [t, C², J(CP) 8.4], 147.6 [C³, J(CPt) 40.4], 135.8–127.8 (C₆H₅), 121.8 (C⁴) and 116.6 [C¹, J(CPt) 61.0]; ³¹P-{¹H}, δ 25.1 [J(PPt) 3166].

cis-[PtCl{ σ -C(CH₂)CH=CH₂}(dppf)] 13. In a similar way reaction of [Pt(C₂H₄)(dppf)] (0.29 g, 0.37 mmol) with 2chlorobuta-1,3-diene (0.04 g, 0.45 mmol) in chloroform (10 cm³) gave on recrystallisation from CH₂Cl₂-diethyl ether yelloworange crystals of 13 (0.29 g, 93%) (Found: C, 53.8; H, 4.0. C₃₈H₃₃ClFeP₂Pt requires C, 54.5; H, 4.0%). NMR: ¹H (CDCl₃), δ 8.08–7.12 (m, 20 H, C₆H₅), 6.09 (br m, 1 H, H^e), 5.66 [dd, 1 H, H^e, J (H^eH^c) 17.0, J(H^eH^d) 2.83], 5.41 [d, 1 H, H^b, J(HP) 20.33, J(HPt) 75.6], 4.85 [d, 1 H, H^a, J(HP) 10.7, J(HPt) 37.8], 4.78 (br s, 2 H, C₅H₄), 4.48 (br s, 2 H, C₅H₄), 4.09 (br s, 2 H, C₅H₄), 3.96 [dd, 1 H, H^d, J (H^dH^c) 10.16, J(H^dH^e) 2.83] and 3.47 (br s, 2 H, C₅H₄); ¹³C-{¹H} (CD₂Cl₂), δ 164,3 [dd, C², J(CP) 123.4, J(CP) 8.9], 146.3 [d, C³, J(CP) 4.5], 135.3– 127.6 (C₆H₅), 119.9 (C⁴), 116.0 [d, C¹, J(CP) 0.4, J(CPt) 39.6] and 76.3–72.4 (C₅H₄); ³¹P-{¹H} (CD₂Cl₂), δ 16.3 [d, J(PP) 15.9, J(PPt) 4487.4] and 14.2 [d, J(PP) 15.9, J(PPt) 1668.6].

Preparation of $(1,2,3-\eta)$ -trans Butadienyl Complexes.— [Pt{1,2,3-η)-trans-CH₂CHC=CH₂}(PPh₃)₂][PF₆] 14. Thallium hexafluorophosphate (0.173 g, 0.50 mmol) was added to a stirred (room-temperature) solution of 12 (0.40 g, 0.50 mmol) in CH₂Cl₂ (10 cm³). After 1 h the reaction mixture was filtered through Celite, the volume of the solvent reduced (*ca*. 5 cm³) *in* vacuo, and diethyl ether added. The resultant precipitate was collected and recrystallised from CH₂Cl₂-diethyl ether to give white crystals of 14 (0.388 g, 85%) (Found: C, 52.6; H, 3.9. C₄₀H₃₅F₆P₃Pt requires C, 52.4; H, 3.8%. NMR (CD₂Cl₂): ¹H, δ 7.53-7.14 (m, 30 H, C₆H₅), 5.70 [dd, 1 H, H^d, J (HP) 16.5, J(HP) 7.2, J(HPt) 4.2], 5.33 [br m, 1 H, H^c, J(HPt) 64.8], 4.14 [dq, 1 H, H^b, J (H^bH^c) 10.0, J (HP) = J(H^bH^a) 3.2], 3.95 [br d, 1 H, H^c, J(HP) 8.1, J(HP) 4.0] and 3.23 [dd, 1 H, H^a, J(H^aH^c) 14.3, J(HP) 7.8, J(HPt) 46.8]; ¹³C-{¹H}, δ 168.6 [d, C³, J(CP) 52.3], 134.7-129.0 (C₆H₅), 99.6 (C⁴), 97.0 [C², J(CPt) 16.0] and 75.9 [d, C¹, J(CP) 23.5]; ³¹P-{¹H}, δ 21.6 [d, J(PP) 10.2, J(PPt) 10.2, J(PPt) 4267], 13.6 [d, J(PP) 10.2, J(PPt) 3447] and -144.4 [spt, PF₆, J(PF) 711].

[Pt{(1,2,3-η)-trans-CH₂C(Me)C=CH₂}(PPh₃)₂][PF₆] 15. Similarly, reaction of Tl[PF₆] (0.173 g, 0.50 mmol) with 1 (0.50 g, 0.50 mmol) in CH₂Cl₂ (10 cm³) afforded colourless crystals of 15 (0.45 g, 86%) (Found: C, 52.4; H, 3.9. C₄₁H₃₇F₆P₃Pt requires C, 52.9; H, 4.0%). NMR (CD₂Cl₂): ¹H, δ 7.47–7.20 (m, 30 H, C₆H₅), 5.61 [ddd, 1 H, H^d, J(HP) 17.4, J(HP) 7.3, J(H^dH^s) 3.2], 4.09 [br d, 1 H, H^b, J(HP) 10.5, J(HPt) 37.5], 3.70 [br s, 1 H, H^e), 3.35 [br d, 1 H, H^a, J(HP) 7.4, J(HPt) 32.4] and 2.13 [s, 3 H, Me, J(HPt) 66.4]; ¹³C-{¹H}, δ 168.2 [d, C³, J(CP) 54.5], 134.7–129.0 (C₆H₅), 116.7 (C²), 99.6 (C⁴), 75.8 [d, C¹, J(CP) 24.2, J(CPt) 75.0] and 23.8 [Me, J(CPt) 30.5]; ³¹P-{¹H}, δ 23.4 [d, J(PP) 10.7, J(PPt) 4169], 15.8 [d, J(PP) 10.7, J(PPt) 3287] and -143.7 [spt, PF₆, J(PF) 711]. [Pt{(1,2,3-η)-trans-CH₂C(Et)C=CH₂}(PPh₃)₂][PF₆] 16. In

[Pt{(1,2,3-η)-trans-CH₂C(Et)C=CH₂}(PPh₃)₂][PF₆] **16**. In a similar way reaction of **3** (0.286 g, 0.34 mmol) with Tl[PF₆] (0.119 g, 0.34 mmol) in CH₂Cl₂ (10 cm³) afforded on recrystallisation from CH₂Cl₂-diethyl ether white translucent crystals of **16** (0.22 g, 68%) (Found: 52.8; H, 4.2. C₄₂H₃₉F₆P₃Pt requires C, 53.3; H, 4.2%). NMR (CD₂Cl₂): ¹H, δ 7.48-7.19 (m, 30 H, Ph), 5.60 [ddd, 1 H, H^d, J(HP) 17.76, J(HP) 7.32, J(H^dH^e) 2.57], 4.10 [dt, 1 H, H^e, J(HP) 10.62, J(HP) = J(H^eH^d) 2.57, J(HPt) 22.62], 3.69 (br s, 1 H, H^b), 3.34 [d, 1 H, H^a, J(HP) 7.69, J(HPt) 31.87], 2.39 (m, 2 H, CH₂CH₃) and 1.08 [t, 3 H, CH₂CH₃, J(HH) 7.51]; ¹³C-{¹H}, δ 167.2 [dd, C³, J(CP) 55.1, J(CP) 2.2, J(CPt) 304.6], 134.6–128.8 (C₆H₅), 120.8 [C², J(CPt) 33.1], 99.7 [d, C⁴, J(CP) 3.3], 74.1 [d, C¹, J (CP) 24.2, J(CPt) 49.05], 29.9 [CH₂CH₃, J(CPt) 26.4] and 11.5 [CH₂CH₃, J(CPt) 41.9]; ³¹P-{¹H</sup>, δ 21.2 [d, J(PP) 11.8, J(PPt) 4168.5], 13.8 [d, J(PP) 11.8, J(PPt) 3281.4] and –145.3 [spt, PF₆, J(PF) 711].

[Pt{(1,2,3-η)-*trans*-CH₂CHC=CH₂}(dppf)][PF₆] **17**. Using an analogous procedure **13** (0.206 g, 0.25 mmol) was treated with Tl[PF₆] (0.086 g, 0.25 mmol) in CH₂Cl₂ (10 cm³). Crystallisation from CH₂Cl₂-diethyl ether yielded yelloworange *crystals* of **17** (0.23 g, 96%) (C, 48.6; H, 3.5. C₃₈H₃₃F₆FeP₃Pt requires C, 48.2; H, 3.5%). NMR [(CD₃)₂CO]: ¹H, δ 8.11–7.02 (m, 20 H, Ph), 5.67 (br s, 1 H, H^d), 5.32 (br s, 1 H, H^c), 4.61–4.44 (m, 6 H, C₅H₄), 4.39 (br s, 1 H, H^e), 4.36 (br s, 1 H, H^b), 4.05 (br s, 2 H, C₅H₄) and 3.86 (br s, 1 H, H^a); ¹³C-{¹H}, δ 169.5 [d, C³, J(CP) 52.9], 136.8–129.0 (C₆H₅, C²), 99.9 (C⁴), 99.0 [C¹, J(CPt) 33.0] and 78.3–74.6 (C₅H₄); ³¹P-{¹H}, δ 22.5 [d, J(PP) 18.0, J(PPt) 4356], 14.8 [d, J(PP) 18.0, J(PPt) 3496] and – 145.3 [spt, PF₆, J(PF) 711].

[Pt{(1,2,3-η)-trans-CH₂C(Me)C=CH₂}(dppf)][PF₆] 18. Similarly, reaction of **6** (0.084 g, 0.09 mmol) with Tl[PF₆] (0.034 g, 0.09 mmol) in CH₂Cl₂ (5 cm³) afforded on recrystallisation from CH₂Cl₂-diethyl ether yellow-orange crystals of 18 (0.087 g, 92%) (Found: C, 49.1; H, 3.7. $C_{39}H_{35}F_6FeP_3Pt$ requires C, 48.7; H, 3.7%). NMR (CD₂Cl₂): ¹H, δ 7.64–7.42 (m, 20 H, Ph), 5.62 (m, 1 H, H^d), 4.61 (br m, 3 H, C₅H₄), 4.47 (br m, 3 H, C₅H₄), 4.13 (br s, 1 H, H^e), 4.07 (br s, 1 H, C₅H₄), 4.02 (br s, 1 H, C₅H₄), 3.66 (br s, 1 H, H^b), 3.26 [d, 1 H, H^a, J (H^aH^b) 8.24, J (HPt) 41.6] and 2.08 [s, 3 H, Me, J(HPt) 65.92]; ¹³C-{¹H}, δ 167.7 [d, C³, J(CP) 57.0, J(CPt) 307.4], 134.8–129.0 (C₆H₅), 116.5 [C², J(CPt) 41.0], 99.4 (C⁴), 76.6–75.3 (C₅H₄), 75.1 (C¹), 74.7–73.6 (C₅H₄) and 23.7 [Me, J(CPt) 29.0].

[Pt{(1,2,3-η)-*trans*-CH₂C(Et)C=CH₂}(dppf)][PF₆] **19**. In a similar way reaction of **7** (0.146 g, 0.17 mmol) with Tl[PF₆] in CH₂Cl₂ (10 cm³) gave on crystallisation from CH₂Cl₂-diethyl ether yellow-orange *crystals* of **19** (0.138 g, 84%) (Found: C, 49.4; H, 3.8. C₄₀H₃₇F₆FeP₃Pt requires C, 49.2; H, 3.8%). NMR (CD₂Cl₂): ¹H, δ 7.66–7.43 (m, 20 H, C₆H₅), 5.59 [ddd, 1 H, H⁴, *J*(HP) 17.95, *J*(HP) 7.14, *J*(H⁴H^e) 2.79, *J*(HPt) 74.37], 4.60–4.42 (m, 6 H, C₅H₄), 4.11 [dt, 1 H, H^e, *J*(HP) 10.8, *J*(HP) = *J*(H^eH⁴) 2.79], 4.06–4.00 (m, 2 H, C₅H₄), 3.65 (br s, 1 H, H^b), 3.29 [d, 1 H, H^a, *J*(HP) 7.87, *J*(HPt) 31.33], 2.30 (m, 2 H, CH₂CH₃) and 0.97 [t, 3 H, CH₂CH₃, *J*(CPt) 306.3], 135.0–128.8 (C₆H₅), 121.1 [C², *J*(CPt) 33.0], 99.8 [d, C⁴, *J*(CP) 3.3], 76.5–72.2 (C₅H₄, C¹), 29.9 [CH₂CH₃, *J*(CPt) 26.4] and 11.3 [CH₂CH₃, *J*(CPt) 39.7]; ³¹P-{¹H}, δ 21.8 [d, *J*(PP) 16.9, *J*(PPt) 4269.4], 14.9 [d, *J*(PP) 16.9, *J*(PPt) 3338.1] and –144.0 [spt, PF₆, *J*(PF) 7.11].

 $[Pd{(1,2,3-\eta)-trans-CH_2C(Et)C=CH_2}(PPh_3)_2][PF_6] 20. To$ a solution of 4 (0.404 g, 0.54 mmol) in thf (10 cm³) was added Tl[PF₆] (0.189 g, 0.54 mmol). Thallium(1) chloride precipitated from the reaction mixture which was stirred for 45 min at room temperature, and then filtered through Celite. The volume of the solvent was reduced in vacuo and diethyl ether added. The resultant yellow solid was washed with diethyl ether, until the washings were colourless, this procedure affording white crystals of 20 (0.322 g, 70%) (Found: C, 58.9; H, 4.6. C43H39F6P3Pd requires C, 58.9; H, 4.5%). Storage of this complex in a dry oxygen-free nitrogen atmosphere at -30 °C protected from light, retarded slow decomposition of this compound. NMR (CD₂Cl₂): ¹H, δ 7.47-7.18 (m, 30 H, C₆H₅), 5.35 [ddd, 1 H, H^d, J(HP) 22.90, J(HP) 16.49, J(H^dH^e) 5.68], 3.93 [br d, 1 H, H^e, J(HP) 5.13], 3.91 (m. 1 H, H^b), 3.61 [br d, 1 H, H^a, J(HP) 8.42], 2.32 [dq, 2H, CH₂CH₃, J(HP) 1.92, J(HH) 7.51] and 1.10 [t, 3 H, CH₂CH₃, J(HH) 7.51]; ¹³C-

Atom	x	v	Z	Atom	x	v	7
D+	0 250 76(6)	0 175 42(0)	0 126 55(2)	C(10)	0.017.0(1()	2 0 190 0/04)	~ 0.1 70 0(7)
FL Ea	0.33970(0)	0.17342(9) 0.2004(2)	0.130(3)(3)	C(19)	-0.0172(10)	0.1829(24)	0.1720(7)
CI	0.012 + (2) 0.521 $A(A)$	0.299 + (3) 0.224 0(5)	0.1140(1)	C(20)	-0.0799(19)	0.302.3(25)	0.1/3 1(9)
	0.3214(4)	0.2349(3)	0.099 / (2)	C(21)	-0.0033(21)	0.395 5(28)	0.1/8/(10)
P(1)	0 255 4(4)	0.2574(5)	0.064 5(2)	C(22)	0.109 8(16)	0.352 9(22)	0.180 3(7)
P(2)	0.2198(4)	0.114 2(6)	0.1774(2)	C(24)	0.174 2(12)	-0.0825(14)	0.110 5(5)
C(2)	0.32/4(12)	0.448 8(14)	0.003 0(4)	C(25)	0.129 0(12)	-0.1970(14)	0.094 5(5)
C(3)	0.369 4(12)	0.566 8(14)	-0.004 2(4)	C(26)	0.066 3(12)	-0.2648(14)	0.125 0(5)
C(4)	0.3945(12)	0.646 8(14)	0.036 4(4)	C(27)	0.048 9(12)	-0.2180(14)	0.171 5(5)
C(5)	0.3776(12)	0.608 /(14)	0.084 3(4)	C(28)	0.094 1(12)	-0.1034(14)	0.187 5(5)
C(6)	0.335 6(12)	0.490 7(14)	0.091 4(4)	C(23)	0.156 8(12)	-0.035 7(14)	0.157 0(5)
C(I)	0.310 5(12)	0.410 7(14)	0.050 8(4)	C(30)	0.316 9(12)	-0.016 9(12)	0.261 2(5)
C(8)	0.344 7(10)	0.063 5(13)	0.012 0(4)	C(31)	0.350 8(12)	-0.037 2(12)	0.312 2(5)
C(9)	0.350 4(10)	-0.013 8(13)	0.028 9(4)	C(32)	0.323 4(12)	0.048 5(12)	0.347 3(5)
C(10)	0.273 3(10)	0.000 9(13)	-0.072 6(4)	C(33)	0.262 1(12)	0.154 6(12)	0.331 3(5)
C(11)	0.190 6(10)	0.093 0(13)	-0.075 3(4)	C(34)	0.228 2(12)	0.174 9(12)	0.280 2(5)
C(12)	0.184 9(10)	0.170 3(13)	-0.034 4(4)	C(29)	0.255 6(12)	0.089 2(12)	0.245 2(5)
C(7)	0.261 9(10)	0.155 5(13)	0.009 3(4)	C(35)	0.476 6(22)	0.114 9(30)	0.196 2(10)
C(13)	0.103 7(16)	0.286 1(20)	0.057 3(7)	C(36)	0.506 6(20)	0.214 5(26)	0.237 1(9)
C(14)	0.049 7(17)	0 406 8(22)	0.055 7(8)	C(37)	0 535 0(30)	0.017 1(41)	0.193 3(14)
C(15)	-0 072 2(18)	0.381 3(24)	0.051 8(8)	C(38)	0 500 9(22)	-0.0660(29)	0.161 2(10)
C(16)	-0.091 7(19)	0.256 9(25)	0.047 2(9)	C(39)	0.645 7(25)	0.005 5(33)	0.240 1(11)
C(17)	0.015 5(16)	0.193 7(23)	0.052 2(7)	C(40)	0 750 2(24)	0.073 7(31)	0 222 9(11)
C(18)	0.102 3(15)	0.218 0(20)	0.174 8(7)				
Table 4	Fractional atomic of	oordinates for com	nplex 16				
A +			_	A 4			
Atom	<i>x</i>	у	Z	Atom	x	у	Z
Atom Pt	<i>x</i> 0.150 84(7)	y 0.169 28(4)	<i>z</i> 0.249 29(5)	Atom C(17)	<i>x</i> 0.092 1(22)	y 0.126 4(12)	<i>z</i> 0.594 2(15)
Atom Pt P(1)	x 0.150 84(7) 0.090 3(5)	y 0.169 28(4) 0.097 4(2)	<i>z</i> 0.249 29(5) 0.341 9(3)	Atom C(17) C(18)	x 0.092 1(22) 0.114 5(18)	y 0.126 4(12) 0.096 4(10)	z 0.594 2(15) 0.518 5(13)
Atom Pt P(1) P(2)	x 0.150 84(7) 0.090 3(5) 0.326 0(4)	y 0.169 28(4) 0.097 4(2) 0.198 9(3)	z 0.249 29(5) 0.341 9(3) 0.310 8(3)	Atom C(17) C(18) C(19)	x 0.092 1(22) 0.114 5(18) 0.327 9(17)	y 0.126 4(12) 0.096 4(10) 0.275 8(9)	z 0.594 2(15) 0.518 5(13) 0.324 6(12)
Atom Pt P(1) P(2) P(3)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4)	Atom C(17) C(18) C(19) C(20)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16)
Atom Pt P(1) P(2) P(3) F(1)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10)	Atom C(17) C(18) C(19) C(20) C(21)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17)
Atom Pt P(1) P(2) P(3) F(1) F(2)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10)	Atom C(17) C(18) C(19) C(20) C(21) C(22)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.087 8(16)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(3) F(4)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.087 8(16) 0.242 5(17)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(3) F(4) F(5)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.087 8(16) 0.242 5(17) 0.242 2(18)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(22) C(23) C(24) C(25)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.087 8(16) 0.242 5(17) 0.242 2(18) 0.085 0(18)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(23) C(24) C(25) C(26)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(2) F(3) F(4) F(5) F(6) C(1)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(3) F(4) F(5) F(6) C(1) C(2)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.617 2(9) 0.714 3(9) 0.714 4(9) 0.032 3(9) 0.029 5(10)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21)	y 0.126 4(12) 0.296 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(4) F(5) F(6) C(1) C(2) C(3)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.087 8(16) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(23) C(24) C(25) C(26) C(27) C(28) C(29)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12) 0.188 4(11)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.069 6(12)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.188 4(11) 0.209 7(10)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(2) C(3) C(4) C(5)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22) 0.229 3(22)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.617 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.069 6(12) -0.068 4(12)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(29) C(30) C(31)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.458 1(18)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.173 6(11) 0.118 6(12) 0.188 4(11) 0.209 7(10) 0.181 0(10)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 2(18) 0.85 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22) 0.229 3(22) 0.159 5(19)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.617 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.029 5(10) -0.021 8(13) -0.069 6(12) -0.068 4(12) -0.016 1(10)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.438 1(18) 0.437 7(21)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.188 4(11) 0.209 7(10) 0.181 0(10) 0.158 1(11)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.165 0(15)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22) 0.229 3(22) 0.159 5(19) -0.053 3(19)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) - 0.021 8(13) - 0.068 4(12) - 0.016 1(10) 0.060 9(10)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13) 0.325 3(13)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(26) C(27) C(28) C(29) C(29) C(30) C(31) C(31) C(32) C(33)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.437 7(21) 0.538 0(24)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.173 6(12) 0.188 4(11) 0.209 7(10) 0.181 0(10) 0.158 1(11) 0.144 5(12)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.165 0(15) 0.114 0(16)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22) 0.229 3(22) 0.159 5(19) -0.053 3(19) -0.065 0(22)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.069 6(12) -0.016 1(10) 0.060 9(10) 0.023 7(12)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13) 0.325 3(13) 0.255 9(16)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(23) C(24) C(25) C(26) C(27) C(26) C(27) C(28) C(29) C(30) C(31) C(31) C(32) C(33) C(34)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.437 7(21) 0.538 0(24) 0.651 1(24)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12) 0.188 4(11) 0.209 7(10) 0.158 1(11) 0.158 1(11) 0.150 9(12)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.165 0(15) 0.114 0(16) 0.148 6(17)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22) 0.159 5(19) -0.053 3(19) -0.065 0(22) -0.176 9(25)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.714 4(9) 0.023 5(10) -0.021 8(13) -0.069 6(12) -0.016 1(10) 0.060 9(10) 0.023 7(12) -0.004 0(13)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.389 3(13) 0.325 3(13) 0.255 9(16) 0.241 6(18)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.437 7(21) 0.538 0(24) 0.651 1(24) 0.674 1(25)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12) 0.181 0(10) 0.158 1(11) 0.144 5(12) 0.150 9(12) 0.171 1(15)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.165 0(15) 0.114 0(16) 0.148 6(17) 0.229 5(18)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10)	x $0.150 \ 84(7)$ $0.090 \ 3(5)$ $0.326 \ 0(4)$ $0.164 \ 1(5)$ $0.251 \ 6(16)$ $0.078 \ 3(16)$ $0.087 \ 8(16)$ $0.242 \ 2(18)$ $0.085 \ 0(18)$ $0.186 \ 2(17)$ $0.226 \ 3(19)$ $0.354 \ 6(24)$ $0.327 \ 5(22)$ $0.229 \ 3(22)$ $0.159 \ 5(19)$ $-0.053 \ 3(19)$ $-0.065 \ 0(22)$ $-0.176 \ 9(25)$ $-0.270 \ 9(28)$	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.022 5(10) -0.021 8(13) -0.069 6(12) -0.068 4(12) -0.016 1(10) 0.060 9(10) 0.023 7(12) -0.004 0(13) 0.004 4(15)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 7(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13) 0.325 3(13) 0.255 9(16) 0.241 6(18) 0.292 3(19)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.437 7(21) 0.538 0(24) 0.651 1(24) 0.674 1(25) 0.570 9(20)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.371 2(13) 0.173 6(11) 0.173 6(11) 0.178 6(10) 0.099 2(11) 0.130 6(12) 0.188 4(11) 0.209 7(10) 0.181 0(10) 0.158 1(11) 0.150 9(12) 0.171 1(15) 0.184 8(11)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.165 0(15) 0.114 0(16) 0.148 6(17) 0.229 5(18) 0.285 0(14)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11)	x $0.150 \ 84(7)$ $0.090 \ 3(5)$ $0.326 \ 0(4)$ $0.164 \ 1(5)$ $0.251 \ 6(16)$ $0.078 \ 3(16)$ $0.087 \ 8(16)$ $0.242 \ 2(18)$ $0.242 \ 2(18)$ $0.242 \ 2(18)$ $0.242 \ 2(18)$ $0.242 \ 2(18)$ $0.385 \ 0(18)$ $0.186 \ 2(17)$ $0.242 \ 2(18)$ $0.354 \ 6(24)$ $0.327 \ 5(22)$ $0.229 \ 3(22)$ $0.159 \ 5(19)$ $-0.053 \ 3(19)$ $-0.065 \ 0(22)$ $-0.176 \ 9(25)$ $-0.270 \ 9(28)$ $-0.260 \ 4(29)$	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.032 3(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.069 6(12) -0.068 4(12) -0.068 4(12) -0.060 9(10) 0.023 7(12) -0.004 0(13) 0.004 4(15) 0.044 5(15)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.617 7(11) 0.617 7(11) 0.617 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13) 0.255 9(16) 0.241 6(18) 0.292 3(19) 0.360 8(20)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C(37)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.437 7(21) 0.538 0(24) 0.651 1(24) 0.674 1(25) 0.570 9(20) -0.016 6(17)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.173 6(11) 0.130 6(12) 0.188 4(11) 0.209 7(10) 0.181 0(10) 0.158 1(11) 0.150 9(12) 0.171 1(15) 0.184 8(11) 0.167 1(11)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.114 0(16) 0.148 6(17) 0.229 5(18) 0.285 0(14) 0.177 2(12)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12)	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.087 8(16) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22) 0.229 3(22) 0.159 5(19) -0.053 3(19) -0.065 0(22) -0.176 9(25) -0.270 9(28) -0.260 4(29) -0.151 1(22)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.617 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.069 6(12) -0.068 4(12) -0.068 4(12) -0.068 4(12) -0.068 4(12) -0.060 9(10) 0.023 7(12) -0.004 0(13) 0.004 4(15) 0.072 3(11)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13) 0.325 3(13) 0.255 9(16) 0.241 6(18) 0.292 3(19) 0.360 8(20) 0.378 2(15)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.437 7(21) 0.538 0(24) 0.651 1(24) 0.674 1(25) 0.570 9(20) -0.016 6(17) 0.078 8(18)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.173 6(11) 0.173 6(12) 0.188 4(11) 0.209 7(10) 0.181 0(10) 0.158 1(11) 0.154 1(12) 0.150 9(12) 0.171 1(12) 0.184 8(11) 0.184 8(11) 0.183 2(10)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.165 0(15) 0.114 0(16) 0.148 6(17) 0.229 5(18) 0.285 0(14) 0.177 2(12) 0.123 1(13)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13)	x $0.150 \ 84(7)$ $0.090 \ 3(5)$ $0.326 \ 0(4)$ $0.164 \ 1(5)$ $0.251 \ 6(16)$ $0.078 \ 3(16)$ $0.242 \ 5(17)$ $0.242 \ 5(17)$ $0.256 \ 5(19)$ $-0.053 \ 3(19)$ $-0.065 \ 0(22)$ $-0.176 \ 9(25)$ $-0.270 \ 9(28)$ $-0.260 \ 4(29)$ $-0.151 \ 1(22)$ $0.076 \ 2(16)$	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.617 2(9) 0.714 3(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.068 4(12) -0.016 1(10) 0.023 7(12) -0.004 0(13) 0.004 4(15) 0.044 5(15) 0.072 3(11) 0.128 2(9)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13) 0.255 9(16) 0.241 6(18) 0.292 3(19) 0.360 8(20) 0.378 2(15) 0.449 2(11)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(26) C(27) C(28) C(29) C(30) C(31) C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38) C(39)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.437 7(21) 0.538 0(24) 0.651 1(24) 0.674 1(25) 0.570 9(20) -0.016 6(17) 0.078 8(18) 0.156 6(20)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12) 0.188 4(11) 0.209 7(10) 0.181 0(10) 0.158 1(11) 0.158 1(11) 0.158 1(11) 0.158 4(11) 0.158 4(11) 0.159 9(12) 0.171 1(15) 0.184 8(11) 0.167 1(11) 0.183 2(10) 0.229 8(11)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.229 5(18) 0.285 0(14) 0.150 8(14)
$\begin{array}{c} Atom \\ Pt \\ P(1) \\ P(2) \\ P(3) \\ F(1) \\ F(2) \\ F(3) \\ F(4) \\ F(5) \\ F(6) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(6) \\ C(7) \\ C(8) \\ C(9) \\ C(10) \\ C(10) \\ C(11) \\ C(12) \\ C(13) \\ C(14) \end{array}$	x 0.150 84(7) 0.090 3(5) 0.326 0(4) 0.164 1(5) 0.251 6(16) 0.078 3(16) 0.242 5(17) 0.242 5(17) 0.242 2(18) 0.085 0(18) 0.186 2(17) 0.286 3(19) 0.354 6(24) 0.327 5(22) 0.229 3(22) 0.159 5(19) -0.053 3(19) -0.065 0(22) -0.176 9(25) -0.270 9(28) -0.260 4(29) -0.511 1(22) 0.076 2(16) 0.020 4(18)	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.617 5(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.068 4(12) -0.068 4(12) -0.068 4(12) -0.068 4(12) -0.016 1(10) 0.023 7(12) -0.004 0(13) 0.004 4(15) 0.044 5(15) 0.072 3(11) 0.128 2(9) 0.180 8(10)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 2(15) 0.389 3(13) 0.325 3(13) 0.255 9(16) 0.241 6(18) 0.292 3(19) 0.360 8(20) 0.378 2(15) 0.449 2(11) 0.452 2(12)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(26) C(27) C(28) C(29) C(31) C(31) C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38) C(39) C(40)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.311 4(20) 0.458 1(18) 0.458 1(18) 0.458 1(124) 0.651 1(24) 0.674 1(25) 0.570 9(20) -0.016 6(17) 0.078 8(18) 0.156 6(20) 0.206 7(23)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12) 0.188 4(11) 0.209 7(10) 0.181 0(10) 0.158 1(11) 0.144 5(12) 0.150 9(12) 0.171 1(15) 0.184 8(11) 0.167 1(11) 0.183 2(10) 0.229 8(11) 0.276 1(12)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.229 5(18) 0.285 0(14) 0.123 1(13) 0.150 8(14) 0.125 1(16)
Atom Pt P(1) P(2) P(3) F(1) F(2) F(3) F(4) F(5) F(6) C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12) C(13) C(14) C(15)	x $0.150 \ 84(7)$ $0.090 \ 3(5)$ $0.326 \ 0(4)$ $0.164 \ 1(5)$ $0.251 \ 6(16)$ $0.078 \ 3(16)$ $0.242 \ 5(17)$ $0.242 \ 5(17)$ $0.242 \ 5(17)$ $0.242 \ 5(17)$ $0.242 \ 5(17)$ $0.242 \ 5(18)$ $0.186 \ 2(17)$ $0.286 \ 3(19)$ $0.354 \ 6(24)$ $0.327 \ 5(22)$ $0.229 \ 3(22)$ $0.159 \ 5(19)$ $-0.053 \ 3(19)$ $-0.055 \ 0(22)$ $-0.176 \ 9(25)$ $-0.270 \ 9(28)$ $-0.270 \ 9(28)$ $-0.270 \ 9(28)$ $-0.270 \ 9(28)$ $-0.260 \ 4(29)$ $-0.151 \ 1(22)$ $0.076 \ 2(16)$ $0.020 \ 4(18)$ $-0.001 \ 2(21)$	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.068 4(12) -0.016 1(10) 0.060 9(10) 0.023 7(12) -0.004 0(13) 0.004 4(15) 0.044 5(15) 0.072 3(11) 0.128 2(9) 0.180 8(10) 0.205 8(11)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.387 3(15) 0.389 3(13) 0.255 9(16) 0.241 6(18) 0.292 3(19) 0.360 8(20) 0.378 2(15) 0.449 2(11) 0.452 2(12) 0.530 3(14)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38) C(39) C(40) C(41)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.437 7(21) 0.538 0(24) 0.651 1(24) 0.674 1(25) 0.570 9(20) -0.016 6(17) 0.078 8(18) 0.156 6(20) 0.206 7(23) 0.116 4(24)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12) 0.181 0(10) 0.158 1(11) 0.158 1(11) 0.154 5(12) 0.150 9(12) 0.171 1(15) 0.184 8(11) 0.167 1(11) 0.183 2(10) 0.229 8(11) 0.276 1(12) 0.144 2(12)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.229 5(18) 0.285 0(14) 0.177 2(12) 0.150 8(14) 0.125 1(16) 0.047 3(16)
$\begin{array}{c} Atom \\ Pt \\ P(1) \\ P(2) \\ P(3) \\ F(1) \\ F(2) \\ F(3) \\ F(4) \\ F(5) \\ F(6) \\ C(1) \\ C(2) \\ C(3) \\ C(4) \\ C(5) \\ C(6) \\ C(7) \\ C(8) \\ C(7) \\ C(8) \\ C(9) \\ C(10) \\ C(11) \\ C(12) \\ C(13) \\ C(14) \\ C(15) \\ C(16) \end{array}$	x $0.150 \ 84(7)$ $0.090 \ 3(5)$ $0.326 \ 0(4)$ $0.164 \ 1(5)$ $0.251 \ 6(16)$ $0.078 \ 3(16)$ $0.242 \ 5(17)$ $0.242 \ 5(18)$ $0.186 \ 2(17)$ $0.286 \ 3(19)$ $0.354 \ 6(24)$ $0.327 \ 5(22)$ $0.159 \ 5(19)$ $-0.053 \ 3(19)$ $-0.053 \ 3(19)$ $-0.053 \ 3(19)$ $-0.076 \ 9(25)$ $-0.270 \ 9(28)$ $-0.260 \ 4(29)$ $-0.151 \ 1(22)$ $0.076 \ 2(16)$ $0.020 \ 4(18)$ $-0.001 \ 2(21)$ $-0.038 \ 6(21)$	y 0.169 28(4) 0.097 4(2) 0.198 9(3) 0.666 8(4) 0.666 3(10) 0.667 7(10) 0.619 2(9) 0.714 3(9) 0.714 4(9) 0.032 3(9) 0.029 5(10) -0.021 8(13) -0.069 6(12) -0.016 1(10) 0.060 9(10) 0.023 7(12) -0.004 0(13) 0.004 4(15) 0.044 5(15) 0.072 3(11) 0.128 2(9) 0.180 8(10) 0.205 8(11) -0.176 2(12)	z 0.249 29(5) 0.341 9(3) 0.310 8(3) 0.660 9(4) 0.735 7(10) 0.586 5(10) 0.706 5(11) 0.615 7(11) 0.617 1(10) 0.704 2(13) 0.340 7(12) 0.286 8(14) 0.285 3(17) 0.331 7(15) 0.389 3(13) 0.325 3(13) 0.255 9(16) 0.241 6(18) 0.292 3(19) 0.360 8(20) 0.378 2(15) 0.449 2(11) 0.452 2(12) 0.530 3(14) 0.398 4(15)	Atom C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C(37) C(38) C(39) C(40) C(41) C(42)	x 0.092 1(22) 0.114 5(18) 0.327 9(17) 0.219 0(23) 0.218 8(25) 0.325 0(25) 0.433 4(23) 0.436 1(20) 0.363 0(17) 0.415 5(18) 0.443 0(21) 0.409 9(21) 0.360 6(20) 0.331 4(20) 0.458 1(18) 0.458 1(24) 0.538 0(24) 0.674 1(25) 0.570 9(20) -0.016 6(17) 0.078 8(18) 0.156 6(20) 0.206 7(23) 0.116 4(24) 0.078 5(31)	y 0.126 4(12) 0.096 4(10) 0.275 8(9) 0.306 5(12) 0.366 8(14) 0.399 3(13) 0.371 2(13) 0.311 3(10) 0.173 6(11) 0.118 6(10) 0.099 2(11) 0.130 6(12) 0.181 0(10) 0.158 1(11) 0.150 9(12) 0.151 1(15) 0.184 8(11) 0.167 1(11) 0.183 2(10) 0.276 1(12) 0.184 2(12) 0.082 8(17)	z 0.594 2(15) 0.518 5(13) 0.324 6(12) 0.342 9(16) 0.361 5(17) 0.364 0(17) 0.342 4(16) 0.324 0(14) 0.414 6(12) 0.427 7(13) 0.507 5(15) 0.575 8(15) 0.566 9(14) 0.483 8(14) 0.252 0(12) 0.165 0(15) 0.114 0(16) 0.148 6(17) 0.229 5(18) 0.285 0(14) 0.177 2(12) 0.150 8(14) 0.150 8(14) 0.221 (16) 0.047 3(16) 0.049 0(22)

Table 3 Fractional atomic coordinates for complex 7

{¹H}, δ 173.2 [dd, C³, *J*(CP) 52.9, *J*(CP) 4.4], 134.3–129.0 (C₆H₅), 120.8 (C²), 99.3 (C⁴), 81.9 [d, C¹, *J*(CP) 24.2], 29.4 (CH₂CH₃) and 12.0 (CH₂CH₃).

Structure Determination of Complexes 7 and 16.—Both data sets were measured at room temperature on a Hilger and Watts Y290 four-circle diffractometer. A crystal of 7 of approximate dimensions $0.25 \times 0.25 \times 0.25$ mm was used for data collection.

Crystal data: $C_{40}H_{37}ClFeP_2Pt$, M = 865.99, monoclinic, a = 11.896(1), b = 10.821(3), c = 26.959(4) Å, $\beta = 98.17(2)$ °, U = 3435.1 Å³, space group $P2_1/c$, Z = 4, $D_c = 1.67$ g cm⁻³, μ (Mo-K α) = 44.84 cm⁻¹, F(000) = 1712. Data were measured in the range $2 \le \theta \le 22^{\circ}$. 4718 Reflections were collected of which 2501 were unique with $I \ge 3\sigma(I)$. Data were corrected for Lorentz and polarization effects and also for absorption.²⁰ The structure was solved by Patterson methods and refined using the SHELX^{21,22} suite of programs. In the final leastsquares cycles the platinum, iron, chlorine and phosphorus atoms were allowed to vibrate anisotropically. All other atoms were treated isotropically. Hydrogen atoms were not included. Final residuals after 14 cycles of least squares were R = R' =0.0587, for unit weights. Maximum final shift/e.s.d. was 0.007. The maximum and minimum residual densities were 0.52 and -0.54 e Å⁻³ respectively. Selected bond lengths and angles are given in Table 1 and fractional atomic coordinates in Table 3.

A crystal of 16 of approximate dimensions $0.25 \times 0.25 \times 0.25$ mm was used for data collection.

Crystal data: $C_{42}H_{39}F_6P_3Pt$, M = 945.66, monoclinic, a =11.174(2), b = 22.611(6), c = 16.003(2) Å, $\beta = 89.76(2)^{\circ}$, $U = 4043.2 \text{ Å}^3$, space group $P2_1/n$, Z = 4, $D_c = 1.55 \text{ g cm}^{-3}$ μ (Mo-K α) = 34.75 cm⁻¹, F(000) = 1872. Data were measured in the range 2 $\leq \theta \leq 22^{\circ}$. 5790 Reflections were collected of which 3308 were unique with $I \ge 3\sigma(I)$. Data were corrected for Lorentz and polarization effects and also for absorption.²⁰ The structure was solved by Patterson methods and refined using the SHELX 21,22 suite of programs. In the final leastsquares cycles the platinum, phosphorus and fluorine atoms were allowed to vibrate anisotropically. All other atoms were treated isotropically. Hydrogen atoms were not included. The cationic and anionic moieties were treated as separate blocks in the latter stages of convergence. Final residuals after 14 cycles of blocked-matrix least squares were R = R' = 0.0690, for unit weights. Maximum final shift/e.s.d. was 0.010. The maximum and minimum residual densities were 0.81 and -0.71 e Å⁻³ respectively in the region of the platinum, and as such have no chemical significance. Selected bond lengths and angles are given in Table 2 and fractional atomic coordinates are given in Table 4.

Additional material available from the Cambridge Crystallographic Date Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for support and a studentship to (T. M. T. P.).

References

- 1 Part 56. C. Carfagna, M. Green, K. R. Nagle, D. J. Williams and C. M. Woolhouse, J. Chem. Soc., Dalton Trans., 1993, 1761.
- 2 S. A. Benyunes, R. J. Deeth, A. Fries, M. Green, M. McPartlin and C. M. B. Nation, J. Chem. Soc., Dalton Trans., 1992, 3453.

- 3 S. A. Benyunes, L. Brandt, M. Green and A. W. Parkins, Organometallics, 1991, 10, 57.
- 4 R. P. Hughes, J. M. J. Lambert and A. L. Rheingold, Organometallics, 1985, 4, 2055.
- 5 A. N. Nesmeyanov, N. E. Koloboua, I. B. Zlotina, B. V. Lokshin, I. F. Lescheva, G. K. Znobina and K. N. Anisimov, J. Organomet. Chem., 1976, 110, 339.
- 6 A. Furlani, M. V. Russo, A. C. Villa, A. G. Manfredotti and C. Guastini, J. Chem. Soc., Dalton Trans., 1977, 2154.
- 7 E. D. Bergmann and D. Herrman, J. Am. Chem. Soc., 1951, 73, 4013.
- 8 J. Iossiphides, E. Michel and C. Troyanowsky, C. R. Acad. Sci. (Paris), 1971, 272, 1566.
- 9 J. M. Brown and N. A. Cooley, Organometallics, 1990, 9, 353.
- 10 M. Green, J. A. K. Howard, J. L. Spencer and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1977, 271.
- 11 N. M. Boag, M. Green, J. L. Spencer and F. G. A. Stone, J. Organomet. Chem., 1977, 127, C51.
- 12 P. J. Stang, M. H. Kowalski, M. D. Schiaevelli and D. Longford, J. Am. Chem. Soc., 1989, 111, 3347. 13 D. A. Clemente, G. Pilloni, B. Corain, B. Longato and M. Tiripicchio-
- Camellini, Inorg. Chim. Acta, 1986, 115, L9.
- 14 C. F. Aten, L. Hedberg and K. Hedberg, J. Am. Chem. Soc., 1968, 90, 2463.
- 15 S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 1976, 14, 266.
- 16 N. Yasuoko, M. Morita, Y. Kai and N. Kasai, J. Organomet. Chem., 1975. 90, 111.
- 17 M. Kadonaga, N. Yasuoko and N. Kasai, J. Chem. Soc., Chem. Commun., 1971, 1597.
- 18 J. D. Smith and J. D. Oliver, Inorg. Chem., 1978, 17, 2585.
- 19 M. I. Bruce, T. W. Hambley, M. J. Liddell, M. R. Snow, A. T. Swincer and E. R. T. Tiekink, Organometallics, 1990, 9, 96.
- 20 N. Walker and D. Stuart, DIFABS, a program to correct for absorption effects in crystals, Acta. Crystallogr., Sect. A, 1983, 39, 158
- 21 G. M. Sheldrick, SHELX 86, a computer program for crystal structure determination, University of Göttingen, 1986. 22 G. M. Sheldrick, SHELX 76, University of Cambridge, 1976.

Received 26th July 1993; Paper 3/04435A