Reactions of Co-ordinated Ligands. Part 57. Synthesis, Structure and Interrelationship of 2- σ-Butadienyl and Cationic (1,2,3-n)-trans-Butadienyl-platinum and -palladium Complexes; Crystal Structures of cis-[PtCl\{ $\left.\mathbf{- C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Et})=\mathrm{CH}_{2}\right\}$ (dppf)] and $\left[\mathrm{Pt}\left\{(1,2,3-\eta)\right.\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Et}) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ [dppf = 1, 1^{\prime}-bis(diphenylphosphino)ferrocene] *

Stephen A. Benyunes, ${ }^{a}$ Lutz Brandt, ${ }^{a}$ Arno Fries, ${ }^{\boldsymbol{b}}$ Michael Green, ${ }^{a, b}$ Mary F. Mahon ${ }^{b}$ and Trevor M. T. Papworth ${ }^{\text {a,b }}$
${ }^{a}$ Department of Chemistry, King's College London, Strand, London WC2R 2LS, UK
${ }^{\text {b }}$ School of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK

Abstract

Reaction of the platinum(0) complexes $\left[\operatorname{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ (dppf)] [dppf $=1.1$-bis $($ diphenylphosphino)ferrocene], [$\left.\mathrm{Pt}(\operatorname{cod})_{2}\right]$ ($\operatorname{cod}=\operatorname{cyclocta}-1,5$-diene) and the palladium(0) complex $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$ with the 4 -chlorobuta-1,2-dienes $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{R}) \mathrm{CH}_{2} \mathrm{Cl}(\mathrm{R}=\mathrm{Me}$ or Et) affords trans or cis 2- σ-butadienyl complexes of the general formula $\left[\mathrm{MCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{R})=\mathrm{CH}_{2}\right\} \mathrm{L}_{2}\right]$; the structural identity of cis- $\left[\mathrm{PtCl}\left\{\alpha-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Et})=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]$ was confirmed by single-crystal X-ray diffraction. Treatment of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ or $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{dppf})\right]$ with an excess of 2 -chlorobuta-1,3-diene leads to the formation of the corresponding unsubstituted $2-\sigma$-butadienyl platinum complexes. Addition of thallium hexafluorophosphate to these $2-\sigma$-butadienyl complexes results in elimination of TICI and formation in high yield of a range of cationic ($1,2,3-\eta$)-trans-butadienyl complexes characterised by NMR spectroscopy, and in the case of $\left[\mathrm{Pt}\{1,2,3-\eta)\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Et}) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ by single crystal X-ray diffraction.

As part of a developing interest ${ }^{2,3}$ in the chemistry of transitionmetal complexes containing the ($1,2,3-\eta$)-trans-butadienyl ligand our attention focused on the X-ray crystallographically identified cationic complex $[\operatorname{Pt}\{(1,2,3-\eta)$-trans- $\mathrm{CH}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph})-$ $\left.\left.\mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ reported ${ }^{4}$ to be formed on reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with the cyclopropenium cation [$\mathrm{C}_{3}(\mathrm{Me})$ $\left.\mathrm{Ph}_{2}\right]\left[\mathrm{BF}_{4}\right]$. The reactivity of such a cationic complex towards nucleophilic reagents and the site of attack was clearly of interest; however, before such studies could be undertaken it was obviously important to try to develop a more versatile synthetic approach to such species. The report ${ }^{5}$ that certain metal carbonyl anions react with the allene $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}$ $\left(\mathrm{CF}_{3}\right)_{2}$, to give initially a $2-\sigma$-bonded butadienyl species, which can then be transformed via CO loss into ($1,2,3-\eta$)-trans$\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{C}=\mathrm{CF}_{2}$-substituted complexes, suggested that it might be possible to access the sought for ($1,2,3-\eta$)-trans-butadienyl-substituted platinum cations by halide abstraction from $2-\sigma$-butadienyl species such as cis- or trans $-[\operatorname{PtCl}\{\sigma$ $\left.\left.\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{R})=\mathrm{CH}_{2}\right\} \mathrm{L}_{2}\right]$. An alternative approach to cationic (1,2,3- η)-trans-butadienyl complexes was to attempt a similar halide abstraction from a σ-bonded allenyl complex, for example. trans- $\left[\mathrm{PtCl}\left\{\sigma-\mathrm{CH}_{2} \mathrm{C}(\mathrm{R})=\mathrm{C}=\mathrm{CH}_{2}\right\} \mathrm{L}_{2}\right]$. This paper describes our detailed ${ }^{3}$ exploration of these ideas.

Results and Discussion

These two alternative synthetic pathways are summarised in Scheme 1. A literature search for $2-\sigma$-bonded butadienyl platinum(II) complexes revealed that the complex trans-[PtCl-$\left.\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is reported ${ }^{6}$ to be one of the

[^0]

Scheme $1 \quad \mathrm{X}=$ Halogen. $(i)+\left[\mathrm{M}^{0}\right] ;$ (ii) AgBF_{4} or $\mathrm{Tl}\left[\mathrm{PF}_{6}\right]$
products of the reaction of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with hydrazine hydrate and isopropenylacetylene. However, the reaction is not selective and only moderate yields are reported. We therefore began to explore the reaction of zerovalent platinum complexes
with allenyl halides as a possible route to either $2-\sigma$-bonded butadienyl or σ-allenyl complexes, i.e. \mathbf{A} and \mathbf{B} in Scheme 1. Additions of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to a solution of $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}$ $(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}^{7}$ in tetrahydrofuran (thf) resulted in a rapid reaction at room temperature and the formation in high yield (89%) of the colourless crystalline complex trans- $[\operatorname{PtCl}\{\sigma$ $\left.\left.\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] 1$ (Scheme 2). Elemental analysis, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy confirmed the structural identity of the complex. When the reaction was conducted at low temperature ($-78^{\circ} \mathrm{C} \longrightarrow-30^{\circ} \mathrm{C}$) in an NMR tube, ${ }^{1} \mathrm{H}$ resonances attributable to cis- $[\mathrm{PtCl}\{\sigma-\mathrm{C}-$ $\left.\left.\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] 2$ were observed, and on warming to room temperature these were replaced by resonances corresponding to the isolated trans isomer 1. A plausible rationale for these observations is illustrated in Scheme 2 and requires that the unsubstituted end of the allene is initially coordinated onto the Pt^{0} centre with displacement of ethylene. This is followed by an intramolecular movement of the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ fragment onto the substituted allenic double bond, thus accessing the thermodynamically less stable but more reactive η^{2}-allene complex \mathbf{C}. Backside intramolecular nucleophilic attack by the Pt^{0} centre on the carbon-chlorine bond would then afford the cation D, which apparently collapses to give initially a cis-2- σ-butadienyl complex isomerising to the thermodynamically more stable isolated trans-2- σ-butadienyl complexes. Although, in principle D could alternatively collapse to give a σ-bonded allenyl species, i.e. B in Scheme 1, this was not observed.
The synthetic pathway to 1 proved to be capable of generalisation. Thus, reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Et}) \mathrm{CH}_{2} \mathrm{Cl}^{8}$ gave 3, and it was found that the palladium analogues 4 and 5 could also be formed in good yield by treating the corresponding allenyl halide with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$.

Scheme 2 (i) $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, (ii) $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right]$, (iii) $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}-\right.\right.$ ${ }_{4}$)(dppf)]. dppf $=1,1^{\prime}$ - - is(diphenylphosphino)ferrocene, dppe $=1,2-$ bis(diphenylphosphino)ethane,dppm = bis(diphenylphosphino)-methane, cod $=$ cycloocta-1,5-diene

Similarly, reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{dppf})\right]^{9}$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}$ $(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl} \mathrm{or}_{\mathrm{CH}}^{2}=\mathrm{C}=\mathrm{C}(\mathrm{Et}) \mathrm{CH}_{2} \mathrm{Cl}$ afforded excellent yields of the stable cis- σ-butadienylplatinum complexes 6 and 7 respectively. Alternatively, it was found that cis-2- σ-butadienyl complexes could be prepared by treating $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]^{10}$ with allenyl halides. Thus, reactions with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}$ or $\mathrm{CH}_{2}=\mathrm{C}=$ $\mathrm{C}(\mathrm{Et}) \mathrm{CH}_{2} \mathrm{Cl}$ in pentane gave good yields of the cream coloured crystalline complexes 8 and 9 (Scheme 2). Unlike the related σ-allyl complexes ${ }^{11}$ prepared by reacting allyl halides with $\left[\mathrm{Pt}(\operatorname{cod})_{2}\right]$, the $2-\sigma$-butadienyl complexes showed no fluxional behaviour in solution at room temperature. As might be expected the cycloocta-1,5-diene ligand was labile and reaction of 8 with 2 molar equivalents of triphenylphosphine gave 1. In a similar way treatment of 8 with the chelating ligands dppe and dppm afforded the complexes 10 and 11, again in good yield.

A potential alternative route to 2 - σ-butadienylplatinum(II) complexes is to react a 2 -halogenobuta-1,3-diene with a $\mathbf{P t}^{0}$ complex (see Schemes 1 and 3). This idea is based on the well known ${ }^{9,12}$ ability of vinyl halides to react with, for example, $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to give initially η^{2}-vinylhalide substituted Pt^{0} moieties, which then readily rearrange to form σ-vinylhaloplatinum(II) complexes. Treatment of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with an excess of 2 -chlorobuta-1,3-diene in chloroform led to the formation of the unsubstituted $2-\sigma$-butadienyl trans-complex 12 in good yield. A similar reaction between [$\left.\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{dppf})\right]$ and 2-chlorobuta-1,3-diene gave an excellent yield of 13 .
Thus, two new synthetic pathways to $2-\sigma$-butadienyl complexes have been established. All of these new compounds were obtained as colourless or pale yellow crystalline, air-stable materials and they were characterised by elemental analysis, ${ }^{1} \mathrm{H}$, ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Experimental section for details).

In order to establish firmly the structural identity of the complexes 1-13 it was thought important to carry out a single crystal X-ray diffraction study with a representative example. Since the previous X-ray studies ${ }^{6}$ with 2 - σ-butadienylplatinum(II) complexes were with the trans species $\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}\right.\right.$ $\left.\left.(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Pt}\left\{\sigma-\mathrm{C}_{2} \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}-\right.\right.$ $\left.\left.(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, crystals of the cis-2- σ-butadienylplatinum complex 7 were chosen for detailed study. A suitable crystal of 7 was obtained by slow solvent diffusion using dichloromethane and diethyl ether. The overall structure converged well ($R=$ $R^{\prime}=0.0587$), with final shift/estimated standard deviation ratios averaging 0.001 . However, the errors associated with the positional parameters of the carbon atoms in the $2-\sigma$ butadienyl moiety remained disappointingly high. As a consequence, errors in the lengths and angles were also large.

Scheme 3 (i) $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$; (ii) $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{dppf})\right]$

Fig. 1 shows the geometry of the molecule and the atomic numbering scheme used and Table 1 lists selected bond lengths, angles and important dihedral angles. The complex is monomeric with the chelating dppf ligand ensuring a cis configuration of the other two co-ordination sites, which are occupied by a chlorine atom, and a σ-bonded carbon atom from the butadienyl ligand to give an overall co-ordination that is nearly square planar, in agreement with the NMR spectral data.
The $\mathrm{Pt}-\mathrm{Cl}$ distance of $2.374(5) \AA$, is comparable with those found ${ }^{13}$ in $\left[\mathrm{PtCl}_{2}(\mathrm{dppf})\right]$ and other cis-platinum(II) complexes. The $\mathrm{Pt}-\mathrm{P}(1)$ and $\mathrm{Pt}-\mathrm{P}(2)$ bond distances are $2.326(5)$ and 2.224(5) \AA respectively, which compare well with those reported for the dichloroplatinum(II) system. The $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$ angle of $100.3(2)^{\circ}$ is the most striking feature of the bidentate ligand. The large angle is due to the bulk of the dppf moiety, where the two cyclopentadienyl rings can be seen to be staggered. This has the effect of forcing $\mathrm{C}(35)$ and the $\mathrm{C}(1)$ atom closer together, which

Table 1 Selected bond lengths (\AA), and selected interbond and dihedral angles $\left({ }^{\circ}\right)$ for complex 7

$\mathrm{Pt}-\mathrm{Cl}$	$2.374(5)$	$\mathrm{C}(35)-\mathrm{C}(37)$	$1.27(4)$
$\mathrm{Pt}-\mathrm{P}(1)$	$2.326(5)$	$\mathrm{C}(37)-\mathrm{C}(38)$	$1.27(4)$
$\mathrm{Pt}-\mathrm{P}(2)$	$2.224(5)$	$\mathrm{C}(37)-\mathrm{C}(39)$	$1.69(4)$
$\mathrm{Pt}-\mathrm{C}(35)$	$2.08(3)$	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.57(4)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.55(4)$		
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{Cl}$			
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{Cl}$	$85.2(2)$	$\mathrm{C}(39)-\mathrm{C}(37)-\mathrm{C}(38)$	$126(3)$
$\mathrm{P}(2)-\mathrm{Pt}-\mathrm{P}(1)$	$174.5(2)$	$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(37)$	$108(2)$
$\mathrm{C}(35)-\mathrm{Pt}-\mathrm{Cl}$	$100.3(2)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{Pt}-\mathrm{P}(1)$	78.05
$\mathrm{C}(35)-\mathrm{Pt}-\mathrm{P}(1)$	$85.2(8)$	$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{Pt}-\mathrm{P}(1)$	89.22
$\mathrm{C}(35)-\mathrm{Pt}-\mathrm{P}(2)$	$170.3(8)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{Pt}-\mathrm{P}(2)$	87.98
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{Pt}$	$89.3(8)$	$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{Pt}-\mathrm{P}(2)$	104.75
$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{Pt}$	$113(2)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{Pt}-\mathrm{Cl}$	91.72
$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{C}(36)$	$122(3)$	$\mathrm{C}(37)-\mathrm{C}(35)-\mathrm{Pt}-\mathrm{Cl}$	75.55
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(35)$	$123(3)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(37)-\mathrm{C}(39)$	0.23
$\mathrm{C}(39)-\mathrm{C}(37)-\mathrm{C}(35)$	$113(3)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(37)-\mathrm{C}(38)$	174.19
		$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(37)-\mathrm{C}(35)$	85.47

Fig. 1 Molecular structure showing the labelling scheme of the complex 7
can be seen from the $\mathrm{C}(35)-\mathrm{Pt}-\mathrm{Cl}$ bond angle of $85.2(8)^{\circ}$. The butadienyl ligand lies essentially perpendicular to the coordination plane as evidenced by a dihedral angle for $\mathrm{C}(37)-$ $\mathrm{C}(35)-\mathrm{Pt}-\mathrm{P}(1)$ of 89.22°. The dihedral angle for $\mathrm{C}(36)-\mathrm{C}(35)-$ $\mathrm{C}(37)-\mathrm{C}(38)$ of 174.19° shows that there is also slight twisting of the butadienyl possibly because the ethyl substituent is almost at right angles [$\mathrm{C}(40)-\mathrm{C}(39)-\mathrm{C}(37)-\mathrm{C}(35) 85.47^{\circ}$] to the butadienyl plane. However, the most interesting feature, which is difficult to explain, is the bond lengths $\mathrm{C}(35)-\mathrm{C}(36)$ $1.55(4), \mathrm{C}(35)-\mathrm{C}(37) 1.27(4)$ and $\mathrm{C}(37)-\mathrm{C}(38) 1.27(4) \AA$, implying that despite the larger than desirable errors, there is a considerable shortening of the central $\mathrm{C}-\mathrm{C}$ bond of the butadienyl ligand.
With the establishment of a satisfactory synthetic route to 2-σ-butadienyl complexes attention was then turned to their transformation into cationic ($1,2,3-\eta$)-trans-butadienyl complexes. In our preliminary investigations ${ }^{3}$ it was observed that reaction of 1 and 12 with AgPF_{6} led to precipitation of AgCl and formation of cationic platinum complexes in reasonable yield; however, further work showed that the use of thallium hexafluorophosphate as a halide abstracting agent led to higher and more reproducible yields. Thus, as summarised in Scheme 4 high yields of the cationic ($1,2,3-\eta$)-trans-butadienyl platinum and palladium complexes 14-20 were obtained by treating the corresponding $2-\sigma$-butadienyl complex with $\mathrm{Tl}\left[\mathrm{PF}_{6}\right]$ in dichloromethane as solvent. These cations were obtained as white to colourless air-stable crystalline materials soluble in dichloromethane. They were all characterised by elemental analysis, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy (see Experimental section), and in one case by single-crystal X-ray crystallography.

The ${ }^{31} \mathrm{P}$ NMR spectra were the simplest to interpret and all showed the presence of two inequivalent phosphorus atoms in the form of two doublets with their respective ${ }^{195} \mathrm{Pt}$ satellites. The complexes containing the dppf ligand showed larger $J(\mathrm{PP})$ and $J(\mathrm{PPt})$ coupling constants than those species containing PPh_{3} ligands. The ${ }^{1} \mathrm{H}$ NMR spectra of these complexes were complicated, since splitting patterns for two inequivalent ${ }^{31} \mathrm{P}$ ligands accompanied by ${ }^{1} \mathrm{H}$ couplings and respective ${ }^{195} \mathrm{Pt}$ satellites were observed. The olefinic protons H^{d} and H^{e} resonated between $\delta 5.67$ and 3.93 with their respective ${ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ couplings. The proton H^{d}, being trans to a ${ }^{31} \mathrm{P}$ atom, experiences a larger $J(\mathrm{HP})$ coupling than H^{e}, allowing these two protons to be differentiated. The anti- and syn-protons (H^{a} and

$\begin{array}{lll}M & L_{2}\end{array}$ 6 PI Me dppf ${ }^{7}$ P1 Et dppi 13 Pt H dppi
$M R \quad L_{2}$
$\begin{array}{llll}14 & \mathrm{Pt} & \mathrm{H} & 2 \mathrm{PPh}_{3} \\ 15 & \mathrm{Pt} & \mathrm{Me} & 2 \mathrm{PPh}_{3}\end{array}$ $\begin{array}{llll}15 \mathrm{Pt} & \mathrm{Me} & 2 \mathrm{PPh}_{3} \\ 16 & \mathrm{Pt} & \mathrm{Et} & 2 \mathrm{PPh}_{3}\end{array}$ $\begin{array}{lll}16 \mathrm{Pt} & \mathrm{Et} & 2 \mathrm{PPh}_{3} \\ 17 \mathrm{Pt} & \mathrm{H} & \mathrm{dppf}\end{array}$ ${ }_{18}{ }_{18} \mathrm{Pt} \stackrel{\mathrm{Me}}{\mathrm{Me}} \mathrm{dppt}$ 18 Pt
19 Me dppf
19 Et
dppf $\begin{array}{lll}19 \mathrm{Pt} \mathrm{Et} & \mathrm{dppf} \\ 20 \mathrm{Pd} \mathrm{Et} & 2 \mathrm{PPh}_{3}\end{array}$
$M \mathrm{R} L$
${ }_{1} \mathrm{Pt} \mathrm{Me}_{3} \mathrm{Pt} \mathrm{Et} \mathrm{PPh}_{3}$ ${ }_{4} \mathrm{PdEt}_{\mathrm{PPh}}^{3}$ $12 \mathrm{Pt} \mathrm{H} \mathrm{PPh}_{3}$

Scheme 4 (i) $\mathrm{Tl}\left[\mathrm{PF}_{6}\right], \mathrm{CH}_{2} \mathrm{Cl}_{2},-\mathrm{TlCl}$
H^{b}) of the allyl function of the butadienyl moiety were assigned assuming that the anti H^{a} proton would appear further upfield than the $\operatorname{syn} \mathbf{H}^{\mathrm{b}}$ proton, due to the shielding effect of the platinum fragment on the anti proton. Signals due to H^{a} and H^{b} appear between $\delta 4.36$ and 3.26. Proton H^{c} in complex 17 resonated at $\delta 5.32$ as a broad singlet. The presence of the dppf ligand in complexes 17-19 further complicated the ${ }^{1} \mathrm{H}$ NMR spectra. The phenyl protons resonated in the aromatic region between $\delta 8.11$ and 7.02 , and the cyclopentadienyl protons appeared between $\delta 4.61$ and 4.00 . The ${ }^{13} \mathrm{C}$ NMR spectra were also complicated, but the assignment of the carbon atoms C^{1}, $\mathrm{C}^{2}, \mathrm{C}^{3}$ and C^{4} of the butadienyl moiety was possible. The ${ }^{31} \mathrm{P}$ splittings in conjunction with the ${ }^{195} \mathrm{Pt}$ couplings lead to a considerable signal-to-noise ratio. This had the two-fold effect of making $J(\mathrm{CP})$ and $J(\mathrm{CPt})$ couplings difficult to elucidate and detect. Distortionless enhancement polarisation transfer (DEPT) experiments proved very useful in characterising these complexes. The CH_{2} groups could be differentiated from other carbon groups, for instance, C^{1} of complex 18 could be detected by DEPT. This carbon atom resonated in the cyclopentadienyl region and could not otherwise have been identified. The DEPT experiments also confirmed the presence of the quaternary carbons, C^{2} and C^{3}, and the other CH_{2} group of the butadienyl ligand, C^{4}. The C^{3} resonances occurred at relatively low field and the possible significance of this is discussed later in relationship to the X-ray crystal structure of 16. The ethyl substituents in complexes 16 and 19 also exhibited interesting ${ }^{13} \mathrm{C}$ NMR spectra, the $J(\mathrm{CPt})$ couplings for the CH_{3} carbon atoms being considerably larger than the $J(\mathrm{CPt})$ couplings for the CH_{2} carbon atoms.
As mentioned previously a single-crystal X-ray diffraction study with 16 was also carried out with the objective of defining the stereochemistry of the (1,2,3- η)-trans-butadienyl ligand and to provide a basis for a theoretical extended-Huckel molecular orbital (EHMO) study of the reactivity of these cations towards nucleophilic reagents. Fig. 2 shows the geometry of the molecule and the atomic numbering scheme used, while Fig. 3 shows an alternative view of $\mathbf{1 6}$ omitting the phenyl rings. Selected bond lengths and angles are given in Table 2 with various dihedral angles.

Complex 16 is monomeric and four-co-ordinate around the platinum atom. Two triphenylphosphine ligands are coordinated cis to the metal centre which is in agreement with the NMR spectral data. The other two co-ordination sites are occupied by the butadienyl ligand. The butadienyl ligand is bonded via $\mathrm{C}(37), \mathrm{C}(38)$ and $\mathrm{C}(39)$ to the platinum, with $\mathrm{C}(40)$ bent away from the platinum at a non-bonding distance of 3.19 \AA with a $\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$ angle of $141(2)^{\circ}$. The allylic double bond distance in 16 and the complex $[\mathrm{Pt}\{(1,2,3-\eta)$-trans$\left.\left.\mathrm{CH}(\mathrm{Ph}) \mathrm{C}(\mathrm{Ph}) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{BF}_{4}\right]$ 21, prepared by Hughes et al., ${ }^{4}$ are 1.26(4) and 1.31(2) \AA respectively, which are in the

Table 2 Selected bond lengths (\AA), and selected interbond and dihedral angles (${ }^{\circ}$) for complex 16

$\mathrm{Pt}-\mathrm{P}(1)$	$2.299(5)$	$\mathrm{C}(37)-\mathrm{C}(38)$	$1.42(3)$
$\mathrm{Pt}-\mathrm{P}(2)$	$2.294(5)$	$\mathrm{C}(38)-\mathrm{C}(39)$	$1.44(3)$
$\mathrm{Pt}-\mathrm{C}(37)$	$2.20(2)$	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.26(4)$
$\mathrm{Pt}-\mathrm{C}(38)$	$2.20(2)$	$\mathrm{C}(38)-\mathrm{C}(41)$	$1.56(3)$
$\mathrm{Pt}-\mathrm{C}(39)$	$2.09(2)$	$\mathrm{C}(41)-\mathrm{C}(42)$	$1.45(5)$
$\mathrm{Pt}-\mathrm{C}(40)$	$3.19(2)$		
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$	$100.3(2)$	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$117(2)$
$\mathrm{C}(37)-\mathrm{Pt}-\mathrm{P}(1)$	$94.2(6)$	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$141(2)$
$\mathrm{C}(37)-\mathrm{Pt}-\mathrm{P}(2)$	$163.6(6)$	$\mathrm{C}(41)-\mathrm{C}(38)-\mathrm{C}(37)$	$122(2)$
$\mathrm{C}(38)-\mathrm{Pt}-\mathrm{P}(1)$	$125.8(6)$	$\mathrm{C}(41)-\mathrm{C}(38)-\mathrm{C}(39)$	$120(2)$
$\mathrm{C}(38)-\mathrm{Pt}-\mathrm{P}(2)$	$131.9(6)$	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	137.06
$\mathrm{C}(38)-\mathrm{Pt}-\mathrm{C}(37)$	$37.5(7)$	$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(41)-\mathrm{C}(42)$	22.72
$\mathrm{C}(39)-\mathrm{Pt}-\mathrm{C}(38)$	$39.1(9)$	$\mathrm{C}(41)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	53.75
$\mathrm{C}(37)-\mathrm{Pt}-\mathrm{C}(39)$	$69.1(8)$	$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(41)-\mathrm{C}(42)$	145.63

range expected for the terminal $\mathrm{C}-\mathrm{C}$ bond length in free buta-1,3-diene ${ }^{14}$ and the unco-ordinated $\mathrm{C}=\mathrm{CH}_{2}$ bond of ligated allene complexes. ${ }^{15-17}$ It is these two features which suggest a significant contribution from formalism \mathbf{E} (Scheme 5) to the bonding in 16 and also in 21 . Scheme 5 shows the corresponding data for co-ordinated allene complexes, which can be seen to exhibit close similarities. The allyl function of the butadienyl ligand in 16 has a $\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$ angle of $117(2)^{\circ}$, which is ca. 8° less than in cationic platinum η^{3}-allyl complexes, ${ }^{18}$ but is

Fig. 2 Molecular structure showing the labelling scheme of the cation contained within the complex 16

Fig. 3 Alternative simplified view of the cation contained within the complex 16

E

R	a / \AA	b / \AA	α°
Me	$1.430(11)$	$1.316(11)$	$140.8(8)$
H	$1.48(5)$	$1.31(5)$	$142(3)$
	Scheme 5		

similar to the equivalent angle in 21 [115(1) \AA]. The carboncarbon interatomic distances $\mathrm{C}(37)-\mathrm{C}(38)$ and $\mathrm{C}(38)-\mathrm{C}(39)$ are $1.42(3)$ and $1.44(3) \AA$ respectively, which are slightly unsymmetrical. The equivalent bond distances in 21 are 1.40(2) and 1.46(2) \AA respectively, which can be seen to be even more unsymmetrical. This coupled with the metal-carbon separations of $2.20(2), 2.20(2)$ and $2.10(2) \AA$ in 16 and $2.29(1), 2.20(1)$, 2.07 (1) \AA in 21, implies some degree of localised bonding from the platinum to $\mathrm{C}(39)$ in 16 and to the equivalent carbon atom in 21, as shown in formalism \mathbf{F} in Scheme 6.

F

G

Scheme 6
Examination of Fig. 3 shows that the geometry about the platinum atom is essentially square planar. There is a maximum deviation for $\mathrm{C}(37)$ of $0.086 \AA$ from the least squares plane containing $\mathrm{Pt}(1), \mathrm{P}(1), \mathrm{P}(2), \mathrm{C}(37)$ and $\mathrm{C}(39)$. The tilt angle (τ) and bow angle (β) are 122.85 and 93.17° respectively. These values are comparable with the tilt and bow angles for the cationic species $\left[\mathrm{Pt}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]^{+}$, which are 118.8 and 92.3° respectively. ${ }^{18}$ The allyl function of the butadienyl moiety is essentially planar. The methyl group of the ethyl substituent is bent out of the allyl plane [dihedral angle C(37)-$\left.\mathrm{C}(38)-\mathrm{C}(41)-\mathrm{C}(42) 22.72^{\circ}\right]$ onto the opposite side to the olefinic functional group. This olefinic group is also bent away from the allyl plane and away from the metal [dihedral angle $\left.\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40) 137.06^{\circ}\right]$.
These same structural features as exhibited by 16 and 21 are also found in other ($1,2,3-\eta$)-trans-butadienyl complexes. ${ }^{2}$ All have shorter metal-carbon bonds consistent with formalism \mathbf{F}, but a significant contribution from \mathbf{E} (Scheme 5) is also implied upon examination of the carbon-carbon interatomic distances (Table 2). It has been suggested ${ }^{19}$ that, since the quaternary carbon in the butadienyl moiety has a low field chemical shift and a short metal-carbon bond distance, a small degree of carbenoid character for $\mathrm{C}(39)$ in 16 is implied, indicating a contribution from the zwitterionic formalism \mathbf{G} (Scheme 6). Obviously the relative contribution from \mathbf{E}, \mathbf{F} and \mathbf{G} in different complexes will be dependent on the metal, the butadienyl substituents and the other ligands.
In summary, a new synthetic pathway to cationic (1,2,3- η)-trans-butadienyl palladium and platinum complexes has been established, and their structural identity confirmed by NMR spectroscopy and single-crystal X-ray crystallography.

Experimental

All reactions were carried out under an atmosphere of dry, oxygen-free dinitrogen, using standard Schlenk techniques. Solvents were freshly distilled over an appropriate drying agent and further degassed before use where necessary. Reagents were obtained from commercial sources unless otherwise indicated. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}$ - $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on Bruker AM360, JEOL GX270 and GX400 MHz FT spectrometers, as appropriate. Chemical shifts are referenced relative to tetramethylsilane and external $\mathrm{H}_{3} \mathrm{PO}_{4}$ respectively, with coupling constants in Hz . Data given are for roomtemperature measurements unless otherwise stated. Infrared spectra were measured using a Perkin Elmer 983G spectrometer. Mass spectra (AE1 MS902) and analytical data were obtained courtesy of the University of London and Bath Services.

Reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}-$
Cl.-(a) At room temperature. A solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $(0.20 \mathrm{~g}, 0.27 \mathrm{mmol})$ in tetrahydrofuran (thf) $\left(10 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 15 min in the presence of a slight excess of the 4-chloro-3-methylbuta-1,2-diene, $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}$ $(0.032 \mathrm{~g}, 0.32 \mathrm{mmol})$. Volatile material was removed in vacuo, the residue dissolved in toluene ($2 \mathrm{~cm}^{3}$) and filtered through Celite. The solvent was removed in vacuo and the residue washed with diethyl ether-pentane (1:1) to give colourless microcrystals of trans $-\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] 1$ ($0.195 \mathrm{~g}, 89 \%$) (Found: C, $59.5 ; \mathrm{H}, 4.6 . \mathrm{C}_{41} \mathrm{H}_{37} \mathrm{ClP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 59.9 ; \mathrm{H}, 4.5 \%$). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 7.77-7.36$ (m, $\left.30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.99\left[\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 3.2\right], 5.18\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$, $J(\mathrm{HPt}) 125.0], 4.77$ [br s, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HPt}) 72.0\right], 4.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, H^{d}) and $1.01(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 150.0\left(\mathrm{br} \mathrm{s}, \mathrm{C}^{3}\right), 148.2[\mathrm{t}$, $\left.\mathrm{C}^{2}, J(\mathrm{CP}) 8.9\right], 135.5-128.0\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 118.9$ [s, $\left.\mathrm{C}^{1}, J(\mathrm{CPt}) 62.3\right]$, 117.3 (br s, C^{4}) and 19.6 (s, Me); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \delta 24.9$ [s, PPh_{3}, $J(\mathrm{PPt}) 3227.5]$.

(b) At low temperature. A cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.03 \mathrm{~g}, 0.04 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(0.5 \mathrm{~cm}^{3}\right)$ contained in a 5 mm NMR tube was treated with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}(0.005 \mathrm{~g}, 0.05 \mathrm{mmol})$. The tube and contents was allowed to warm to $-30^{\circ} \mathrm{C}$ over a period of 30 min . Examination of the NMR spectra revealed resonances attributable to cis- $\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right] 2$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: ${ }^{1} \mathrm{H}, \delta 7.51-7.13\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.01$ [br d, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 3.6\right], 5.47\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, J(\mathrm{HP}) 25.2\right], 5.06[\mathrm{br}$ $\left.\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 10.8\right], 4.97\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right)$ and $1.33(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Me}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 164.8$ [dd, $\left.\mathrm{C}^{2}, J(\mathrm{CP}) 110.3, J(\mathrm{CP}), 9.1\right], 149.6$ $\left(\mathrm{s}, \mathrm{C}^{3}\right), 134-129.7\left(\mathrm{~m}_{\mathrm{C}} \mathrm{C}_{6} \mathrm{H}_{5}\right), 118.0\left(\mathrm{C}^{4}\right), 115.8\left(\mathrm{C}^{1}\right)$ and 20.7 (Me). On warming to room temperature the signals due to 2 were clearly replaced by resonances corresponding to the transisomer 1.

Preparations of Other 2- σ-Bonded 3-Alkylbutadienyl Com-plexes.- trans $-\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Et})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 3. Similarly, reaction (room temperature) of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.463$ $\mathrm{g}, 0.62 \mathrm{mmol})$ with $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}\left(\mathrm{Et}^{2}\right) \mathrm{CH}_{2} \mathrm{Cl}(0.075 \mathrm{~g}, 0.64 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ gave white crystals of $3(0.42 \mathrm{~g}, 81 \%)$ (Found: C, $60.0 ; \mathrm{H}, 4.7$. $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{ClP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 60.3 ; \mathrm{H}, 4.7 \%$). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 7.86-7.41\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.20\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}\right.$, $\left.J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.38\right], 5.36\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, J(\mathrm{HPt}) 75.1\right], 4.88\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right.$, $J(\mathrm{HPt}), 70.3], 4.71\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}^{d}\right), 1.31\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{HH})\right.$ 7.33] and $0.63\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}(\mathrm{HH}) 7.33\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 154.8$ [$\left.\mathrm{C}^{3}, J(\mathrm{CPt}) 30.9\right], 148.3\left[\mathrm{t}, \mathrm{C}^{2}, J(\mathrm{CP}) 8.8\right], 135.3-127.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 116.6 [$\left.\mathrm{C}^{1}, J(\mathrm{CPt}) 62.7\right], 115.9$ [br t, $\left.\mathrm{C}^{4} J(\mathrm{CP}) 8.8\right], 24.9$ $\left[\mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{CPt}) 27.5\right]$ and $12.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 24.2$ [J (PPt) 3234.1].
trans $-\left[\operatorname{PdCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Et})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 4. To a suspension of $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.726 \mathrm{~g}, 0.62 \mathrm{mmol})$ in thf $\left(20 \mathrm{~cm}^{3}\right)$ was slowly added $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Et}) \mathrm{CH}_{2} \mathrm{Cl}(0.10 \mathrm{~g}, 0.85 \mathrm{mmol})$. After 40 min stirring at room temperature the volatile material was removed in vacuo from the resulting dark grey suspension. The residue was dissolved in toluene and filtered through Celite. Removal of the solvent afforded an off-white solid which was washed with diethyl ether ($4 \times 30 \mathrm{~cm}^{3}$) to give on drying in vacuo white microcrystals of $4(0.35 \mathrm{~g}, 72 \%)$ (Found: C, $67.5 ; \mathrm{H}$, 4.6. $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{ClP}_{2} \mathrm{Pd}$ requires $\mathrm{C}, 67.5 ; \mathrm{H} 5.3 \%$). NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): ${ }^{1} \mathrm{H}, \delta 7.71-7.30\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.06\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right), 4.77$ (br s, 1 $\left.\mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 4.68\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right.$ and H^{d}), $1.20\left[\mathrm{br} \mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$, $J(\mathrm{HH}) 7.32]$ and $0.5\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{HH}) 7.32\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 163.2\left(\mathrm{C}^{3}\right), 153.7\left(\mathrm{C}^{2}\right), 135.1-127.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $117.1\left(\mathrm{C}^{1}\right)$, 115.9 $\left(\mathrm{C}^{4}\right), 25.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $12.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 24.4(\mathrm{~s}$, PPh_{3}).
trans- $\left[\mathrm{PdCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 5. A similar reaction between $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.03 \mathrm{~g}, 0.2 \mathrm{mmol})$ and $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}(0.032 \mathrm{~g}, 0.032 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ afforded colourless crystals of $5(0.17 \mathrm{~g}, 90 \%)$. NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): ${ }^{1} \mathrm{H}, \delta 7.76-7.35\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.85\left[\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J(\mathrm{HP}) 2.6\right]$, $4.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right) 4.65\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}^{3}\right)$ and $0.98(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}, \delta 163.2\left(\mathrm{C}^{3}\right), 149.0\left(\mathrm{C}^{2}\right), 135.4-128.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.6\left(\mathrm{C}^{1}\right)$, $117.4\left(\mathrm{C}^{4}\right)$ and $19.9(\mathrm{Me}) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 25.0\left(\mathrm{~s}, \mathrm{PPh}_{3}\right)$.
cis $-\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]$ 6. To a solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{dppf})\right](0.40 \mathrm{~g}, 0.52 \mathrm{mmol})$ in $\operatorname{thf}\left(10 \mathrm{~cm}^{3}\right)$ was added slowly $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}(0.06,0.58 \mathrm{mmol})$. The colour changed from orange to pale orange. After 1 h at room temperature the volatiles were removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through Celite. Reduction of the volume of the solvent and addition of diethyl ether gave a yellow solid. This was collected and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ to give yellow-orange crystals of $6(0.36 \mathrm{~g}, 81 \%)$ (Found: C, 54.7; H, 4.3; $\mathrm{C}_{39} \mathrm{H}_{35} \mathrm{ClFeP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 55.0 ; \mathrm{H}$, 4.1%). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, 88.05-7.05(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 5.79[\mathrm{br}$ $\left.\mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 3.11\right], 5.45\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, J(\mathrm{HP}) 21.6, J(\mathrm{HPt})\right.$ $51.3], 4.91\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 10.62, J(\mathrm{HPt}) 43.18\right], 4.81(\mathrm{br} \mathrm{s}, 2$ $\mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.76 (br s, $1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}$), 4.52 (br s, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.13 (br s, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.13\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.54\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$ and 1.35 (s, $3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 164.3$ [dd, $\mathrm{C}^{2}, J(\mathrm{CP}) 114.5, J(\mathrm{CP})$ $8.8], 149.3$ [d, $\left.\mathrm{C}^{3}, J(\mathrm{CP}) 4.4\right], 135.5-127.1\left(\mathrm{~m}^{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 117.7$ [$\mathrm{C}^{1}, J(\mathrm{CPt}) 41.8$], $115.7\left(\mathrm{C}^{4}\right), 76.6-52.8\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and 20.8 [d, $\mathrm{Me}, J(\mathrm{CP}) 6.7] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 15.9$ [d, $J(\mathrm{PP})$ 15.8, $\left.J(\mathrm{PPt}) 4573.7\right]$ and 14.5 [d, J (PP) 15.8, $J(\mathrm{PPt}) 1630.9]$.

$c i s-\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Et})=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]$ 7. Similarly, reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{dppf})\right](0.30 \mathrm{~g}, 0.38 \mathrm{mmol})$ with $\mathrm{CH}_{2}=\mathrm{C}=$ $\mathrm{C}\left(\mathrm{Et}_{\mathrm{t}}\right) \mathrm{CH}_{2} \mathrm{Cl}(0.06 \mathrm{~g}, 0.51 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ gave on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ yellow-orange crystals of 7 ($0.308 \mathrm{~g}, 92 \%$) (Found: C, $55.5 ; \mathrm{H}, 4.5 . \mathrm{C}_{40} \mathrm{H}_{37} \mathrm{ClFeP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 55.5 ; \mathrm{H}, 4.3 \%$). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right){ }^{1} \mathrm{H}, \delta 8.03-7.14(\mathrm{~m}$, $\left.20 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.80\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.57\right]$, 5.49 [d, $1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}$, $J(\mathrm{HP}) 22.17, J(\mathrm{HPt}) 73.64], 4.88\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 10.8, J(\mathrm{HPt})\right.$ 41.4], $4.75\left(\mathrm{~m}, 3 \mathrm{H}, 2 \times \mathrm{C}_{5} \mathrm{H}_{4}, \mathrm{H}^{\mathrm{d}}\right), 4.50\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.15$ (br s, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 3.43 (br s, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 1.88 (br m, 1 H ,

$\mathrm{CH}_{2} \mathrm{CH}_{3}$) and $0.75\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}(\mathrm{HH}), 7.33\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta$ 164.4 [dd, $\mathrm{C}^{2}, J(\mathrm{CP}) 115.6, J(\mathrm{CP}) 8.8$], 163.5 [d, $\left.\mathrm{C}^{3}, J(\mathrm{CP}) 4.4\right]$, 135.6-127.0 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 115.2 [$\left.\mathrm{C}^{1}, J(\mathrm{CPt}) 41.9\right], 114.2\left[\mathrm{C}^{4}, J(\mathrm{CP})\right.$ 3.3], 76.6-71.9 $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right), 26.0\left[\mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{CP}) 5.5\right]$ and 12.5 $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\} \delta 15.8[\mathrm{~d}, J(\mathrm{PP}) 15.8, J(\mathrm{PPt}) 29.3]$ and 14.6 [d, $J(\mathrm{PP}) 15.8, J(\mathrm{PPt}) 3293.5]$.
$\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}(\mathrm{cod})\right]$ 8. An excess of $\mathrm{CH}_{2}=$ $\mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{Cl}(0.199 \mathrm{~g}, 1.94 \mathrm{mmol})$ was added dropwise to a stirred solution of $\left[\mathrm{Pt}(\mathrm{cod})_{2}\right](0.40 \mathrm{~g}, 0.97 \mathrm{mmol})$ in pentane (10 cm^{3}). After 10 min the supernatant liquid was removed, and the precipitate washed with pentane ($3 \times 5 \mathrm{~cm}^{3}$) and dried in vacuo to give cream coloured crystals of $8(0.304 \mathrm{~g}, 77 \%)$ (Found: C, 38.0; $\mathrm{H}, 4.4 \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{ClPt}$ requires $\mathrm{C}, 38.5 ; \mathrm{H} 4.7 \%$). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 5.82\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, J(\mathrm{HPt}) 81.0\right], 5.64[\mathrm{~m}, 2 \mathrm{H}$,
$\mathrm{CH}=\mathrm{CH}$ of $\operatorname{cod}, J(\mathrm{HPt}) 79.0], 5.46\left[\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.6\right]$, 5.01 [$\left.\mathrm{brd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{e}}\right) 2.6\right], 4.87$ [$\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HPt}) 41.1\right]$, $4.53[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$ of cod, $J(\mathrm{HPt}) 76.6], 2.44(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ of cod) and $1.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 153.6\left(\mathrm{C}^{2}\right)$, $149.1\left(\mathrm{C}^{3}\right), 117.1$ [$\mathrm{C}^{1}, J(\mathrm{HPt}) 40.5$], $115.7\left(\mathrm{C}^{4}\right), 100.7$ [C^{6}, $J(\mathrm{CPt}) 153.5], 87.4\left[\mathrm{C}^{5}, J(\mathrm{CPt}) 211.7\right], 32.0\left[\mathrm{C}^{8}, J(\mathrm{CPt}) 25.0\right]$, 27.9 [$\left.{ }^{7}, J(\mathrm{CPt}) 24.5\right]$ and 22.1 (Me). Mass spectrum: $m / z 406$ $[M]^{+}$and $371[M-\mathrm{Cl}]^{+}$.
$\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Et})=\mathrm{CH}_{2}\right\}(\mathrm{cod})\right]$ 9. Similarly, reaction of an excess of $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}(\mathrm{Et}) \mathrm{CH}_{2} \mathrm{Cl}(0.096 \mathrm{~g}, 0.82 \mathrm{mmol})$ with $\left[\mathrm{Pt}(\mathrm{cod})_{2}\right](0.170 \mathrm{~g}, 0.41 \mathrm{mmol})$ in pentane $\left(5 \mathrm{~cm}^{3}\right)$ gave cream coloured crystals of $9(0.094 \mathrm{~g}, 54 \%)$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 5.79$ [s, $1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, J(\mathrm{HPt}) 84.7$], 5.67 [br d, $1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.8$], 5.58 [$\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}$ of $\operatorname{cod}, J(\mathrm{HPt}) 68.8], 4.92\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right.$, $\left.J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{c}}\right) 2.8\right], 4.83\left[\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HPt}) 42.5\right], 4.53(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}=\mathrm{CH}$ of cod, $J(\mathrm{HPt}) 78.9], 2.45\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ of cod), $2.19\left[\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}(\mathrm{HH}) 7.3\right]$ and $1.05\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ 7.3]; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 156.0\left(\mathrm{C}^{2}\right), 148.9\left(\mathrm{C}^{3}\right), 115.6\left[\mathrm{C}^{1}, J(\mathrm{CPt})\right.$ $42.5], 113.4\left(\mathrm{C}^{4}\right), 100.7$ [$\left.^{6},{ }^{2}(\mathrm{CPt}) 152.0\right], 87.5$ [$^{5}, J(\mathrm{CPt})$ 213.7], 32.0 [$\left.\mathrm{C}^{8}, J(\mathrm{CPt}) 28.7\right], 27.9$ [$\left.\mathrm{C}^{7}, J(\mathrm{CPt}) 25.8\right], 26.2$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $13.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Reactions of Complex 8.-With triphenylphosphine. To a solution of $8(0.15 \mathrm{~g}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{PPh}_{3}(0.194 \mathrm{~g}, 0.74 \mathrm{mmol})$. After stirring for 30 min at room temperature the volatiles were removed in vacuo, and the residue redissolved in toluene ($5 \mathrm{~cm}^{3}$) and filtered through Celite. Removal of the solvent under reduced pressure and washing the residue with diethyl ether-pentane (1:1) (3×10 cm^{3}) afforded colourless crystals of $1(0.243 \mathrm{~g}, 80 \%)$, identical (${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR) with an authentic sample.

With 1,2-bis(diphenylphosphino)ethane. A similar reaction between $8(0.14 \mathrm{~g}, 0.34 \mathrm{mmol})$ and (dppe) $(0.147 \mathrm{~g}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ afforded pale yellow microcrystals of $[\mathrm{PtCl}\{\sigma-$ $\left.\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right\}$ (dppe)] $10(0.192 \mathrm{~g}, 80 \%$) (Found: $\mathrm{C}, 53.1$; $\mathrm{H}, 4.4 . \mathrm{C}_{30} \mathrm{H}_{31} \mathrm{ClP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 53.5 ; \mathrm{H}, 4.4 \%$). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: ${ }^{1} \mathrm{H}, \delta 7.90-7.46(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 5.86\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$, $J(\mathrm{HP}) 21.3, J(\mathrm{HPt}) 80.6], 5.21\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 3.5\right]$, $4.96\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 14.8, J(\mathrm{HPt}) 45.3\right], 4.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{d}}\right), 2.18\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2}\right)$ and $1.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathbf{H}\right\}, \delta 167.3$ [dd, $\left.\mathrm{C}^{2}, J(\mathrm{CP}) 108.4, J(\mathrm{CP}) 7.3\right], 150.4\left(\mathrm{C}^{3}\right)$, 134.1-128.4 (m, $\mathrm{C}_{6} \mathrm{H}_{5}$), $118.6\left[\mathrm{C}^{1}, J(\mathrm{CPt}) 45.0\right], 116.2\left(\mathrm{C}^{4}\right)$, $28.79\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)$ and 22.0 [d, Me, J(CP) 4.4]; ${ }^{3}{ }^{3} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 38.7$ [J (PPt) 1661$]$ and 35.7 [$J(\mathrm{PPt}) 4219]$.

With bis(diphenylphosphino)methane. Similarly, reaction of $8(0.13 \mathrm{~g}, 0.32 \mathrm{mmol})$ with $\mathrm{dppm}(0.135 \mathrm{~g}, 0.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(10 \mathrm{~cm}^{3}\right)$ gave yellow microcrystals of $\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{C}-\right.\right.$ $\left.\left.(\mathrm{Me})=\mathrm{CH}_{2}\right\}(\mathrm{dppm})\right] 11(0.166 \mathrm{~g}, 76 \%)$ (Found: C, $52.9 ; \mathrm{H}, 4.4$. $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{ClP}_{2} \mathrm{Pt}$ requires $\left.\mathrm{C}, 52.8 ; \mathrm{H}, 4.3 \%\right)$. NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right)$, $\delta 8.01-6.95(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 5.73\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}^{\mathrm{b}}, J(\mathrm{HP}) 24.8, J(\mathrm{HPt})\right.$ 79.3], $5.51\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 3.5\right], 4.93\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}\right.$, $J(\mathrm{HP}) 17.5$, J(HPt) 41.6$], 47.9\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{d}\right), 4.26(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Ph}_{2} \mathrm{PCH} \mathrm{P}_{2}$), and 1.83 (s, $3 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CDCl}_{3}\right), \delta 165.8$ [dd, $\left.\mathrm{C}^{2}, J(\mathrm{CP}) 106.9, J(\mathrm{CP}) 7.7\right], 149.0\left(\mathrm{C}^{3}\right), 135.3-129.6$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 117.9\left[\mathrm{C}^{1}, J(\mathrm{CPt}), 43.6\right], 115.8\left(\mathrm{C}^{4}\right), 43.2\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)$ and 21.8 [d, $\mathrm{Me}, J(\mathrm{CP}), 5.1] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta 43.2$ [d, $J(\mathrm{PP}), 40.1, J(\mathrm{PPt}) 1222]$ and 44.1 [d, $J(\mathrm{PP}) 40.1, J(\mathrm{PPt}) 3799]$.

Preparation of $2-\sigma$-Bonded Butadienyl Complexes.--trans-$\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ 12. An excess of 2 -chloro-buta-1,3-diene ($0.04 \mathrm{~g}, 0.45 \mathrm{mmol}$) was added to a solution of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.14 \mathrm{~g}, 0.19 \mathrm{mmol})$ in chloroform (10 cm^{3}). The resulting mixture was stirred at room temperature for 2 h . The volatile material was removed in vacuo, and the residue extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Filtration through Celite, reduction of the volume of the solvent, followed by addition of diethyl ether gave a colourless solid. This was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ diethyl ether to give colourless crystals of $12(0.091 \mathrm{~g}, 60 \%)$ (Found: $\mathrm{C}, 59.5 ; \mathrm{H}, 4.3 . \mathrm{C}_{40} \mathrm{H}_{35} \mathrm{ClP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 59.4 ; \mathrm{H}$, 4.4%). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 7.80-7.35\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.67$ [dd, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{c}}\right) 16.9, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.4\right], 5.33$ [dd, $1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}$,

$\left.J\left(\mathrm{H}^{\mathrm{c}} \mathrm{H}^{e}\right) 16.9, J\left(\mathrm{H}^{\mathrm{c}} \mathrm{H}^{\mathrm{d}}\right) 10.0, J(\mathrm{HPt}) 64.8\right], 5.11\left[\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$, $J(\mathrm{HPt}) 126.2], 4.69\left[\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HPt}) 67.1\right]$ and $4.39[\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\mathrm{d}}, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{c}}\right) 10.0, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{e}}\right) 2.1\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 148.6\left[\mathrm{t}, \mathrm{C}^{2}, J(\mathrm{CP})\right.$ 8.4], $147.6\left[\mathrm{C}^{3}, J(\mathrm{CPt}) 40.4\right], 135.8-127.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 121.8\left(\mathrm{C}^{4}\right)$ and $116.6\left[\mathrm{C}^{1}, J(\mathrm{CPt}) 61.0\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 25.1$ [$\left.J(\mathrm{PPt}) 3166\right]$.
cis- $\left[\mathrm{PtCl}\left\{\sigma-\mathrm{C}\left(\mathrm{CH}_{2}\right) \mathrm{CH}=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]$ 13. In a similar way reaction of $\left[\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{dppf})\right](0.29 \mathrm{~g}, 0.37 \mathrm{mmol})$ with 2-chlorobuta-1,3-diene ($0.04 \mathrm{~g}, 0.45 \mathrm{mmol}$) in chloroform ($10 \mathrm{~cm}^{3}$) gave on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether yelloworange crystals of 13 ($0.29 \mathrm{~g}, 93 \%$) (Found: C, 53.8; H, 4.0 . $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{ClFeP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 54.5 ; \mathrm{H}, 4.0 \%$). NMR: ${ }^{1} \mathrm{H}\left(\mathrm{CDCl}_{3}\right), \delta 8.08-7.12\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.09\left(\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}\right)$, $5.66\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, \mathrm{J}\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{c}}\right) 17.0, J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.83\right], 5.41\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$, $J(\mathrm{HP}) 20.33, J(\mathrm{HPt}) 75.6], 4.85$ [d, $1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 10.7, J(\mathrm{HPt})$ 37.8], 4.78 (br s, $2 \mathrm{H}_{2} \mathrm{C}_{5} \mathrm{H}_{4}$), 4.48 (br s, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.09 (br s, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 3.96 [dd, $1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{c}}\right) 10.16, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{e}}\right) 2.83$] and 3.47 (brs, $\left.2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta 164,3\left[\mathrm{dd}, \mathrm{C}^{2}\right.$, $J(\mathrm{CP})$ 123.4, $J(\mathrm{CP})$ 8.9], 146.3 [d, $\left.\mathrm{C}^{3}, J(\mathrm{CP}) 4.5\right], 135.3-$ $127.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.9\left(\mathrm{C}^{4}\right), 116.0\left[\mathrm{~d}, \mathrm{C}^{1}, J(\mathrm{CP}) 0.4, J(\mathrm{CPt})\right.$ 39.6] and 76.3-72.4 $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta 16.3$ [d, $J(\mathrm{PP}) 15.9, J(\mathrm{PPt}) 4487.4]$ and $14.2[\mathrm{~d}, J(\mathrm{PP}) 15.9, J(\mathrm{PPt})$ 1668.6].

Preparation of ($1,2,3-\eta$)-trans Butadienyl Complexes.-$\left[\mathrm{Pt}\{1,2,3-\eta)\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{CHC}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ 14. Thallium hexafluorophosphate $(0.173 \mathrm{~g}, 0.50 \mathrm{mmol})$ was added to a stirred (room-temperature) solution of $12(0.40 \mathrm{~g}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. After 1 h the reaction mixture was filtered through Celite, the volume of the solvent reduced ($c a .5 \mathrm{~cm}^{3}$) in vacuo, and diethyl ether added. The resultant precipitate was collected and recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether to give white crystals of 14 ($0.388 \mathrm{~g}, 85 \%$) (Found: C, 52.6; H, 3.9 . $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Pt}$ requires $\mathrm{C}, 52.4 ; \mathrm{H}, 3.8 \%$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}$, $\delta 7.53-7.14\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.70\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}, J(\mathrm{HP}) 16.5\right.$, $J(\mathrm{HP}) 7.2, J(\mathrm{HPt}) 4.2], 5.33\left[\mathrm{br} \mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}, J(\mathrm{HPt}) 64.8\right], 4.14$ $\left[\mathrm{dq}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, J\left(\mathrm{H}^{\mathrm{b}} \mathrm{H}^{\mathrm{c}}\right) 10.0, J(\mathrm{HP})=J\left(\mathrm{H}^{\mathrm{b}} \mathrm{H}^{\mathrm{a}}\right) 3.2\right], 3.95[\mathrm{br} \mathrm{d}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J(\mathrm{HP}) 8.1, J(\mathrm{HP}) 4.0\right]$ and $3.23\left[\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J\left(\mathrm{H}^{\mathrm{a}} \mathrm{H}^{\mathrm{c}}\right)\right.$ 14.3, $J(\mathrm{HP}) 7.8, J(\mathrm{HPt}) 46.8] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 168.6\left[\mathrm{~d}, \mathrm{C}^{3}, J(\mathrm{CP})\right.$ 52.3], 134.7-129.0 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 99.6\left(\mathrm{C}^{4}\right), 97.0\left[\mathrm{C}^{2}, J(\mathrm{CPt}) 16.0\right]$ and $75.9\left[\mathrm{~d}, \mathrm{C}^{1}, J(\mathrm{CP}) 23.5\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 21.6[\mathrm{~d}, J(\mathrm{PP}) 10.2$, $J(\mathrm{PPt}) 10.2, J(\mathrm{PPt}) 4267], 13.6[\mathrm{~d}, J(\mathrm{PP}) 10.2, J(\mathrm{PPt}) 3447]$ and -144.4 [spt, $\left.\mathrm{PF}_{6}, J(\mathrm{PF}) 711\right]$.
$\left[\mathrm{Pt}\left\{(1,2,3-\eta)\right.\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right] \quad 15$. Similarly, reaction of $\mathrm{Tl}^{2}\left[\mathrm{PF}_{6}\right](0.173 \mathrm{~g}, 0.50 \mathrm{mmol})$ with $1(0.50$ $\mathrm{g}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ afforded colourless crystals of $15\left(0.45 \mathrm{~g}, 86 \%\right.$) (Found: $\mathrm{C}, 52.4 ; \mathrm{H}, 3.9 . \mathrm{C}_{41} \mathrm{H}_{37} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Pt}$ requires C, $52.9 ; \mathrm{H}, 4.0 \%$). NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$) : ${ }^{1} \mathrm{H}, \delta 7.47-7.20(\mathrm{~m}, 30 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$), 5.61 [ddd, $1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}, J(\mathrm{HP}) 17.4, J(\mathrm{HP}) 7.3, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{e}}\right)$ 3.2], 4.09 [br d, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}, J(\mathrm{HP}) 10.5, J(\mathrm{HPt}) 37.5\right], 3.70[\mathrm{br} \mathrm{s}$, $\left.1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}\right), 3.35\left[\mathrm{br} \mathrm{d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 7.4, J(\mathrm{HPt}) 32.4\right]$ and 2.13 [s, $3 \mathrm{H}, \mathrm{Me}, J(\mathrm{HPt}) 66.4] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 168.2$ [d, $\mathrm{C}^{3}, J(\mathrm{CP})$ 54.5], 134.7-129.0 ($\mathrm{C}_{6} \mathrm{H}_{5}$), $116.7\left(\mathrm{C}^{2}\right), 99.6\left(\mathrm{C}^{4}\right)$, 75.8 [d, C^{1}, $J(\mathrm{CP}) 24.2, J(\mathrm{CPt}) 75.0]$ and 23.8 [$\mathrm{Me}, J(\mathrm{CPt}) 30.5] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 23.4$ [d, $J(\mathrm{PP}) 10.7, J(\mathrm{PPt}) 4169], 15.8$ [d, $J(\mathrm{PP}) 10.7, J(\mathrm{PPt})$ 3287] and -143.7 [spt, $\mathrm{PF}_{6}, J(\mathrm{PF}) 711$].
$\left[\mathrm{Pt}\left\{(1,2,3-\eta)\right.\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Et}) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ 16. In a similar way reaction of $3(0.286 \mathrm{~g}, 0.34 \mathrm{mmol})$ with $\mathrm{TI}\left[\mathrm{PF}_{6}\right]$ $(0.119 \mathrm{~g}, 0.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ afforded on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether white translucent crystals of $16(0.22 \mathrm{~g}, 68 \%)$ (Found: $52.8 ; \mathrm{H}, 4.2 . \mathrm{C}_{42} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Pt}$ requires C, $53.3 ; \mathrm{H}, 4.2 \%$). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: ${ }^{1} \mathrm{H}, \delta 7.48-7.19(\mathrm{~m}$,
$30 \mathrm{H}, \mathrm{Ph}), 5.60\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}, J(\mathrm{HP}) 17.76, J(\mathrm{HP}) 7.32, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{e}}\right)\right.$ $2.57], 4.10\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J(\mathrm{HP}) 10.62, J(\mathrm{HP})=J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.57\right.$, $J(\mathrm{HPt}) 22.62], 3.69$ (br s, $1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}$), 3.34 [d, $1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 7.69$, $J(\mathrm{HPt}) 31.87], 2.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $1.08[\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{HH}) 7.51\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 167.2$ [dd, $\mathrm{C}^{3}, J(\mathrm{CP}) 55.1$, $J(\mathrm{CP})$ 2.2, J(CPt) 304.6], 134.6-128.8 $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 120.8$ [C^{2}, $J(\mathrm{CPt}) 33.1], 99.7$ [d, $\left.\mathrm{C}^{4}, J(\mathrm{CP}) 3.3\right], 74.1$ [d, $\mathrm{C}^{1}, J(\mathrm{CP}) 24.2$, $J(\mathrm{CPt}) 49.05], 29.9\left[\mathrm{CH}_{2} \mathrm{CH}_{3}, \quad J(\mathrm{CPt}) 26.4\right]$ and 11.5 $\left[\mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{CPt}) 41.9\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 21.2[\mathrm{~d}, J(\mathrm{PP}) 11.8, J(\mathrm{PPt})$ 4168.5], 13.8 [d, $J(\mathrm{PP}) 11.8, J(\mathrm{PPt}) 3281.4]$ and -145.3 [spt, $\left.\mathrm{PF}_{6}, J(\mathrm{PF}) 711\right]$.
[$\mathrm{Pt}\left\{(1,2,3-\eta)\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{CHC}=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]\left[\mathrm{PF}_{6}\right]$ 17. Using an analogous procedure $13(0.206 \mathrm{~g}, 0.25 \mathrm{mmol})$ was treated with $\mathrm{Tl}\left[\mathrm{PF}_{6}\right](0.086 \mathrm{~g}, 0.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. Crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether yielded yelloworange crystals of $17(0.23 \mathrm{~g}, 96 \%)(\mathrm{C}, 48.6 ; \mathrm{H}, 3.5$. $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{FeP}{ }_{3} \mathrm{Pt}$ requires C , 48.2; $\mathrm{H}, 3.5 \%$). NMR [$\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]:{ }^{1} \mathrm{H}, \delta 8.11-7.02(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}), 5.67\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{d}\right)$, 5.32 (br s, $1 \mathrm{H}, \mathrm{H}^{\mathrm{c}}$), $4.61-4.44$ (m, $6 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.39 (br s, 1 H , H^{e}), $4.36\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$), $4.05\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$ and $3.86(\mathrm{br} \mathrm{s}, 1$ $\left.\mathrm{H}, \mathrm{H}^{\mathrm{a}}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 169.5\left[\mathrm{~d}, \mathrm{C}^{3}, \mathrm{~J}(\mathrm{CP}) 52.9\right], 136.8-129.0$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}^{2}\right), 99.9\left(\mathrm{C}^{4}\right), 99.0\left[\mathrm{C}^{1}, J(\mathrm{CPt}) 33.0\right]$ and 78.3-74.6 $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 22.5[\mathrm{~d}, \mathrm{~J}(\mathrm{PP}) 18.0, J(\mathrm{PPt}) 4356], 14.8[\mathrm{~d}$, $J(\mathrm{PP}) 18.0, J(\mathrm{PPt}) 3496]$ and -145.3 [spt, $\left.\mathrm{PF}_{6}, J(\mathrm{PF}) 711\right]$.
$\left[\mathrm{Pt}\left\{(1,2,3-\eta)\right.\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{C}=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]\left[\mathrm{PF}_{6}\right]$ 18. Similarly, reaction of $6(0.084 \mathrm{~g}, 0.09 \mathrm{mmol})$ with $\mathrm{Tl}\left[\mathrm{PF}_{6}\right](0.034$ $\mathrm{g}, 0.09 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ afforded on recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether yellow-orange crystals of $\mathbf{1 8}(0.087$ $\mathrm{g}, 92 \%$) (Found: $\mathrm{C}, 49.1$; $\mathrm{H}, 3.7 . \mathrm{C}_{39} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{FeP}_{3} \mathrm{Pt}$ requires C , $48.7 ; \mathrm{H}, 3.7 \%)$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 7.64-7.42(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph})$, $5.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right.$), 4.61 (br m, $3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), 4.47 (br m, 3 H , $\mathrm{C}_{5} \mathrm{H}_{4}$), 4.13 (br s, $1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}$), 4.07 (br s, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}$), $4.02(\mathrm{br} \mathrm{s}, 1$ $\left.\mathrm{H}^{2}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.66\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right), 3.26\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J\left(\mathrm{H}^{\mathrm{a}} \mathrm{H}^{\mathrm{b}}\right) 8.24, J\right.$ (HPt) 41.6$]$ and $2.08[\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}, J(\mathrm{HPt}) 65.92] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta$ 167.7 [d, $\mathrm{C}^{3}, J(\mathrm{CP})$ 57.0, $\left.J(\mathrm{CPt}) 307.4\right], 134.8-129.0\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $116.5\left[\mathrm{C}^{2}, J(\mathrm{CPt}) 41.0\right], 99.4\left(\mathrm{C}^{4}\right), 76.6-75.3\left(\mathrm{C}_{5} \mathrm{H}_{4}\right), 75.1\left(\mathrm{C}^{1}\right)$, 74.7-73.6 $\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)$ and 23.7 [$\left.\mathrm{Me}, J(\mathrm{CPt}) 29.0\right]$.
$\left[\mathrm{Pt}\left\{(1,2,3-\eta)-\right.\right.$ trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Et}) \mathrm{C}=\mathrm{CH}_{2}\right\}(\mathrm{dppf})\right]\left[\mathrm{PF}_{6}\right]$ 19. In a similar way reaction of $7(0.146 \mathrm{~g}, 0.17 \mathrm{mmol})$ with Ti[$\left.\mathrm{PF}_{6}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ gave on crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-diethyl ether yellow-orange crystals of 19 ($0.138 \mathrm{~g}, 84 \%$) (Found: C, 49.4; $\mathrm{H}, 3.8 . \mathrm{C}_{40} \mathrm{H}_{3} \mathrm{~F}_{6} \mathrm{FeP}_{3} \mathrm{Pt}$ requires $\mathrm{C}, 49.2 ; \mathrm{H}, 3.8 \%$). NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 7.66-7.43\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.59\left[\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}\right.$, $\left.J(\mathrm{HP}) \mathbf{1 7 . 9 5}, J(\mathrm{HP}) 7.14, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{e}\right) 2.79, J(\mathrm{HPt}) 74.37\right], 4.60-$ $4.42\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.11\left[\mathrm{dt}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J(\mathrm{HP}) 10.8, J(\mathrm{HP})=\right.$ $\left.J\left(\mathrm{H}^{\mathrm{e}} \mathrm{H}^{\mathrm{d}}\right) 2.79\right], 4.06-4.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right)$, $3.29\left[\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 7.87, J(\mathrm{HPt}) 31.33\right], 2.30(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$) and $0.97\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J}(\mathrm{HH}) 7.51\right] ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 167.0$ [dd, $\left.\mathrm{C}^{3}, J(\mathrm{CP}) 57.3, J(\mathrm{CP}), 2.2, J(\mathrm{CPt}) 306.3\right], 135.0-$ $128.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 121.1$ [$\left.\mathrm{C}^{2}, J(\mathrm{CPt}) 33.0\right], 99.8$ [d, $\left.\mathrm{C}^{4}, J(\mathrm{CP}) 3.3\right]$, 76.5-72.2 ($\left.\mathrm{C}_{5} \mathrm{H}_{4}, \mathrm{C}^{1}\right), 29.9\left[\mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{CPt}) 26.4\right]$ and 11.3 $\left[\mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{CPt}) 39.7\right] ;{ }^{3} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 21.8[\mathrm{~d}, J(\mathrm{PP}) 16.9, J(\mathrm{PPt})$ 4269.4], 14.9 [d, $J(\mathrm{PP})$ 16.9, $J(\mathrm{PPt}) 3338.1$] and -144.0 [spt, $\left.\mathrm{PF}_{6}, J(\mathrm{PF}) 7.11\right]$.
$\left[\mathrm{Pd}\left\{(1,2,3-\eta)\right.\right.$-trans $\left.\left.-\mathrm{CH}_{2} \mathrm{C}(\mathrm{Et}) \mathrm{C}=\mathrm{CH}_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ 20. To a solution of $4(0.404 \mathrm{~g}, 0.54 \mathrm{mmol})$ in thf $\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Tl}\left[\mathrm{PF}_{6}\right](0.189 \mathrm{~g}, 0.54 \mathrm{mmol})$. Thallium(I) chloride precipitated from the reaction mixture which was stirred for 45 min at room temperature, and then filtered through Celite. The volume of the solvent was reduced in vacuo and diethyl ether added. The resultant yellow solid was washed with diethyl ether, until the washings were colourless, this procedure affording white crystals of $20(0.322 \mathrm{~g}, 70 \%$) (Found: C, $58.9 ; \mathrm{H}, 4.6$. $\mathrm{C}_{43} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Pd}$ requires C, $58.9 ; \mathrm{H}, 4.5 \%$). Storage of this complex in a dry oxygen-free nitrogen atmosphere at $-30^{\circ} \mathrm{C}$ protected from light, retarded slow decomposition of this compound. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 7.47-7.18\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 5.35 [ddd, $1 \mathrm{H}, \mathrm{H}^{\mathrm{d}}, J(\mathrm{HP}) 22.90, J(\mathrm{HP}) 16.49, J\left(\mathrm{H}^{\mathrm{d}} \mathrm{H}^{\mathrm{e}}\right) 5.68$], 3.93 [br d, $1 \mathrm{H}, \mathrm{H}^{\mathrm{e}}, J(\mathrm{HP}) 5.13$], $3.91\left(\mathrm{~m} .1 \mathrm{H}, \mathrm{H}^{\mathrm{b}}\right.$), 3.61 [br d, $1 \mathrm{H}, \mathrm{H}^{\mathrm{a}}, J(\mathrm{HP}) 8.42$], 2.32 [dq, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{HP}) 1.92$, $J(\mathrm{HH}) 7.51]$ and $1.10\left[\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J(\mathrm{HH}) 7.51\right] ;{ }^{13} \mathrm{C}-$

Table 3 Fractional atomic coordinates for complex 7

Atom	x	y	z	Atom	x	y	z
Pt	0.359 76(6)	0.175 42(9)	$0.13655(3)$	C(19)	-0.0172(16)	0.1829 (24)	0.1720 (7)
Fe	0.012 4(2)	0.299 4(3)	0.1146 (1)	C(20)	-0.079 9(19)	0.3023 (25)	0.1731 (9)
Cl	0521 4(4)	0.234 9(5)	0.0997 (2)	C(21)	-0.003 3(21)	0.395 5(28)	0.178 7(10)
$\mathrm{P}(1)$	0255 4(4)	0.257 4(5)	0.064 5(2)	C(22)	0.109 8(16)	0.352 9(22)	0.1803 (7)
P(2)	0.2198 (4)	$0.1142(6)$	0.177 4(2)	C(24)	0.174 2(12)	-0.082 5(14)	0.1105 (5)
C(2)	0.327 4(12)	0.448 8(14)	0.0030 (4)	C(25)	0.1290 (12)	-0.197 0(14)	0.0945 (5)
C(3)	0.369 4(12)	$0.5668(14)$	-0.004 2(4)	C(26)	$0.0663(12)$	-0.264 8(14)	0.1250 (5)
C(4)	$0.3945(12)$	$0.6468(14)$	0.036 4(4)	C(27)	0.0489 9(12)	-0.218 0(14)	0.1715 (5)
C(5)	0.377 6(12)	$0.6087(14)$	0.084 3(4)	C(28)	0.0941 (12)	-0.103 4(14)	0.1875 (5)
C(6)	0.335 6(12)	0.4907 (14)	0.091 4(4)	C(23)	0.156 8(12)	-0.035 7(14)	0.157 0(5)
C(1)	$0.3105(12)$	$0.4107(14)$	$0.0508(4)$	C(30)	$0.3169(12)$	$-0.0169(12)$	$0.2612(5)$
C(8)	0.344 7(10)	0.063 5(13)	0.0120 (4)	C(31)	0.350 8(12)	-0.0372(12)	0.312 2(5)
C(9)	0.350 4(10)	-0.013 8(13)	-0.0289(4)	C(32)	0.323 4(12)	0.048 5(12)	0.347 3(5)
C(10)	0.273 3(10)	0.0009 (13)	-0.072 6(4)	C(33)	$0.2621(12)$	0.154 6(12)	0.3313 (5)
C(11)	0.190 6(10)	0.093 0(13)	-0.075 3(4)	C(34)	0.228 2(12)	0.174 9(12)	0.2802 (5)
C(12)	0.184 9(10)	0.170 3(13)	-0.034 4(4)	C(29)	0.255 6(12)	0.089 2(12)	0.245 2(5)
C(7)	0.2619 (10)	0.155 5(13)	0.0093 (4)	C(35)	0.476 6(22)	$0.1149(30)$	0.196 2(10)
C(13)	$0.1037(16)$	$0.2861(20)$	0.057 3(7)	C(36)	0.506 6(20)	$0.2145(26)$	0.2371 (9)
C(14)	0.049 7(17)	0406 8(22)	0.0557 (8)	C(37)	05350 (30)	0.017 1(41)	0.193 3(14)
C(15)	-00722(18)	0.3813 (24)	$0.0518(8)$	C(38)	05009 (22)	$-0.0660(29)$	$0.1612(10)$
C(16)	-0.091 7(19)	0.256 9(25)	0.047 2(9)	C(39)	$0.6457(25)$	$0.0055(33)$	0.240 1(11)
C(17)	0.015 5(16)	$0.1937(23)$	0.052 2(7)	C(40)	$07502(24)$	0.073 7(31)	0222 9(11)
C(18)	$0.1023(15)$	0.2180 (20)	$0.1748(7)$				

Table 4 Fractional atomic coordinates for complex 16

Atom	x	y	z	Atom	x	y	z
Pt	$0.15084(7)$	0.169 28(4)	0.249 29(5)	C(17)	0.0921 (22)	0.126 4(12)	$0.5942(15)$
P(1)	0.0903 (5)	0.097 4(2)	0.3419 (3)	$\mathrm{C}(18)$	$0.1145(18)$	$0.0964(10)$	$0.5185(13)$
P(2)	0.326 0(4)	0.1989 (3)	0.310 8(3)	C(19)	0.327 9(17)	$0.2758(9)$	0.324 6(12)
$\mathrm{P}(3)$	0.1641 (5)	0.6668 (4)	$0.6609(4)$	C(20)	$0.2190(23)$	$0.3065(12)$	0.3429 (16)
F(1)	0.251 6(16)	0.666 3(10)	0.7357 (10)	C(21)	0.218 8(25)	0.3668 8(14)	$0.3615(17)$
F(2)	$0.0783(16)$	0.667 7(10)	$0.5865(10)$	C(22)	$0.3250(25)$	0.399 3(13)	0.364 0(17)
F(3)	$0.0878(16)$	0.619 2(9)	$0.7065(11)$	C(23)	0.433 4(23)	$0.3712(13)$	0.342 4(16)
F(4)	0.242 5(17)	0.714 3(9)	0.615 7(11)	C(24)	$0.4361(20)$	$0.3113(10)$	0.324 0(14)
F(5)	0.242 2(18)	0.617 5(9)	0.6171 (10)	C(25)	0.3630 (17)	0.173 6(11)	0.414 6(12)
F(6)	0.0850 (18)	0.714 4(9)	0.704 2(13)	C(26)	0.415 5(18)	0.118 6(10)	0.427 7(13)
C(1)	$0.1862(17)$	0.0323 (9)	0.340 7(12)	C(27)	0.4430 (21)	0.099 2(11)	0.5075 (15)
C(2)	$0.2863(19)$	0.029 5(10)	0.2868 (14)	C(28)	0.409 9(21)	$0.1306(12)$	0.575 8(15)
C(3)	0.354 6(24)	-0.021 8(13)	0.285 3(17)	C(29)	$0.3606(20)$	$0.1884(11)$	0.5669 (14)
C(4)	0.327 5(22)	-0.069 6(12)	0.3317 (15)	C(30)	$0.3314(20)$	$0.2097(10)$	$0.4838(14)$
C(5)	0.229 3(22)	$-0.0684(12)$	0.387 2(15)	C(31)	0.4581 (18)	0.1810 (10)	0.252 0(12)
C(6)	0.159 5(19)	$-0.0161(10)$	0.389 3(13)	C(32)	0.4377 (21)	0.158 1(11)	0.1650 (15)
C(7)	-0.053 3(19)	0.0609 (10)	0.325 3(13)	C(33)	0.5380 0(24)	$0.1445(12)$	0.1140 (16)
C(8)	-0.065 0(22)	$0.0237(12)$	0.2559 (16)	C(34)	$0.6511(24)$	0.150 9(12)	0.148 6(17)
C(9)	-0.176 9(25)	-0.004 0(13)	0.241 6(18)	C(35)	$0.6741(25)$	$0.1711(15)$	$0.2295(18)$
C(10)	-0.270 9(28)	0.004 4(15)	0.292 3(19)	C(36)	0.570 9(20)	0.1848 (11)	0.285 0(14)
C(11)	-0.260 4(29)	0.044 5(15)	0.360 8(20)	C(37)	-0.016 6(17)	0.167 1(11)	0.177 2(12)
C(12)	-0.151 1(22)	0.072 3(11)	0.378 2(15)	C(38)	0.078 8(18)	0.183 2(10)	0.1231 (13)
C(13)	$0.0762(16)$	0.128 2(9)	0.449 2(11)	C(39)	0.156 6(20)	0.229 8(11)	$0.1508(14)$
C(14)	0.020 4(18)	$0.1808(10)$	0.452 2(12)	C(40)	$0.2067(23)$	$0.2761(12)$	0.1251 (16)
C(15)	-0.001 2(21)	0.205 8(11)	0.5303 (14)	C(41)	0.116 4(24)	0.144 2(12)	0.047 3(16)
C(16)	-0.038 6(21)	-0.176 2(12)	0.398 4(15)	C(42)	$0.0785(31)$	0.0828 (17)	0.049 0(22)

$\left\{{ }^{1} \mathrm{H}\right\}, \delta 173.2$ [dd, $\left.\mathrm{C}^{3}, J(\mathrm{CP}) 52.9, J(\mathrm{CP}) 4.4\right], 134.3-129.0$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 120.8\left(\mathrm{C}^{2}\right), 99.3\left(\mathrm{C}^{4}\right), 81.9$ [d, $\left.\mathrm{C}^{1}, J(\mathrm{CP}) 24.2\right], 29.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$ and $12.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Structure Determination of Complexes 7 and 16.-Both data sets were measured at room temperature on a Hilger and Watts Y290 four-circle diffractometer. A crystal of 7 of approximate dimensions $0.25 \times 0.25 \times 0.25 \mathrm{~mm}$ was used for data collection.

Crystal data: $\mathrm{C}_{40} \mathrm{H}_{37} \mathrm{ClFeP}_{2} \mathrm{Pt}, M=865.99$, monoclinic, $a=11.896(1), b=10.821(3), c=26.959(4) \AA, \beta=98.17(2)^{\circ}$, $U=3435.1 \AA^{3}$, space group $P 2_{1} / c, Z=4, D_{\mathrm{c}}=1.67 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=44.84 \mathrm{~cm}^{-1}, F(000)=1712$. Data were measured in the range $2 \leqslant \theta \leqslant 22^{\circ}$. 4718 Reflections were collected of
which 2501 were unique with $I \geqslant 3 \sigma(I)$. Data were corrected for Lorentz and polarization effects and also for absorption. ${ }^{20}$ The structure was solved by Patterson methods and refined using the SHELX ${ }^{21,22}$ suite of programs. In the final leastsquares cycles the platinum, iron, chlorine and phosphorus atoms were allowed to vibrate anisotropically. All other atoms were treated isotropically. Hydrogen atoms were not included. Final residuals after 14 cycles of least squares were $R=R^{\prime}=$ 0.0587 , for unit weights. Maximum final shift/e.s.d. was 0.007 . The maximum and minimum residual densities were 0.52 and $-0.54 \mathrm{e} \AA^{-3}$ respectively. Selected bond lengths and angles are given in Table 1 and fractional atomic coordinates in Table 3.

A crystal of 16 of approximate dimensions $0.25 \times 0.25 \times$ 0.25 mm was used for data collection.

Crystal data: $\mathrm{C}_{42} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{P}_{3} \mathrm{Pt}, M=945.66$, monoclinic, $a=$ $11.174(2), \quad b=22.611(6), \quad c=16.003(2) \AA, \quad \beta=89.76(2)^{\circ}$, $U=4043.2 \AA^{3}$, space group $P 2_{1} / n, Z=4, D_{\mathrm{c}}=1.55 \mathrm{~g} \mathrm{~cm}^{-3}$, $\mu(\mathrm{Mo}-\mathrm{K} \alpha)=34.75 \mathrm{~cm}^{-1}, F(000)=1872$. Data were measured in the range $2 \leqslant \theta \leqslant 22^{\circ}$. 5790 Reflections were collected of which 3308 were unique with $I \geqslant 3 \sigma(I)$. Data were corrected for Lorentz and polarization effects and also for absorption. ${ }^{20}$ The structure was solved by Patterson methods and refined using the SHELX ${ }^{21,22}$ suite of programs. In the final leastsquares cycles the platinum, phosphorus and fluorine atoms were allowed to vibrate anisotropically. All other atoms were treated isotropically. Hydrogen atoms were not included. The cationic and anionic moieties were treated as separate blocks in the latter stages of convergence. Final residuals after 14 cycles of blocked-matrix least squares were $R=R^{\prime}=0.0690$, for unit weights. Maximum final shift/e.s.d. was 0.010 . The maximum and minimum residual densities were 0.81 and -0.71 e \AA^{-3} respectively in the region of the platinum, and as such have no chemical significance. Selected bond lengths and angles are given in Table 2 and fractional atomic coordinates are given in Table 4.

Additional material available from the Cambridge Crystallographic Date Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for support and a studentship to (T. M. T. P.).

References

1 Part 56. C. Carfagna, M. Green, K. R. Nagle, D. J. Williams and C. M. Woolhouse, J. Chem. Soc., Dalton Trans., 1993, 1761

2 S. A. Benyunes, R. J. Deeth, A. Fries, M. Green, M. McPartlin and C. M. B. Nation, J. Chem. Soc., Dalton Trans., 1992, 3453.

3 S. A. Benyunes, L. Brandt, M. Green and A. W. Parkins, Organometallics, 1991, 10, 57.
4 R. P. Hughes, J. M. J. Lambert and A. L. Rheingold, Organometallics, 1985, 4, 2055.
5 A. N. Nesmeyanov, N. E. Koloboua, I. B. Zlotina, B. V. Lokshin, I. F. Lescheva, G. K. Znobina and K. N. Anisimov, J. Organomet. Chem., 1976, 110, 339.
6 A. Furlani, M. V. Russo, A. C. Villa, A. G. Manfredotti and C. Guastini, J. Chem. Soc., Dalton Trans., 1977, 2154

7 E. D. Bergmann and D. Herrman, J. Am. Chem. Soc., 1951, 73, 4013.
8 J. Iossiphides, E. Michel and C. Troyanowsky, C. R. Acad. Sci. (Paris), 1971, 272, 1566.
9 J. M. Brown and N. A. Cooley, Organometallics, 1990, 9, 353.
10 M. Green, J. A. K. Howard, J. L. Spencer and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1977, 271.

11 N. M. Boag, M. Green, J. L. Spencer and F. G. A. Stone, J. Organomet. Chem., 1977, 127, C51.

12 P. J. Stang, M. H. Kowalski, M. D. Schiaevelli and D. Longford, J. Am. Chem. Soc., 1989, 111, 3347.

13 D. A. Clemente, G. Pilloni, B. Corain, B. Longato and M. TiripicchioCamellini, Inorg. Chim. Acta, 1986, 115, L9.
14 C. F. Aten, L. Hedberg and K. Hedberg, J. Am. Chem. Soc., 1968, 90, 2463.

15 S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 1976, 14, 266.
16 N. Yasuoko, M. Morita, Y. Kai and N. Kasai, J. Organomet. Chem., 1975, 90, 111.
17 M. Kadonaga, N. Yasuoko and N. Kasai, J. Chem. Soc., Chem. Commun., 1971, 1597.
18 J. D. Smith and J. D. Oliver, Inorg. Chem., 1978, 17, 2585.
19 M. I. Bruce, T. W. Hambley, M. J. Liddell, M. R. Snow, A. T. Swincer and E. R. T. Tiekink, Organometallics, 1990, 9, 96.
20 N. Walker and D. Stuart, DIFABS, a program to correct for absorption effects in crystals, Acta. Crystallogr., Sect. A, 1983, 39, 158.

21 G. M. Sheldrick, SHELX 86, a computer program for crystal structure determination, University of Göttingen, 1986.
22 G. M. Sheldrick, SHELX 76, University of Cambridge, 1976.

Received 26th July 1993; Paper 3/04435A

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., Issue 1, pp. xxxiii-xxviii.

