Chemical Reactivities of $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}\right)_{2} \mathrm{MgMe}\right]_{4}$ and [$\left.\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NEt}_{2}\right)_{2} \mathrm{MgMe}\right]_{2}$: Crystal Structures of $\left[\mathrm{Me}_{2} \mathrm{Al}-\right.$ $\left.\left(\mu-\mathrm{NPr}^{\mathrm{i}}\right)_{2} \mathrm{Mg}(\mu-\mathrm{I})\right]_{2},\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)\right]_{2}$, $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPri}_{2}\right)(\mu-\mathrm{OEt}) \mathrm{Mg}\left(\mu-\mathrm{NPr}_{2}\right)(\mu-\mathrm{OEt}) \mathrm{AlMe}_{2}$ and $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}_{2}^{t}\right)_{2} \mathrm{AlMe} \mathbf{2}^{\dagger}$

Chung-Cheng Chang,*, ${ }^{\text {a }}$ Wen-Hwa Lee, ${ }^{a}$ Tzong-Yih Her, ${ }^{a}$ Gene-Hsiang Lee, ${ }^{\text {b }}$ Shie-Ming Peng ${ }^{b}$ and Yu Wang ${ }^{b}$
${ }^{a}$ Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
${ }^{b}$ Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

Abstract

The nucleophilic attack of alcohols, amines and iodine on the magnesium atoms of $\left[\mathrm{Me}_{2} \mathrm{Al}(\mu-\right.$ $\left.\left.\mathrm{NPr}_{2}\right)_{2} \mathrm{MgMe}\right]_{4} \mathbf{A}$ and $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NEt}_{2}\right)_{2} \mathrm{MgMe}\right]_{2} \mathbf{B}$ has been investigated. Compound \mathbf{A} undergoes metathesis with amines ($\mathrm{Et}_{2} \mathrm{NH}$ and $\mathrm{Pr}_{2} \mathrm{NH}$) and iodine to give $\left[\mathrm{Me}_{2} \mathrm{Al}(\mu-\mathrm{NPri})_{2} \mathrm{Mg}\left(\mu-\mathrm{NR}_{2}\right)\right](\mathrm{R}=\mathrm{Et}$ 7 or $\left.\operatorname{Pr}^{i} 4\right)$ and $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}\right)_{2} \mathrm{Mg}(\mu-1)\right]_{2} 5$, respectively. Partial degradation of A with MeOH or ethanol gives $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr} r_{2}\right)(\mu-\mathrm{OMe}) \mathrm{Mg}\left(\mu-\mathrm{NPr}_{2}^{\prime}\right)(\mu-\mathrm{OMe}) \mathrm{AlMe}_{2} \quad \mathbf{1 a}$ and $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}\right)(\mu-\right.$ $\mathrm{OEt}) \mathrm{Mg}\left(\mu-\mathrm{NPr}_{2}{ }_{2}\right)(\mu-\mathrm{OEt}) \mathrm{AlMe}_{2}$ 1b, respectively, whereas partial degradation with $\mathrm{Bu}^{\mathrm{t} O H}$ gives $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{t}\right)_{2} \mathrm{AlMe}_{2} 2$ and $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}(\mu-\mathrm{OBu})^{t}\right]_{2}$ 3. Compound B undergoes metathesis with $\mathrm{Bu} \mathrm{OH}^{\prime}$ also to give 2 and 3. The intermediate, $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NR}_{2}\right)_{2} \mathrm{Mg}$ -$(\mu-\mathrm{Me})\left(\mu-\mathrm{OBu}^{+}\right) \mathrm{Mg}\left(\mu-\mathrm{NR}_{2}\right)_{2} \mathrm{AlMe}_{2} \mathrm{I}$ in the reactions of \mathbf{A} and \mathbf{B} with $\mathrm{Bu} u^{+} \mathrm{OH}$ is also examined. The molecular structures of compounds 1b, 2, 3 and 5 were determined by X-ray diffraction.

The dialuminium organomagnesium complexes $\mathrm{Mg}[\mathrm{Al}-$ (OMe$\left.)_{2} \mathrm{Me}_{2}\right]_{2}$ and $\mathrm{Mg}\left(\mathrm{AlMe}_{4}\right)_{2}{ }^{1,2}$ are among the best known examples of mixed-metal organoaluminium complexes ${ }^{1-4}$ and are applied as catalysts in the polymerization of ethylene. ${ }^{5}$ Even so, the first crystal structure of a monoaluminium magnesium dimer, $\left[\left(\mathrm{Me}_{2} \mathrm{Si}\right)\left(\mathrm{Me}_{2} \mathrm{Al}\right)\left(\mu-\mathrm{NBu}^{\mathrm{t}}\right)_{2} \mathrm{Mgl}_{2}\right.$, was not reported until $1987 .{ }^{6}$ Recently, we synthesised and determined the crystal structures of an organoaluminium-magnesium tetramer $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}\right)_{2} \mathrm{MgMe}\right]_{4} \mathrm{~A}$ and a dimer $\left[\mathrm{Me}_{2} \mathrm{Al}-\right.$ $\left(\mu-\mathrm{NEt}_{2}\right)_{2} \mathrm{MgMe}_{2} \quad \mathbf{B}$ which contain three- and four-coordinate magnesium atoms, respectively. ${ }^{7}$ During the course of our work, Han and Parkin ${ }^{8}$ reported that the compounds $\mathrm{MgMe}\left[\mathrm{HB}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{H}_{2} \mathrm{Bu}^{1}-3\right)_{3}\right]$ and $\mathrm{MgMe}\left[\mathrm{HB}\left(\mathrm{C}_{3} \mathrm{~N}_{2} \mathrm{HMe}_{2}-\right.\right.$ $\left.3,5)_{3}\right],{ }^{8}$ when treated with nucleophiles, undergo metathesis and insertion reactions. They also found that the latter compound undergoes redistribution upon heating, yielding a six-co-ordinate organomagnesium complex. ${ }^{9}$ The present work concerns the reactions of $\mathrm{ROH}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}\right.$ or Bu^{t}) and $\mathrm{HNR}_{2}\left(\mathrm{R}=\mathrm{Et}\right.$ or $\left.\mathrm{Pr}^{\mathrm{i}}\right)$ with aluminium-magnesium complexes. The metathesis and insertion reactions are similar to those of compounds previously reported by Han and Parkin. However, this study yielded interesting results due to the rich coordination chemistry ${ }^{10}$ and the partially positive magnesium centres. ${ }^{11}$

Results and Discussion

The polymeric derivatives $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NR}_{2}\right)_{2} \mathrm{MgMe}\right]_{n}(\mathrm{R}=\mathrm{Et}$, $\left.n=2 \mathrm{~B} ; \mathrm{R}=\operatorname{Pr}^{\mathrm{i}}, n=4 \mathrm{~A}\right)$ were synthesised according to equation (1). The stoichiometric reaction of compounds A and B with protic acids were then studied, as described in the following sections.

[^0]$$
\mathrm{Mg}\left(\mathrm{NR}_{2}\right)_{2}+\mathrm{AlMe}_{3} \longrightarrow\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NR}_{2}\right)_{2} \mathrm{MgMe}\right]_{n}
$$

Preparations.-Reaction of equimolar quantities of compound A and MeOH in diethyl ether gave a pale yellow solution from which $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\mathrm{OMe}) \mathrm{Mg}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\mathrm{OMe})-$ AlMe_{2} 1a can be isolated by sublimation of the reaction mixture at $100^{\circ} \mathrm{C}$. The compound is colourless, soluble in benzene and very air-sensitive. However, the quality of the crystal was not suitable for X-ray diffraction. In order to elucidate the structure, the reaction of compound A with EtOH was carried out in the same manner and a viscous fluid was obtained. Transparent colourless crystals of $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}{ }_{2}\right)-$ $(\mu-\mathrm{OEt}) \mathrm{Mg}\left(\mu-\mathrm{NPr}^{i}{ }_{2}\right)(\mu-\mathrm{OEt}) \mathrm{AlMe}_{2}$ 1b suitable for X-ray diffraction were obtained by sublimation at $78^{\circ} \mathrm{C}$. The residues were insoluble, and are expected to comprise polymeric $\mathrm{Mg}(\mathrm{OR})_{2}$ coproducts.

The reaction of an excess of $\mathrm{Bu}^{\prime} \mathrm{OH}$ with compound \mathbf{A} yielded $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{AlMe}_{2} 2$ and $\left[\mathrm{Me}_{2} \mathrm{Al}-\right.$ $\left.\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)\right]_{2} 3$ in nearly equal amounts, whereas that with B only yielded 3 according to ${ }^{1} \mathrm{H}$ NMR spectroscopy. Sublimation of the reaction mixture from the reaction of \mathbf{B} with $\mathrm{Bu}^{\mathrm{t} O H}$ at $120^{\circ} \mathrm{C}$ in vacuo gave 3 and a smaller amount of 2. However, sublimation of the mixture from the reaction of \mathbf{A} with $\mathrm{Bu}^{+} \mathrm{OH}$ at $100^{\circ} \mathrm{C}$ in vacuo gave only 2. An experiment on the pyrolysis of $\mathbf{3}$ gave no evidence of compound 2.

Reaction of compound \mathbf{A} with diisopropylamine in diethyl ether gave a light yellow solution. The reaction mixture was refluxed for 36 h . The crude product crystallized from ether was $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}^{\mathrm{i}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{NPr}_{2}\right)_{2}\right]_{2} 4$ in addition to methane. The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed one singlet at $\delta-0.40$, one quartet at $\delta 1.21$, one doublet at $\delta 1.25$ and one multiplet at δ 3.28. The ${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ gave peaks at $\delta-2.94$, 25.95, 26.16. 28.00, 47.74 and 48.57. This indicated compound 4 had two sets of isopropyl groups. Reaction of compound A with diethylamine in the same manner gave a light yellow solution. The product $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}{ }_{2}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{NEt}_{2}\right)\right]_{2} 7$ was detected
by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy at low temperature, however the only $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NEt}_{2}\right)\right]_{2} 6$ was obtained after sublimation.

The reaction of compound A with I_{2} in diethyl ether gave a light yellow solution. The crude product contained [$\mathrm{Me}_{2} \mathrm{Al}(\mu-$ $\left.\left.\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)_{2} \mathrm{Mg}(\mu-\mathrm{I})\right] 5$ and MeI in low yield owing to precipitation of MgI_{2}. Sublimation of the crude product at $120^{\circ} \mathrm{C}$ yielded transparent colourless crystals of 5 suitable for X-ray analysis. In order to achieve a good yield of compound 5 the reaction was repeated in benzene and gave a nearly quantitative yield. The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed one singlet at $\delta-0.26$, two doublets at $\delta 1.23$ and 1.31 and one septet at $\delta 3.53$. The ${ }^{13} \mathrm{C}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ gave peaks at $\delta-3.73,26.67$, 27.30 and 48.05 . This indicated that two methyls of the isopropyl group had different environments.

Metathesis Reactions.-Compounds A and B are useful precursors to a wide variety of other mixed aluminiummagnesium derivatives as a result of metathesis. Reaction of these complexes with protic reagents is accompanied by elimination of methane and amine, as shown in Scheme 1.

Reaction of compound \mathbf{A} with diethylamine or diisopropylamine gave respectively 7 and 4 in addition to methane. The product 7 was detected by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy at low temperature, however only 6 was obtained after sublimation. Compound 4 decomposed during X-ray data
collection. Its structure is expected to retain the $\mathrm{Al}_{2} \mathbf{M g}_{2}$ framework in compound 5. Reaction of compound \mathbf{B} with $\mathrm{Bu}^{\prime} \mathrm{OH}$ yielded compound $\mathbf{3}$ in addition to methane and amine. Interestingly, the metathesis reaction occurred not only at the magnesium-alkyl bond, but also at the amido-bridge as evidenced by X-ray crystallography (see Fig. 1). Selected bond lengths and angles for the two independent molecules A and B of 3 are given in Table 1. Each molecule possesses an inversion centre. The whole molecule contains three orthogonal metal-($\mu-\mathrm{O})$-metal planes. The $\mathrm{Al}-\mathrm{Mg}-\mathrm{Mg}-\mathrm{Al}$ backbone is almost linear as evidenced by the 178.44° angle of $\mathrm{Al}(1 \mathrm{~A})-$ $\mathrm{Mg}(1 \mathrm{~A})-\mathrm{Mg}\left(1 \mathrm{~A}^{\prime}\right)$. The Al and Mg atoms exist in a distortedtetrahedral environment with the distance $\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$ $1.953(7) \AA$ being shorter than $\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A}) 2.043(8) \AA$ and $\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A}) 2.033(8) \AA$. The $\mathrm{Al}(1 \mathrm{~A}) \cdots \mathrm{Mg}(1 \mathrm{~A}) 2.888(5) \AA$ and $\mathrm{Mg}(1 \mathrm{~A}) \cdots \mathbf{M g}(1 \mathrm{~A}) 2.886$ (7) \AA distances are much shorter than the sum of van der Waals radii. Overlap between the metal and bridging ligand orbitals, i.e. $d_{\pi}-p_{\pi}$ interactions between Al and O atoms and $\mathrm{p}_{\pi}-\mathrm{p}_{\pi}$ interactions between Mg and O atoms, is expected. ${ }^{13}$

Metathesis reactions are observed with non-protic reagents such as iodine and oxygen in other systems. ${ }^{9}$ The reaction of compound A with I_{2} gave 5 and MeI in nearly quantitative yield. Compound 5 exists as a dimer with an inversion centre in the middle of the molecule as shown in Fig. 2. Selected bond

Scheme 1 Compound A was identified in solution, 7 by NMR spectroscopy. (i) MeOH ; (ii) EtOH ; (iii) $\mathrm{Bu}^{\prime} \mathrm{OH}$; (iv) $\mathrm{Et}_{2} \mathrm{NH}$; (v) $\mathrm{Pr}_{\mathbf{2}}{ }_{2} \mathrm{NH}$; (vi) I_{2}; (vii) heat

Fig. 1 An ORTEP ${ }^{12}$ drawing of $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)\right]_{2} 3$

Fig. 2 An ORTEP drawing of $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}{ }_{2}\right)_{2} \mathrm{Mg}(\mu-\mathrm{I})\right]_{2} 5$
distances and angles are given in Table 1. Note that the Al and Mg atoms exist in a distorted-tetrahedral environment, and that the $\mathbf{M g}, \mathrm{I}, \mathrm{Mg}^{\prime}, \mathrm{I}^{\prime}$ atoms form an asymmetric coplanar four-membered ring in a spiro structure. Also that the $A l$, $\mathrm{N}(1), \mathrm{Mg}$ and $\mathrm{N}(2)$ atoms form a non-coplanar fourmembered ring. The $\mathrm{N}(1)-\mathrm{Al}-\mathrm{N}(2), \mathrm{N}(1)-\mathrm{Mg}-\mathrm{N}(2)$ and I -$\mathrm{Mg}-\mathrm{I}^{\prime}$ angles are $94.78,86.18$ and 88.66°, respectively, all less than 109.5°.

Partial Degradation.-Although the amido ligands in compound \mathbf{A} are highly nucleophilic and metathesis is expected, reaction with alcohol proceeded with partial degradation to dialuminium-magnesium complexes. The rate of the reaction is much faster than that of the metathesis reaction.

Reaction of compound A with methanol or ethanol gave 1a and 1 lb in addition to methane and amine. In each case the methyl groups on the magnesium atoms disappear and one of the bridging amido ligands is replaced by the alcohol. The structure of compound 1b is shown in Fig. 3. Selected bond angles and bond distances are given in Table 1. Note that the $\mathrm{Al}(1), \mathrm{N}(1), \mathrm{O}(1), \mathrm{Mg}$ and $\mathrm{Al}(2), \mathrm{N}(2), \mathrm{P}(2), \mathbf{M g}$ atoms form two coplanar four-membered rings in the spiro structure. Owing to the different bridging ligands, the $\mathrm{Al}(1)-\mathrm{Mg}-\mathrm{Al}(2)$ angle of 150° denotes strong bending when compared with the structures of compounds $3-5$, in which $\mathrm{Al}-\mathrm{Mg}-\mathrm{Mg}$ and $\mathrm{Al}-\mathrm{Mg}-\mathrm{Al}$ are very nearly 180°. The Mg atom of compound $\mathbf{1 b}$ exists in a strongly distorted-tetrahedral environment, as evidenced by $\mathrm{O}(1)-\mathbf{M g}-$ $\mathrm{N}(1)$ and $\mathrm{O}(2)-\mathrm{Mg}-\mathrm{N}(2)$ angles of $80.2(3)$ and $79.9(3)^{\circ}$, respectively; the geometry is dictated by the strong repulsion of the isopropyl group. The $\mathrm{Al}(1) \cdots \mathrm{Mg}$ and $\mathrm{Al}(2) \cdots \mathrm{Mg}$ distances of $2.875(5)$ and $2.877(5) \AA$ are short as is usual in compounds in which metals are bridged by donor atoms.

Fig. 3 An ORTEP drawing of $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\mathrm{OEt}) \mathrm{Mg}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)-$ (μ-OEt) $\mathrm{AlMe}_{2} \mathbf{1 b}$

Fig. 4 An ORTEP drawing of $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\prime}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{\prime}\right)_{2} \mathrm{AlMe}_{2} 2$
The highly nucleophilic and bulky $\mathrm{Bu}^{\prime} \mathrm{OH}$ reacts with compound \mathbf{A} to give 2 in addition to methane and amine. In contrast to the products obtained in the reactions with methanol and ethanol, the amido ligand is completely replaced. The structure of compound 2 , with crystallographic C_{2} symmetry, is shown in Fig. 4. Selected bond angles and bond distances are listed in Table 1. Note that the spiro structure consists of two planes, formed by the $\mathrm{AlO}(1)-\mathrm{O}(2) \mathrm{Mg}$ atoms, and that the Al and Mg atoms also exist in a distortedtetrahedral environment.

Table 1 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$
$\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\mathrm{OEt}) \mathrm{Mg}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\mathrm{OEt}) \mathrm{AlMe}_{2} \mathbf{1 b}$

$\mathrm{Mg} \ldots \mathrm{Al}(1)$	$2.875(5)$	$\mathrm{Al}(1)-\mathrm{N}(1)$	1.944(1)	$\mathrm{O}(1)-\mathrm{C}(5)$	1.520(2)	$\mathrm{C}(5)-\mathrm{C}$ (6)	1.22(3)*
$\mathrm{Mg}-\mathrm{N}(1)$	$2.162(8)$	$\mathrm{Al}(1)-\mathrm{O}(1)$	$1.805(8)$	$\mathrm{N}(1)-\mathrm{C}(10)$	1.46(1)	$\mathrm{C}(9)-\mathrm{C}(10)$	1.53(2)
$\mathrm{Mg}-\mathrm{O}(1)$	1.931(9)	$\mathrm{Al}(1)-\mathrm{C}(1)$	1.94(1)			(\%)	1.53 (2)
$\mathrm{Al}(1)-\mathrm{Mg}-\mathrm{Al}(2)$	150.1(2)	$\mathrm{C}(1)-\mathrm{Al}(1)-\mathrm{C}(2)$	110.3(6)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{N}(1)$	89.6(4)	$\mathrm{Mg}-\mathrm{N}(1)-\mathrm{C}(13)$	107.7(6)
$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}(2)$	109.7(4)	$\mathrm{Mg}-\mathrm{O}(1)-\mathrm{Al}(1)$	100.6 (4)	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(1)$	110.8(5)	$\mathrm{Al}(1)-\mathrm{N}(1)-\mathrm{C}(10)$	119.0(6)
$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{N}(1)$	80.2 (3)	$\mathrm{Mg}-\mathrm{O}(1)-\mathrm{C}(5)$	$126.5(7)$	$\mathrm{O}(1)-\mathrm{Al}(1)-\mathrm{C}(2)$	109.3(6)	$\mathrm{Al}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	111.3 (7)
$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{N}(2)$	122.0(3)	$\mathrm{Al}(1)-\mathrm{O}(1)-\mathrm{C}(5)$	124.6 (8)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{C}(1)$	120.5 (5)	$\mathrm{C}(10)-\mathrm{N}(1)-\mathrm{C}(13)$	114.8(8)
$\mathrm{O}(2)-\mathrm{Mg}-\mathrm{N}(1)$	119.8(3)	$\mathrm{Mg}-\mathrm{N}(1)-\mathrm{Al}(1)$	88.7(4)	$\mathrm{N}(1)-\mathrm{Al}(1)-\mathrm{C}(2)$	114.2(5)	$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	106(2)
$\mathrm{O}(2)-\mathrm{Mg}-\mathrm{N}(2)$	79.9(3)	$\mathrm{Mg}-\mathrm{N}(1)-\mathrm{C}(10)$	111.9(6)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	108(1)	$\mathrm{N}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	115.5(9)
$\mathrm{N}(1)-\mathrm{Mg}-\mathrm{N}(2)$	145.5(4)						
$\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\prime}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{1}\right)_{2} \mathrm{AlMe}_{2} 2$							
$\mathrm{Mg} \ldots \mathrm{Al}$	$2.836(2)$	$\mathrm{Al}-\mathrm{O}(2)$	$1.815(5)$	$\mathrm{Mg}-\mathrm{O}(2)$	1.941(4)	$\mathrm{O}(1)-\mathrm{C}(3)$	1.422(8)
$\mathrm{Mg}-\mathrm{O}(1)$	1.942(4)	$\mathrm{Al}-\mathrm{C}(1)$	1.943(8)	$\mathrm{Al}-\mathrm{O}(1)$	1.807(5)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.422 (1)
Al-Mg-Al'	179.3(2)	$\mathrm{Mg}-\mathrm{O}(1)-\mathrm{Al}$	98.2(2)	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{O}(2)$	85.3(2)	$\mathrm{Al}-\mathrm{O}(1)-\mathrm{C}(3)$	130.5(4)
$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}\left(1^{\prime}\right)$	126.0(3)	$\mathrm{Mg}-\mathrm{O}(2)-\mathrm{Al}$	98.0(2)	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{C}(1)$	113.8(4)	$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	111.8(6)
$\mathrm{O}(1)-\mathrm{Mg}-\mathrm{O}(2)$	78.4(2)	$\mathrm{Mg}-\mathrm{O}(1)-\mathrm{C}(3)$	131.3(4)	$\mathrm{O}(1)-\mathrm{Al}-\mathrm{C}(2)$	111.5(3)		
$\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\prime}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{\prime}\right)\right]_{2} 3$							
$\mathrm{Al}(1 \mathrm{~A}) \cdots \mathrm{Mg}(1 \mathrm{~A})$	2.888(5)	$\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$	2.043(8)	$\mathrm{Al}(1 \mathrm{~B}) \cdots \mathrm{Mg}(1 \mathrm{~B})$	2.895(6)	$\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})$	2.035(8)
$\mathrm{Al}(1 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$	1.855(8)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	1.41(1)	$\mathrm{Al}(1 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})$	1.870(9)	$\mathrm{O}(1 \mathrm{~B}) \mathrm{C}(3 \mathrm{~B})$	1.41(1)
$\mathrm{Al}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	1.96 (2)	$\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	$1.31(2)$	$\mathrm{Al}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	1.95 (2)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	1.27 (2)
$\mathrm{Mg}(1 \mathrm{~A}) \cdots \mathrm{Mg}\left(1 \mathrm{~A}^{\prime}\right)$	2.886(7)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	1.46(2)	$\mathrm{Mg}(1 \mathrm{~B}) \ldots \mathrm{Mg}(1 \mathrm{~B})$	2.901 (8)	$\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	1.43(2)
$\mathrm{Mg}(1 \mathrm{~A}) \mathrm{O}(1 \mathrm{~A})$	1.953 (7)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	1.40(3)	$\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}\left(1 \mathrm{~B}^{\prime}\right)$	$1.979(8)$	$\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	1.36 (3)
$\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$	$1.955(7)$			$\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})$	1.952(8)		
$\mathrm{O}(2 \mathrm{~A})-\mathrm{Al}(1 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	89.2(3)	$\mathrm{Al}(1 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	130.7(8)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{Al}(1 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	88.1(4)	$\mathrm{Al}(1 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	130.0(8)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{Al}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	$111.7(5)$	$\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	132.7(8)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{Al}(1 \mathrm{~B})-\mathrm{C}(1 \mathrm{~B})$	113.0(6)	$\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})$	132.6(8)
$\mathrm{C}(1 \mathrm{~A})-\mathrm{Al}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	116.0(7)	$\mathrm{Al}(1 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})-\mathrm{Mg}(1 \mathrm{~A})$	96.3(4)	$\mathrm{C}(1 \mathrm{~B})-\mathrm{Al}(1 \mathrm{~B})-\mathrm{C}(2 \mathrm{~B})$	114.9(8)	$\mathrm{Al}(1 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})-\mathrm{Mg}(1 \mathrm{~B})$	96.8(4)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}\left(1 \mathrm{~A}^{\prime}\right)$	84.8(3)	$\mathrm{Al}(1 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	133.28)	$\mathrm{O}(1 \mathrm{~B})-\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}\left(1 \mathrm{~B}^{\prime}\right)$	84.8(3)	$\mathrm{Al}(1 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	128(1)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$	124.1(3)	$\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$129.7(8)$	$\mathrm{O}(1 \mathrm{~B})-\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})$	126.4(4)	$\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})-\mathrm{C}(11 \mathrm{~B})$	130(1)
$\mathrm{O}(1 \mathrm{~A})-\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	126.0(3)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	110(1)	$\mathrm{O}(1 \mathrm{~B})-\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	122.5(4)	$\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(4 \mathrm{~B})$	112(1)
$\mathrm{O}(2 \mathrm{~A})-\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$	79.0(3)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	110(1)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(3 \mathrm{~B})$	79.1 (3)	$\mathrm{C}(4 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})-\mathrm{C}(5 \mathrm{~B})$	105(2)
$\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{Mg}\left(1 \mathrm{~A}^{\prime}\right)$	95.2(3)	$O(2 A)-C(7 A)-C(8 A)$	121(2)	$\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{Mg}\left(1 \mathrm{~B}^{\prime}\right)$	95.2 (3)	$\mathrm{O}(2 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(8 \mathrm{~B})$	125(2)
$\mathrm{Mg}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	131.7(6)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	109(2)	$\mathrm{Mg}(1 \mathrm{~B})-\mathrm{O}(1 \mathrm{~B})-\mathrm{C}(3 \mathrm{~B})$	130.3(7)	$\mathrm{C}(8 \mathrm{~B})-\mathrm{C}(7 \mathrm{~B})-\mathrm{C}(9 \mathrm{~B})$	107(2)
$\mathrm{Al}(1 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})-\mathrm{Mg}(1 \mathrm{~A})$	95.5(4)			$\mathrm{Al}(1 \mathrm{~B})-\mathrm{O}(2 \mathrm{~B})-\mathrm{Mg}(1 \mathrm{~B})$	95.6(3)		
$\left.\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}^{2}\right)_{2}\right)_{2} \mathrm{Mg}(\mu-\mathrm{I})\right]_{2} 5$							
$\mathrm{I}^{\prime}-\mathrm{Mg}$	2.831(2)	Al - $\mathrm{C}(1)$	1.961(6)	$\mathrm{Al} \cdots \mathrm{Mg}$	2.800(2)	$\mathrm{N}(1)-\mathrm{C}(3)$	1.486(7)
$\mathrm{I}-\mathrm{Mg}$	2.783(2)	$\mathrm{Mg}-\mathrm{N}(1)$	$2.114(4)$	$\mathrm{Al}-\mathrm{N}(1)$	1.962(4)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.440 (9)
$\mathbf{M g - I - M g ' ~}$	91.34(5)	Al-N(1)-Mg	86.7(2)	$\mathrm{C}(1)-\mathrm{Al}-\mathrm{C}(2)$	111.5(3)	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(6)$	115.5(4)
$\mathrm{N}(1)-\mathrm{Al}-\mathrm{N}(2)$	94.78(2)	Al-N(1)-C(3)	114.7(4)	$\mathrm{I}-\mathrm{Mg}-\mathrm{I}^{\prime}$	88.66(5)	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	119.3(5)
$\mathrm{N}(1)-\mathrm{Al}-\mathrm{C}(1)$	108.2(2)	$\mathrm{Mg}-\mathrm{N}(1)-\mathrm{C}(3)$	112.6(3)	$\mathrm{N}(1)-\mathrm{Mg}-\mathrm{N}(2)$	86.2(2)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(5)$	$115.7(5)$

* This very low value is attributed to structural disorder.

Possible Intermediate.-The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture resulting from compound \mathbf{A} and $\mathrm{Bu}^{\mathrm{A}} \mathrm{OH}$ in a $1: 1$ molar ratio is shown in Fig. 5. The peaks $\mathrm{P}_{\mathrm{e} 1}$ and $\mathrm{P}_{\mathrm{e} 2}$ are due to the 'released' diisopropylamine, while $\mathrm{P}_{\mathrm{A} 1}$ and $\mathrm{P}_{\mathrm{A} 2}, \mathrm{P}_{\mathrm{B} 1}$ and $\mathrm{P}_{\mathrm{B} 2}$ (d) arise from compounds 2 and 3 , respectively. The P_{d} peak is assumed to be due to the 'released' methane, since it disappeared after the reaction mixture had been pumped under vacuum. The peaks $\mathrm{I}_{1}(\delta-0.80), \mathrm{I}_{2}(\delta-0.34), \mathrm{I}_{3}(\delta-0.18), \mathrm{I}_{4}(\mathrm{~d})(\delta 1.37), \mathrm{I}_{5}(\delta$ 2.79) (the low-intensity septet in the area denoted ' X^{\prime}), $\mathrm{I}_{6}(\delta 3.64)$ and $\mathrm{I}_{7}(\delta 1.41)$ are from the intermediate (I) and originate, respectively, from the methyl attached to the magnesium atoms, the different environments of the two methyls attached to the respective aluminium atoms, the methyl and methine group in the amino group, and the tert-butoxide group. Also note that the two low-intensity peaks, $\mathrm{P}_{\mathrm{c} 1}(\delta-0.27)$ and $\mathrm{P}_{\mathrm{c} 2}(\delta 1.35)$ (in the area denoted as ' y ') are expected to be due to the dimethylaluminium tert-butoxide. A determination of the reaction kinetics was unsuccessful due to the rapidity and complicated system.

Finally from the chemical reactivities of compound \mathbf{A} and \mathbf{B} with amines and alcohols in a nitrogen-atmosphere flow system it can be concluded that the less volatile alcohols/secondary
amines will displace more volatile alcohols/amines completely. Thus all $\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NH}$ is displaced by $\mathrm{Bu}^{\mathrm{t} O H}$, but by $\mathrm{MeOH}, \mathrm{EtOH}$ or $\mathrm{Et}_{2} \mathrm{NH}$ is only partially displaced.

Experimental

Apparatus and Materials.-All manipulations were carried out in a N_{2}-flushed glove-bag, dry-box, or vacuum system. Solvents were distilled and degassed prior to use. All ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{27} \mathrm{Al}$ NMR spectra were measured on a Varian VXR-300 spectrometer. Chemical shifts are referenced relative to either SiMe $_{4}\left({ }^{1} \mathrm{H}\right)$ or $\mathrm{C}_{6} \mathrm{D}_{6}\left({ }^{1} \mathrm{H}, \delta 7.15 ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 128.00\right)$, while ${ }^{27} \mathrm{Al}$ NMR spectra were referenced to $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$. Mass spectral data were obtained on a VG-7025 GC/MS/MS spectrometer, IR spectra as Nujol mulls between KBr disks on a FT-IR spectrometer. Elemental analyses (C, H, N) were performed at the Analytische Laboratorien, Germany. Deviations in the results from calculated values are attributed to the extremely air-sensitive and hygroscopic nature of these compounds.

The starting materials $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}{ }_{2}\right)_{2} \mathrm{MgMe}_{4} \mathrm{~A}\right.$ and $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NEt}_{2}\right)_{2} \mathrm{MgMe}\right]_{2} \mathrm{~B}$, were prepared according to the literature method. ${ }^{7}$

Fig. 5 The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of compound A with $\mathrm{Bu}^{\prime} \mathrm{OH}$

I

Syntheses of $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\mathrm{OR}) \mathrm{Mg}\left(\mu-\mathrm{NPr}^{\mathrm{i}}{ }_{2}\right)(\mu-\mathrm{OR})$ $\mathrm{AlMe}_{2}(\mathrm{R}=\mathrm{Me} \mathbf{1 a}$ or Et $\mathbf{1 b})$--A solution of methanol (0.162 $\left.\mathrm{cm}^{3}, 4.0 \mathrm{mmol}\right)$ or ethanol $\left(0.235 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}\right)$ in diethyl ether ($10 \mathrm{~cm}^{3}$) was added dropwise via a funnel to a round-bottomed flask containing an ether solution ($4.0 \mathrm{~cm}^{3}$) of compound \mathbf{A} $(1.184 \mathrm{~g}, 10 \mathrm{mmol})$ under nitrogen. Gas was immediately released and following addition, the solution was clear and colourless. After removal of solvent a viscous fluid was obtained. Transparent colourless crystals were obtained by sublimation at 100 or $78^{\circ} \mathrm{C}$ for $1 \mathbf{1 a}$ or $\mathbf{1 b}$.

Compound 1a:m.p. $124-127^{\circ} \mathrm{C}$; yield 30%. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) ${ }^{1} \mathrm{H}$, $\delta-0.37\left[\mathrm{~s}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}, 12 \mathrm{H}\right], 1.11\left[\mathrm{t}\left(\mathrm{d}\right.\right.$ of d), $\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}$, $24 \mathrm{H}], 3.09$ [spt, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}, 4 \mathrm{H}\right]$ and $3.28\left(\mathrm{~s}, \mathrm{OCH}_{3}, 6 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}, \delta-7.16\left[\mathrm{br}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right], 24.32$ and $25.20\left[\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $47.67\left[\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and $49.19\left(\mathrm{OCH}_{3}\right) ;{ }^{27} \mathrm{Al}, \delta 150$ (br). Mass spectrum (30 eV , the ten most intense peaks): $m / z 228,124 ; 385$, [$\left.M-\mathrm{CH}_{3}\right]^{+} ; 86,229,212,242,284,142,300 . \operatorname{IR}: 2952 \mathrm{~s}$, 2922s, $2855 \mathrm{~s}, 1462 \mathrm{~m}, 1370 \mathrm{w}, 1173 \mathrm{w}, 1131 \mathrm{w}, 1041 \mathrm{w}, 1001 \mathrm{w}$, 952w, 931w, 885w, 830w, 770w, 639w, 574w and $500 \mathrm{w} \mathrm{cm}^{-1}$ (Found: C, 53.5; H, 11.4; N, 6.8. Calc.: C, 53.95; H, 11.55; N, 7.05%).

Compound 1b: 77-79 ${ }^{\circ} \mathrm{C}$; yield $30 \% . \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta$ $-0.33,\left[\mathrm{~s}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}, 12 \mathrm{H}\right], 1.14\left[\mathrm{~m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}, 30 \mathrm{H}\right], 3.14\left[\mathrm{spt}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}, 4 \mathrm{H}\right]$ and $3.71(\mathrm{t}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}, \delta-5.55\left[\mathrm{br}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right], 19.21\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, 24.49 and $25.55\left[\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 47.61\left[\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$ and 58.26 $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right) ;{ }^{27} \mathrm{Al}, \delta 150$ (br). Mass spectrum (70 eV , the eight
most intense peaks): $m / z 44$ (100), 142 (46), 124 (45), 256 (24), 226 (12); 413, $\left[M-\mathrm{CH}_{3}\right]^{+}$(7); 270 (6) and 312 (5\%). IR: $2967 \mathrm{~m}, 2873 \mathrm{~m}, 2833 \mathrm{~m}, 1460 \mathrm{~s}, 1387 \mathrm{~s}, 1367 \mathrm{~s}, 1351 \mathrm{~s}, 1320 \mathrm{w}$, $1263 \mathrm{~m}, 1200 \mathrm{~m}, 1160 \mathrm{~s}, 1140 \mathrm{~m}, 1120 \mathrm{~m}, 1107 \mathrm{~m}, 1023 \mathrm{w}, 980 \mathrm{~m}$, $947 \mathrm{~m}, 924 \mathrm{~m}, 849 \mathrm{~m}, 800 \mathrm{~s}, 697 \mathrm{~s}, 676 \mathrm{~s}, 663 \mathrm{~s}, 613 \mathrm{~m}, 500 \mathrm{w}, 436 \mathrm{~m}$ and $400 \mathrm{w} \mathrm{cm}^{-1}$ (Found: C, 53.2; H, 11.2; N, 6.0. Calc.: C, 55.05; $\mathrm{H}, 11.65 ; \mathrm{N}, 6.55 \%$).

Reaction of Compound \mathbf{A} with $\mathrm{Bu}^{1} \mathrm{OH}$.-A solution of $\mathrm{Bu}^{\mathbf{t} O H}$ ($0.162 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}$) in ether $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise via an addition funnel to a round-bottomed flask containing an ether solution ($40 \mathrm{~cm}^{3}$) of compound $\mathbf{A}(1.184 \mathrm{~g}, 1.0 \mathrm{mmol})$ under nitrogen. Gas was immediately released and following addition the solution was clear and colourless. The mixture was stirred for 1 h at room temperature. After removal of solvent a viscous fluid remained. Sublimation at $120^{\circ} \mathrm{C}$ yielded two kinds of transparent colourless crystals. The more volatile product was $\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{\mathrm{t}}\right)_{2} \mathrm{AlMe}_{2} 2 \mathrm{~m} . \mathrm{p} .>176{ }^{\circ} \mathrm{C}$ (decomp.), yield 30%. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta-0.40\left[\mathrm{~s}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $12 \mathrm{H}]$ and $1.28\left[\mathrm{~s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right] ;{ }^{13} \mathrm{C}, \delta-4.76[\mathrm{br}$, $\left.\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right], 33.04\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $71.19\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{27} \mathrm{Al}, \delta$ 140 (br). Mass spectrum (70 eV , the eight most intense peaks): $m / z 57$ (100), 416 (42), 343 (25), 286 (14), 99 (12), 431 (10), 229 (10) and 213 (10%). IR: $2819-2293 \mathrm{br}, 1471 \mathrm{~m}, 1383 \mathrm{~m}, 1352 \mathrm{w}$, $1290 \mathrm{w}, 1230 \mathrm{~m} .1196 \mathrm{~m}, 1147 \mathrm{~m}, 1113 \mathrm{~m}, 1073 \mathrm{w}, 1044 \mathrm{~m}, 974 \mathrm{~m}$, $946 \mathrm{w}, 916 \mathrm{~m}, 843 \mathrm{~m}$ and $806 \mathrm{~m} \mathrm{~cm}^{-1}$ (Found: C, 56.0; H, 11.2; N, <0.05. Calc.: C, $55.6 ; \mathrm{H}, 11.05$; $\mathrm{N}, 0.0 \%$). The less volatile compound was $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{OBu}^{1}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{OBu}^{1}\right)\right]_{2}$ 3, m.p. $238-$ $239{ }^{\circ} \mathrm{C}$, yield 20%. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta-0.30\left[\mathrm{~s}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}, 12\right.$ $\mathrm{H}], 1.33\left[\mathrm{~s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 36 \mathrm{H}\right]$ and $1.36\left[\mathrm{~s}, \mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}, 18 \mathrm{H}\right]$; ${ }^{13} \mathrm{C}, \delta-3.96\left[\mathrm{br}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right], 33.41\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 34.76$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right], 68.77\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right]$ and $70.83\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right] ;{ }^{27} \mathrm{Al}$, $\delta 140$ (br). Mass spectrum (30 eV , the eight most intense peaks): $m / z 70,69,174,138,160,71,218,286$. IR: 2955s, 2921s, 2852s, $1458 \mathrm{~m}, 1376 \mathrm{~m}, 1357 \mathrm{~m}, 1262 \mathrm{~m}, 1216 \mathrm{w}, 1138 \mathrm{~m}, 1085 \mathrm{~m}, 1047 \mathrm{~m}$, $1009 \mathrm{~m}, 859 \mathrm{~m}, 792 \mathrm{~m}, 742 \mathrm{~m}, 694 \mathrm{w}, 652 \mathrm{w}, 622 \mathrm{w}$ and $537 \mathrm{~m} \mathrm{~cm}^{-1}$. (Found: C, 55.7; H, 10.9. Calc.: C, 55.90 ; H, 11.05\%).

Table 2 Crystallographic data and refinement results

	1b	2	3	5
Formula	$\mathrm{C}_{20} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Al}_{2} \mathrm{Mg}$	$\mathrm{C}_{20} \mathrm{H}_{48} \mathrm{Al}_{2} \mathrm{MgO}_{4}$	$\mathrm{C}_{28} \mathrm{H}_{66} \mathrm{Al}_{2} \mathrm{Mg}_{2} \mathrm{O}_{6}$	$\mathrm{C}_{28} \mathrm{H}_{68} \mathrm{Al}_{2} \mathrm{Mg}_{2} \mathrm{~N}_{4}$
M	428.89	430.86	601.39	817.25
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_{1} / c$	C2/c	$P 2_{1} / c$	$P 2_{1} / n$
a / \AA	11.433(2)	18.614(2)	15.477(5)	7.767(2)
b / \AA	16.557(4)	9.057(2)	14.578(4)	16.072(3)
c / \AA	14.824(3)	29.781(5)	18.822(6)	16.482(5)
$\beta{ }^{\circ}$	90.47(2)	122.87(2)	110.04(3)	97.68(2)
U / \AA^{3}	2806(1)	2942(1)	3990(2)	2039(1)
Z	4	4	4	2
$F(000)$	951.77	951.81	1327.72	839.83
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.015	0.973	1.001	1.331
μ / mm^{-1}	0.14	0.13	0.13	1.62
Crystal diemnsions mm	$0.20 \times 0.35 \times 0.45$	$0.25 \times 0.50 \times 0.50$	$0.50 \times 0.55 \times 0.75$	$0.35 \times 0.50 \times 0.60$
No. of measured reflections	3647	1931	5208	2685
No. of unique reflections	3647	1931	5208	2685
No. of observations	1306	815	1786	2062
[$I>2.0 \sigma(I)]$				
No. of atoms	77	38	104	53
No. of parameters	244	123	343	173
R	0.063	0.065	0.080	0.030
R^{\prime}	0.061	0.065	0.077	0.030
Goodness of fit	1.51	2.88	1.62	1.80
Highest peak in different map/e \AA^{-3}	0.220	0.200	0.330	0.560

Reaction of Compound \mathbf{B} with $\mathrm{Bu}^{\prime} \mathrm{OH}$.-A solution of tertbutyl alcohol $\left(0.38 \mathrm{~cm}^{3}, 4.0 \mathrm{mmol}\right)$ in ether $\left(10 \mathrm{~cm}^{3}\right)$ was added slowly to compound B $(0.960 \mathrm{~g}, 2.0 \mathrm{mmol})$ in ether $\left(10 \mathrm{~cm}^{3}\right)$ under nitrogen. The reaction took place immediately, with the solution turning light yellow. After removal of solvent a light yellow fluid remained. Sublimation at $120^{\circ} \mathrm{C}$ yielded transparent colourless crystals of compounds 3 and 2 in different temperature sectional areas from a gradient-temperature sublimator. Yields: $40, \mathbf{3} ;<2 \% 2$.

Synthesis of $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}{ }_{2}\right)_{2} \mathrm{Mg}\left(\mu-\mathrm{NPr}_{2}{ }_{2}\right)\right]_{2}$ 4.-An excess of diisopropylamine in ether $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to compound $\mathbf{A}(2.95 \mathrm{~g}, 2.5 \mathrm{mmol})$ in ether $\left(40 \mathrm{~cm}^{3}\right)$ under nitrogen. The reaction mixture was refluxed for 36 h . After removal of solvent, the crude product was crystallized from ether, yielding semi-transparent crystals, m.p. $>56^{\circ} \mathrm{C}$ (decomp.), yield 90%. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H} \delta-0.40\left[\mathrm{~s}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $12 \mathrm{H}], 1.21$ and $1.25\left[\mathrm{~m}, \mathrm{AlNCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}\right.$ and $\mathrm{MgNCH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}, 72 \mathrm{H}\right]$ and $3.28\left[\mathrm{~m}, \mathrm{AlNCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}\right.$ and $\left.\mathrm{MgNCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}, 12 \mathrm{H}\right] ;{ }^{13} \mathrm{C}, \delta-0.29\left[\mathrm{br}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right], 25.95$ and $26.16\left[\mathrm{MgNCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}\right], 28.00\left[\mathrm{AlNCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}\right]$, $47.74\left[\mathrm{MgNCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}\right]$ and $48.57\left[\mathrm{AlNCH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Mg}\right] ;$ ${ }^{27} \mathrm{Al}, \delta 154(\mathrm{br})$. Mass spectrum (the nine most intense peaks): 44 (100), 124 (98), 86 (98), 142 (68), 281 (49), 223 (24), 209 (22), 366 (15%); and $381,[M / 2]^{+}(5 \%)$. IR: $2979 \mathrm{~s}, 2950 \mathrm{w}, 2886 \mathrm{~m}, 2833 \mathrm{~s}$, $1467 \mathrm{~s}, 1450 \mathrm{~s}, 1372 \mathrm{~s}, 1335 \mathrm{w}, 1301 \mathrm{w}, 1193 \mathrm{~m}, 1163 \mathrm{~s}, 1124 \mathrm{~m}$, 1065s, 971w, 893m, 839w, 671m and 614w cm^{-1} (Found: C, $61.8 ; \mathrm{H}, 11.5 ; \mathrm{N}, 10.5$. Calc.: C, $62.95, \mathrm{H} ; 12.60, \mathrm{~N} ; 11.00 \%$).

Synthesis of $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NPr}_{2}{ }_{2}\right)_{2} \mathrm{Mg}(\mu-\mathrm{I})\right]_{2}$ 5.-A solution of iodine ($0.43 \mathrm{~g}, 1.7 \mathrm{mmol}$) in benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added dropwise to compound $\mathbf{A}(1.0 \mathrm{~g}, 0.85 \mathrm{mmol})$ in benzene $\left(40 \mathrm{~cm}^{3}\right)$ under nitrogen. The reaction took place immediately, with the solution turning light yellow. The solvent was evaporated to dryness, leaving a viscous fluid in nearly quantitative yield. Sublimation at $120^{\circ} \mathrm{C}$ yielded a transparent solid, m.p. 135$136{ }^{\circ} \mathrm{C}$. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta-0.26\left[\mathrm{~s}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}, 12 \mathrm{H}\right], 1.27$ [d of d, $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}, 48 \mathrm{H}\right]$, and 3.53 [$\mathrm{spt}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}, 8 \mathrm{H}$]; ${ }^{13} \mathrm{C},-3.73\left[\mathrm{br}, \mathrm{Al}\left(\mathrm{CH}_{3}\right)_{2}\right], 26.67$ and $27.30\left[\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $48.05\left[\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right] ;{ }^{27} \mathrm{Al}, 140$ (br). Mass spectrum (70 eV , the eight most intense peaks): $m / z 250$ (100), 393 (88), 43 (86), 308
(48), 142 (39), 124 (16), 335 (15), 281 (12) and 408, [M/2] ${ }^{+}$ ($<0.1 \%$). IR: $2963 \mathrm{~m}, 2929 \mathrm{~m}, 2860 \mathrm{~m}, 1460 \mathrm{~s}, 1383 \mathrm{~s}, 1319 \mathrm{w}$, $1258 \mathrm{w}, 1200 \mathrm{~m}, 1169 \mathrm{~m}, 1148 \mathrm{~m}, 1131 \mathrm{~m}, 1075 \mathrm{w}, 989 \mathrm{~m}, 946 \mathrm{w}$ $800 \mathrm{w}, 775 \mathrm{w}, 694 \mathrm{~m}$ and $675 \mathrm{~m} \mathrm{~cm}^{-1}$ (Found: C, $41.0 ; \mathrm{H}, 8.3 ; \mathrm{N}$, 6.7. Calc.: C, 41.10 ; H, 8.30 ; N, 6.85%).

Reaction of Compound A with Diethylamine.-A solution of diethylamine $\left(0.53 \mathrm{~cm}^{3}, 5 \mathrm{mmol}\right)$ in ether $\left(10 \mathrm{~cm}^{3}\right)$ was added slowly to compound $\mathbf{A}(1.5 \mathrm{~g}, 5 \mathrm{mmol})$ in ether $\left(40 \mathrm{~cm}^{3}\right)$. Gas was immediately released. The solvent was then evaporated and a semi-solid was obtained. Sublimation at $60^{\circ} \mathrm{C}$ gave a white solid, $\left[\mathrm{Me}_{2} \mathrm{Al}\left(\mu-\mathrm{NEt}_{2}\right)\right]_{2} 6$ characterized by comparison of its spectral data with those published. ${ }^{14}$

Structure Determinations.-Crystals for X-ray measurements were sealed in glass capillaries. Preliminary examination and intensity data collection were carried out with an Enraf-Nonius CAD-4 automatic diffractometer using graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA$). Intensity data were collected using the $\theta-2 \theta$ scan mode for $2 \theta \leqslant 45^{\circ}$ and then corrected for absorption and decay. All structures were solved by MULTAN ${ }^{15}$ and refined with full-matrix least squares on F with $w=1.0 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+0.0001 F_{\mathrm{o}}^{2}\right]$. In the final cycles all nonhydrogen atoms were refined anisotropically and all hydrogen atoms were fixed at idealized positions $\left(d_{\text {C-H }}=1.00 \AA\right.$) calculated during the anisotropic convergence stage. Scattering factors for neutral atoms and anomalous scattering coefficients for non-hydrogen atoms were taken from ref. 16. All calculations were carried out with a Micro VAX 3600 computer using the NRC VAX program package. ${ }^{17}$ A summary of the data collection and structure solution is given in Table 2; final atomic coordinates in Table 3 . The $C(5)-C(6)$ bond length $(1.22 \AA$) of complex 1 b is unreasonable. This is attributed to the disorder of structure which is due to inappropriate thermal parameters.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the National Science Council of the Republic of China for financial support.

Table 3 Atomic parameters

Atom	x	y	z	Atom	x	y	z
Compound 1b							
Mg	0.777 5(3)	0.904 49(24)	0.235 20(24)	C(8)	0.671 4(17)	0.959 2(17)	0.4690 (14)
$\mathrm{Al}(1)$	0.987 6(3)	0.999 6(3)	$0.22855(25)$	C(9)	1.145 3(11)	0.8247 (9)	$0.2027(9)$
$\mathrm{Al}(2)$	0.5357 (3)	0.887 6(3)	$0.28385(24)$	C(10)	1.0123 (9)	0.823 4(7)	0.2103 (7)
$\mathrm{O}(1)$	0.837 2(6)	$1.0061(5)$	$0.1912(5)$	C(11)	0.961 8(11)	0.820 4(9)	$0.1182(8)$
$\mathrm{O}(2)$	$0.6697(6)$	0.923 9(5)	0.3328 (5)	C(12)	1.099 1(12)	0.8819 9(11)	0.4027 (8)
N(1)	0.961 6(6)	0.888 2(5)	0.264 3(5)	C(13)	0.975 2(9)	$0.8778(8)$	0.3640 0(7)
N(2)	0.620 4(7)	0.849 5(5)	0.179 5(5)	C(14)	0.913 6(13)	$0.8061(9)$	0.4019 (8)
C(1)	1.093 3(11)	1.025 2(9)	$0.1310(9)$	C(15)	0.674 5(11)	0.890 4(9)	0.0213 (8)
C(2)	1.012 2(13)	1.073 4(8)	0.3289 9)	C(16)	$0.5887(9)$	0.8950 (8)	0.0968 (7)
C(3)	$0.4335(11)$	0.978 4(9)	0.259 9(9)	C(17)	0.467 6(11)	0.882 4(10)	$0.0578(8)$
C(4)	0.460 6(11)	0.811 2(9)	$0.3635(9)$	C(18)	0.512 4(13)	$0.7175(9)$	0.155 3(10)
C(5)	0.7690 (15)	1.084 3(12)	0.1809 9(12)	C(19)	0.629 4(10)	0.7626 (8)	$0.1639(9)$
C(6)	$0.7965(15)$	$1.1121(14)$	0.1077 (13)	C(20)	$0.7013(11)$	0.721 6(8)	0.233 6(11)
C(7)	0.678 6(14)	0.995 4(15)	0.4029 (11)				
Compound 2							
Mg	1/2	$0.1901(4)$	1/4	C(4)	$0.6477(6)$	0.4391 (13)	$0.3139(5)$
Al	$0.50643(14)$	0.192 1(4)	$0.11674(11)$	C(5)	0.699 4(7)	0.339 5(16)	0.2425 5(10)
$\mathrm{O}(1)$	$0.55843(24)$	0.287 4(5)	$0.20768(21)$	C(6)	$0.5982(8)$	0.528 0(14)	0.190 4(7)
$\mathrm{O}(2)$	$0.44758(24)$	0.095 5(5)	$0.15053(21)$	C(7)	$0.3829(4)$	-0.016 8(9)	0.1150 (4)
C(1)	0.4353 (5)	0.3191 (12)	0.0291 14)	C(8)	0.351 4(7)	-0.058 4(13)	0.162 4(5)
C(2)	0.585 2(5)	0.064 2(13)	$0.1097(5)$	C(9)	0.312 4(6)	0.033 8(13)	0.0379 (5)
C(3)	0.623 6(4)	0.3969 (10)	0.2388 (4)	C(10)	$0.4212(7)$	-0.149 6(12)	$0.1036(6)$
Compound 3							
$\mathrm{Al}(1 \mathrm{~A})$	0.3973 (3)	0.6011 (3)	$0.17234(21)$	Al(1B)	0.8590 (3)	0.985 3(3)	0.163 4(3)
$\mathrm{Mg}(1 \mathrm{~A})$	$0.46547(24)$	$0.53201(23)$	0.057 74(20)	$\mathrm{Mg}(1 \mathrm{~B})$	0.952 19(24)	0.990 4(3)	0.053 76(21)
$\mathrm{O}(1 \mathrm{~A})$	0.5418 (4)	0.4316 (4)	0.0441 (3)	$\mathrm{O}(1 \mathrm{~B})$	1.004 1(5)	0.0902 (4)	$0.0095(4)$
$\mathrm{O}(2 \mathrm{~A})$	0.3571 (5)	0.515 4(5)	0.095 2(4)	$\mathrm{O}(2 \mathrm{~B})$	0.822 6(5)	0.9848 8(6)	0.0578 (4)
$\mathrm{O}(3 \mathrm{~A})$	0.4998 (5)	$0.6214(5)$	0.1460 (4)	O(3B)	0.979 3(6)	0.978 0(7)	0.166 4(5)
$\mathrm{C}(1 \mathrm{~A})$	$0.3165(10)$	$0.7087(10)$	$0.1527(9)$	$\mathrm{C}(1 \mathrm{~B})$	0.832 6(12)	1.1010 (13)	$0.2037(10)$
C(2A)	$0.4305(10)$	0.547 9(10)	0.2737 (8)	C(2B)	0.819 6(12)	0.876 9(15)	0.2029 (11)
C(3A)	0.588 6(8)	0.360 4(7)	0.0929 9(6)	C(3B)	$1.0077(9)$	$1.1855(8)$	0.0229 (8)
$\mathrm{C}(4 \mathrm{~A})$	0.604 3(13)	$0.3855(14)$	$0.1715(8)$	C(4B)	1.023 2(18)	$1.2360(11)$	-0.036 8(12)
C(5A)	0.5367 (13)	0.274 7(10)	0.0747 (12)	C(5B)	1.088 0(15)	1.205 8(12)	0.091 4(13)
C(6A)	0.678 6(10)	0.3450 (12)	0.087 2(10)	C(6B)	0.9267 (13)	1.217 4(10)	$0.0368(13)$
C(7A)	0.278 3(11)	0.473 1(17)	0.066 9(11)	C(7B)	0.743 8(11)	0.998 5(20)	0.0083 (9)
$\mathrm{C}(8 \mathrm{~A})$	0.195 6(12)	$0.5167(15)$	0.062 0(13)	C(8B)	0.6791 (14)	1.053 5(20)	0.019 8(13)
$\mathrm{C}(9 \mathrm{~A})$	0.303 6(20)	0.399 2(18)	0.133 3(13)	C(9B)	$0.7067(22)$	0.887 8(14)	$0.0087(16)$
$\mathrm{C}(10 \mathrm{~A})$	0.2790 (15)	0.4027 (23)	0.0138 (16)	C(10B)	0.740 9(10)	1.020 2(15)	-0.067 1(10)
$\mathrm{C}(11 \mathrm{~A})$	0.566 3(16)	0.6829 (12)	0.1669 (13)	C(11B)	$1.0547(12)$	0.998(3)	0.222 8(9)
$\mathrm{C}(12 \mathrm{~A})$	$0.6123(15)$	$0.6460(22)$	0.2501 (14)	C(12B)	1.044 6(15)	$0.8887(24)$	0.247 8(22)
C(13A)	0.5419 (14)	$0.7816(11)$	0.168 2(12)	C(13B)	1.065 4(16)	$1.0365(21)$	0.290 2(13)
C(14A)	$0.6461(13)$	$0.6569(15)$	0.142 (14)	C(14B)	$1.1335(12)$	0.937(3)	$0.2000(11)$
Compound 5							
I	0.248 32(4)	0.024 67(3)	0.027 434(25)	C(6)	0.1123 (7)	0.036 2(3)	0.2464 (3)
Al	0.039 66(21)	$0.20788(10)$	$0.19837(10)$	C(7)	$0.0768(9)$	-0.055 4(4)	0.234 0(4)
Mg	-0.059 89(20)	$0.08513(11)$	0.080 90(10)	C(8)	$0.1884(9)$	0.053 0(4)	$0.3348(4)$
N(1)	-0.031 7(5)	$0.09187(24)$	0.210 12(22)	C(9)	0.0601 (7)	0.249 9(3)	0.029 0(3)
N(2)	-0.0629(5)	0.217 03(25)	$0.08287(24)$	C(10)	$0.1118(9)$	$0.3414(4)$	0.042 6(4)
C(1)	0.293 3(7)	0.210 6(4)	0.203 6(3)	C(11)	0.0081 (9)	$0.2328(4)$	-0.061 1(4)
$\mathrm{C}(2)$	-0.0417(9)	0.287 4(4)	$0.2747(4)$	C(12)	-0.239 3(8)	$0.2537(4)$	0.0651 (5)
C(3)	-0.199 3(8)	0.081 2(5)	0.2431 (4)	C(13)	-0.377 5(8)	$0.2059(4)$	0.024 5(5)
C(4)	-0.329 3(8)	$0.0267(4)$	0.201 4(4)	C(14)	-0.274 6(10)	0.337 3(4)	0.089 9(5)
C(5)	-0.212 6(9)	$0.0969(5)$	$0.3280(4)$				

References

1 J. L. Atwood and G. D. Stucky, J. Organomet. Chem., 1968, 3, 53.

2 J. L. Atwood and G. D. Stucky, J. Am. Chem. Soc., 1969, 91, 2538.

3 K. Ziegler and Z. Holzkamp, Liebigs Ann. Chem., 1957, 605, 93; D. B. Malpass and L. W. Fannin, J. Organomet. Chem., 1975, 93, 1; C. C. Chang, M. Y. Chang and C. P. Cheng, J. Chin. Chem. Soc., 1989, 36, 311; C. C. Chang, S. C. Lin, J. O. Tsai and L. K. Liu, J. Chin. Chem. Soc., 1992, 39, 55.

4 J. M. Boncella and R. A. Andersen, Organometallics, 1985, 4, 205; C. J. Schaverien and A. G. Orpen, Inorg. Chem., 1991, 30, 4968;
C. McDade, V. C. Gibson, B. D. Santarsiero and J. E. Bercaw, Organometallics, 1988, 7, 1.
5 M. W. Lynch and J. T. Pullukat, U. S. Pat., 4455 386, 1984. (Chem. Abstr., 1985, 101152510h).
6 M. Veith, W. Frand, F. Töner and H. Lange, J. Organomet. Chem., 1987, 326, 315.
7 T. Y. Her, C. C. Chang and L. K. Liu, Inorg. Chem., 1992, 31, 2291.

8 R. Han and G. Parkin, Organometallics, 1991, 10, 1010.
9 R. Han and G. Parkin, J. Am. Chem. Soc., 1992, 114, 748.
10 A. G. Pinkus, Coord. Chem. Rev., 1978, 25, 173.
11 L. A. Curtiss, Inorg. Chem., 1982, 21, 4100.

12 C. K. Johnson, ORTEP, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
13 R. Mason and D. M. P. Mingos, J. Organomet. Chem., 1973, 50, 53.
14 L. Cocco and D. P. Eyman, J. Organomet. Chem., 1979, 179, 1; T. Y. Her, C. C. Chang, L. K. Liu, H. C. Chang, J. H. Chen, J. O. Tsai and Y. Y. Lai, Polyhedron, 1993, 13, 731.
15 P. Main, S. J. Fiske, S. E. Hill, L. Lessinger, G. Germain, J.-P. Declercq and M. M. Woolfson, MULTAN 80, A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data, Universities of York and Louvain, 1980.

16 J. A. Ibers and W. C. Hamilton (Editors), International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Tables 2.2B and 2.3.1.
17 E. J. Gabe, F. L. Lee and Y. Le Page, in Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases, eds. G. M. Sheldrick, C. Krueger and R. Goddard, Clarendon Press, Oxford, 1985, p. 167.

Received 26th July 1993; Paper 3/04391F

[^0]: \dagger Supplementary data available: see instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.
 Non-SI unit employed: $\mathrm{eV} \approx 1.60 \times 10^{-19} \mathrm{~J}$.

