Synthesis and Reactivity of Palladium(ii) Complexes with the $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$Ligand. Crystal Structures of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right] \cdot 4.74 \mathrm{CHCl}_{3} \dagger$

Juan Forniés,* Francisco Martínez, Rafael Navarro, Milagros Tomás and Esteban P. Urriolabeitia
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain

Abstract

Neutral mononuclear complexes of the type $\left[P d\left(C_{6} F_{5}\right)\left\{\left(P \mathrm{Ph}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3} 1\right.$ or $\left.\mathrm{PPh}_{2} \mathrm{Et} 2\right)$ and $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\right] 3$ have been obtained by reaction of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{acac}\right.$ $\left.\left.O, O^{\prime}\right)\left(\mathrm{PR}_{3}\right)\right]$ or $\left[\mathrm{Pd}\left(\mathrm{acac}-O, O^{\prime}\right)_{2}\right]$ with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \quad(\mathrm{Hacac}=$ acetylacetone $)$. The reactions between $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.O, O^{\prime}\right)($ tht $\left.)\right]$ (tht $=$ tetrahydrothiophene) or trans-[Pd $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ (tht $\left.)_{2}\right]$ and $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ also renders 3. The complex $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right] 4$ has been obtained by oxidation of 3 with O_{2} Complexes 1-3 which contain the anion $\left[C\left(P P h_{2}\right)_{3}\right]^{-}$acting as a P, P^{\prime}-chelate ligand with one uncoordinated P atom can be used for the synthesis of neutral or cationic polynuclear derivatives. The structure of these complexes have been established on the bases of $1 R,{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR studies. The molecular structures of 1 and 4 have been established by X-ray diffraction methods.

The chemistry of the $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ ligand has received considerable attention, probably due to its versatile co-ordination behaviour. Complexes with the ligand co-ordinated as P monodentate, $\mathrm{P}, \mathrm{P}^{\prime}$-chelate, $\mathrm{P}, \mathrm{P}^{\prime}, \mathrm{P}^{\prime \prime}$-chelate, $\mathrm{P}, \mathrm{P}^{\prime}-\mu$-bridging, $\mathrm{P}, \mathrm{P}^{\prime}, \mathrm{P}^{\prime \prime}-\mu$-bridging and $\mathrm{P}, \mathrm{P}^{\prime}, \mathrm{P}^{\prime \prime}-\mu_{3}$-bridging are known. ${ }^{1}$ However, the anionic deprotonated form of this ligand $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$ has received little attention. As far as we know, no transitionmetal complexes containing this methanide group have been described and only a few derivatives of main group elements with the analogous $\left[\mathrm{C}\left(\mathrm{PMe}_{2}\right)_{3}\right]^{-}$group have been characterized: $\left[\mathrm{Sn}\left\{\mathrm{C}\left(\mathrm{PMe}_{2}\right)_{3}\right\}_{2}\right],{ }^{2}\left[\mathrm{Al}\left\{\mathrm{C}\left(\mathrm{PMe}_{2}\right)_{3}\right\}_{3}\right]^{3}$ and $[\mathrm{Ge}\{\mathrm{C}-$ $\left.\left.\left(\mathrm{PMe}_{2}\right)_{3}\right\}_{2}\right] \cdot{ }^{4}$ In this paper we describe the synthesis of some mononuclear complexes containing the $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$group acting as a $\mathrm{P}, \mathrm{P}^{\prime}$-chelate ligand and study their reactivity towards other metallic substrates in order to prepare polynuclear derivatives. The reactions of the mononuclear derivatives with O_{2} in some cases render phosphine oxide complexes. Some of the results have been previously communicated. ${ }^{5}$

Results and Discussion

(a) Synthesis of Mononuclear Complexes.-Although the only reported complexes containing the trisphosphinomethanide group acting as a bidentate chelate ligand $\left[\left(\mathrm{PR}_{2}\right)_{2} \mathrm{CPR}_{2}\right]^{-}$ have been prepared by treating the corresponding halide with the lithium derivative of the phosphine ligand $\left(\mathrm{PMe}_{3}\right)_{3} \mathrm{CLi}^{2,3,4}$ the palladium complexes described in this paper were generally prepared by treating acetylacetonato complexes with the protonated ligand $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$.

Reactions of $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$. - With $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)-\right.$ $\left.\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$ or $\left.\mathrm{PPh}_{2} \mathrm{Et}\right)$. The reaction of the neutral mononuclear $\quad\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)\left(\mathrm{PR}_{3}\right)\right] \quad\left(\mathrm{PR}_{3}=\mathrm{PPh}_{3}\right.$ or $\mathrm{PPh}_{2} \mathrm{Et}$) derivatives with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ (molar ratio 1:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature yields the corresponding mono-

[^0]nuclear complexes $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right) \mathrm{CPPh}_{2}\right\}\left(\mathrm{PR}_{3}\right)\right]$ according to equation (1).
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.\left.O, O^{\prime}\right)\left(\mathrm{PR}_{3}\right)\right]+\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \longrightarrow$
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PR}_{3}\right)\right]+$ Hacac $\mathrm{PR}_{3}=\mathrm{PPh}_{3} 1$ or $\mathrm{PPh}_{2} \mathrm{Et} 2$

The triphosphine ligand is deprotonated by the acetylacetonate; such deprotonation processes have also been observed when bis(diphenylphosphino)methane (dppm) is treated with acetylacetonato complexes. ${ }^{6}$

With $\left[\mathrm{Pd}\left(\text { acac- } O, O^{\prime}\right)_{2}\right]$. The complex $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\right]$ 3 can be prepared by treating a dichloromethane solution of $\left[\mathrm{Pd}\left(\text { acac- } O, O^{\prime}\right)_{2}\right]$ with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ (mole ratio $1: 2$) at room temperature. The process is similar to that described in equation (1), however in this case an N_{2} atmosphere during the reaction is necessary since otherwise a mixture of 3 and the oxidized $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right] 4$ (which can be separated by recrystallization) is obtained. In fact, air exposure of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3}$ for several days or bubbling O_{2} through the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for 4 h , leads to the complete transformation of 3 into 4 [equation (2)].

On the other hand, $\mathbf{3}$ can also be obtained, although in lower yields, by treating, under $\mathrm{N}_{2}, \mathrm{aCH}_{2} \mathrm{Cl}_{2}$ solution of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ -(acac- $\left.O, O^{\prime}\right)($ tht $\left.)\right]$ (tht $=$ tetrahydrothiophene) with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ (mole ratio $1: 2$) at room temperature or by treating trans- $[\mathrm{Pd}-$ $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { tht })_{2}$] with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ (mole ratio $1: 2$) in refluxing benzene (see Scheme 1).
While the displacement of acetylacetonate, as Hacac, by $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ is an expected process, similar to the behaviour of dppm towards acetylacetonato complexes, ${ }^{6}$ the elimination of $\mathrm{C}_{6} \mathrm{~F}_{5}$ (probably as $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$, Scheme 1) by the triphosphine

Table 1 Analytical and Conductivity data for complexes 1-9

	Analysis ${ }^{\text {a }}$ (\%)		
Complex	C	H	$\Lambda_{M}{ }^{\text {b }} / \mathbf{\Omega}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$1\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 66.15 \\ (66.40) \end{gathered}$	$\begin{gathered} 4.70 \\ (4.10) \end{gathered}$	c
$\left.2\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\} \mathrm{PPh}_{2} \mathrm{Et}\right)\right]$	$\begin{array}{r} 64.30 \\ (64.80) \end{array}$	$\begin{gathered} 4.75 \\ (4.40) \end{gathered}$	c
$3\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\right]$	$\begin{gathered} 70.85 \\ (71.60) \end{gathered}$	$\begin{gathered} 5.00 \\ (4.85) \end{gathered}$	c
$4\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right]$	$\begin{gathered} 70.25 \\ (69.80) \end{gathered}$	$\begin{gathered} 4.95 \\ (4.75) \end{gathered}$	c
$5\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right]^{d}$	$\begin{gathered} 61.40 \\ (61.65) \end{gathered}$	$\begin{gathered} 5.75 \\ (5.25) \end{gathered}$	122.1
$6\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left\{\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	$\begin{gathered} 54.15 \\ (53.50) \end{gathered}$	$\begin{gathered} 2.90 \\ (2.75) \end{gathered}$	c
$7\left[\mathrm{Ag}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left[\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right]\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]$	$\begin{gathered} 59.80 \\ (60.70) \end{gathered}$	$\begin{gathered} 3.70 \\ (3.75) \end{gathered}$	110.1
$8\left[\mathrm{Au}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left[\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right]\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]$	$\begin{gathered} 59.15 \\ (58.65) \end{gathered}$	$\begin{aligned} & 4.05 \\ & (3.60) \end{aligned}$	99.9
$9\left[\mathrm{Pd}\left\{\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\left(\mathrm{AgPPh}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$	$\begin{gathered} 59.70 \\ (60.60) \end{gathered}$	$\begin{gathered} 3.95 \\ (4.15) \end{gathered}$	e

${ }^{a}$ Calculated values in parentheses. ${ }^{b}$ In acetone. ${ }^{c}$ Non-conducting. ${ }^{d} \mathrm{~N} 1.30(1.10) \%{ }^{e}$ Too insoluble for conductivity measurements.

Table 2 Infrared and ${ }^{19}$ F NMR data for complexes 1-9

IR $\tilde{\mathrm{v}} / \mathrm{cm}^{-1}$

	$\mathrm{C}_{6} \mathrm{~F}_{5}$	$\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$	$v(\mathrm{CO})$	$v(\mathrm{PO})$
$\mathbf{1}$	$1495,950,775$	905		
$\mathbf{2}$	$1500,957,772$	917		
$\mathbf{3}$		907		
$\mathbf{4}$		925		1170
$\mathbf{5}$	$1495,945,770,760$	912		
$\mathbf{6}$	$1505,965,952$,	897,887	2090	
$\mathbf{7}$	$800,782,777$			
$\mathbf{8}$	$1500,955,772$	902		
$\mathbf{9}$	$1505,955,775$	910		

${ }^{a} J$ In Hz , solvent CDCl_{3}, room temperature. ${ }^{b} \mathrm{PPh}_{3}, \mathrm{PPh}_{2} \mathrm{Et},\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$or $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{2}\left\{\mathrm{P}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right]^{-} .{ }^{c} \mathrm{NBu}_{4}^{+} .{ }^{d} \mathrm{ClO}_{4}{ }^{-}$.

Scheme 1 (i) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature (r.t.) - 2 Hacac, (ii) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $-\mathrm{Hacac},-\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$, -tht; (iii) $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, $-2 \mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{H}$, -2 tht
is noteworthy. In fact, $\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}$ bonds ($\mathrm{M}=\mathrm{Pd}$ or Pt) can be easily broken by strong acids such as $\mathrm{HCl}^{7 a}$ and only recently it has been found that $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\right.$ thf $\left.)\right]($ thf $=$ tetrahydrofuran) reacts with acetylacetone (Hacac) to give $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ (CO)(acac- $\left.\left.O, O^{\prime}\right)\right],{ }^{7 b}$ indicating that weak acids are also able to produce acid cleavage of $\mathrm{M}-\mathrm{C}_{6} \mathrm{~F}_{5}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ bonds.

The reaction of trans- $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{tht})_{2}\right]$ with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$
(Scheme 1) in refluxing benzene deserves some comments since if the reaction is stopped after 1 h of refluxing, the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectrum of the crude product shows the presence of cis- $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]^{8}$ which could be formed in the first step of the reaction process.

With $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{acac}-O, O^{\prime}\right)\right]$. Treatment of $\left[\mathrm{NBu}_{4}\right]$ $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{acac}-\mathrm{O}, \mathrm{O}^{\prime}\right)\right]$ with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(1: 1$ mole ratio) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under N_{2} does not render $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ $\left.\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\right]$, either at room temperature (16 h) or at reflux (5 h), and unreacted starting materials are recovered. However a similar treatment in the presence of air allows the isolation, in low yield, of the oxidized species $\left[\mathrm{NBu}_{4}\right.$]$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right] 5$.

Characterization of the Mononuclear Complexes 1-5.-All complexes, $\mathbf{1 - 5}$, show satisfactory elemental analyses, acetone solutions of complexes $1-4$ are non-conducting while 5 behaves as a 1:1 electrolyte in acetone (see Table 1).

Relevant IR data for these complexes are collected in Table 2. The presence of deprotonated $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$seems to be related with the existence of a strong absorption in the $925-900 \mathrm{~cm}^{-1}$

Table $3{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data ${ }^{a}$ for complexes $1-8$

Complex	$\delta\left(\mathrm{P}_{\mathrm{a}}\right)$	$\delta\left(\mathrm{P}_{\mathrm{b}}\right)$	$\delta\left(\mathrm{P}_{\mathrm{c}}\right)$	$\delta\left(\mathrm{P}_{\mathrm{d}}\right)$	$\delta\left(P_{e}\right)$	$\delta\left(\mathrm{P}_{\mathrm{f}}\right)$	${ }^{2} J_{\mathbf{P}_{\text {a }}} \mathbf{P}^{\text {b }}$	${ }^{2} J_{\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{c}}}$	${ }^{2} J_{\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{d}}}$	${ }^{2} J_{\mathbf{P}_{\mathrm{c}} \cdot \mathrm{Pa}_{\text {d }}}$	${ }^{4} J_{\mathbf{P}_{\mathbf{t}} \mathbf{- P}_{\mathbf{d}}}$	${ }^{1} J_{\text {Pt-P }}{ }_{\text {e }}$	${ }^{1} J_{109}{ }^{\text {As Pr }}$	${ }^{1} J_{107}{ }^{\text {AEPPe}}$
1	21.46	-20.23	-30.23	7.43			377.5	59.2	53.2	70.1	9.9			
2	16.64	-21.90	-29.23	6.89			385	≈ 56	≈ 56	≈ 56	9.0			
3		-18.66		7.33					32					
4		-29.06				26.44								
5			-31.48			26.58	${ }^{2} J_{\mathrm{P}_{6}-\mathbf{P}_{f}}$							
6	22.09	-19.07	-30.97		9.25		$383{ }^{\text {c }}$	82	$15^{\text {b }}$	$9^{\text {c }}$	$12^{\text {d }}$	2200		
7	21.82	-20.83	-29.61		7.47		387	55					550.5	477
8	21.53	-20.67	-28.94		33.91		391	61.5						

A

$M^{\prime}=\operatorname{Pt}(C O)\left(C_{6} F_{5}\right)_{2}, x=1, y=0$
$\mathrm{M}^{\prime}=\mathrm{Ag}$ or $\mathrm{Au}, x=2, y=1$
B

C

D

E

Fig. 1 Proposed structures and NMR labelling for the complexes
region. A similar spectroscopic behaviour has been described for complexes containing deprotonated dppm, $\left[\mathrm{Ph}_{2} \mathrm{PCH}-\right.$ $\left.\mathrm{PPh}_{2}\right]^{-6}$ Complexes 4 and 5 show absorptions due to $v(\mathrm{P}=\mathrm{O})^{9}$ (See Table 2).

The ${ }^{19} \mathrm{~F}$ NMR spectra of 1 and 2 show three sets of signals corresponding to $\mathrm{F}_{o}, \mathrm{~F}_{m}$ and F_{p} (Table 2) ($\mathrm{AA}^{\prime} \mathrm{MXX}^{\prime}$ system). The spectrum of 5 is similar, indicating that both $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are equivalent. In all cases the planarity of the $\left[\left(\mathrm{PPh}_{2}\right)_{2}-\right.$ $\mathrm{CPPh}]^{-}$ligand can account for the equivalence of both halves of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups.

Table 3 collects the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data. The P atoms for NMR assignment are labelled as shown in Fig. 1. The spectra of complexes 1 and 2 show signals corresponding to the presence of four types of chemically inequivalent phosphorus atoms (P_{a} dd, P_{b} ddd, P_{c} tm, P_{d} ddd) (Fig. 1, A). The location of the signals assigned to P_{b} and P_{c} at high field ($\delta<0$) implies a P, P^{\prime} chelate co-ordination mode of the $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$ligand ${ }^{10}$ with one unco-ordinated P atom.

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}$ shows only two signals: a quintet at $\delta 7.33$, assigned to the unco-ordinated P_{d} and a triplet at $\delta-18.66$ assigned to the co-ordinated P_{b} (Fig. 1, C). The virtual coupling constant is $32 \mathrm{~Hz} .^{11}$ The spectrum of 4 shows two singlets (Fig. 1, D), with that of the oxidized phosphorus shifted to low field from that of the unco-ordinated phosphorus in the non-oxidized complex 3 , and no coupling between the two inequivalent types of P atoms is observed. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 5 shows two signals: one broad singlet at $\delta-31.48$, assigned to the co-ordinated phosphorus P_{c} and one triplet at $\delta 26.58$, assigned to the unco-ordinated oxidized phosphorus (P_{f}); in this case the coupling constant between P_{c} and $P_{f}(9 \mathrm{~Hz})$ is observed (Fig. 1, E).

The structure of complexes 1 and $\mathbf{4}$ have also been established by single-crystal X-ray diffraction studies.

Crystal Structure of $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ 1.-Fig. 2 shows a drawing of the structure of complex 1. Crystallographic data are given in Table 4, atomic coordinates are presented in Table 5 and selected bond distances and angles are given in Table 6.

The Pd atom is located in a distorted square-planar environment, formed by the $\mathrm{C}_{i p s o}$ atom of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group and three phosphorus atoms, one of the PPh_{3} and the other two of the chelate $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$ligand. The $\mathrm{Pd}-\mathrm{C}$ and $\mathrm{Pd}-\mathrm{P}$ distances are in the range of values found for other complexes with these ligands. ${ }^{12,13}$

The $\mathrm{P}(3)-\mathrm{Pd}-\mathrm{P}(1)$ chelate bite angle is $69.9(1)^{\circ}$, similar to those found in the literature for bis(diphenylphosphino)methanide $\left[\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CH}\right]^{-}$derivatives ${ }^{14}$ and larger than the corresponding values found in $\left[\mathrm{M}\left\{\mathrm{C}\left(\mathrm{PMe}_{2}\right)_{3}\right\}_{2}\right][68.0(1)$ and $63.8(1)^{\circ}$ for $\mathrm{M}=\mathrm{Ge}$ and 62.9(1) and 62.8(1) ${ }^{\circ}$ for $\mathrm{M}=$ $\mathrm{Sn}] .{ }^{2-4,15}$ The four-membered ring $\mathrm{Pd}-\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{P}(1)$ is nearly planar, the dihedral angle between the planes $\mathrm{P}(1)-\mathrm{Pd}-\mathrm{P}(3)$ and $\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{P}(1)$ is $3.37^{\circ} .^{16}$

In the $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$ligand, the $\mathrm{P}-\mathrm{C}(1)$ distances are shorter [1.738(11), 1.751(10) and 1.786(11) \AA] than the other P-C(Ph) distances $[1.818(7)-1.850(7) \AA]$, as well as the $\mathrm{P}-\mathrm{CH}$ distances found in $\left[\mathrm{Pt}\left\{\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}\right\}_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}{ }^{11}[1.830(12)-1.891(11) \AA]$. This fact is a consequence of the deprotonation of the neutral $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ and indicates some component of a double bond in the $\mathrm{P}-\mathrm{C}(1)$ bonds.

The average $\mathrm{P}-\mathrm{C}(1)-\mathrm{P}$ angle is 119.3° (close to the expected value for an sp^{2} hybridized C atom) although the three P -$\mathrm{C}(1)-\mathrm{P}$ angles are very different; the smallest is $\mathrm{P}(3)-\mathrm{C}(1)-\mathrm{P}(1)$ [99.3(5) ${ }^{\circ}$] which is associated with the $\mathrm{P}, \mathrm{P}^{\mathrm{P}}$-co-ordination of the ligand to the metal. A similar situation has been observed in $\left[\mathrm{M}\left\{\mathrm{C}\left(\mathrm{PMe}_{2}\right)_{3}\right\}_{2}\right] \quad(\mathrm{M}=\mathrm{Sn}$ or Ge$\left.)\right)^{2-4,15}$ Finally, the CP_{3} skeleton deviates slightly from planarity, the dihedral angles between the planes $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(4)$ and $\mathrm{P}(4)-\mathrm{C}(1)-$ $\mathrm{P}(3), \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(4)$ and $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3), \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3)$ and $\mathrm{P}(4)-\mathrm{C}(1)-\mathrm{P}(3)$ being $19.9,17.4$ and 13.1° respectively and the distance from $\mathrm{C}(1)$ to the $\mathrm{P}(1)-\mathrm{P}(3)-\mathrm{P}(4)$ plane is $0.137 \AA$.

Crystal Structure of $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right] \cdot 4.74 \mathrm{CHCl}_{3}$ 4.-Fig. 3 shows a drawing of the structure of complex 4. Crystallographic data are collected in Table 4, atomic coordinates are presented in Table 7 and selected bond distances and bond angles are given in Table 8. As can be seen from Fig. 3, the palladium atom is located at a centre of symmetry and displays a distorted square-planar environment, formed by four phosphorus atoms of two $\mathrm{P}, \mathrm{P}^{\prime}$-co-ordinated $\left[\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right]^{-}$ligands. The angles around the Pd atom: $\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(3) 70.0(1)^{\circ}$ and $\mathrm{P}(3)-\mathrm{Pd}-\mathrm{P}(2 \mathrm{a}) 110.0(1)^{\circ}$ are similar to those found in complex 1 . The $\mathrm{Pd}-\mathrm{P}$ bond distances are in the usual range of values found for other palladium-phosphine complexes, ${ }^{13}$ and are similar to those found for complex 1. In the same way, the P-C(1) distances [1.749(7)-1.764(7) \AA] are the same (within experimental error) and are shorter than the

Table 4 Data for crystal structure analyses of compounds 1 and $4.4 .74 \mathrm{CHCl}_{3}$

Complex	1	$4.4 .74 \mathrm{CHCl}_{3}$
Formula	$\mathrm{C}_{61} \mathrm{H}_{45} \mathrm{~F}_{5} \mathrm{P}_{4} \mathrm{Pd}$	$\mathrm{C}_{78.74} \mathrm{H}_{64.74} \mathrm{Cl}_{14.22} \mathrm{O}_{2} \mathrm{P}_{6} \mathrm{Pd}$
M	1103.32	1834.1
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / n$
a / \AA	$15.1564(9)$	14.159(2)
b / \AA	14.5591 (8)	19.966(2)
c / \AA	$23.7302(17)$	16.061(2)
$\beta /^{\circ}$	91.814(7)	107.51(2)
U / \AA^{3}	5233.77	4329.8
Z	4	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.390	1.407
μ / mm^{-1}	0.484	0.807
$F(000)$	2248.3	1852.03
Crystal size	$0.3 \times 0.5 \times 0.2$	$0.4 \times 0.4 \times 0.4$
Transmission factors (max., min.)		$0.721,0.629$
Scan type	$20-\omega$	$2 \theta-\omega$
Range 20/ ${ }^{\circ}$	4.0-47.0	4.0-50.0
Reflections measured	8647	6918
Unique reflections	6118	6393
Observed reflections	3134	3957
Observation criterion	$F>5.0 \sigma(F)$	$F>6.0 \sigma(F)$
Refined parameters	532	542
R, R^{\prime}	0.054, 0.056	0.055, 0.079
Weighting scheme, w	$0.7801 /\left[\sigma^{2}(F)+0.003089 F^{2}\right]$	$1 /\left[\sigma^{2}(F)+0.0065 F^{2}\right]$
Shift/e.s.d. (mean, max.)	0.000, 0.001	$0.000,0.001$
Largest peak (e \AA^{-3})	0.69	0.75

Fig. 2 Molecular structure of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right] 1$
other $\mathrm{P}-\mathrm{C}(\mathrm{Ph})$ distances found in this compound [1.817(7)$1.832(7) \AA$, showing, as expected, a partial double bond character of the $\mathrm{P}-\mathrm{C}(1)$ bonds. The $\mathrm{P}=\mathrm{O}$ distance is similar to other $\mathrm{P}=\mathrm{O}$ distances found in the literature. ${ }^{17,18}$

The molecular skeleton is essentially planar, the dihedral angles between significant planes are: $\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(3)$ and $\mathrm{P}(2)-$ $\mathrm{C}(1)-\mathrm{P}(3) 5.6^{\circ}, \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(2)$ and $\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{P}(3) 1.5^{\circ}, \mathrm{P}(1)-$
$\mathrm{C}(1)-\mathrm{P}(2)$ and $\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3) 2.0^{\circ}, \mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3)$ and $\mathrm{P}(2)-$ $\mathrm{C}(1)-\mathrm{P}(3) 1.6^{\circ}$. Moreover, the $\mathrm{C}(1)$ atom is practically coplanar with $P(1), P(2)$ and $P(3)$ lying only $0.014 \AA$ out of this plane in contrast to the more distorted situation found in 1.
The $\mathrm{P}-\mathrm{C}(1)-\mathrm{P}$ angles average $120.0(4)^{\circ}$, as is expected for a sp^{2} hybridized C atom, however they are individually quite different as in 1 due to the P, P^{\prime}-chelate co-ordination of the

Table 5 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$

Atom	X/a	Y / b	2/c	Atom	X / a	Y / b	Z/c
Pd	7433 (1)	$7113(1)$	827(1)	C(32)	$9288(4)$	5 904(6)	$1387(4)$
$\mathrm{P}(1)$	8140 (2)	5791 (2)	$1138(1)$	C(33)	9 794(4)	$5126(6)$	$1512(4)$
$\mathrm{P}(2)$	$6515(2)$	8325 (2)	496(1)	C(34)	10 652(4)	5221 (6)	$1735(4)$
$\mathrm{P}(3)$	$6715(2)$	6 504(2)	1 596(1)	C(35)	11 004(4)	$6094(6)$	$1834(4)$
$\mathrm{P}(4)$	7342 (3)	4820 (2)	2 270(1)	C(36)	10 497(4)	$6872(6)$	$1709(4)$
C(1)	7 404(7)	5 543(7)	1 664(4)	C(37)	$9639(4)$	$6777(6)$	$1486(4)$
C(2)	$8369(7)$	$7429(9)$	235(5)	C(38)	5 545(4)	6 198(5)	$1527(3)$
C(3)	8 484(11)	7 004(13)	-240(6)	C(39)	5 294(4)	5 284(5)	1450 (3)
C(4)	9 197(17)	7 240(19)	-598(10)	C(40)	4 403(4)	5 060(5)	$1371(3)$
C(5)	9751 (15)	7956 (24)	-435(10)	C(41)	$3765(4)$	5750 (5)	$1369(3)$
C(6)	9 623(10)	8 376(16)	40(11)	C(42)	4016 (4)	6 664(5)	1446 (3)
C(7)	8 960(9)	8 145(10)	358(7)	C(43)	4 906(4)	$6888(5)$	$1525(3)$
C(8)	5 693(4)	7870 (6)	-5(3)	C(44)	$6800(6)$	7 207(5)	2 237(3)
$\mathrm{C}(9)$	5 233(4)	8 440(6)	-384(3)	C(45)	$6220(6)$	$7110(5)$	2 678(3)
C(10)	4 602(4)	8 069(6)	-760(3)	C(46)	$6383(6)$	7 572(5)	$3186(3)$
C(11)	$4431(4)$	7 128(6)	-756(3)	C(47)	$7127(6)$	8130 (5)	$3252(3)$
C(12)	$4891(4)$	$6557(6)$	-376(3)	C(48)	$7707(6)$	8 228(5)	2812 (3)
C(13)	5 522(4)	$6928(6)$	$-1(3)$	C(49)	7 544(6)	7766 (5)	2 304(3)
$\mathrm{C}(14)$	$7016(5)$	9243 (5)	90(3)	C(50)	7 336(6)	3 604(4)	2 044(3)
C(15)	$7109(5)$	$10128(5)$	309(3)	C(51)	7951 (6)	3 220(4)	$1687(3)$
C(16)	7 505(5)	$10812(5)$	-8(3)	C(52)	$7917(6)$	2 284(4)	$1562(3)$
C(17)	$7808(5)$	10 610(5)	-544(3)	C(53)	7 269(6)	$1732(4)$	$1794(3)$
C(18)	$7715(5)$	$9725(5)$	-762(3)	C(54)	6 654(6)	$2117(4)$	$2150(3)$
C(19)	$7318(5)$	9041 (5)	-445(3)	C(55)	6 688(6)	3 052(4)	2 275(3)
C(20)	5 902(5)	8 937(5)	$1031(3)$	C(56)	8 422(7)	$4913(8)$	2 651(4)
C(21)	6360 (5)	$9189(5)$	$1526(3)$	C(57)	$8879(7)$	$4145(8)$	2 857(4)
C(22)	$5913(5)$	$9605(5)$	1963 (3)	C(58)	9 648(7)	4 258(8)	$3189(4)$
C(23)	$5008(5)$	9768 (5)	$1905(3)$	C(59)	9 959(7)	$5138(8)$	3 314(4)
C(24)	4550 (5)	$9516(5)$	1410 (3)	C(60)	9 502(7)	$5906(8)$	3 108(4)
C(25)	$4997(5)$	$9100(5)$	973(3)	C(61)	8 734(7)	5 793(8)	2 776(4)
$\mathrm{C}(26)$	$8168(5)$	4 902(5)	591(3)	F(1)	$7927(9)$	6 324(6)	-422(3)
C(27)	8 930(5)	4 709(5)	299(3)	F(2)	9 292(11)	6790 (11)	- $1078(4)$
C(28)	$8910(5)$	4047 (5)	-126(3)	$F(3)$	10 429(7)	8 148(13)	-746(7)
C(29)	$8129(5)$	3 577(5)	-258(3)	F(4)	$10171(6)$	9 088(11)	215(7)
$\mathrm{C}(30)$	7367 (5)	3 769(5)	34(3)	F(5)	$8856(6)$	8 643(6)	847(5)
C(31)	7386 (5)	4 432(5)	459(3)				

Table 6 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ $\left.\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$

$\mathrm{Pd}-\mathrm{P}(1)$	$2.313(3)$	$\mathrm{Pd}-\mathrm{P}(2)$	$2.366(3)$
$\mathrm{Pd}-\mathrm{P}(3)$	$2.329(3)$	$\mathrm{Pd}-\mathrm{C}(2)$	$2.079(12)$
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.738(11)$	$\mathrm{P}(3)-\mathrm{C}(1)$	$1.751(10)$
$\mathrm{P}(4)-\mathrm{C}(1)$	$1.786(11)$	$\mathrm{P}(1)-\mathrm{C}(26)$	$1.835(8)$
$\mathrm{P}(1)-\mathrm{C}(32)$	$1.828(7)$	$\mathrm{P}(2)-\mathrm{C}(8)$	$1.818(7)$
$\mathrm{P}(2)-\mathrm{C}(14)$	$1.826(8)$	$\mathrm{P}(2)-\mathrm{C}(20)$	$1.828(8)$
$\mathrm{P}(3)-\mathrm{C}(38)$	$1.830(7)$	$\mathrm{P}(3)-\mathrm{C}(44)$	$1.834(7)$
$\mathrm{P}(4)-\mathrm{C}(50)$	$1.850(7)$	$\mathrm{P}(4)-\mathrm{C}(56)$	$1.849(1)$
		$\mathrm{P}(3)-\mathrm{Pd}-\mathrm{P}(1)$	$69.9(1)$
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(1)$	$171.3(1)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{P}(1)$	$94.7(1)$
$\mathrm{P}(3)-\mathrm{Pd}-\mathrm{P}(2)$	$105.0(1)$	$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{P}(3)$	$163.6(3)$
$\mathrm{C}(2)-\mathrm{Pd}-\mathrm{P}(2)$	$91.0(3)$	$\mathrm{Pd}-\mathrm{P}(3)-\mathrm{C}(1)$	$94.9(4)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{Pd}$	$95.8(3)$	$\mathrm{P}(4)-\mathrm{C}(1)-\mathrm{P}(1)$	$138.7(6)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3)$	$99.3(5)$		
$\mathrm{P}(4)-\mathrm{C}(1)-\mathrm{P}(3)$	$120.0(6)$		

ligand to the Pd centre. On the other hand, angles around $\mathrm{P}(1)$ average $109.3(4)^{\circ}$ as expected for an sp^{3} hybridized atom. Finally, no intermolecular contacts have been found between the molecule and the crystallization solvent.

Synthesis of Polynuclear Complexes.-The presence of an unco-ordinated phosphorus atom in complexes 1 and 2 allows the synthesis of polynuclear derivatives by reaction of $\mathbf{1}$ or $\mathbf{2}$ with suitable precursors. Thus, $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.$ $\left.\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right] 1$ reacts with cis- $\left[\mathrm{Pt}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (mole ratio $1: 1$), $\mathrm{Ag}\left[\mathrm{ClO}_{4}\right]$ or $\left[\mathrm{Au}(\mathrm{tht})_{2}\right]\left[\mathrm{ClO}_{4}\right]$ (mole ratio 2:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, giving the corresponding neutral dinuclear $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left\{\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\} \mathrm{Pt}-\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{CO}\right)\right] 6$ or trinuclear $\left[\mathrm{M}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left[\mu-\left(\mathrm{PPh}_{2}\right)_{2}-\right.\right.\right.$
$\left.\left.\left.\mathrm{CPPh}_{2}\right]\right\}_{2}\right] \mathrm{ClO}_{4}(\mathrm{M}=\mathrm{Ag} 7$ or Au 8$)$ complexes [equations (3) and (4)].

$$
\begin{gather*}
{\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]+\left[\mathrm{Pt}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right] \longrightarrow} \\
\left.\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right){\mathrm{Pd}\left\{\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}\right.}_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right] \\
6+\mathrm{CO} \tag{3}\\
2\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]+\left[\mathrm{ML}_{n}\right] \mathrm{ClO}_{4} \longrightarrow \\
{\left[{\left.\mathrm{M}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left[\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right]\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]}_{\mathrm{M}=\mathrm{Ag} 7 \text { or } \mathrm{Au} 8}^{8} \quad+n \mathrm{~L}\right.}
\end{gather*}
$$

Moreover, complex 3 reacts with $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OClO}_{3}\right)\right]$ (mole ratio 1:2) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ yielding the cationic trinuclear compound 9 [equation (5)]

$$
\begin{gather*}
{\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\right]+2\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OClO}_{3}\right)\right] \longrightarrow} \\
\mathbf{3} \\
{\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\left(\mathrm{AgPPh}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}} \tag{5}
\end{gather*}
$$

These polynuclear complexes 6-9 gave satisfactory elemental analysis (Table 1). The most relevant IR absorptions are collected in Table 2. Complex 6 shows a strong absorption at $2090 \mathrm{~cm}^{-1}$, assigned to $v(\mathrm{CO})$, the decrease in wavenumber of the $v(\mathrm{CO})$ values relative to those of the starting material cis$\left[\mathrm{Pt}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]\left(2174,2143 \mathrm{~cm}^{-1}\right)^{19}$ indicates, as expected, an increase of the electron density around the platinum centre.
Absorptions at $c a .900 \mathrm{~cm}^{-1}$ for complexes 6-9 indicate the presence of deprotonated $\left[\mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]^{-}$. Absorptions assign-

Fig. 3 Molecular structure of $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right] 4$

Table 7 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right] \cdot 4.74 \mathrm{CHCl}_{3}$

Atom	X / a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
Pd	0	0	0	C(27)	2593(6)	1061(4)	-2172(5)
P(1)	1881(1)	-217(1)	-2025(1)	C(28)	3301(7)	1560(4)	- 1990(6)
$\mathrm{O}(1)$	1332(4)	- 193(3)	-2986(3)	C(29)	4233(7)	1456(4)	- 1445(6)
$\mathrm{P}(2)$	285(1)	-659(1)	- 1097(1)	C(30)	4480(5)	832(4)	- 1049(5)
$\mathrm{P}(3)$	1110(1)	538(1)	-600(1)	C(31)	3774(5)	327(4)	- 1201(5)
C(1)	1175(5)	-118(3)	-1301(4)	C(32)	2574(5)	-1000(3)	-1749(5)
C(2)	2321(5)	744(3)	152(5)	C(33)	2980(5)	-1215(3)	-901(5)
C(3)	2760(6)	273(4)	786(5)	C(34)	3512(6)	-1801(4)	-738(6)
C(4)	3703(6)	378(5)	1349(6)	C(35)	3643(6)	-2172(4)	-1414(7)
C(5)	4205(6)	961(5)	1300(7)	C(36)	3228(6)	- 1964(4)	-2254(7)
C(6)	3769(7)	1439(5)	682(7)	C(37)	2692(5)	- 1384(4)	-2439(5)
C(7)	2835(6)	1331(4)	110(5)	C(38)	7167(14)	1592(9)	7235(13)
C(8)	629(5)	1315(3)	-1181(5)	$\mathrm{Cl}(1)$	6872(4)	1987(3)	6254(3)
C(9)	200(5)	1312(4)	-2074(5)	$\mathrm{Cl}(2)$	7547(3)	805(2)	7236(4)
$\mathrm{C}(10)$	-241(6)	1884(4)	-2511(7)	$\mathrm{Cl}(3)$	6230(3)	1653(3)	7726(3)
C(11)	-219(7)	2466(5)	-2057(8)	C(40)	3916(24)	- 108(14)	5750(25)
C(12)	210(8)	2480(4)	-1165(8)	$\mathrm{Cl}(7)$	2860(13)	-662(7)	5310(10)
C(13)	635(7)	1903(4)	-719(6)	$\mathrm{Cl}(8)$	4754(15)	-663(8)	6238(13)
C(14)	775(5)	- 1498(3)	-778(5)	Cl(9)	3592(16)	605(7)	5986(14)
C(15)	1301(6)	- 1627(4)	86(5)	C(41)	464(9)	-1161(6)	5409(7)
C(16)	1742(6)	-2241(5)	336(6)	$\mathrm{Cl}(10)$	1558(8)	-1379(7)	5039(7)
C(17)	1643(8)	-2733(4)	-276(8)	$\mathrm{Cl}(11)$	1222(9)	-1811(5)	5276(8)
C (18)	1101(7)	-2622(4)	-1130(7)	$\mathrm{Cl}(12)$	-446(9)	-1762(7)	5870(11)
$\mathrm{C}(19)$	672(6)	-2012(4)	-1376(6)	$\mathrm{Cl}(14)$	-314(8)	-760(9)	4444(9)
C(20)	-788(5)	-807(3)	-2049(5)	$\mathrm{Cl}(15)$	-348(17)	-866(11)	4524(13)
C(21)	-887(6)	-487(5)	-2845(5)	$\mathrm{Cl}(16)$	83(10)	-1778(6)	5779(10)
C(22)	-1736(8)	- 585(6)	-3547(7)	C(39)	4149(1)	194(1)	6484(1)
C(23)	-2481(8)	-972(6)	-3417(9)	$\mathrm{Cl}(4)$	2980(1)	229(1)	5971(1)
C(24)	-2381(7)	-1306(6)	-2633(8)	$\mathrm{Cl}(5)$	4400(1)	-688(1)	6465(1)
C(25)	-1535(6)	-1217(5)	- 1970(6)	$\mathrm{Cl}(6)$	4826(1)	548(1)	5809(1)
C(26)	2826(5)	431(3)	- 1754(4)				

able to the $\mathrm{ClO}_{4}{ }^{-}$anion in $7-9$ are also listed (Table 2). ${ }^{20}$ The ${ }^{19}$ F NMR spectrum of 6 shows signals corresponding to
three chemically inequivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, each behaving as a AA' $^{\prime} \mathbf{M X X}^{\prime}$ system. The ${ }^{19} \mathrm{~F}$ NMR spectra of 7 and 8

Table 8 Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for $\left[\operatorname{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2^{-}}\right.\right.$ $\left.\left.\mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right]-4.74 \mathrm{CHCl}_{3}$

$\mathrm{Pd}-\mathrm{P}(2)$	$2.329(2)$	$\mathrm{Pd}-\mathrm{P}(3)$	$2.338(2)$
$\mathrm{P}(1)-\mathrm{O}(1)$	$1.505(5)$	$\mathrm{P}(1)-\mathrm{C}(1)$	$1.758(8)$
$\mathrm{P}(2)-\mathrm{C}(1)$	$1.764(7)$	$\mathrm{P}(3)-\mathrm{C}(1)$	$1.749(7)$
$\mathrm{P}(1)-\mathrm{C}(26)$	$1.817(7)$	$\mathrm{P}(1)-\mathrm{C}(32)$	$1.827(7)$
$\mathrm{P}(2)-\mathrm{C}(14)$	$1.827(7)$	$\mathrm{P}(2)-\mathrm{C}(20)$	$1.827(6)$
$\mathrm{P}(3)-\mathrm{C}(2)$	$1.822(6)$	$\mathrm{P}(3)-\mathrm{C}(8)$	$1.832(7)$
$\mathrm{P}(2)-\mathrm{Pd}-\mathrm{P}(3)$	$70.0(1)$	$\mathrm{P}(3)-\mathrm{Pd}-\mathrm{P}(2 \mathrm{a})$	$110.0(1)$
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(1)$	$116.9(3)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(26)$	$109.9(3)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(26)$	$106.6(3)$	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(32)$	$110.4(3)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(32)$	$107.8(3)$	$\mathrm{C}(26)-\mathrm{P}(1)-\mathrm{C}(32)$	$104.4(3)$
$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(1)$	$95.2(2)$	$\mathrm{Pd}-\mathrm{P}(2)-\mathrm{C}(14)$	$116.3(3)$
$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(14)$	$112.4(3)$	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(20)$	$113.8(3)$
$\mathrm{Pd}-\mathrm{P}(3)-\mathrm{C}(1)$	$95.3(2)$	$\mathrm{Pd}-\mathrm{P}(3)-\mathrm{C}(2)$	$116.5(3)$
$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(2)$	$112.0(3)$	$\mathrm{Pd}-\mathrm{P}(3)-\mathrm{C}(8)$	$113.9(3)$
$\mathrm{C}(1)-\mathrm{P}(3)-\mathrm{C}(8)$	$112.9(3)$	$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(2)$	$129.5(4)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{P}(3)$	$131.3(4)$	$\mathrm{P}(2)-\mathrm{C}(1)-\mathrm{P}(3)$	$99.2(4)$

indicate the presence of only one type of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group ($\mathrm{AA}^{\prime} \mathrm{MXX}^{\prime}$ system).

The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 6 (Table 3) indicates the presence of four chemically inequivalent phosphorus atoms, the signal assigned to P_{e} (P_{d} in the starting compound 1) showing ${ }^{195} \mathrm{Pt}$ satellites. The spectra of 7 and 8 show signals corresponding to four chemically inequivalent phosphorus atoms. In 7 the signal assigned to P_{e} appears as a doublet of doublets due to the coupling with ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$ nuclei (Fig. 1, B). The insolubility of 9 in common organic solvents prevents NMR studies on this compound.

Experimental

Materials.--Solvents were dried and distilled before use by standard methods. IR spectra were recorded with a Perkin Elmer spectrophotometer and NMR spectra with a Varian XL-200 and Unity-300 spectrometers. Elemental analyses were carried out with a Perkin Elmer 240-B microanalyser. Tris(diphenylphosphino)methane $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ was purchased from Strem Chemicals, and used without further purification. The starting materials $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.\left.O, O^{\prime}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{PR}_{3}=\right.$ PPh_{3} or $\left.\mathrm{PPh}_{2} \mathrm{Et}\right),{ }^{6}\left[\mathrm{Pd}\left(\mathrm{acac}-O, O^{\prime}\right)_{2}\right],{ }^{21}\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{tht})_{2}\right],{ }^{22}$ $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{acac}-\mathrm{O}, \mathrm{O}^{\prime}\right)\right],{ }^{23} \quad \mathrm{cis}-\left[\mathrm{Pt}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{19}$ and $\left[\mathrm{Au}(\mathrm{tht})_{2}\right]\left[\mathrm{ClO}_{4}\right]^{24}$ were prepared following previously published methods.

Syntheses.- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ 1. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 cm ${ }^{3}$) of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.\left.O, \mathrm{O}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)\right]$ $(0.109 \mathrm{~g}, 0.172 \mathrm{mmol})$, was added $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.097 \mathrm{~g}, 0.172$ mmol). A change in colour of the solution from pale to deep yellow was observed and after 4 h stirring at room temperature the solvent was evaporated almost to dryness $\left(2 \mathrm{~cm}^{3}\right)$. Addition of n-hexane ($20 \mathrm{~cm}^{3}$) over the oily residue and vigorous stirring gave a yellow precipitate of 1 . Yield: $0.128 \mathrm{~g}(67 \%)$.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right] 2$ was prepared as for 1 starting from $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\right.\right.$ acac- $\left.\left.O, O^{\prime}\right)\left(\mathrm{PPh}_{2} \mathrm{Et}\right)\right](0.078 \mathrm{~g}$, $0.133 \mathrm{mmol})$ and $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.076 \mathrm{~g}, 0.133 \mathrm{mmol})$. Yield: $0.103 \mathrm{~g}(73 \%)$.
$\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\right]$ 3. (a) From [Pd(acac-O,O' $\left.\mathrm{O}_{2}\right]$. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($25 \mathrm{~cm}^{3}$) of $\left[\mathrm{Pd}\left(\text { acac- } O, O^{\prime}\right)_{2}\right](0.304 \mathrm{~g}$, $0.935 \mathrm{mmol})$, was added $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(1.064 \mathrm{~g}, 1.871 \mathrm{mmol})$ under N_{2}. The initial orange solution turned deep orange. The mixture was stirred for 3 h at room temperature and the deep yellow precipitate of $\mathbf{3}$ was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 5 \mathrm{~cm}^{3}\right.$). Yield: $0.548 \mathrm{~g}(51 \%)$.
(b) From $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\right.$ tht $\left.)\right]$. Addition of $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.370 \mathrm{~g}, 0.650 \mathrm{mmol})$ to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (20 $\left.\mathrm{cm}^{3}\right)$ of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{acac}-O, O^{\prime}\right)(\mathrm{tht})\right](0.150 \mathrm{~g}, 0.325 \mathrm{mmol})$
results in a deep yellow solution, which was stirred at room temperature for 4 h . The solvent was then evaporated to dryness and the oily residue treated with $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ to give a deep yellow solid 3. Yield: $0.101 \mathrm{~g}(25 \%)$.
(c) From $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { tht })_{2}\right]$. To a colourless solution of $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{tht})_{2}\right](0.200 \mathrm{~g}, 0.324 \mathrm{mmol})$ in benzene $\left(30 \mathrm{~cm}^{3}\right)$, $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.369 \mathrm{~g}, 0.648 \mathrm{mmol})$ was added, and the mixture was refluxed for 4 h . During this time the solution changed from colourless to deep orange. Evaporation of the solvent almost to dryness ($2 \mathrm{~cm}^{3}$) and addition of $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$ gave a yellow precipitate of 3. Yield: $0.242 \mathrm{~g}(60 \%)$.
$\left[\operatorname{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}_{2}\right]$ 4. Complex 4 can be obtained quantitatively either by stirring a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 3 in air at room temperature for several days or by bubbling O_{2} through a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $\mathbf{3}$ for 4 h , at room temperature. Evaporation of the solvent and addition of n-hexane gave an orange solid 4 .
$\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pd}_{(}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CP}(\mathrm{O}) \mathrm{Ph}_{2}\right\}\right]$ 5. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $\left(20 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{NBu}_{4}\right]\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{acac}-O, O^{\prime}\right)\right](0.260 \mathrm{~g}$, $0.332 \mathrm{mmol}), \mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.189 \mathrm{~g}, 0.332 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 16 h . Evaporation of the solvent to dryness and addition of a mixture of $\mathrm{Pr}^{\mathrm{i} O H}-n$-hexane ($1: 1,20 \mathrm{~cm}^{3}$) gave a pale yellow precipitate of 5. Yield: $0.170 \mathrm{~g}(41 \%)$.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left\{\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ 6. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($20 \mathrm{~cm}^{3}$) of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] 1(0.188 \mathrm{~g}, 0.171 \mathrm{mmol})$ at room temperature, was added cis $-\left[\mathrm{Pt}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](0.100 \mathrm{~g}, 0.171 \mathrm{mmol})$, and the mixture was stirred at room temperature for 18 h . Evaporation of the solvent to dryness and addition of n-hexane $\left(20 \mathrm{~cm}^{3}\right)$ gives a pale yellow solid 6. Yield: $0.166 \mathrm{~g}(59 \%)$.
$\left[\mathrm{Ag}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left[\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right]\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right]$ 7. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution ($20 \mathrm{~cm}^{3}$) of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] 1(0.400 \mathrm{~g}, 0.363 \mathrm{mmol})$, at room temperature, was added $\mathrm{Ag}\left[\mathrm{ClO}_{4}\right](0.038 \mathrm{~g}, 0.182 \mathrm{mmol})$. The mixture was stirred at room temperature with exclusion of light until complete dissolution of the $\mathrm{Ag}\left[\mathrm{ClO}_{4}\right](2 \mathrm{~h})$. Then, the solvent was evaporated almost to dryness ($2 \mathrm{~cm}^{3}$) and the oily residue was treated with $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$. Continuous stirring gave a pale yellow precipitate 7. Yield: $0.360 \mathrm{~g}(82 \%)$.
$\left[\mathrm{Au}\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Pd}\left[\mu-\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right]\right\}_{2}\right]\left[\mathrm{ClO}_{4}\right] \quad 8$ was prepared as for 7 starting from $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] 1(0.250 \mathrm{~g}, 0.226 \mathrm{mmol})$ and $\left[\mathrm{Au}(\mathrm{tht})_{2}\right]\left[\mathrm{ClO}_{4}\right](0.053 \mathrm{~g}$, $0.113 \mathrm{mmol})$. Yield: $0.223 \mathrm{~g}(83 \%)$.
$\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\left(\mathrm{AgPPh}_{3}\right)_{2}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ 9. To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ suspension $\left(15 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{Pd}\left\{\left(\mathrm{PPh}_{2}\right)_{2} \mathrm{CPPh}_{2}\right\}_{2}\right] 3(0.250 \mathrm{~g}, 0.201$ $\mathrm{mmol})$ was added $\left[\mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{OClO}_{3}\right)\right](0.189 \mathrm{~g}, 0.402 \mathrm{mmol})$. After stirring for 1 h at room temperature, with exclusion of light, a precipitate of the product 9 was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 5 \mathrm{~cm}^{3}\right)$. Yield: $0.389 \mathrm{~g}(89 \%)$.

Crystal Structure Determination.-Suitable crystals of compounds 1 and 4 for X-ray studies were obtained by slow diffusion at $-30^{\circ} \mathrm{C}$ of n-hexane into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1) or CHCl_{3} (4) solutions of the corresponding products. Data were collected on a Siemens STOE/AED-2 four-circle diffractometer at room temperature (1) or 223 K (4) in the range $4 \leqslant 2 \theta \leqslant 47^{\circ}$ for 1 or $4 \leqslant 2 \theta \leqslant 50^{\circ}$ for 4 . Accurate lattice parameters were determined from accurate positions of 24 reflections ($21 \leqslant 2 \theta \leqslant 27^{\circ}$) for 1 or 28 reflections ($18 \leqslant 2 \theta \leqslant 24^{\circ}$) for 4 . Intensity data were corrected for Lorentz and polarization effects. For compound 4 a semiempirical absorption correction (6ψ-scans) was applied (rescaled minimum and maximum transmission factors: $0.629,0.721$).
Structure solution and refinement. The structure of complex 1 was solved by the use of Patterson and Fourier methods. All calculations were carried out with SHELX 76^{25} and SHELXS 86. ${ }^{26}$ All non-hydrogen atoms were refined with anisotropic thermal parameters. The carbon atoms of the phenyl groups were refined as rigid hexagons. Calculations by full-matrix least squares were performed on a VAX 8300 computer. For complex 4 the structure was solved by the use of Patterson and Fourier
methods. All calculations were carried out with SHELXTL PLUS. ${ }^{27}$ All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms of the phenyl groups were geometrically calculated and refined with a common thermal parameter $\left(0.069 \AA^{2}\right)$. Near the end of the structure refinement, a difference map showed several high peaks of electron density, due to disordered CHCl_{3}. The highest peaks were assigned to Cl atoms, and the multiplicities and thermal parameters of the Cl and C atoms were refined alternately. There are 2.37 molecules of CHCl_{3} per asymmetric unit. These were located in five different places with the following occupancies: $0.75[\mathrm{C}(38)$, $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Cl}(3)], 0.40[\mathrm{C}(39), \mathrm{Cl}(4), \mathrm{Cl}(5), \mathrm{Cl}(6)], 0.22[\mathrm{C}(40)$, $\mathrm{Cl}(7), \mathrm{Cl}(8), \mathrm{Cl}(9)]$. There are also two molecules of CHCl_{3} each with an occupancy of 0.5 which share the same carbon atom $\mathrm{C}(41)$ which thus has a full occupancy. All non-hydrogen atoms of the solvent molecules were refined with anisotropic thermal parameters except for $\mathrm{C}(40)$. Loose observational restraints were placed on some interatomic distances in the CCl_{3} groups during the final refinement of the structure. ${ }^{27}$ Calculations by full-matrix least squares were performed on a Micro-VAX 4000-300 computer.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Direccion General de Investigacion Cientifica y Tecnica (Spain) for financial support (Project PB89-0057) and E. P. U. thanks Diputación General de Aragón (D.G.A.) for a grant.

References

1 A. A. Arduini, A. A. Bahsoun, J. A. Osborn and C. Voelker, Angew. Chem., Int. Ed. Engl., 1980, 19, 1024; A. F. M. J. van der Ploeg and G. van Koten, Inorg. Chim. Acta, 1981, 51, 225; M. M. Harding, B. S. Nicholls and A. K. Smith, J. Organomet. Chem., 1982, 226, C17; A. A. Bahsoun, J. A. Osborn, C. Voelker, J. J. Bonnet and G. Lavigne, Organometallics, 1982, 1, 1114; A. A. Bahsoun, J. A. Osborn, J. P. Kintzinger, P. H. Bird and U. Siriwardane, Nouv. J. Chem., 1984, 8, 125; D. J. Darensbourg, D. J. Zalewski and T. Delord, Organometallics, 1984, 3, 1210; J. A. Clucas, M. M. Harding, B. S. Nicholls and A. K. Smith, J. Chem. Soc., Chem. Commun., 1984, 319; D. J. Darensbourg, D. J. Zalewski, A. L. Rheingold and R. L. Durney, Inorg. Chem., 1986, 25, 3281; J. R. Kennedy, P. Selz, A. L. Rheingold, W. C. Trogler and F. Basolo, J. Am. Chem. Soc., 1989, 111, 3615; J. T. Magne and S. F. Dessens, J. Organomet, Chem., 1984, 262, 347; J. A. Osborn and G. G. Stanley, Angew. Chem., Int. Ed. Engl., 1980, 19, 1025; A. A. Bahsoun, J. A. Osborn, P. H. Bird, D. Nucciarone and A. V. Peters, J. Chem. Soc., Chem. Commun., 1984, 72; H. El-Almouri, A. A. Bahsoun, J. Fischer and J. A. Osborn, Angew. Chem., Int. Ed. Engl., 1987, 26, 1169; H. El-Almouri, A. A. Bahsoun and J. A. Osborn, Polyhedron, 1988, 7, 2035; J. D. Goodrich and J. P. Selegne, Organometallics, 1985, 4, 798; S. Al-Jibori and B. L. Shaw, J. Organomet. Chem., 1984, 272, 213.

2 H. H. Karsch, A. Appelt and G. Müller, Organometallics, 1986, 5, 1664.

3 H. H. Karsch, A. Appelt, J. Riede and G. Müller, Organometallics, 1987, 6, 316.
4 H. H. Karsch, B. Deubelly, G. Hanika, J. Riede and G. Müller, J. Organomet. Chem., 1988, 344, 153.

5 J. Forniés, R. Navarro, F. Martinez and E. P. Urriolabeitia, Polyhedron, 1990, 9, 2181.
6 J. Forniés, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., 1990, 390, 257; H. Hashimoto, Y. Nakamura and S. Okeya, Inorg. Chim. Acta, 1986, 120, L25.
7 (a) R. Usón, J. Forniés, M. Tomás and R. Fandos, J. Organomet. Chem., 1984, 263, 253; (b) J. R. Berenguer, J. Forniés and B. Menjón, unpublished work.
8 J. Forniés, R. Navarro and E. P. Urriolabeitia, J. Organomet. Chem., 1993, 452, 241.
9 K. Nakamoto, IR Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1963, p. 186.
10 R. Usón, J. Forniés, P. Espinet, R. Navarro and C. Fortuño, J. Chem. Soc., Dalton Trans., 1987, 2077.
11 K. J. Beckett and S. J. Loeb, Can. J. Chem., 1988, 66, 1073.
12 R. Usón and J. Forniés, Adv. Organomet. Chem., 1988, 28, 219.
13 A. G. Orpeı,, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1.
14 R. Usón, A. Laguna, M. Laguna, B. Manzano, P. G. Jones and G. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 839; H. H. Karsch, Angew. Chem., Int. Ed. Engl., 1982, 21, 311; H. H. Karsch, Angew. Chem., Int. Ed. Engl., 1982, 21, 921; H. Schmidbaur and J. R. Mandl, Angew. Chem., Int. Ed. Engl., 1977, 16, 640; H. Schmidbaur, J. R. Mandl, J. Basset, G. Blaschke and B. Zimmer-Gasser, Chem. Ber., 1981, 114, 433; C. E. Briant, K. P. Hall and M. P. Mingos, J. Organomet. Chem., 1982, 229, C5; R. Usón. A. Laguna, M. Laguna, M. C. Gimeno, P. G. Jones, C. Fittschen and G. Sheldrick, J. Chem. Soc., Chem. Commun., 1986, 509.
15 H. H. Karsch, A. Appelt and G. Müller, Angew. Chem., Int. Ed. Engl., 1985, 24, 402.
16 M. Nardelli, Comput. Chem., 1983, 7, 95.
17 S. Shieh, C. Che and S. Peng, Inorg. Chim. Acta, 1992, 192, 151.
18 W. Beck, M. Keubler, E. Leide, U. Nagel, M. Schaal, S. Cenini, P. Del Buttero, E. Licandro, S. Maiorane and A. Chiesi Villa, J. Chem. Soc., Chem. Commun., 1981, 446.

19 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1986, 5, 1581.
20 K. Nakamoto, IR Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1963, p. 107.
21 S. Okeya, S. Ooi, K. Matsumoto, Y. Nakamura and S. Kawaguchi, Bull. Chem. Soc. Jpn., 1981, 54, 1085.
22 R. Usón, J. Forniés, F. Martínez and M. Tomás, J. Chem. Soc., Dalton Trans., 1980, 888.
23 R. Usón, J. Gimeno, J. Forniés and F. Martínez, Inorg. Chim. Acta, 1981, 50, 173.
24 R. Usón, A. Laguna, A. Navarro, R. V. Parish and L. S. Moore, Inorg. Chim. Acta, 1986, 112, 205.
25 G. M. Sheldrick, SHELX 76, University of Cambridge, 1976.
26 G. M. Sheldrick, SHELXS 86, University of Göttingen, 1986.
27 G. M. Sheldrick, SHELXTL-PLUS, Software Package for the Determination of Crystal Structure, Release 4.0, Siemens Analytical X-Ray Instruments, Inc., Madison, WI, 1990.

Received 6th August 1993; Paper 3/04757A

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

