Highly Stereospecific Carbene Insertions into Platinum– Halide Bonds. Crystal Structure of [PtCl(S-CHClSiMe₃)-(S,S-Ph₂PCHMeCH₂CHMePPh₂)][†]

Paola Bergamini,^{*,}^a Emiliana Costa,^a A. Guy Orpen,^b Christian Ganter^b and Paul G. Pringle^{*,b} ^a Dipartimento di Chimica dell' Università di Ferrara e Centro di Studio su Fotoreattività e Catalisi del CNR, Via L. Borsari 46, 44100 Ferrara, Italy

^b School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK

Trimethylsilyldiazomethane reacted with $[PtX_2L_2]$ $[X = Cl, Br or I; L_2 = cycloocta-1,5-diene (cod) or Ph_2P(CH_2), PPh_2 where <math>n = 1-4]$ to give the corresponding $[PtX(CHXSiMe_3)L_2]$ as a racemic mixture in high yields. The cod ligands in $[PtX(CHXSiMe_3)(cod)]$ were readily displaced by diphosphines. When optically active complexes $[PtX_2L_2]$ $[X = Cl, Br or I; L_2 = (2S,3S)-2,3-bis(diphenylphosphino)butane, <math>(2S,4S)-2,4-bis(diphenylphosphino)pentane (S,S-skewphos)$ or (4R,5R)-4,5-bis(diphenylphosphino-methyl)-2,2-dimethyl-1,3-dioxolane] were treated with trimethylsilyldiazomethane the products $[PtX_{CHXSiMe_3})L_2]$ were mixtures of diastereoisomers in different proportions ranging from 1:1 to 15:1. The major diastereoisomer of $[PtCl(CHCISiMe_3)(S,S-skewphos)]$ was readily separated by fractional crystallisation and its crystal structure revealed that the configuration at the α -carbon was S. This compound is configurationally stable for at least 14 d in CDCl_3 solution as shown by ³¹P NMR spectroscopy. The high diastereoiselectivities obtained in some of the reactions may originate from steric effects.

Chloromethylplatinum(II) complexes¹ have been used for the synthesis of co-ordinated phosphorus ylides,² platinaoxacyclobutanes,³ platinaazacyclobutanes⁴ and for some novel C-C bond-forming reactions.⁵ We have previously shown⁶ that diazocarbonyl compounds react with complexes of the type $[PtX_2L_2](X = Cl \text{ or } I, L_2 = cyclooctadiene \text{ or } a \text{ diphosphine})$ to give functionalised chloromethylplatinum(II) complexes containing an asymmetric carbon atom α to the platinum and that this reaction is diastereoselective when L_2 is a chiral diphosphine (diastereomeric ratios of up to 7:1). We now report that, in the absence of water, the readily available diazo compound Me₃SiCHN₂ reacts similarly with complexes of the type [PtX₂L₂] to give [PtCl(CHClSiMe₃)L₂] and when $L_2 =$ chiral diphosphine diastereomeric ratios of up to 15:1 have been achieved. A preliminary account of part of this work has been given previously⁷ and recently McCrindle and McAlees⁸ have also reported observations on some of these reactions.

Results and Discussion

Treatment of $[PtX_2(cod)]$ (X = Cl, Br or I; cod = cycloocta-1,5-diene) with 1.1 equivalent or an excess of Me₃SiCHN₂ gave the monoinsertion products $[PtX(CHXSiMe_3)(cod)]$ (X = Cl, 1a; Br, 1b; or I, 1c) in high yields which have been fully characterised (see Tables 1 and 2 and Experimental section for details). The ¹H NMR spectrum of 1a shows four distinct resonances for the alkenyl protons of the co-ordinated cod (multiplets of δ 4.84, 4.97, 5.51 and 5.62), consistent with the presence of the asymmetric CHClSiMe₃ group which renders these protons diastereotopic. Similarly, treatment of $[PtX_2L_2]$ [X = Cl or I; L₂ = Ph₂P(CH₂)_nPPh₂, n = 1 (dppm), 2 (dppe), 3 (dppp) or 4 (dppb)] with Me₃SiCHN₂ gave the monoinsertion products 1d-1i (see Tables 1-3 for characterising data); some of these compounds have also been made by

 Table 1
 Elemental analytical^a and IR data (cm⁻¹)^b

	Analysis (%)		
Complex	C	Н	v(Pt-Cl)
la	31.10 (31.30)	4.75 (4.80)	300
1b	26.45 (26.45)	4.10 (4.00)	
1c	23.05 (22.40)	3.55 (3.45)	
1d	47.25 (47.30)	4.30 (4.40)	290
1e	37.80 (37.90)	3.40 (3.50)	
lf	48.00 (48.00)	4.50 (4.55)	280
1g	38.85 (38.60)	3.60 (3.65)	
1h	48.05 (48.75)	4.70 (4.75)	280
2a, 3a°	47.30 (47.20)	4.95 (4.80)	290
2b, 3b°	43.00 (42.90)	4.50 (4.30)	
2c, 3c ^d	37.35 (37.90)	3.90 (3.80)	
4a, 5a ^d	45.95 (46.40)	4.70 (4.80)	290
4c, 5c°	39.90 (39.50)	4.25 (4.05)	
6a, 7a	49.00 (49.40)	5.55 (5.00)	290
6b, 7b	44.85 (44.75)	4.55 (4.50)	
6c, 7c ^e	42.00 (42.30)	4.25 (4.70)	

^a Calculated values in parentheses. ^b Spectra measured in CsI pellets. ^c Contains 0.5 CH₂Cl₂.^d Contains 1 CH₂Cl₂. ^e Contains 1 Et₂O.

substitution of the cod ligands in complexes 1a and 1c by the appropriate diphosphine (see Scheme 1 and Experimental section). Complexes 1a-1i are racemic mixtures.

Treatment of complex 1a with (2S,3S)-2,3-bis(diphenylphosphino)butane (S,S-chiraphos) in CDCl₃ gave a 1:1 mixture of diastereoisomers 2a and 3a (Scheme 2). The presence of the two isomers is particularly evident in the ³¹P NMR spectrum which shows two equally intense AX patterns, the parameters for which are closely similar (see Table 2). In the same manner, 1:1 mixtures of diastereoisomers 2b with 3b, 2c with 3c and the corresponding complexes of (2S,4S)-2,4bis(diphenylphosphino)pentane (S,S-skewphos) (4a-4c with 5a-5c) and (4R,5R)-4,5-bis(diphenylphosphinomethyl)-2,2-

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

Table 2 ³¹P NMR data^a

Complex	$\delta(\mathbf{P}_{\mathbf{A}})$	$^{1}J(\text{PtP}_{A})$	δ(P _B)	$^{1}J(\text{PtP}_{B})$	$^{2}J(\mathbf{P}_{A}\mathbf{P}_{B})$	Ratio ^{<i>b</i>}
1d	-42.8	4050	-42.8	1362	49	
le	-52.8	3614	- 57.2	1457	50	
lf	40.8	4177	40.8	1816	0	
1g	42.6	3910	40.5	1851	Ő	
-5 1h	2.5	4109	-0.8	1675	24	
1i	15.6	42.57	13.4	1738	17	
2a. 3a	41.3	4089	41.7	1767	15	10
,	42.5	4255	43.2	1734	15	10
2b. 3b	41.6	4030	40.5	1795	13	5
,	44.1	4130	43.2	1781	13	0
2c. 3c	39.1	3828	37 1	1818	12	5
,	41 7	3923	41.3	1808	12	5
4a. 5a	13.3	4116	14.1	1719	24	15
,	14.4	4128	10.7	1660	24	15
4b. 5b	12.8	4066	12.1	1760	23	2
,	13.7	4074	87	1707	25	2
4c. 5c	8.8	3896	75	1820	22	2
,	9.7	3902	59	1792	24	2
6a. 7a	2.1	42.52	40	1677	15	2
	5.0	4269	3.9	1695	15	-
6h. 7h	4.1	4128	-0.5	1714	15	1
,	2.2	4226	-0.9	1724	17	
6c. 7c	0.1	4045	-81	1772	17	1
,	-1.3	4075	-6.0	1796	17	•

^a Spectra (36.2 MHz) measured in CDCl₃ at 28 °C unless otherwise stated. Chemical shifts (δ) in ppm (±0.1) to high frequency of 85% H₃PO₄. Coupling constants (J) in Hz (±3). Atom P_A is *trans* to the halogen and P_B *trans* to the carbon. ^b In cases where two diastereoisomers are formed numbers in this column refer to ratios of the intensities of the ³¹P NMR signals (data for the major isomer are given first).

Table 3	Selected proton	NMR data ^a		
Complex	δ(PtCH)	$^{2}J(\text{PtCH})^{b}$	³ J(PPtCH)	δ(SiCH ₃)
1a	4.48	91.0		+0.22
1b	4.38	84.2		+0.26
1c	2.4 °			+0.30
1d	4.12	48.9	7.3	-0.12
1e	3.48	52.0	11.5, 7.2	-0.10
lf	3.50	31.0	10.0, 7.3	-0.12
1g	3.10	33.5	12.9, 5.9	-0.05
1h	2.98	34.8	13.2, 6.0	-0.05
1i	3.03	37.2	14.1, 6.3	-0.12
2a, 3a	3.30	29.3	10.6, 8.0	-0.12
2b, 3b	3.31	32.7	11.7, 7.3	-0.12
2c, 3c	3.03	35.7	13.1, 6.8	-0.08
4a, 5a	2.92	24.5	14.0, 7.0	-0.10
4b, 5b	2.89	n.o.		0.00
4c, 5c	2.80	n.o.		0.00
6a, 7a	3.32 ^d	n.o.		-0.10, -0.11
6b, 7b	3.65 ^d	n .o.		-0.00, -0.02
6c, 7c	3.84 ^d	n.o.		0.00, -0.02

^{*a*} Spectra (300 MHz) measured in CDCl₃ at 25 °C; chemical shifts (δ) in ppm (\pm 0.01) to high frequency of SiMe₄ and coupling constants (*J*) in Hz (\pm 0.1). ^{*b*} n.o. = Not observed because signal is obscured. ^{*c*} Signal obscured but assigned on the basis of observed nuclear Overhauser enhancement between this signal and that of SiMe₃. ^{*d*} Assignment confirmed by correlation spectroscopy.

dimethyl-1,3-dioxolane (R,R-diop) (**6a-6c** with **7a-7c**) have been made and characterised (Tables 1-3).

When the optically active complexes $[PtX_2L_2]$ (X = Cl, Br or I; $L_2 = S,S$ -chiraphos, S,S-skewphos or R,R-diop) were treated with Me₃SiCHN₂ the same diastereomers 2–7 were formed (see Scheme 2) but in the proportions shown in Table 2, as determined by integration of the ¹H NMR signals for the Me₃Si groups or integration of ³¹P NMR signals corrected for Nuclear Overhauser and relaxation effects by comparison with spectra measured under the same conditions of 1:1 mixtures generated from **1a-1c** and the chiral diphosphine.

Scheme 1 (i) N_2 CHSiMe₃; (ii) diphosphine

A single recrystallisation of the mixture of S, S-skewphos complexes 4a and 5a from CH₂Cl₂ and Et₂O gave pure 4a. No epimerisation of the α -carbon configuration was observed when pure 4a or a 1:1 mixture of 4a and 4b was redissolved in CDCl₃, over a period of 14 d even in the presence of [AsPh₄]Cl. This demonstrates that under these conditions this compound is optically stable for kinetic reasons.

Crystals of complex 4a suitable for X-ray crystallography were grown from $CH_2Cl_2-Et_2O$. The molecular structure is shown Fig. 1 and selected molecular dimensions are listed in Table 4. The crystal structure consists of isolated molecules of 4a separated by normal contacts. The molecule consists of a platinum atom which is chelated by a skewphos ligand and further ligated by a chloride ligand and σ bonded to the chiral

Scheme 2 (i) N₂CHSiMe₃; (ii) diphosphine

Fig. 1 Molecular geometry of complex 4a, showing the atom labelling scheme. The platinum atom is represented as an ellipsoid enclosing 50% probability density. All hydrogens other than H(1a) have been omitted for clarity

alkyl ligand through C(1) [Pt-C(1) 2.104(12) Å]. The variation in trans influence is indicated by the different Pt-P distances for the two skewphos phosphorus atoms [Pt-P(2) 2.232(4) trans toCl(1) and Pt-P(1) 2.318(4) trans to C(1); Pt-Cl(1) 2.360(4)Å]. As is to be expected for a platinum(II) complex the coordination at Pt is close to planar (mean deviation 0.057 Å) with a slight twist (6.0°) in the co-ordination plane between the PtP₂ and the PtCCl units. The cis and trans angles deviate slightly from 90 and 180°, the largest deviation for a cis angle being for the skewphos ligand $[P(2)-Pt-P(1) 94.0(1)^\circ]$. The conformation adopted by the chiral alkyl has the α -hydrogen near the co-ordination plane of the platinum and pointing towards P(2) [torsion angle P(2)-Pt-C(1)-H(1a) 7°]. This orientation allows the bulkier Cl and SiMe₃ substituents at C(1) to avoid the crowded co-ordination plane with the larger SiMe₃ group between the pseudo-equatorial phenyl groups [cf. Cl(2) which is closer to the pseudo-axial phenyl rings, see Fig. 1]. Rather similar gross geometries have been observed $[PtCl(R-CHClCO_2Et)(R, R-diop)]^6$ and in $[PtCl(R-CHClCO_2Et)(R, R-diop)]^6$ in CHMeCO₂Et)(S,S-diop)].⁹ The skewphos six-membered ring adopts a flattened chair conformation (see Fig. 1) with the methyl substituents in axial [C(9)] and equatorial [C(5)] sites respectively.

Tuble T Dona	ong		r
Pt-Cl(1)	2.360(4)	Pt – P (1)	2.318(4)
Pt-P(2)	2.232(4)	Pt-C(1)	2.104(12)
Cl(2) - C(1)	1.843(13)	P(1) - C(8)	1.846(14)
P(1)-C(31)	1.824(11)	P(1)-C(41)	1.811(11)
P(2)-C(6)	1.838(14)	P(2)C(11)	1.848(12)
P(2)-C(21)	1.829(8)	Si -C(1)	1.890(14)
SiC(2)	1.847(18)	Si–C(3)	1.854(18)
Si-C(4)	1.886(17)	C(5)–C(6)	1.548(22)
C(6)-C(7)	1.521(20)	C(7)–C(8)	1.508(20)
C(8)–C(9)	1.534(21)		
Cl(1)-Pt-P(1)	89.1(1)	Cl(1)-Pt-P(2)	173.3(1)
P(1) - Pt - P(2)	94.0(1)	Cl(1)-Pt-C(1)	88.4(4)
P(1)-Pt-C(1)	177.5(4)	P(2)-Pt-C(1)	88.5(4)
Pt-P(1)-C(8)	116.6(5)	Pt-P-C(31)	118.7(3)
C(8)-P(1)-C(31)	99.9(5)	Pt-P-C(41)	111.0(4)
C(8)-P(1)-C(41)	105.4(6)	C(31)-P(1)-C(41)	103.5(5)
Pt-P(2)-C(6)	115.8(5)	Pt-P(2)-C(11)	115.0(4)
C(6)-P(2)-C(11)) 100.6(6)	Pt-P(2)-C(21)	109.7(3)
C(6)-P(2)-C(21)) 107.6(6)	C(11)-P(2)-C(21)	107.4(4)
C(1)-Si- $C(2)$	114.7(7)	C(1)-Si-C(3)	110.8(7)
C(2)-Si-C(3)	110.3(8)	C(1)-Si-C(4)	106.9(7)
C(2)-Si- $C(4)$	105.8(8)	C(3)-Si- $C(4)$	108.0(8)
Pt-C(1)-Cl(2)	111.2(6)	Pt-C(1)-Si	115.1(7)
Cl(2)-C(1)-Si	108.3(6)	P(2) - C(6) - C(5)	115.1(10)
P(2)-C(6)-C(7)	112.9(10)	C(5)-C(6)-C(7)	109.1(12)
C(6)-C(7)-C(8)	116.8(13)	P(1)-C(8)-C(7)	113.0(10)
P(1)-C(8)-C(9)	108.9(10)	C(7)-C(8)-C(9)	111.9(12)

Table 4 Bond lengths (Å) and selected bond angles (°) for complex 4a

It had been reasoned that if steric effects influence the ratio of diastereoisomers, higher diastereoselectivity should be obtained using N_2 CHSiMe₃ as a consequence of the bulkiness of the SiMe₃ substituent. Indeed the diastereoselectivities of some of these insertion reactions are high (see Table 2) and, for the chlorides, higher than for the corresponding reactions with ethyl diazoacetate or diazoacetophenone⁶ consistent with steric effects being one factor in determining the diastereoselection. For the bromides and iodides, where the difference in size between the halogen and the trimethylsilyl substituents is less, the diastereoselectivity is less than for the corresponding

chlorides as would be expected on steric grounds. However there appear to be no consistent trends in diastereoselectivity among the different diphosphines and further work is in progress to probe the other factors that are important in determining the diastereoselectivities of these insertions.

It is known¹⁰ that CH_2N_2 and Me_3SiCHN_2 have similar chemical reactivity but the corresponding reaction of $[PtX_2-(diphosphine)]$ with diazomethane gives the bis insertion products $[Pt(CH_2X)_2(diphosphine)]$.¹¹ This contrasting behaviour is most likely a consequence of kinetics {hindered approach of Me_3SiCHN_2 to the bulky $[PtX(CHXSiMe_3)-(diphosphine)]$ } and thermodynamics {unfavourable steric congestion that would be present in the product, $[Pt(CHX-SiMe_3)_2(diphosphine)]$.⁸

It has been shown that the bulky diazoalkane N_2 CHSiMe₃ reacts smoothly with complexes of the type [PtX₂(diphosphine)] to give the products of monoinsertion into the Pt-X bonds. When X = Cl and the diphosphine is chiral, unprecedentedly high diastereoselectivity is obtained. Single isomers which are configurationally stable are readily separated which should make these species valuable for mechanistic studies.

Experimental

All reactions were carried out under an atmosphere of nitrogen, though the products could be handled in air. All the diphosphines (Aldrich or Strem), and a 2 mol dm⁻³ hexane solution of N₂CHSiMe₃ (Aldrich) were used as purchased. The FT-IR spectra (CsI discs) were obtained using a Nicolet 510P spectrometer, ³¹P-{¹H} NMR spectra at 81 MHz and 28 °C using a Bruker AM200 spectrometer and ¹H NMR spectra at 300 MHz at 25 °C using a Varian Gemini 300 spectrometer.

Preparations.—[PtCl(CHClSiMe₃)(cod)] **1a**. A solution of N₂CHSiMe₃ (0.29 cm³ of a 2 mol dm⁻³ solution in hexane, 0.58 mmol) was added over 5 min under nitrogen to a solution of [PtCl₂(cod)] (200 mg, 0.53 mmol) in CH₂Cl₂ (15 cm³), the mixture was stirred for 2 h and then the volume was reduced to 1 cm³. Addition of diethyl ether (25 cm³) precipitated the off-white product (220 mg, 90%). The bromo (**1b**) and iodo (**1c**) analogues were made similarly in 84 and 82% yield respectively. ¹³C NMR (CDCl₃): **1a**, δ 53.12, [¹J(PtC) 750, CPt] and 0.01 (CH₃Si); **1b**, δ 41.07 [¹J(PtC) 750 Hz, CPt] and 0.90 (CH₃Si); **1c**, δ 30.22 [¹J(PtC) not observed, obscured by allylic cod resonances, CPt] and 1.97 (CH₃Si).

[PtCl(CHClSiMe₃)(dppm)] 1d from [PtCl₂(dppm)]. A solu-

Table 5Atomic coordinates ($\times 10^4$) for complex 4a

tion of N₂CHSiMe₃ (0.69 cm³ of a 2 mol dm⁻³ solution in hexane, 1.38 mmol) was added over 5 min under nitrogen to a solution of [PtCl₂(cod)] (300 mg, 0.46 mmol) in dry CH₂Cl₂ (20 cm³), the mixture was stirred for 18 h and then the volume was reduced to 1 cm³. Addition of diethyl ether (30 cm³) precipitated the off-white product (307 mg, 91%). Complexes **1e-1i** were made similarly from the appropriate [PtX₂(diphosphine)] in the following yields: **1e**, 74; **1f**, 73; **1g**, 71; **1h**, 97; **1i**, 94%.

[PtI(CHISiMe₃)(dppe)] **1g** from [PtI(CHISiMe₃)(cod)] **1c**. A solution of dppe (124 mg, 0.31 mmol) in CH₂Cl₂ (30 cm³) was added dropwise to a vigorously stirred solution of [PtI(CHISi-Me₃)(cod)] (200 mg, 0.31 mmol) in CH₂Cl₂ (20 cm³). The resulting yellow solution was stirred for 1 h and then the solvent was evaporated to dryness under reduced pressure. Addition of pentane (50 cm³) to the residue gave the yellow product (270 mg, 93%). Complexes **1d** and **1f** have also been prepared in this way in > 90% yields.

[PtCl(CHClSiMe₃)(S,S-skewphos)] as a mixture of diastereoisomers 4a and 5a and the separation of pure 4a. A solution of N₂CHSiMe₃ (0.32 cm³ of a 2 mol dm⁻³ solution in hexane, 0.64 mmol) was added over 5 min under nitrogen to a solution of $[PtCl_2(S, S-skewphos)]$ (150 mg, 0.21 mmol) in dry CH_2Cl_2 (5 cm³), the mixture was stirred for 16 h and then the volume was reduced to 1 cm³. Addition of diethyl ether (20 cm³) precipitated the off-white product (120 mg, 72%) which is a 15:1 mixture of diastereoisomers 4a and 5a; one recrystallisation from $CH_2Cl_{2^-}$ Et_2O gave pure 4a. The complexes 2–7 were all made similarly (though reaction times varied from 30 min to 16 h) in the following yields: 2a, 3a, 76; 2b, 3b, 74; 2c, 3c, 79; 4a, 5a, 72; 4b, 5b, 79; 4c, 5c, 61; 6a, 7a, 75; 6b, 7b, 63; 6c, 7c, 74%. The isomer ratios obtained by this method are given in Table 2. In each case a 1:1 mixture of diastereoisomers has been generated by adding 1 equivalent of the appropriate diphosphine to 1a-1c in CDCl₃.

Crystal Structure Determination of [PtCl(S-CHClSiMe₃)-(S,S-skewphos)] **4a**.—Crystal data. $C_{33}H_{40}Cl_2P_2PtSi$, $M_r =$ 792.7, orthorhombic, space group $P2_12_12_1$ (no. 19), a =11.152(5), b = 16.102(4), c = 19.021(5) Å, U = 3415(2) Å³, Z = 4, $D_c = 1.54$ g cm⁻³, $\lambda = 0.710$ 73 Å, μ (Mo-K α) = 44.1 cm⁻¹, F(000) = 1576, T = 295 K.

A single crystal of complex 4a (approximate dimensions $0.25 \times 0.36 \times 0.50$ mm) was mounted in a thin-walled glass capillary under N₂ and held in place with epoxy glue. All diffraction measurements were made at room temperature (295 K) on a Siemens R3m/V diffractometer, using graphite-monochromated Mo-K α X-radiation. Unit cell dimensions were determined from 34 centred reflections in the range

83	Atomic coordinates (x to) for complex a							
	Atom	x	у	Z	Atom	x	У	Ζ
	Pt	-59(1)	9 889(1)	1 009(1)	C(16)	-136	10 036	-1057
	Cl(1)	-888(4)	9 086(3)	1 926(2)	C(21)	528	11 834	529
	Cl(2)	-2 769(4)	10 608(3)	1 214(3)	C(22)	230(8)	11 951(4)	1 234(4)
	P(1)	1 823(3)	9 695(2)	1 500(2)	C(23)	257	12 746	1 525
	P(2)	598(3)	10 772(2)	191(2)	C(24)	582	13 424	1 111
	Si	-2580(4)	9 033(3)	353(3)	C(25)	880	13 308	406
	C(1)	-1 799(11)	10 033(9)	599(6)	C(26)	853	12 513	115
	C(2)	-3564(14)	8 600(11)	1 044(10)	C(31)	2 176	8 691	1 892
	C(3)	-1480(16)	8 241(10)	61(10)	C(32)	1 545(8)	7 971(7)	1 718(5)
	C(4)	-3594(15)	9 277(11)	-413(8)	C(33)	1 910	7 206	1 987
	C(5)	2 555(14)	11 191(12)	-714(8)	C(34)	2 905	7 160	2 430
	C(6)	2 132(12)	10 592(10)	-128(7)	C(35)	3 536	7 879	2 604
	C(7)	3 055(14)	10 585(10)	461(7)	C(36)	3 171	8 645	2 334
	C(8)	3 1 1 9 (12)	9 811(9)	905(7)	C(41)	2 084	10 422	2 210
	C(9)	3 231(16)	9 025(11)	454(8)	C(42)	3 084(8)	10 940(7)	2 251(5)
	C(11)	-242	10 7 50	-646	C(43)	3 200	11 496	2 810
	C(12)	-937(11)	11 415(5)	- 882(6)	C(44)	2 315	11 533	3 328
	C(13)	-1 526	11 365	-1 527	C(45)	1 315	11 015	3 287
	C(14)	-1 420	10 651	-1 938	C(46)	1 199	10 460	2 728
	C(15)	-725	9 986	-1 702				

 $16.0 < 2\theta < 30.0^{\circ}$. A total of 3397 diffracted intensities, including check reflections, were measured in a unique octant of reciprocal space for $4.0 < 2\theta < 50.0^{\circ}$ by Wyckoff ω scans. Two check reflections (1 - 6 3, 2 - 2 10) remeasured after every 98 ordinary data showed a decay of *ca*. 6% over the period of data collection; an appropriate correction was therefore applied. Of the intensity data collected, 3373 unique observations remained after averaging of duplicate and equivalent measurements and deletion of systematic absences, of these 2528 with $I > 2\sigma(I)$ were retained for use in structure solution and refinement. An absorption correction was applied on the basis of 420 azimuthal scan data, maximum and minimum transmission coefficients being 0.438 and 0.301 respectively. Lorentz and polarisation corrections were applied.

The structure was solved by Patterson and Fourier methods. All non-hydrogen atoms were assigned anisotropic displacement parameters and all hydrogen atoms fixed isotropic displacement parameters. All non-hydrogen atoms were refined without positional constraints except for the phenyl-group carbon atoms which were constrained to D_{6h} symmetry with C-C distances 1.395 Å. All hydrogen atoms were constrained to idealised geometries (C-H 0.96 Å, H-C-H 109.5°) with fixed isotropic displacement parameters. A parameter (η) , defining the absolute structure and hence the molecular chirality,¹² refined to 1.07(4), thereby confirming the handedness of the molecules of complex 4a in the crystal studied. An extinction parameter χ {where $F_{\text{corr}} = F[(1 + 0.002\chi F^2)/\sin 2\theta]^{-0.25}$ was refined to a value of 0.000 11(2). Full-matrix least-squares refinement of this model (186 parameters) converged to final residual indices R =0.044, R' = 0.046, S = 1.22, where $R = \Sigma |\Delta| / \Sigma |F_0|$; R' = $(\Sigma w \Delta^2 / \Sigma w F_0^2)^{\frac{1}{2}}$; $S = [\Sigma w \Delta^2 / (N_0 - N_v)]^{\frac{1}{2}}$; $\Delta = F_0 - F_c$ and N_0 , N_v = numbers of observations and of variables. Weights, w, were set equal to $[\sigma_c^2(F_o) + gF_o^2]^{-1}$, where $\sigma_c^2(F_o)$ is the variance in F_{o} due to counting statistics and g = 0.0004 was chosen to minimise the variation in S as a function of $|F_0|$. Final electron-density difference maps showed no features outside the range +1.1 to -0.7 e Å⁻³, the largest of these being close to the platinum atom. Table 5 lists the final atomic positional parameters for the freely refined atoms, and Table 4 the selected bond lengths and inter-bond angles. All calculations were carried out on using programs of the SHELXTL-PLUS package.13 Complex neutral-atom scattering factors were taken from ref. 14.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond angles.

Acknowledgements

We thank Professors O. Traverso and S. Sostero (Università di Ferrara) for useful discussions, Mr. P. Formaglio, Mr. M. Fratta and Mr. O. Zerlotin for technical assistance, Ciba-Geigy for a Senior Research Fellowship (to P. G. P.), the Foundation Blanceflor Boncompagni-Ludovisi, née Bildt, for a grant (to E. C.), the DAAD for a post-doctoral fellowship (to C. G.), NATO for the provision of a travel grant and Johnson-Matthey for a generous loan of platinum salts.

References

- H. B. Friedrich and J. R. Moss, Adv. Organomet. Chem., 1991, 33, 235; D. Steinborn, Angew. Chem., Int. Ed. Engl., 1992, 401.
- 2 N. J. Kermode, M. F. Lappert, B. W. Skelton, A. H. White and J. Holton, J. Chem. Soc., Chem. Commun., 1981, 698; C. Engelter, J. R. Moss, L. R. Nassimbeni, M. L. Niven, G. Reid and J. C. Spiers, J. Organomet. Chem., 1986, **315**, 255; J. F. Hoover and J. M. Stryker, Organometallics, 1988, 7, 2082; R. McCrindle, G. J. Arsenault, A. Gupta, M. J. Hampden-Smith, R. E. Rice and A. J. McAlees, J. Chem. Soc., Dalton Trans., 1991, 949.
- 3 J. F. Hoover and J. M. Stryker, J. Am. Chem. Soc., 1989, 111, 6466.
- 4 R. McCrindle, G. Ferguson and A. J. McAlees, J. Chem. Soc., Chem. Commun, 1990, 1524.
- 5 J. F. Hoover and J. M. Stryker, J. Am. Chem. Soc., 1990, 112, 464; R. McCrindle, G. J. Arsenault, R. Farwaha, M. J. Hampden-Smith and A. J. McAlees, J. Chem. Soc., Chem. Commun., 1986, 943.
- 6 P. Bergamini, E. Costa, S. Sostero, A. G. Orpen and P. G. Pringle, Organometallics, 1992, 11, 3879.
- 7 P. Bergamini, E. Costa, S. Sostero, C. Ganter, J. Hogg, A. G. Orpen and P. G. Pringle, J. Organomet. Chem., 1993, **455**, C13.
- 8 R. McCrindle and A. J. McAlees, Organometallics, 1993, 12, 2445; G. Ferguson, J. F. Gallagher, A. J. McAlees, R. McCrindle, J. Philips and G. J. B. Williams, J. Organomet. Chem., 1992, 430, C23.
- 9 P. Bergamini, E. Costa, P. Cramer, J. Hogg, A. G. Orpen and P. G. Pringle, *Organometallics*, in the press.
- 10 T. Aoyama and T. Shioiri, Chem. Pharm. Bull., 1981, 29, 3249; Aldrichim. Acta, 1990, 23, 55.
- 11 R. McCrindle, G. J. Arsenault, R. Farwaha, M. J. Hampden-Smith, R. E. Rice and A. J. McAlees, J. Chem. Soc., Dalton Trans., 1988, 1773; N. W. Alcock, P. G. Pringle, P. Bergamini, S. Sostero and O. Traverso, J. Chem. Soc., Dalton Trans., 1990, 1553.
- 12 D. Rogers, Acta Crystallogr., Sect. A, 1981, 37, 734.
- 13 G. M. Sheldrick, SHELXTL-PLUS, Revision 2.4, Göttingen, 1988.
 14 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

Received 15th October 1993; Paper 3/06186H