Isodiazene Complexes: Synthesis and Molecular Structures of 2,2,6,6-Tetramethylpiperid-1-ylisodiazene Complexes of Tungsten(IV) and of Rhenium-(iII) and -(II) \dagger

Andreas A. Danopoulos, Geoffrey Wilkinson* and David J. Williams*
Johnson Matthey and Chemical Crystallography Laboratories, Chemistry Department, Imperial College, London SW7 2AY, UK

Abstract

The interaction of 1 -amino-2,2,6,6-tetramethylpiperidine, $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NNH}_{2}$, in refluxing $\mathrm{NEt}_{3}-\mathrm{SiClMe}_{3}$ with $\mathrm{WO}_{2} \mathrm{Cl}_{2}$ (dme) (dme = 1,2-dimethoxyethane), and with $\mathrm{ReO}_{3}\left(\mathrm{OSiMe}_{3}\right)$ gave, respectively, $\mathrm{W}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}-$ $\mathrm{Cl}_{3}\left(\mathrm{OSiMe}_{3}\right) 1$ and $\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{OSiMe}_{3}\right)$ 3. The interaction of 3 with HCl in $\mathrm{Et}_{2} \mathrm{O}$ gave $\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{3}$ 4, which reacted with $\mathrm{AgO}_{3} \mathrm{SCF}_{3}$ in MeCN to give $\left[\operatorname{Re}(\mu-\mathrm{O})\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}(\mathrm{MeCN})_{2}\right]_{2}-$ $\left[\mathrm{O}_{3} \mathrm{SCF}_{3}\right]_{4} 5$, and with excess of $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{HLi}$ in tetrahydrofuran (thf) to give [$\left.\mathrm{ReO}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}\right]_{2} 6$. The X-ray crystal structures of five compounds, 1 and 3-6, have been determined; all are formulated as having 2,2,6,6-tetramethylpiperid-1-ylnitrene ligands that formally can be regarded as isodiazenes. The tungsten complex 1 has C_{s} symmetry and is octahedral with cis $-\mathrm{C}_{9} \mathrm{H}_{48} \mathrm{~N}_{2}$ groups and fac chlorides. The rhenium complexes 3 and 4 are both trigonal bipyramidal with equatorial N and axial Cl atoms. The cation in 5 comprises two edge-sharing distorted octahedra with cis-N and trans-NCMe and a planar symmetrical $\operatorname{Re}(\mu-\mathrm{O})_{2} \operatorname{Re}$ bridge; the $\mathrm{Re}_{2} \mathrm{O}_{2}$ ring has a large rhombic distortion with a consequent short non-bonded transannular $\mathrm{O} \ldots \mathrm{O}$ distance. The dimeric complex 6 is C_{2} symmetric with two distorted tetrahedral Re centres linked by a Re-Re single bond in a near-eclipsed conformation. In all the structures the metalnitrogen and $N-N$ bonds display significant multiple-bond character and the $M-N-N$ angles are all essentially linear. In the rhenium complexes 3-6 there are varying small degrees of pyramidalisation at the exo N atoms which approximately correlate with the $N-N$ double-bond character; the sum of the $\mathrm{Re}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bond distances remains essentially constant.

The chemistry, both synthetic and structural, of transitionmetal complexes with ligands having $N-N$ bonds of the type NNR, NNR $2, \mathrm{~N}(\mathrm{H}) \mathrm{NR}$, etc. $(\mathrm{R}=\mathrm{H}$, alkyl, aryl and other groups) has been extensively reviewed ${ }^{1}$ and is still an active area of study. ${ }^{2}$ There are still ambiguities in compounds with $\mathrm{N}_{2} \mathrm{R}_{2}$ ligands, particularly as to the extent of $\mathrm{M}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ multiple bonding, whether the groups are formulated as (1-) or $(2-)$, are linear or bent, and so on. One aspect, in particular, is the question of the oxidation state of the metal; some years ago Chatt et al., ${ }^{3}$ apropos the compound $\mathrm{WCl}_{3}\left(\mathrm{NNH}_{2}\right)$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ where X-ray data indicated very strong conjugation along the $\mathrm{W}-\mathrm{N}-\mathrm{N}$ chain, wrote: 'Structurally this ligand appears to be closer to isodiazene than hydrazido $(2-)$ but we retain the latter name because of its common usage and the IUPAC recommendations'. Other examples of what can be properly called isodiazene complexes have been given ${ }^{16}$ and a particularly clear example is that of iron porphyrinato compounds, Fe (por) $\left(\mathrm{N}_{2} \mathrm{C}_{9} \mathrm{H}_{18}\right)^{4}$ (por $=5,10,15$, 20-tetraphenylporphyrinate and related porphyrinates, $\mathrm{C}_{9} \mathrm{H}_{18}{ }^{-}$ $\mathrm{N}=2,2,6,6$-tetramethylpiperid-1-yl), that were made either by aerobic reaction of $\mathrm{Fe}^{\mathrm{III}}$ (por) Cl with the hydrazine C_{9} $\mathrm{H}_{18} \mathrm{NNH}_{2}{ }^{5}$ or by anaerobic interaction of $\mathrm{Fe}^{\text {II }}$ (por) with the free $2,2,6,6$-tetramethylpiperid-1-ylnitrene, ${ }^{5 b} \quad \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$, at $-80^{\circ} \mathrm{C}$. On the basis of structural, EPR and especially Mössbauer spectra it was concluded ${ }^{4}$ that iron was in the II oxidation state clearly implying a neutral N -bonded isodiazene ligand. The $\mathrm{Fe}-\mathrm{N}-\mathrm{N}$ group was linear with $\mathrm{Fe}-\mathrm{N} 1.809(4) \AA$ and N-N 1.232(5) \AA indicating multiple-bond character. Bond lengths and angles for a number of MNNR_{2} species, mainly for Mo and W, have been collected. ${ }^{1 b, 6}$

[^0]There has been further recent discussion of other such isodiazene compounds in connection with the structure of fac- $\left[\mathrm{W}\left(=\mathrm{NNMe}_{2}\right)(\mathrm{CO})_{3}(\right.$ dppe $\left.)\right][$ dppe $=1,2-\mathrm{bis}($ diphenylphosphino)ethane], referred to as 'a nitrene analogue to Fischer carbenes'; ${ }^{7}$ the $\mathbf{W}-\mathrm{N}-\mathrm{N}$ angle here, however, was $139(1)^{\circ}$ and the $\mathrm{W}-\mathrm{N}$ bond was 'exceptionally long $2.12(1) \AA$, over $0.28 \AA$ longer than previously reported linear (1.73-1.78) or bent tungsten hydrazido complexes'. The $\mathrm{N}-\mathrm{N}$ distance was $1.21(2) \AA$.

The present work began with the idea of obtaining compounds with more than the known (i.e., one or two only) number of NNR_{2} ligands since imido (NR^{2-}) compounds in high oxidation states such as $\mathrm{Os}\left(\mathrm{NBu}^{t}\right)_{4}{ }^{8 a}$ and $\operatorname{LiRe}\left(\mathrm{NBu}^{\mathrm{l}}\right)_{4}{ }^{8 b}$ are well established.

Since no metal compounds derived from $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NNH}_{2}$ or $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$ other than the iron(II) porphyrinates ${ }^{4}$ have been made, this system seemed to merit further study. We now describe, amongst others, $\mathrm{W}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{3}\left(\mathrm{OSiMe}_{3}\right) 1$ which, if $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$ were taken as hydrazido($2-$) would require formulation of the compound with tungsten in the impossible oxidation state of VIII, and the dimeric $\left[\mathrm{ReO}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}\right]_{2} 6$ that has a $\mathrm{Re}-\mathrm{Re}$ single bond and is similar to a $\mathrm{Re}^{\mathrm{II}}{ }_{2} \mathrm{O}_{2}$ (alkyne) 4_{4} complex as discussed later. A similar argument, that having three bridging hydrazido($2-$) ligands in a vanadium complex would lead to too high an oxidation state for $\mathrm{V}-\mathrm{V}$ single bonding to occur, has recently been used to suggest the presence of an NNMe_{2} bridging isodiazene. ${ }^{2 d}$

Analytical and physical data for the new compounds are given in Table 1.

Results and Discussion

The interaction of $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NNH}_{2}$ in the presence of NEt_{3} or pyridine, or of molecular sieves, with $\mathrm{Re}_{2} \mathrm{O}_{7}, \mathrm{WO}_{3}$ or $\mathrm{WO}_{2} \mathrm{Cl}_{2}$ (dme) (dme $=1,2$-dimethoxyethane) produces only

Table 1 Analytical and physical data for the new compounds

${ }^{a}$ Calculated values in parentheses. ${ }^{b} \mathrm{~F}$ analysis $13.2(13.0) \%$.

Fig. 1 The structure of $\mathrm{W}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{3}\left(\mathrm{OSiMe}_{3}\right) 1$
intractable products; however, $\mathrm{ReO}_{3}\left(\mathrm{OSiMe}_{3}\right)$ gives a complex that can be formulated on the basis of analytical and spectroscopic data as $\mathrm{ReO}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}\right) \cdot\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}_{3}\right)^{+} \mathrm{ReO}_{4}{ }^{-} 2$ (see Experimental section). Thus, although the ligand metal ratio is $1: 1$, there are two Me and two broad NH peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum indicative of two ligand types. IR data show three different $\mathrm{N}-\mathrm{H}$ bands while in the oxo region there are two strong peaks and a shoulder for $\mathrm{ReO}_{4}{ }^{-}$and $\mathrm{ReO}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}\right)$. The use of pre-formed silylhydrazine, $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NNH}\left(\mathrm{SiMe}_{3}\right.$) with oxo species, a method that is successful in the synthesis of imido compounds by reaction of metal oxides with silylamines, ${ }^{6}$ gives incomplete conversions or difficulties in isolating clean products. We hence adopted a modification of a method used ${ }^{9}$ for synthesis of imido compounds from aromatic amines and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$ in the presence of SiClMe_{3} and NEt_{3} in 1,2 -dimethoxyethane but using neat NEt_{3} as solvent. The reactions of $\mathrm{WO}_{2} \mathrm{Cl}_{2}(\mathrm{dme})$ and $\mathrm{ReO}_{3}\left(\mathrm{OSiMe}_{3}\right)$ with, presumably $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}_{n}\left(\mathrm{SiMe}_{3}\right)_{2-n}$ ($n=0$ or 1), formed in situ, give good yields of $\mathrm{W}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{3}\left(\mathrm{OSiMe}_{3}\right) 1$ and $\mathrm{Re}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{2}-$ $\left(\mathrm{OSiMe}_{3}\right)$ 3. Additional $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$ groups could not be introduced even after prolonged refluxing in NEt_{3}.

Tungsten.-The structure of the tungsten compound 1 is shown in Fig. 1; fractional coordinates are given in Table 2, selected bond lengths and angles are given in Table 3. The complex, which has crystallographic C_{s} symmetry, is distorted

Table 2 Atomic coordinates ($\times 10^{4}$) for complex 1 with estimated standard deviations (e.s.d.s) in parentheses

Atom	x	y	z
W	$464(1)$	$-415(1)$	2500
$\mathrm{Cl}(1)$	$-138(3)$	$-1952(2)$	2500
$\mathrm{Cl}(2)$	$-980(2)$	$-258(2)$	$3454(1)$
O	$483(5)$	$872(4)$	2500
Si	$-113(3)$	$1860(2)$	2500
$\mathrm{C}(1)$	$-1618(10)$	$1798(9)$	2500
$\mathrm{C}(2)$	$365(7)$	$2493(6)$	$3337(4)$
$\mathrm{N}(1)$	$1469(4)$	$-591(3)$	$3250(3)$
$\mathrm{N}(11)$	$2073(4)$	$-677(3)$	$3805(3)$
$\mathrm{C}(11)$	$2462(5)$	$198(4)$	$4178(4)$
$\mathrm{C}(12)$	$3413(6)$	$16(5)$	$4701(4)$
$\mathrm{C}(13)$	$3257(7)$	$-823(6)$	$5174(4)$
$\mathrm{C}(14)$	$3169(7)$	$-1630(6)$	$4676(4)$
$\mathrm{C}(15)$	$2195(6)$	$-1610(4)$	$4152(4)$
$\mathrm{C}(16)$	$1460(6)$	$582(5)$	$4578(4)$
$\mathrm{C}(17)$	$2832(6)$	$831(5)$	$3577(4)$
$\mathrm{C}(18)$	$1111(6)$	$-1808(6)$	$4548(4)$
$\mathrm{C}(19)$	$2401(8)$	$-2272(5)$	$3536(4)$
C	$1402(12)$	$-4348(11)$	2500
Cl	$706(3)$	$-4498(3)$	$3289(2)$

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 1 with e.s.d.s in parentheses

W-Cl(1)	$2.395(4)$	W-Cl(2)	$2.468(3)$
W-O	$1.911(6)$	$\mathrm{W}-\mathrm{N}(1)$	$1.841(5)$
$\mathrm{W}-\mathrm{Cl}\left(2^{\prime}\right)$	$2.468(3)$	$\mathrm{W}-\mathrm{N}\left(1^{\prime}\right)$	$1.841(5)$
$\mathrm{O}-\mathrm{Si}$	$1.635(7)$	$\mathrm{Si}-\mathrm{C}(1)$	$1.824(12)$
$\mathrm{Si}-\mathrm{C}(2)$	$1.874(8)$	$\mathrm{Si}-\mathrm{C}\left(2^{\prime}\right)$	$1.874(8)$
$\mathrm{N}(1)-\mathrm{N}(11)$	$1.248(7)$	$\mathrm{N}(11)-\mathrm{C}(11)$	$1.538(8)$
$\mathrm{N}(11)-\mathrm{C}(15)$	$1.529(8)$		
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}(2)$	$82.8(1)$	$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{O}$	$163.0(2)$
$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{O}$	$85.1(1)$	$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{N}(1)$	$93.8(2)$
$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{N}(1)$	$88.0(2)$	$\mathrm{O}-\mathrm{W}-\mathrm{N}(1)$	$97.7(2)$
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{Cl}\left(2^{\prime}\right)$	$82.8(1)$	$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{Cl}\left(2^{\prime}\right)$	$88.8(1)$
$\mathrm{O}-\mathrm{W}-\mathrm{Cl}\left(2^{\prime}\right)$	$85.1(1)$	$\mathrm{N}(1)-\mathrm{W}-\mathrm{Cl}\left(2^{\prime}\right)$	$175.6(2)$
$\mathrm{Cl}(1)-\mathrm{W}-\mathrm{N}\left(1^{\prime}\right)$	$93.8(2)$	$\mathrm{Cl}(2)-\mathrm{W}-\mathrm{N}\left(1^{\prime}\right)$	$175.6(2)$
$\mathrm{O}-\mathrm{W}-\mathrm{N}\left(1^{\prime}\right)$	$97.7(2)$	$\mathrm{N}(1)-\mathrm{W}-\mathrm{N}\left(1^{\prime}\right)$	$94.9(3)$
$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{W}-\mathrm{N}\left(1^{\prime}\right)$	$88.0(2)$	$\mathrm{W}-\mathrm{O}-\mathrm{Si}$	$153.1(4)$
$\mathrm{W}-\mathrm{N}(1)-\mathrm{N}(11)$	$173.8(4)$	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(11)$	$116.5(5)$
$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(15)$	$118.7(5)$	$\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(15)$	$123.7(5)$

octahedral [co-ordination angles in the ranges 82.8(1)-97.7(2) ${ }^{\circ}$ and 163.0(2)-175.6(2) ${ }^{\circ}$] with cis $-\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$ groups and fac chlorides. The WNN unit is nearly linear, with $\mathrm{N}-\mathrm{N}-\mathrm{W}$ $173.8(4)^{\circ}$ and the exo- N atom is almost trigonal planar: the N atom lies $0.09 \AA$ out of the plane of its substituents. This plane coincides with the mer plane defined by $\mathrm{OSiMe}_{3}, \mathrm{Cl}(1)$ and one
of the equatorial Cl atoms $\left[\mathrm{Cl}\left(2^{\prime}\right)\right]$. There are two types of $\mathrm{W}-\mathrm{Cl}$ distances, the ones trans to N atoms being longer by 0.09 \AA indicating a strong trans influence of the N ligand. There is evidently extensive multiple bonding in the $\mathrm{W}-\mathrm{N}-\mathrm{N}$ moiety with comparatively short $\mathrm{W}-\mathrm{N}[1.841(5) \AA]$ and very short $\mathrm{N}-\mathrm{N}$ bonds $[1.248(7) \AA$]. The former lies towards the upper end of the observed range for tungsten-nitrogen double bonds, ${ }^{10}$ and the latter in the middle of the range for nitrogennitrogen double bonds. ${ }^{11}$ For comparison, in $\mathrm{WCl}_{3}\left(\mathrm{NNH}_{2}\right)$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}, \mathrm{~W}-\mathrm{N} 1.752(10), \mathrm{N}-\mathrm{N} 1.300(17) \AA$ and $\mathrm{W}-\mathrm{N}-\mathrm{N}$ $178.7(9)^{\circ}$. A similar geometry is observed for the porphyrin complex; ${ }^{4}$ other data are available. ${ }^{1 b, c, 6}$

Various resonance forms for $\mathrm{MN}_{2} \mathrm{R}_{2}$ compounds have been proposed ${ }^{1 b . c}: \mathbf{M} \longleftarrow \overline{\mathrm{N}}=\stackrel{+}{\mathrm{N}} \mathrm{R}_{2}, \overline{\mathrm{M}}-\dot{\mathrm{N}}=\stackrel{+}{\mathrm{N}} R_{2}, \mathrm{M}=\dot{\mathrm{N}}-\dot{\mathrm{N}} \mathrm{R}_{2}, \overline{\mathrm{M}} \equiv \stackrel{+}{\mathrm{N}}-$ NR_{2}. It is evident that the extent of $\mathrm{M}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ multiple bonding depends on the nature of the metal and its ligands; the situation commonly lies between the extremes making the assignment of the oxidation state of the metal ambiguous. For the majority of hydrazido(2-) species, the MNN moiety is close to linear and the geometry of the exo-N atom usually planar within statistical significance; the MNN moiety is acting as a four-electron donor. ${ }^{3,4}$ Another example is $\left[\mathrm{Mo}\left(\mathrm{NNMe}_{2}\right)_{2}(\mathrm{bipy})_{2}\right]^{2+} \quad$ (bipy $=2,2^{\prime}$ - bipyridine) ${ }^{12 a}$ while in $\left[\mathrm{Mo}_{3} \mathrm{~S}_{8}\left(\mathrm{NNMe}_{2}\right)_{2}\right]^{2-},{ }^{12 b}$ the $\mathrm{N}-\mathrm{N}$ separation can be considered as isodiazene-like. For 1 only the isodiazene formulation gives a realistic tungsten oxidation state of iv with two four-electron donors giving an 18 -electron count. The WNN multiple bonding implies low basicity of the N atom.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 shows two groups of inequivalent methyls on the $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}$ ring that are invariant over the range -80 to $+70^{\circ} \mathrm{C}$ suggesting that the solid-state structure is retained in solution, and that this inequivalence of the Me group is due to hindered rotation about the $\mathrm{W}-\mathrm{N}$ and $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}-\mathrm{N}$ bonds arising from steric and/or electronic factors.

The interaction of 1 with HCl in $\mathrm{Et}_{2} \mathrm{O}$ will be discussed separately.

Rhenium.--The compound $\mathrm{ReO}_{3}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}\right) \cdot\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}-\right.$ $\left.\mathrm{H}_{3}\right)^{+} \mathrm{ReO}_{4}^{-} 2$ has been noted earlier. Interaction of $\mathrm{ReO}_{3}\left(\mathrm{OSiMe}_{3}\right)$ and $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NNH}_{2}$ under the same conditions as used for the tungsten reaction above, leads to $\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{18}{ }^{-}\right.$ $\left.\mathrm{N}_{2}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{OSiMe}_{3}\right)$ 3. Interaction of this with HCl in $\mathrm{Et}_{2} \mathrm{O}$ produces $\mathrm{Re}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{3} 4$ with loss of the OSiMe_{3} group. The structures of $\mathbf{3}$ and $\mathbf{4}$ are shown in Figs. 2 and 3 respectively; fractional atomic coordinates are given in Tables 4 and 5, selected bond lengths and angles are in Tables 6 and 7. Both 3, which crystallises with two crystallographically independent molecules in the asymmetric unit, and 4 are trigonal bipyramidal with equatorial N and axial Cl atoms. There is a high degree of consistency in the $\mathrm{Re}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bond lengths which are in the ranges $1.732(12)-1.763(12)$ and $1.278(17)-$ $1.308(17) \AA$, respectively. The Re-N-N angles are all close to linear [172.2(10)-178.1(8) ${ }^{\circ}$]. These bond distances and angles again indicate a high degree of $\mathrm{M}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ multiple bonding and as in $\mathbf{1}$ the linear MNN and near planar $\mathrm{C}_{2} \mathrm{NN}$ groups are maintained. The N atoms are all slightly pyramidalised though the out of plane deviations are small, ranging from $0.03 \AA$ for $\mathrm{N}(21)$ in 4 to $0.13 \AA$ for $\mathrm{N}(11)$ in 3. In both structures the $\mathrm{C}_{2} \mathrm{~N}_{2}$ planes are almost coincident with the equatorial plane; twist angles are in the range $1-11^{\circ}$. The axial $\mathrm{Re}-\mathrm{Cl}$ bond lengths are in the range 2.389 (3) (in 4), to $2.415(4) \AA$ (in 3). The equatorial $\mathrm{Re}-\mathrm{Cl}$ bond in 4 is significantly shorter at $2.315(3) \AA$. In both structures the $\mathrm{Cl}-\mathrm{Re}-\mathrm{Cl}$ axis is non-linear and folded by $c a .9^{\circ}$ away from the $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$ ligands. As in 1 with the ligand being a neutral donor, the rhenium oxidation state in both cases is III, d^{4}, and an 18 -electron count; d^{4} is a very stable electronic configuration for trigonal-bipyramidal geometry. ${ }^{13}$ The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ and $\mathbf{4}$ suggest that the solid-state structures are retained in solution. However, due to the equivalence by symmetry of the ring methyl groups, no conclusions can be

Fig. 2 The structure of one of the pair of crystallographically independent molecules of $\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{2}\left(\mathrm{OSiMe}_{3}\right)$ 3. Both molecules have essentially identical conformations

Fig. 3 The structure of $\operatorname{Re}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2} \mathrm{Cl}_{3} 4$
drawn concerning rigidity although it is likely that rotation around the $\mathrm{Re}-\mathrm{NN}$ bond is still hindered as in 1 .
The nucleophilicity of the diazene nitrogens is low, as for 1. Action of HCl in $\mathrm{Et}_{2} \mathrm{O}$ preferentially attacks the $\mathrm{Re}-\mathrm{OSiMe}_{3}$ group of $\mathbf{3}$ to give $\mathbf{4}$ and use of excess does not give protonated, hydrazido($1-$) species.
Interaction of 4 with $\mathrm{AgO}_{3} \mathrm{SCF}_{3}$ in MeCN leads to chloride substitution as well as the formation of $\mu-\mathrm{O}$ groups in $[\operatorname{Re}(\mu-$ $\left.\mathrm{O})\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}(\mathrm{MeCN})_{2}\right]_{2}\left[\mathrm{O}_{3} \mathrm{SCF}_{3}\right]_{4} 5$. The origin of the oxo groups is uncertain since no oxygenated solvents such as tetrahydrofuran (thf) were used, however the formation of oxo species from adventitious oxygen or water is quite common; ${ }^{14}$ it is possible that oxygen could be abstracted from $\mathrm{O}_{3} \mathrm{SCF}_{3}{ }^{-}$. The structure of 5 is shown in Fig. 4. Fractional atomic coordinates are given in Table 8 and bond lengths and angles are in Table 9. The cation, which is centrosymmetric, has two edge-sharing distorted octahedra with cis-N, trans-NCMe and a planar

Table 4 Atomic coordinates $\left(\times 10^{4}\right)$ for complex 3 with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Re}(1)$	$2749(1)$	$4315(1)$	$-3218(1)$	$\mathrm{Re}\left(1^{\prime}\right)$	$2306(1)$	$6045(1)$	$-811(1)$
$\mathrm{Cl}(1)$	$2479(3)$	$2341(3)$	$-3177(1)$	$\mathrm{Cl}\left(1^{\prime}\right)$	$2521(3)$	$6233(3)$	$-1461(1)$
$\mathrm{Cl}(2)$	$3079(3)$	$6244(3)$	$-3357(1)$	$\mathrm{Cl}\left(2^{\prime}\right)$	$2100(3)$	$6182(3)$	$-159(1)$
$\mathrm{O}(1)$	$2724(7)$	$4063(7)$	$-3732(2)$	$\mathrm{O}\left(1^{\prime}\right)$	$2355(7)$	$7629(6)$	$-808(2)$
$\mathrm{Si}(1)$	$2870(3)$	$4568(3)$	$-4148(1)$	$\mathrm{Si}\left(1^{\prime}\right)$	$2314(3)$	$8810(3)$	$-592(1)$
$\mathrm{C}(1)$	$2515(12)$	$3456(13)$	$-4470(4)$	$\mathrm{C}\left(1^{\prime}\right)$	$2526(12)$	$9919(11)$	$-949(4)$
$\mathrm{C}(2)$	$2055(12)$	$5778(12)$	$-4246(4)$	$\mathrm{C}\left(2^{\prime}\right)$	$1081(13)$	$9022(15)$	$-381(5)$
$\mathrm{C}(3)$	$4196(12)$	$4906(15)$	$-4216(5)$	$\mathrm{C}\left(3^{\prime}\right)$	$3303(12)$	$8900(13)$	$-230(4)$
$\mathrm{N}(1)$	$3796(10)$	$4210(8)$	$-2938(3)$	$\mathrm{N}\left(1^{\prime}\right)$	$337(9)$	$5207(9)$	$-759(3)$
$\mathrm{N}(11)$	$4629(9)$	$4039(8)$	$-2756(3)$	$\mathrm{N}\left(11^{\prime}\right)$	$4193(9)$	$4661(10)$	$-704(3)$
$\mathrm{C}(11)$	$5575(10)$	$4036(11)$	$-2989(4)$	$\mathrm{C}\left(11^{\prime}\right)$	$5120(12)$	$5350(13)$	$-760(4)$
$\mathrm{C}(12)$	$6436(11)$	$3530(13)$	$-2764(5)$	$\mathrm{C}\left(12^{\prime}\right)$	$5999(12)$	$4776(15)$	$-564(5)$
$\mathrm{C}(13)$	$6479(14)$	$3933(16)$	$-2364(6)$	$\mathrm{C}\left(13^{\prime}\right)$	$6043(13)$	$3540(17)$	$-639(5)$
$\mathrm{C}(14)$	$5515(14)$	$3654(15)$	$-2175(5)$	$\mathrm{C}\left(14^{\prime}\right)$	$5095(13)$	$3007(13)$	$-507(5)$
$\mathrm{C}(15)$	$4602(12)$	$4191(12)$	$-2345(4)$	$\mathrm{C}\left(15^{\prime}\right)$	$4135(12)$	$3431(12)$	$-692(4)$
$\mathrm{C}(16)$	$5808(12)$	$5253(12)$	$-3100(5)$	$\mathrm{C}\left(16^{\prime}\right)$	$5324(10)$	$5425(14)$	$-1164(4)$
$\mathrm{C}(17)$	$5393(11)$	$3353(12)$	$-3334(4)$	$\mathrm{C}\left(17^{\prime}\right)$	$4963(12)$	$6507(14)$	$-601(5)$
$\mathrm{C}(18)$	$4535(13)$	$5430(13)$	$-2266(4)$	$\mathrm{C}\left(18^{\prime}\right)$	$3238(11)$	$3104(11)$	$-470(4)$
$\mathrm{C}(19)$	$3682(14)$	$3591(14)$	$-2206(4)$	$\mathrm{C}\left(19^{\prime}\right)$	$4024(13)$	$2972(13)$	$-1091(4)$
$\mathrm{N}(2)$	$1622(10)$	$4679(9)$	$-3007(3)$	$\mathrm{N}\left(2^{\prime}\right)$	$1186(9)$	$5305(10)$	$-881(3)$
$\mathrm{N}(21)$	$791(10)$	$5018(10)$	$-2877(3)$	$\mathrm{N}\left(21^{\prime}\right)$	$336(9)$	$4880(9)$	$-960(3)$
$\mathrm{C}(21)$	$-94(12)$	$4837(12)$	$-3113(4)$	$\mathrm{C}\left(21^{\prime}\right)$	$-538(12)$	$5649(14)$	$-926(5)$
$\mathrm{C}(22)$	$-959(14)$	$5583(16)$	$-3011(6)$	$\mathrm{C}\left(22^{\prime}\right)$	$-1411(13)$	$5151(16)$	$-1143(6)$
$\mathrm{C}(23)$	$-1116(13)$	$5623(17)$	$-2608(6)$	$\mathrm{C}\left(23^{\prime}\right)$	$-1588(14)$	$3912(16)$	$-1075(6)$
$\mathrm{C}(24)$	$-228(15)$	$5995(17)$	$-2413(5)$	$\mathrm{C}\left(24^{\prime}\right)$	$-667(15)$	$3313(15)$	$-1171(6)$
$\mathrm{C}(25)$	$764(13)$	$5333(14)$	$-2476(4)$	$\mathrm{C}\left(25^{\prime}\right)$	$263(13)$	$3624(12)$	$-966(5)$
$\mathrm{C}(26)$	$-375(14)$	$3632(13)$	$-3117(5)$	$\mathrm{C}\left(26^{\prime}\right)$	$-774(12)$	$5803(13)$	$-527(5)$
$\mathrm{C}(27)$	$180(12)$	$5103(18)$	$-3516(5)$	$\mathrm{C}\left(27^{\prime}\right)$	$-271(12)$	$6762(11)$	$-1101(4)$
$\mathrm{C}(28)$	$763(19)$	$4324(17)$	$-2254(5)$	$\mathrm{C}\left(28^{\prime}\right)$	$1142(11)$	$3201(12)$	$-1171(4)$
$\mathrm{C}(29)$	$1624(12)$	$6087(13)$	$-2406(4)$	$\mathrm{C}\left(29^{\prime}\right)$	$274(13)$	$3183(13)$	$-585(5)$

Table 5 Atomic coordinates $\left(\times 10^{4}\right)$ for complex 4 with e.s.d.s in parentheses

Atom	x	y	z
Re	$2222(1)$	$7238(1)$	$1336(1)$
$\mathrm{Cl}(1)$	$3295(3)$	$9006(3)$	$1037(2)$
$\mathrm{Cl}(2)$	$1406(3)$	$5310(3)$	$1548(2)$
$\mathrm{Cl}(3)$	$3839(3)$	$6236(3)$	$854(2)$
$\mathrm{N}(1)$	$529(9)$	$7645(7)$	$962(4)$
$\mathrm{N}(11)$	$-685(8)$	$7950(8)$	$664(4)$
$\mathrm{C}(11)$	$-1075(12)$	$7362(12)$	$76(5)$
$\mathrm{C}(12)$	$-2225(15)$	$8046(16)$	$-295(6)$
$\mathrm{C}(13)$	$-3458(13)$	$8437(14)$	$15(6)$
$\mathrm{C}(14)$	$-2880(14)$	$9209(14)$	$505(6)$
$\mathrm{C}(15)$	$-1720(11)$	$8611(11)$	$970(5)$
$\mathrm{C}(16)$	$-1575(17)$	$6123(13)$	$175(7)$
$\mathrm{C}(17)$	$266(18)$	$7263(16)$	$-204(7)$
$\mathrm{C}(18)$	$-2379(15)$	$7789(14)$	$1348(6)$
$\mathrm{C}(19)$	$-893(14)$	$9607(12)$	$1296(7)$
$\mathrm{N}(2)$	$2675(9)$	$7569(7)$	$2078(4)$
$\mathrm{N}(21)$	$2967(10)$	$7798(9)$	$2626(4)$
$\mathrm{C}(21)$	$4423(11)$	$7439(10)$	$2929(4)$
$\mathrm{C}(22)$	$4485(28)$	$7341(17)$	$3593(4)$
$\mathrm{C}\left(22^{\prime}\right)$	$4958(18)$	$8143(30)$	$3485(9)$
$\mathrm{C}(23)$	$3757(16)$	$8388(16)$	$3847(6)$
$\mathrm{C}(24)$	$2306(20)$	$8421(23)$	$3572(6)$
$\mathrm{C}(25)$	$1885(12)$	$8488(11)$	$2923(5)$
$\mathrm{C}(26)$	$5440(24)$	$8354(16)$	$2729(12)$
$\mathrm{C}\left(26^{\prime}\right)$	$5596(22)$	$7514(22)$	$2539(11)$
$\mathrm{C}(27)$	$4758(28)$	$6209(12)$	$2711(12)$
$\mathrm{C}\left(27^{\prime}\right)$	$4257(36)$	$6166(16)$	$3129(17)$
$\mathrm{C}(28)$	$1840(14)$	$9690(11)$	$2678(7)$
$\mathrm{C}(29)$	$485(14)$	$7866(12)$	$2786(7)$

symmetrical $\operatorname{Re}(\mu-\mathrm{O})_{2} \operatorname{Re}$ bridge, an example of which is known ${ }^{15}$ in $\left[\operatorname{Re}(\mu-\mathrm{O}) \mathrm{O}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]_{2}$.

The $\mathrm{Re}_{2} \mathrm{O}_{2}$ ring displays a large rhombic distortion with the angles at Re contracted to $69.6(3)^{\circ}$ and the transannular $\mathrm{O} \cdots \mathrm{O}^{\prime}$ distance short at $2.40 \AA$. The equatorial $\mathrm{M}-\mathrm{N}$ and in particular the $\mathrm{N}-\mathrm{N}$ bonds [1.265(12) and 1.271(16) \AA] are

Table 6 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 3 with e.s.d.s in parentheses

$\mathrm{Re}(1)-\mathrm{Cl}(1)$	2.405(4)	$\mathrm{Re}(1)-\mathrm{Cl}(2)$	$2.415(4)$
$\mathrm{Re}(1)-\mathrm{O}(1)$	$1.895(8)$	$\mathrm{Re}(1)-\mathrm{N}(1)$	$1.732(12)$
$\mathrm{Re}(1)-\mathrm{N}(2)$	$1.758(12)$	$\mathrm{O}(1)-\mathrm{Si}(1)$	1.647(9)
$\mathrm{N}(1)-\mathrm{N}(11)$	1.308(17)	$\mathrm{N}(11)-\mathrm{C}(11)$	1.533(18)
$\mathrm{N}(11)-\mathrm{C}(15)$	1.510(17)	$\mathrm{N}(2)-\mathrm{N}(21)$	$1.282(18)$
$\mathrm{N}(21)-\mathrm{C}(21)$	1.476(20)	$\mathrm{N}(21)-\mathrm{C}(25)$	$1.509(20)$
$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{Cl}\left(1^{\prime}\right)$	$2.400(4)$	$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	2.397(4)
$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	1.905(7)	$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	1.759(12)
$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$1.763(12)$	$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)$	1.623(9)
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{N}\left(11^{\prime}\right)$	1.294(17)	$\mathrm{N}\left(11^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	1.509(20)
$\mathrm{N}\left(11^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	1.480 (18)	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(21^{\prime}\right)$	$1.278(17)$
$\mathrm{N}\left(21^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	1.499(20)	$\mathrm{N}\left(21^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	1.514(18)
$\mathrm{Cl}(1)-\mathrm{Re}(1)-\mathrm{Cl}(2)$	171.2(1)	$\mathrm{Cl}(1)-\mathrm{Re}(1)-\mathrm{O}(1)$	84.4(3)
$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{O}(1)$	87.0(3)	$\mathrm{Cl}(1)-\mathrm{Re}(1)-\mathrm{N}(1)$	90.7(3)
$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{N}(1)$	92.6(3)	$\mathrm{O}(1)-\mathrm{Re}(1)-\mathrm{N}(1)$	125.2(5)
$\mathrm{Cl}(1)-\mathrm{Re}(1)-\mathrm{N}(2)$	95.0(4)	$\mathrm{Cl}(2)-\mathrm{Re}(1)-\mathrm{N}(2)$	90.8(4)
$\mathrm{O}(1)-\operatorname{Re}(1)-\mathrm{N}(2)$	117.7(5)	$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{N}(2)$	117.1(6)
$\mathrm{Re}(1)-\mathrm{O}(1)-\mathrm{Si}(1)$	148.1(6)	$\mathrm{Re}(1)-\mathrm{N}(1)-\mathrm{N}(11)$	172.8(9)
$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(11)$	115.3(10)	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(15)$	117.0(11)
$\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(15)$	125.2(11)	$\mathrm{Re}(1)-\mathrm{N}(2)-\mathrm{N}(21)$	174.3(10)
$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(21)$	115.8(12)	$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(25)$	117.7(13)
$\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{C}(25)$	125.1(13)	$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Re}\left(1^{\prime}\right)-\mathrm{Cl}\left(2^{\prime}\right)$	170.6(1)
$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Re}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	84.6(3)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Re}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$	86.0(3)
$\mathrm{Cl}\left(1^{\prime}\right)-\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	93.0(4)	$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	92.1(4)
$\mathrm{O}\left(1^{\prime}\right)-\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$	122.9(5)	$\mathrm{Cl}\left(1^{\prime}\right)-\operatorname{Re}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	90.8(4)
$\mathrm{Cl}\left(2^{\prime}\right)-\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	94.2(4)	$\mathrm{O}\left(1^{\prime}\right)-\operatorname{Re}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	122.3(5)
$\mathrm{N}\left(1^{\prime}\right)-\operatorname{Re}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	114.7(5)	$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{Si}\left(1^{\prime}\right)$	151.0(5)
$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)-\mathrm{N}\left(11^{\prime}\right)$	174.9(10)	$\mathrm{N}\left(1^{\prime}\right)-\mathrm{N}\left(11^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	113.6(11)
$\mathrm{N}\left(1^{\prime}\right)-\mathrm{N}\left(11^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	117.8(12)	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{N}\left(11^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	126.5(12)
$\mathrm{Re}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(21^{\prime}\right)$	172.2(10)	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(21^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	115.6(11)
$\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(21^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	117.3(12)	$\mathrm{C}\left(21^{\prime}\right)-\mathrm{N}\left(21^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	124.5(12)

again short indicating a significant degree of multiple bonding. The $\mathrm{Re}-\mathrm{N}-\mathrm{N}$ angles are essentially linear [179.5(10) and $\left.178.1(7)^{\circ}\right]$ and the exo- N atoms planar (maximum deviations from the planes of their substituents of 0.03 and $0.04 \AA$). In

Table 7 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 4 with e.s.d.s in parentheses

$\mathrm{Re}-\mathrm{Cl}(1)$	$2.392(3)$	$\mathrm{Re}-\mathrm{Cl}(2)$	$2.389(3)$
$\mathrm{Re}-\mathrm{Cl}(3)$	$2.315(3)$	$\mathrm{Re}-\mathrm{N}(1)$	$1.753(8)$
$\mathrm{Re}-\mathrm{N}(2)$	$1.741(9)$	$\mathrm{N}(1)-\mathrm{N}(11)$	$1.287(11)$
$\mathrm{N}(11)-\mathrm{C}(11)$	$1.505(14)$	$\mathrm{N}(11)-\mathrm{C}(15)$	$1.490(15)$
$\mathrm{N}(2)-\mathrm{N}(21)$	$1.280(12)$	$\mathrm{N}(21)-\mathrm{C}(21)$	$1.495(13)$
$\mathrm{N}(21)-\mathrm{C}(25)$	$1.527(16)$		
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(2)$	$170.8(1)$	$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{Cl}(3)$	$86.2(1)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{Cl}(3)$	$84.6(1)$	$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{N}(1)$	$91.7(3)$
$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{N}(1)$	$92.6(3)$	$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{N}(1)$	$120.4(3)$
$\mathrm{Cl}(1)-\mathrm{Re}-\mathrm{N}(2)$	$93.1(3)$	$\mathrm{Cl}(2)-\mathrm{Re}-\mathrm{N}(2)$	$91.9(3)$
$\mathrm{Cl}(3)-\mathrm{Re}-\mathrm{N}(2)$	$119.9(3)$	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(2)$	$119.6(4)$
$\mathrm{Re}-\mathrm{N}(1)-\mathrm{N}(11)$	$177.1(8)$	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(11)$	$115.9(8)$
$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(15)$	$118.2(8)$	$\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(15)$	$124.3(8)$
$\mathrm{Re}-\mathrm{N}(2)-\mathrm{N}(21)$	$178.1(8)$	$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(21)$	$116.7(9)$
$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(25)$	$119.4(8)$	$\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{C}(25)$	$123.7(8)$

contrast to the essentially coplanar geometries observed in 3 and 4 here in 5 the $\mathrm{C}_{2} \mathrm{~N}_{2}$ planes are appreciably tilted with respect to the equatorial plane, by 28 and 35° for $\mathrm{N}(11)$ and $\mathrm{N}(21)$ respectively. However, the $\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(2)$ angle is still significantly enlarged from normal octahedral at $107.9(5)^{\circ}$ due to the steric congestion of the ligand methyl groups. The $\mathrm{Re}-\mathrm{NCMe}$ distances are normal.

If 5 is again formulated with neutral ligands the oxidation state of rhenium is $\mathrm{Iv}, \mathrm{d}^{3}$, so that the diamagnetism could arise from spin coupling across the $\operatorname{Re}(\mathrm{O})_{2} \operatorname{Re}$ bridge; the $\mathrm{Re} \cdots \mathrm{Re}$ distance of $3.45 \AA$ is too long for a Re-Re bond as found in compound 6 discussed below.

In the hope of substituting Cl in 4 reactions with $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}\left(\mathrm{SiMe}_{3}\right)$ and $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{HLi}$ were studied but these were very slow even on refluxing in thf for some days and only another oxo species $\left[\operatorname{ReO}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}\right]_{2} 6$ was isolated in low yield. The structure of 6 is shown in Fig. 5; fractional coordinates are given in Table 10 with bond lengths and angles in Table 11.

Table 8 Atomic coordinates $\left(\times 10^{4}\right)$ for complex 5 with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
Re	7343(1)	6934(1)	532(1)	N(3)	6985(4)	5707(8)	-8(4)
O	8016(3)	7181(5)	218(3)	C(31)	6787(5)	4984(10)	-235(5)
$\mathrm{N}(1)$	7843(4)	6086(7)	1068(4)	C(32)	6527(7)	4047(11)	-506(7)
$\mathrm{N}(11)$	8199(5)	5494(7)	1446(4)	N(4)	7758(4)	8156(8)	1065(4)
$\mathrm{C}(12)$	8679(6)	4902(10)	1321(5)	C(41)	8018(6)	8735(10)	1399(6)
C(13)	8863(9)	4021(13)	1701(7)	C(42)	8363(7)	9427(11)	1842(6)
C(14)	9042(8)	4195(13)	2355(6)	S	4578(2)	3622(3)	1127(2)
$\mathrm{C}(15)$	8798(8)	5152(12)	2488(6)	$\mathrm{O}(1)$	4108(3)	2994(6)	1051(4)
$\mathrm{C}(16)$	8164(7)	5443(11)	2032(5)	O(2)	4664(6)	3771(9)	641(4)
$\mathrm{C}(17)$	8419(8)	4642(15)	706(6)	$\mathrm{O}(3)$	4559(6)	4477(6)	1399(5)
C(18)	9240(8)	5607(14)	1454(9)	C	5263(3)	2989(7)	1615(3)
C(19)	7703(8)	4692(13)	2010(7)	F(1)	5219(5)	2800(10)	2117(4)
C(20)	8022(9)	6499(12)	2173(6)	F(2)	5758(4)	3580(8)	1720(5)
N (2)	6669(4)	7103(7)	658(3)	F(3)	5341(4)	2117(8)	1386(5)
$\mathrm{N}(21)$	6178(5)	7233(7)	730 (4)	S'	7331(3)	1728(6)	1120(4)
C(22)	5938(7)	6401(12)	982(6)	$\mathrm{O}\left(1^{\prime}\right)$	7332(5)	747(9)	915(7)
C(23)	5247(7)	6512(14)	771(8)	$\mathrm{O}\left(2^{\prime}\right)$	7646(7)	1812(14)	1726(6)
C(24)	5008(9)	7512(16)	818(10)	$O\left(3^{\prime}\right)$	7514(8)	2457(12)	819(10)
C(25)	5186(8)	8214(15)	426(10)	C^{\prime}	6669(6)	1959(8)	983(6)
C(26)	5878(6)	8273(11)	604(6)	F(1')	6335(10)	1855(16)	429(7)
C(27)	6092(7)	5424(10)	793(7)	$\mathrm{F}\left(2^{\prime}\right)$	6604(9)	2871(10)	1136(11)
C(28)	6255(8)	6483(14)	1655(7)	F(3')	6474(13)	1328(14)	1264(10)
C(29)	6003(10)	8772(12)	159(8)	$\mathrm{C}(50)$	5000	5896(18)	2500
C(30)	6187(10)	8846(14)	1160(8)	$\mathrm{Cl}(1)$	5658(3)	6604(4)	2847(2)

Fig. 4 The structure of $\left[\operatorname{Re}(\mu-\mathrm{O})\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}(\mathrm{MeCN})_{2}\right]_{2} 5$

Fig. 5 The structure of $\left[\operatorname{ReO}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}\right)_{2}\right]_{2} 6$

Table 9 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 5 with e.s.d.s in parentheses

$\mathrm{Re}-\mathrm{O}$	$2.095(9)$	$\mathrm{Re}-\mathrm{N}(1)$	$1.795(8)$
$\mathrm{Re}-\mathrm{N}(2)$	$1.779(11)$	$\mathrm{Re}-\mathrm{N}(3)$	$2.084(10)$
$\mathrm{Re}-\mathrm{N}(4)$	$2.094(10)$	$\mathrm{Re}-\mathrm{O}^{\prime}$	$2.106(7)$
$\mathrm{N}(11)-\mathrm{C}(12)$	$1.530(20)$	$\mathrm{N}(1)-\mathrm{N}(11)$	$1.265(12)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.472(21)$	$\mathrm{N}(11)-\mathrm{C}(16)$	$1.530(19)$
$\mathrm{N}(2)-\mathrm{N}(21)$	$1.271(16)$	$\mathrm{C}(16)-\mathrm{C}(20)$	$1.531(23)$
$\mathrm{N}(21)-\mathrm{C}(26)$	$1.537(17)$	$\mathrm{N}(21)-\mathrm{C}(22)$	$1.511(21)$
$\mathrm{N}(4)-\mathrm{C}(41)$	$1.127(16)$	$\mathrm{N}(3)-\mathrm{C}(31)$	$1.126(16)$
$\mathrm{O}-\mathrm{Re}-\mathrm{N}(1)$	$91.0(4)$	$\mathrm{O}-\mathrm{Re}-\mathrm{N}(2)$	$160.3(3)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(2)$	$107.9(5)$	$\mathrm{O}-\mathrm{Re}-\mathrm{N}(3)$	$92.4(4)$
$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(3)$	$88.0(4)$	$\mathrm{N}(2)-\mathrm{Re}-\mathrm{N}(3)$	$93.7(4)$
$\mathrm{O}-\mathrm{Re}-\mathrm{N}(4)$	$83.9(4)$	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{N}(4)$	$90.9(4)$
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{N}(4)$	$90.2(4)$	$\mathrm{N}(3)-\mathrm{Re}-\mathrm{N}(4)$	$176.1(5)$
$\mathrm{O}-\mathrm{Re}-\mathrm{O}^{\prime}$	$69.6(3)$	$\mathrm{N}(1)-\mathrm{Re}-\mathrm{O}^{\prime}$	$159.7(4)$
$\mathrm{N}(2)-\mathrm{Re}-\mathrm{O}^{\prime}$	$92.0(3)$	$\mathrm{N}(3)-\mathrm{Re}-\mathrm{O}^{\prime}$	$86.7(3)$
$\mathrm{N}(4)-\mathrm{Re}-\mathrm{O}^{\prime}$	$93.1(3)$	$\mathrm{Re}-\mathrm{O}-\mathrm{Re}$	$110.4(3)$
$\mathrm{Re}-\mathrm{N}(1)-\mathrm{N}(11)$	$179.5(10)$	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(12)$	$119.4(11)$
$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(16)$	$118.6(12)$	$\mathrm{C}(12)-\mathrm{N}(11)-\mathrm{C}(16)$	$121.9(9)$
$\mathrm{Re}-\mathrm{N}(2)-\mathrm{N}(21)$	$178.1(7)$	$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(22)$	$119.6(10)$
$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(26)$	$118.1(11)$	$\mathrm{C}(22)-\mathrm{N}(21)-\mathrm{C}(26)$	$122.2(12)$
$\mathrm{Re}-\mathrm{N}(3)-\mathrm{C}(31)$	$170.5(12)$	$\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{C}(32)$	$177.5(17)$
$\mathrm{Re}-\mathrm{N}(4)-\mathrm{C}(41)$	$172.1(10)$	$\mathrm{N}(4)-\mathrm{C}(41)-\mathrm{C}(42)$	$177.0(15)$

The complex has crystallographic C_{2} symmetry about an axis perpendicular to and bisecting the $\mathrm{Re}-\mathrm{Re}$ bond. The geometry about each rhenium can be described as distorted tetrahedral, the distortion being towards trigonal pyramidal; this is most marked in the $\mathrm{N}(2)-\operatorname{Re}(1)-\operatorname{Re}\left(1^{\prime}\right)$ angle of $93.0(3)^{\circ}$. The dimer is an ethane-like molecule in a near-eclipsed conformation [the $\mathrm{N}(2)-\operatorname{Re}(1)-\operatorname{Re}\left(1^{\prime}\right)-\mathrm{O}\left(1^{\prime}\right)$ and $\mathrm{N}(1)-\operatorname{Re}(1)-$ $\operatorname{Re}\left(1^{\prime}\right)-\mathrm{N}\left(1^{\prime}\right)$ torsion angles are 10 and 12°, respectively]. The $\mathrm{Re}-\mathrm{Re}$ separation is 2.696 (2) \AA and in the range for $\mathrm{Re}-\mathrm{Re}$ single bonds. ${ }^{16}$

The $\operatorname{Re}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ distances are again short and the $\mathrm{Re}-\mathrm{N}-\mathrm{N}$ angles close to linear. The $\mathrm{Re}-\mathrm{O}$ distance is normal. There is a noticeable increase in the pyramidalisation at the exo- N atoms which deviate from the planes of their substituents by 0.22 and $0.16 \AA$ for $\mathrm{N}(11)$ and $\mathrm{N}(21)$ respectively. Indeed for the Re complexes 36 there appears to be an approximate correlation between the degree of pyramidalisation and the

Table 10 Atomic coordinates $\left(\times 10^{4}\right)$ for complex 6 with e.s.d.s in parentheses

Atom	x	y	z
$\mathrm{Re}(1)$	$419(1)$	$1201(1)$	$2107(1)$
$\mathrm{O}(1)$	$1255(3)$	$408(5)$	$2533(3)$
$\mathrm{N}(1)$	$634(4)$	$2600(5)$	$2071(3)$
$\mathrm{N}(11)$	$844(4)$	$3585(5)$	$2003(3)$
$\mathrm{C}(11)$	$1732(4)$	$3757(8)$	$2278(5)$
$\mathrm{C}(12)$	$1892(5)$	$4971(8)$	$2347(6)$
$\mathrm{C}(13)$	$1388(7)$	$5596(9)$	$1667(8)$
$\mathrm{C}(14)$	$501(6)$	$5420(8)$	$1482(6)$
$\mathrm{C}(15)$	$255(5)$	$4231(7)$	$1400(5)$
$\mathrm{C}(16)$	$2076(6)$	$3204(9)$	$1824(6)$
$\mathrm{C}(17)$	$2150(5)$	$3247(9)$	$3033(5)$
$\mathrm{C}(18)$	$162(6)$	$3784(8)$	$676(4)$
$\mathrm{C}(19)$	$-562(5)$	$4159(8)$	$1421(5)$
$\mathrm{N}(2)$	$-367(4)$	$554(5)$	$1371(3)$
$\mathrm{N}(21)$	$-838(4)$	$-11(5)$	$822(3)$
$\mathrm{C}(21)$	$-684(5)$	$-1198(7)$	$880(5)$
$\mathrm{C}(22)$	$-1127(8)$	$-1737(9)$	$151(7)$
$\mathrm{C}(23)$	$-1968(7)$	$-1350(9)$	$-282(6)$
$\mathrm{C}(24)$	$-1982(7)$	$-146(9)$	$-383(6)$
$\mathrm{C}(25)$	$-1633(5)$	$486(7)$	$327(5)$
$\mathrm{C}(26)$	$-947(8)$	$-1693(9)$	$1407(7)$
$\mathrm{C}(27)$	$208(7)$	$-1375(9)$	$1113(8)$
$\mathrm{C}(28)$	$-2196(6)$	$517(12)$	$666(6)$
$\mathrm{C}(29)$	$-1477(7)$	$1607(9)$	$161(6)$

Table 11 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for complex 6 with e.s.d.s in parentheses

$\operatorname{Re}(1)-\mathrm{O}(1)$	$1.714(5)$	$\operatorname{Re}(1)-\mathrm{N}(1)$	$1.782(6)$
$\operatorname{Re}(1)-\mathrm{N}(2)$	$1.778(6)$	$\mathrm{Re}(1)-\operatorname{Re}\left(1^{\prime}\right)$	$2.696(2)$
$\mathrm{N}(1)-\mathrm{N}(11)$	$1.304(9)$	$\mathrm{N}(11)-\mathrm{C}(11)$	$1.499(10)$
$\mathrm{N}(11)-\mathrm{C}(15)$	$1.487(9)$	$\mathrm{N}(2)-\mathrm{N}(21)$	$1.297(8)$
$\mathrm{N}(21)-\mathrm{C}(21)$	$1.489(11)$	$\mathrm{N}(21)-\mathrm{C}(25)$	$1.510(9)$
$\mathrm{O}(1)-\operatorname{Re}(1)-\mathrm{N}(1)$	$114.1(3)$	$\mathrm{O}(1)-\operatorname{Re}(1)-\mathrm{N}(2)$	$113.8(3)$
$\mathrm{N}(1)-\operatorname{Re}(1)-\mathrm{N}(2)$	$120.9(3)$	$\mathrm{O}(1)-\operatorname{Re}(1)-\operatorname{Re}\left(1^{\prime}\right)$	$108.1(2)$
$\mathrm{N}(1)-\operatorname{Re}(1)-\operatorname{Re}\left(1^{\prime}\right)$	$102.8(3)$	$\mathrm{N}(2)-\operatorname{Re}(1)-\operatorname{Re}\left(1^{\prime}\right)$	$93.0(3)$
$\mathrm{Re}(1)-\mathrm{N}(1)-\mathrm{N}(11)$	$172.8(7)$	$\mathrm{N}(1)-\mathrm{N}(11)-\mathrm{C}(11)$	$114.8(6)$
$\mathrm{N}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	$116.6(5)$	$\mathrm{C}(11)-\mathrm{N}(11)-\mathrm{C}(15)$	$12.6(7)$
$\operatorname{Re}(1)-\mathrm{N}(2)-\mathrm{N}(21)$	$169.7(6)$	$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(21)$	$115.3(6)$
$\mathrm{N}(2)-\mathrm{N}(21)-\mathrm{C}(25)$	$117.6(6)$	$\mathrm{C}(21)-\mathrm{N}(21)-\mathrm{C}(25)$	$123.4(6)$

amount of $\mathrm{N}-\mathrm{N}$ double bond character, i.e., the longer the bond the greater the pyramidalisation. The statistical significance of this may however be questionable as the standard deviations in the bond lengths are large. The compound can be compared with the rhenium(II) dimer, $\left[\mathrm{ReO}(\mathrm{MeC} \equiv \mathrm{CMe})_{2}\right]_{2}$, whose structure was determined by X-ray diffraction. ${ }^{16 a}$ Thus 6 can be similarly formulated as a rhenium(II) compound taking $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2}$ as a neutral ligand as in the compounds discussed earlier.

The ${ }^{1} \mathrm{H}$ NMR spectrum of 6 indicates that the solid-state structure is maintained in solution and the CH_{2} and four CH_{3} resonances [$c f$. the compound $\mathrm{Re}_{2} \mathrm{O}_{2}\left(\mathrm{MeC}_{2} \mathrm{Me}\right)_{4}$ above] are unchanged over the temperature range -80 to $+80^{\circ} \mathrm{C}$. Having in mind that there is restricted rotation about the $\mathrm{Re}-\mathrm{Re}$ bond due to steric congestion and restricted rotation around the $\operatorname{Re}-\mathrm{N}-\mathrm{N}$ vector in agreement with previous structures $\mathbf{1}-\mathbf{4}$, it appears that 6 is static in solution (excluding conformational changes in the ring that are probably fast on the NMR timescale). It does not react further with $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{HLi}$ and decomposes in the presence of reducing agents such as $\mathrm{Na} / \mathrm{Hg}$ which, in addition to deoxygenation might also attack the $\mathrm{N}-\mathrm{N}$ bond.

Conclusion

Several important features have emerged from the above structural studies. For all the rhenium complexes both the $\mathrm{Re}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bonds are short and the $\mathrm{Re}-\mathrm{N}-\mathrm{N}$ angle essentially linear. Furthermore, regardless of whether the complex is tetrahedral, trigonal bipyramidal or octahedral, neutral or cationic, the ligand geometry does not vary appreciably. The $\mathrm{Re}-\mathrm{N}$ bonds are in the range $1.732(12) \AA$ (in 3) to $1.795(8) \AA$ (in 5), the $\mathrm{N}-\mathrm{N}$ bonds in the range $1.265(12) \AA$ (in 5) to $1.308(17) \AA$ (in 3) and the angles in the range $169.7(6)^{\circ}$ (in 6) to $179.5(10)$ (in 5). Small increases in the $\mathrm{Re}-\mathrm{N}$ distance are often accompanied by a reduction in the $\mathrm{N}-\mathrm{N}$ distance, the sum of the Re-N and $\mathrm{N}-\mathrm{N}$ distances remaining fairly constant with a mean value for structures 3-6 of $3.05 \AA$. Conclusions regarding bond order have to be approached with caution. Many literature assignments of canonical forms seem somewhat arbitrary and take little account of the observed bond lengths. In the case of heavy-metal hydrazido species both the metalnitrogen and in particular the nitrogen-nitrogen distances frequently have very large error margins which render the assignment of anything other than an approximate bond order meaningless. All that can be said with certainty for compounds 3-6 is that both the $\mathrm{Re}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bonds display a significant amount of multiple-bond character, the former being consistent with strong π bonding to the metal.

The tungsten complex 1 is slightly anomalous in that the W-N distance, 1.841 (5) \AA, is significantly longer than the mean value ($1.752 \AA$) reported for tungsten hydrazido compounds and the $\mathrm{N}-\mathrm{N}$ distance $[1.248(7) \AA]$ very much shorter. This geometry is much closer to that observed, for example, in the diazenido species $\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\left(\mathrm{~N}_{2} \mathrm{Me}\right)$ where the $\mathrm{W}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ distances are $1.856(3)$ and $1.215(5) \AA$ respectively, ${ }^{17}$ and even closer to that in the related complex $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left(\mathrm{CO}_{2}\right) \mathrm{W}(\mathrm{NNMe}) \mathrm{Cr}(\mathrm{CO})_{5}[\mathrm{~W}-\mathrm{N} 1.830(3), \mathrm{N}-\mathrm{N} 1.247(4) \AA]$, where the increase in the $\mathrm{N}-\mathrm{N}$ distance and reduction in $\mathbf{W}-\mathbf{N}$ distance is attributed to the chromium atom removing electron density on the tungsten through the organodiazo linkage. ${ }^{18}$

Experimental

Microanalyses were by Medac Ltd., Brunel University, Pascher, Germany and Imperial College Laboratories. General techniques are as described. ${ }^{19}$ NMR data were obtained on a JEOL-EX- 270 spectrometer at 270 MHz and referenced internally on residual H impurity in the solvent $\left(\delta 7.15 \mathrm{C}_{6} \mathrm{D}_{6}, 7.26 \mathrm{CDCl}_{3}\right.$, $2.0 \mathrm{CD}_{3} \mathrm{CN}$). Electron impact (EI) mass spectra on a VG7070E
with isotopic envelopes calculated for ${ }^{181} \operatorname{Re}(62.5),{ }^{185} \operatorname{Re}(37.5)$, ${ }^{182} \mathrm{~W}(26.4),{ }^{183} \mathrm{~W}(14.4)$ and ${ }^{186} \mathrm{~W}(28.4 \%)$.

Commercial chemicals were from Aldrich. Literature syntheses were used for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}_{2},{ }^{5 a} \mathrm{ReO}_{3}\left(\mathrm{OSiMe}_{3}\right)^{20}$ and $\mathrm{WO}_{2} \mathrm{Cl}_{2}$ (dme). ${ }^{21}$

Syntheses.-Trichlorobis(2,2,6,6-tetramethylpiperid-1-ylnitrene)trimethylsilyloxotungsten(Iv) 1. To a suspension of WO_{2} Cl_{2} (dme) $(0.6 \mathrm{~g}, 1.6 \mathrm{mmol})$ in SiClMe 3 and $\mathrm{NEt}_{3}\left(10 \mathrm{~cm}^{3}, 1: 1\right)$ was added $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}_{2}(0.55 \mathrm{~g}, 3.52 \mathrm{mmol})$ and the mixture refluxed (12 h) to give a brown suspended solid. After removal of solvents the residue was washed with hexane $\left(3 \times 30 \mathrm{~cm}^{3}\right)$ and extracted with toluene $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. Concentration of the extracts to $c a .5 \mathrm{~cm}^{3}$ and cooling $\left(-20^{\circ} \mathrm{C}\right)$ gave orange crystals of 1 . Yield: $0.65 \mathrm{~g}, c a .60 \%$. X-Ray quality crystals were obtained by layering $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions with $\mathrm{Et}_{2} \mathrm{O} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta$ $1.53(\mathrm{~s}, 12 \mathrm{H})$ and $1.30(\mathrm{~s}, 12 \mathrm{H})\left(\underset{\mathrm{NCMe}}{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} M e_{2}\right)$, $1.2-1.0\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $0.62\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSiMe}_{3}\right)$.

Trioxo-2,2,6,6-tetramethylpiperid-1-ylamidorhenium(VII) 2,-2,6,6-tetramethylpiperid-1-ylammonium perrhenate 2. To a solution of $\mathrm{ReO}_{3}\left(\mathrm{OSiMe}_{3}\right)(0.3 \mathrm{~g}, 0.95 \mathrm{mmol})$ in thf containing dried activated 4 A molecular sieves, was added $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}_{2}$ $(0.47 \mathrm{~g}, 3 \mathrm{mmol})$ and the mixture stirred at room temperature for 12 h . The resulting red-brown suspension was evaporated, the residue washed with hexane and $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The organic phases were filtered, reduced to $c a .10 \mathrm{~cm}^{3}$ and layered with $\mathrm{Et}_{2} \mathrm{O}$. After 2-3 d, light yellow-green crystals were collected. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.40,1.56\left(\mathrm{~s}, 2 \times 12 \mathrm{H}, \mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} M e_{2}\right)$, 1.60-1.95 (m, $12 \mathrm{H}, \mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{2}$), $4.2(\mathrm{~s}, 3 \mathrm{H}$, NH_{3}) and $9.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) . \tilde{v}_{\max } / \mathrm{cm}^{-1}: 3346,3250,3180(\mathrm{NH}$, $\left.\mathrm{NH}_{3}\right) ; 904,911(\mathrm{Re}-\mathrm{O})$.

Dichlorobis(2,2,6,6-tetramethylpiperid-1-ylnitrene)(trimethylsilyloxo)rhenium(iII) 3. To $\mathrm{ReO}_{3}\left(\mathrm{OSiMe}_{3}\right)(0.7 \mathrm{~g}, 2.16 \mathrm{mmol})$ suspended in $\mathrm{NEt}_{3}\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}_{2}(1.12 \mathrm{~g}$, $7.15 \mathrm{mmol})$, followed by $\mathrm{SiClMe}_{3}\left(5 \mathrm{~cm}^{3}\right)$. After refluxing the reaction mixture overnight (yellow colouration), the volatiles were removed under vacuum, the solid residue transferred in the dry-box to a Soxhlet apparatus and extracted with hexane ($50 \mathrm{~cm}^{3}$), until the organic extracts were colourless. The yellow-orange organic phase was concentrated and cooled $\left(-20^{\circ} \mathrm{C}\right)$ to give yellow crystals. Yield: $0.92 \mathrm{~g}, \mathrm{ca} .65 \%$. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta 1.40\left(\mathrm{~s}, 24 \mathrm{H}, \stackrel{\mathrm{NCMe}}{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} M e_{2}\right)$, $1.10\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right)$ and $0.60\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OSiMe}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{11} \mathrm{H}\right\}, \delta 63.9$ $\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{2}\right), 39.9\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}-\right.$ Me_{2}), $31.5 \quad\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{2}\right)$, $\quad 16.3$ $\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe} 2\right)$ and $3.8\left[\mathrm{OSi}\left(\mathrm{CH}_{3}\right)_{3}\right]$.

Trichlorobis(2,2,6,6-tetramethylpiperid-1-ylnitrene)rhenium(III) 4. To a solution of $3(0.75 \mathrm{~g}, 1.15 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$, was added dropwise a solution of HCl in $\mathrm{Et}_{2} \mathrm{O}(1.2$ cm^{3} of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution). The reaction mixture was allowed to reach room temperature and stirred for 2 h . Removal of volatiles under vacuum, washing of the yellow residue with hexane $\left(3 \times 20 \mathrm{~cm}^{3}\right)$ and crystallisation from toluene at $-20^{\circ} \mathrm{C}$ affords yellow prisms of 4 . Yield: $0.55 \mathrm{~g}, \mathrm{ca} .80 \%$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta 1.74\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe} 2\right)$ and $1.58\left(\mathrm{~s}, 24 \mathrm{H}, \mathrm{NCMe} 2_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe} e_{2}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 66.4$ $\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{2}\right), 39.8\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\right.$ $\left.\mathrm{Me}_{2}\right), \quad 31.8 \quad\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe}{ }_{2}\right)$ and 22.1 ($\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} M e_{2}$).

Bis $[$ bis $($ acetonitrile $)(\mu$-oxo) bis(2,2,6,6-tetramethylpiperid-1ylnitrene)rhenium(IV)] tetrakis(trifluoromethanesulfonate) 5. To $4(0.3 \mathrm{~g}, 0.5 \mathrm{mmol})$ in acetonitrile $\left(10 \mathrm{~cm}^{3}\right)$ was added silver trifluoromethanesulfonate $(0.38 \mathrm{~g}, 1.5 \mathrm{mmol})$ when a grey precipitate (AgCl) is formed immediately. The mixture was stirred for 8 h and filtered. After removal of acetonitrile under vacuum, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 20 \mathrm{~cm}^{3}\right)$ and extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$. Filtration, concentration
Table 12 Details of the data collections and refinements for compounds 1 and 3-6

Compound	1	3	4	5	6
Empirical formula	$\mathrm{C}_{21} \mathrm{H}_{45} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{OSiW} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{45} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{OReSi}$	$\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{Re}$	$\mathrm{C}_{49} \mathrm{H}_{86} \mathrm{Cl}_{2} \mathrm{~F}_{12} \mathrm{~N}_{12} \mathrm{O}_{14} \mathrm{Re}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Re}_{2}$
M	772.8	654.8	601.1	1866.8	1021.4
Colour, habit	Yellow plates	Yellow plates	Yellow needles	Orange prisms	Orange needles
Crystal size/mm	$0.056 \times 0.37 \times 0.62$	$0.094 \times 0.266 \times 0.30$	$0.096 \times 0.158 \times 0.50$	$0.13 \times 0.20 \times 0.50$	$0.134 \times 0.134 \times 1.00$
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	Pnam	$P 2_{1} / \mathrm{c}$	$P 2_{1} / c$	C2/c	C2/c
a / \AA	12.101(7)	13.411(2)	9.409(2)	23.842(5)	18.469(7)
b / \AA	14.847(11)	12.018(2)	11.323(2)	13.386(3)	12.353(6)
c / \AA	18.095(14)	36.411(5)	23.088(4)	25.475(6)	20.796(7)
$\beta{ }^{\circ}$		90.57(2)	98.84(2)	114.51(2)	115.73(2)
U / \AA^{3}	3261(4)	5868(2)	2434(1)	7398(3)	4274(3)
Z	$4{ }^{\text {b }}$	$8^{\text {c }}$	4	$4{ }^{\text {d }}$	4^{e}
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.574	1.482	1.643	1.676	1.587
μ / mm^{-1}	4.01	4.38	5.34	3.55	5.70
$F(000)$	1552	2640	1192	3728	2040
2θ range $/{ }^{\circ}$	3-50	3-50	3-50	3-50	4-55
Independent reflections (R_{int})	2965 (0.00)	10329 (0.027)	4285 (0.056)	6521 (0.043)	4904 (0.033)
Observed reflections	$2135[F>4.0 \sigma(F)]$	$4894[F>5.0 \sigma(F)]$	$2791[F>4.0 \sigma(F)]$	$4265[F>4.0 \sigma(F)]$	$3356[F>4.0 \sigma(F)]$
Minimum, maximum, transmission	0.251, 0.798	0.343, 0.660	0.418, 0.619	0.398, 0.569	0.418, 0.542
No. of parameters refined	163	541	232	434	218
g In weighting scheme	0.0006	0.0006	0.0006	0.0005	0.0006
Final $R\left(R^{\prime}\right)$	0.0383 (0.0365)	0.0499 (0.0449)	0.0432 (0.0401)	0.0578 (0.0537)	0.0372 (0.0369)
Largest and mean Δ / σ	0.002 and 0.000	0.001 and 0.000	0.033 and 0.002	0.797 and 0.038	0.043 and 0.008
Data/parameter ratio	13.1	9.0	12.0	9.8	15.4
Largest difference peak, hole/e \AA^{-3}	1.08, -0.86	1.10, -0.68	0.90, -0.97	1.31, - 1.03	0.99, -0.83
${ }^{a}$ Details in common: Siemens P4/PC diffractometer; graphite-monochromated Mo-K α radiation ($\lambda=0.71073 \AA$); room temperature; numerical absorption corrections (face weighting scheme, $w^{-1}=\sigma^{2}(F)+g F^{2} .{ }^{b}$ The complex has crystallographic C_{s} symmetry. ${ }^{\text {c }}$ Two crystallographically independent molecules. ${ }^{d}$ The complex has crystallographic complex has crystallographic C_{2} symmetry.					

and layering with $\mathrm{Et}_{2} \mathrm{O}$ gave orange-red prisms. Yield: $0.2 \mathrm{~g}, 40 \%$. NMR ($\mathrm{CD}_{3} \mathrm{CN}$) ${ }^{1} \mathrm{H}, \delta 2.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}\right), 1.80$ ($\mathrm{s}, 24 \mathrm{H}, \mathrm{NCMe} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} M e_{2}$) and $1.70-1.75(\mathrm{~m}, 12 \mathrm{H}$, CH_{2}); ${ }^{19} \mathrm{~F}, \delta-194$.

Bis[oxobis(2,2,6,6-tetramethylpiperid-1-ylnitrene)rhenium-
(II)] 6. To a solution of $3(0.3 \mathrm{~g}, 0.5 \mathrm{mmol})$ in thf $\left(20 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added a solution of $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{HLi}$ in thf [prepared from $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{H}_{2}(0.25 \mathrm{~g}, 1.58 \mathrm{mmol})$ and an equivalent amount of LiBu^{2} in hexanes]. The mixture was allowed to warm to room temperature then refluxed overnight. After removal of thf under vacuum, the orange residue was extracted with boiling hexane ($3 \times 50 \mathrm{~cm}^{3}$) which was again removed under vacuum. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$, filtered, concentrated and crystallised at $-20^{\circ} \mathrm{C}$. Yield: $0.05 \mathrm{~g}, \mathrm{ca}$. 20%. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) : ${ }^{1} \mathrm{H}, \delta 1.72,1.54,1.34,1.30(\mathrm{~s}, 4 \times 12 \mathrm{H}$, methyls, no assignment proved possible), 1.14-1.55 (br, $\left.24 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 55.0,53.4\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}-\right.$ Me_{2}), $\quad 33.5, \quad 33.2 \quad\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{2}\right)$, $23.8, \quad 23.7 \quad\left(\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{2}\right), \quad 17.2, \quad 15.9$ ($\mathrm{NCMe}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} M e_{2}$).

X-Ray Crystallography.-Single crystals of compounds 1 and 36 suitable for X-ray analysis were either coated with epoxy resin or sealed under Ar in capillary tubes to prevent decomposition. Details of the data collections and refinements are given in Table 12. In compound 1 a ΔF map revealed the presence of an included molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ positioned about a mirror plane. In compound 4 one of the piperidine rings is partially disordered. Two different conformations for this ring of estimated occupancies 0.4 and 0.6 were identified. In compound 5 there is severe disorder in one of the $\mathrm{O}_{3} \mathrm{SCF}_{3}$ anions. However, reasonable partial occupancy alternative orientations for this group could not be identified. The fulloccupancy non-hydrogen atoms in all five structures were refined anisotropically, the partial occupancy atoms isotropically. All of the hydrogen atoms were placed in idealised positions, assigned isotropic thermal parameters $U(\mathrm{H})=$ $1.2 U_{\mathrm{cq}}(\mathrm{C})$ and allowed to ride on their parent carbon atoms. Refinements were by full-matrix least squares using the SHELXTL PC system. ${ }^{22}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank SERC for provision of X-ray facilities.

References

1 (a) F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th edn., Wiley, New York, 1988, p. 376; (b) B. F. G. Johnson, B. L. Haymore and J. R. Dilworth, Comprehensive Coordination Chemistry, eds. G. Wilkinson, J. A. McCleverty and R. D. Gillard, Pergamon, Oxford, 1987, vol. 2, ch. 13.3; (c) J. A. McCleverty,

Transition Met. Chem., 1987, 12, 282; (d) R. A. Henderson, G. J. Leigh and C. J. Pickett, Adv. Inorg. Chem. Radiochem., 1983, 27, 197; (e) W. A. Nugent and B. L. Haymore, Coord. Chem. Rev., 1980, 31, 123; (f) M. Hidai and Y. Mizobe, Reactions of Coordinated Ligands, ed. P. S. Braterman, vol. 2, Plenum, New York, 1989, p. 53.
2 See, for example, (a) Y. Ishii, H. Miyagi, S. Jitsukuni, H. Seino, B. S. Harkness and M. Hidai, J. Am. Chem. Soc., 1992, 114, 9890; (b) T. E. Glassman, M. G. Vale and R. R. Schrock, J. Am. Chem. Soc., 1992, 114, 8098; (c) J. R. Dilworth, P. Jobanputra, S. J. Parrot, R. M. Thompson, D. C. Povey and J. A. Zubieta, Polyhedron, 1992, 11, 147; (d) C. Le Foc'h, R. A. Henderson, D. L. Hughes and R. L. Richards, J. Chem. Soc., Chem. Commun., 1993, 175; (e) T. A. George, B. B. Kaul, Q. Chen and J. Zubieta, Inorg. Chem., 1993, 32, 1706.
3 J. Chatt, M. E. Fakley, P. B. Hitchcock, R. L. Richards and N. T. Luong-Thi, J. Chem. Soc., Dalton Trans., 1982, 345.

4 J.-P. Mahy, P. Battioni, D. Mansuy, J. Fisher, R. Weiss, J. Mispelter, I. Morgenstern-Badaran and P. Gans, J. Am. Chem. Soc., 1984, 106, 1699.

5 (a) W. D. Hinsberg III, P. G. Schutz and P. B. Dervan, J. Am. Chem. Soc., 1982, 104, 766; (b) J. R. Roberts and K. U. Ingold, J. Am. Chem. Soc., 1973, 95, 3328.

6 W. A. Nugent and J. M. Mayer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988, Table 5.3, p. 179 and following.
7 B. A. Arndtsen, T. K. Schoch and L. McElwee-White, J. Am. Chem. Soc., 1992, 114, 7041.
8 A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, (a) J. Chem. Soc., Dalton Trans., 1990, 269; (b) Polyhedron, 1990, 9, 2081.
9 H. H. Fox, K. B. Yap, J. Robbins, S. Cai and R. R. Schrock, Inorg. Chem., 1992, 31, 2287.
10 A. G. Orpen, L. Brammer, F. H. Allen, O. Kennard, D. G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., 1989, S1.
11 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1.
12 (a) J. Chatt, J. R. Dilworth, P. Dählstrom, R. Gutkoska and J. A. Zubieta, Inorg. Chem., 1992, 21, 2383; (b) J. R. Dilworth, J. Zubieta and J. R. Hyde, J. Am. Chem. Soc., 1982, 104, 365.

13 T. A. Albright, J. K. Burdett and M. H. Whangbo, Orbital Interactions in Chemistry, Wiley-Interscience, New York, 1985.
14 See, for example, J. H. Matonic, S. J. Chen, L. E. Pence and K. R. Dunbar, Polyhedron, 1992, 11, 541.

15 G. Böhm, K. Wieghardt, B. Nuber and J. Weiss, Angew: Chem., Int. Ed. Engl., 1990, 29, 787 and refs. therein.
16 (a) E. Valencia, B. D. Santarsiero, S. J. Gelb, A. L. Rheinhold and J. M. Mayer, J. Am. Chem. Soc., 1987, 109, 6896; (b) W. A. Herrmann, R. Serrano, A. Schäfer and U. Kästhardt, J. Organomet. Chem., 1984, 272, 55.
17 G. L. Hillhouse, B. L. Haymore and W. A. Herrmann, Inorg. Chem., 1979, 18, 2423.
18 G. L. Hillhouse, B. L. Haymore, S. A. Bistram and W. A. Herrmann, Inorg. Chem., 1983, 22, 314.
19 A. A. Danopoulos, A. C. C. Wong, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1990, 315.
20 M. Schmidt and H. Schmidbaur, Chem. Ber., 1959, 52, 2677.
21 K. Dreisch, C. Andersson and C. Stählhandske, Polyhedron, 1991, 10, 2417.

22 SHELXTL, Version 4.2, Siemens Analytical X-Ray Instruments, Madison, WI, 1990.

Received 13th October 1993; Paper 3/06122A

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

