Syntheses of Dinuclear Gold(1) Ring Complexes containing Two Different Bridging Ligands. Crystal Structure of $[Au_2{\mu-(CH_2)_2PPh_2}(\mu-S_2CNEt_2)]^{\dagger}$

Manuel Bardají,^a Neil G. Connelly,^b M. Concepción Gimeno,^a Josefina Jiménez,^a Peter G. Jones,^c Antonio Laguna^{*,a} and Mariano Laguna^a

^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-C.S.I.C., E-50009, Zaragoza, Spain

^b School of Chemistry, University of Bristol, Bristol BS8 1TS, UK

^c Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig,

Postfach 3329, D-38023 Braunschweig, Germany

The reaction of $[Au_2\{\mu-(CH_2)_2PPh_2\}_2]$ with $[Au_2(\mu-L-L)_2]^{n+}$ $[n = 0, L-L = S_2CNMe_2, S_2CNEt_2$ or $S_2CN(CH_2Ph)_2$; $n = 2, L-L = Ph_2PCH_2PPh_2$ (dppm), $Ph_2P(CH_2)_2PPh_2$ or $Ph_2PNHPPh_2]$ led to heterobridged dinuclear complexes $[Au_2\{\mu-(CH_2)_2PPh_2\}(\mu-L-L)]^{n+}$ (n = 0 or 1). The same complexes can also be obtained by reaction of $[N(PPh_3)_2][(AuCl)_2\{\mu-(CH_2)_2PPh_2\}]$ with the silver compounds $[Ag(S_2CNMe_2)]_6$ or $[Ag_2(OCIO_3)_2(dppm)_3]$ or by reaction of $[(AuPPh_3)_2\{\mu-(CH_2)_2PPh_2\}][CIO_4]$ with $[\{Au(C_6F_5)\}_2(\mu-L-L)]$ $(L-L = diphosphines or o-Ph_2PC_5H_4N)$. The structure of $[Au_2\{\mu-(CH_2)_2PPh_2\}(\mu-S_2CNEt_2)]$ has been established by X-ray crystallography. Two molecules are bonded through an intermolecular gold–gold interaction, thus forming a linear chain of four gold atoms with Au–Au (intramolecular) 2.867, 2.868, (intermolecular) 2.984 Å.

The synthesis of dinuclear gold(I) complexes has attracted considerable attention in recent years ¹⁻³ and provides a handle for the study of the weak metal-metal interactions that have been attributed to relativistic effects.^{4.5} Many of these dinuclear complexes are homobridged diauracycles, with the same bridging ligand on each side,⁶⁻⁸ but a few examples of heterobridged derivatives have been reported.⁹⁻¹¹

In the present paper we describe the preparation of several heterobridged dinuclear gold(1) complexes containing dithiocarbamate, diphosphine or bis(ylide) as ligands. The molecular structure of $[Au_2\{\mu-(CH_2)_2PPh_2\}(\mu-S_2CNEt_2)]$ has been established by X-ray studies and shows the presence of interand intra-molecular gold-gold interactions.

Results and Discussion

We have studied three different types of reactions.

(a) Ligand Exchange Reactions.—The reaction of the homobridged dinuclear $[Au_2\{\mu-(CH_2)_2PPh_2\}_2]$ with $[Au_2(\mu-S_2CNR_2)_2]$ (R = Me, Et or CH₂Ph) leads to heterobridged complexes (Scheme 1) in a ligand-exchange reaction similar to the ylide-transfer processes previously observed by us¹² with mononuclear gold(1) derivatives. Complexes 1–3 are air- and moisture-stable green solids and their acetone solutions are non-conducting (Table 1). The positive-ion fast atom bombardment (FAB) mass spectra show in all cases the molecular cation peak (M) at m/z = 727 (25, 1), 755 (80, 2) and 879 (25%, 3). Other peaks appear at m/z = 530 (20, $[M - Au]^+$) for 1, 558 (50, $[M - Au]^+$), 903 {30, $[M + (S_2CNEt_2)]^+$ and 1362

Scheme 1 S-S = $S_2CNMe_2 1$, $S_2CNEt_2 2$ or $S_2CN(CH_2Ph)_2 3$

(25, $[2M]^+$) for 2 and 682 (80, $[M - Au]^+$) and 1151 {80%, $[M + S_2CN(CH_2Ph)_2]^+$ } for 3. The IR spectra show bands at *ca*. 570m cm⁻¹ due to v(Au-C_{ylid})¹³ and at *ca*. 1495s cm⁻¹ due to v(C=N).¹⁴ The ³¹P-{¹H} NMR spectra show a singlet at *ca*. δ 35.1 for the phosphorus atom (see Table 1) and the ¹H NMR spectra a doublet at *ca*. δ 1.9 (see Experimental section) for the ylide methylene protons.

The cyclic voltammograms of complexes 1–3 (in CH_2Cl_2 , scan rate 200 mV s⁻¹) show irreversible oxidation waves with peak potentials at 0.30, 0.37 and 0.42 V respectively. These waves are ill defined due to electrode coating during voltammetry. Nevertheless, a qualitative comparison shows complexes 1–3 to be oxidised at potentials between those of $[Au_2{\mu-S_2CN(CH_2Ph)_2}]$ (irreversible peak potential 1.15 V) and that reported ¹⁵ for the first wave of $[Au_2{\mu-(CH_2)_2PPh_2}]$ (0.11 V vs. Ag–AgCl).

The structure of complex 2 was confirmed by X-ray diffraction analysis (Fig. 1). The asymmetric unit consists of two independent molecules, which show short intra- and intermolecular gold–gold contacts. This feature is characteristic of the related bis(dithiocarbamato)digold(I) derivatives,^{15–18} which crystallise as discrete dimers in which the packing of the dimeric units produces linear chains of gold atoms. The intramolecular gold–gold distances in complex 2 are 2.868(1) and 2.867(1) Å, which are slightly longer than those found in $[Au_2(\mu-S_2CNR_2)_2]^{16-18}$ (2.76–2.8 Å), but shorter than in the bis(ylide)digold(I) complex $[Au_2\{\mu-(CH_2)_2PPh_2\}_2]$ (2.977(1) Å).¹³ The gold–gold distance between dimers is 2.984(1) Å, which is of the same order as in the heterobridged $[Au_2(\mu-CH_2)_2]^{16-18}$

[†] Supplementary data available: Further details of the structure determination (complete bond lengths and angles, H-atom coordinates, structure factors, thermal parameters) have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlichtechnische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany. Any request for this material should quote a full literature citation and the reference number CSD 400672.

Table 1 Analytical and NMR data for the complexes

	Yield (%)	Analysis ^a (%)				${}^{31}P-{}^{1}H$ NMR ^c	
Complex		c	н	N	Λ _M ^b	δ _{vlide}	δ _{phosphine}
$I [Au_{2}{\mu-(CH_{2})_{2}PPh_{2}}(\mu-S_{2}CNMe_{2})]$	83	28.2 (28.05)	2.65 (2.75)	1.75 (1.95)	3	35.4 (s)	
$2 [Au_2{\mu-(CH_2)_2PPh_2}(\mu-S_2CNEt_2)]$	73	30.4 (30.2)	3.2 (3.2)	1.9	1	35.1 (s)	
$3 [Au_{2}{\mu-(CH_{2})_{2}PPh_{2}}{\mu-S_{2}CN(CH_{2}Ph)_{2}}]$	84	39.8 (39.6)	3.1	1.45	16	35.1 (s)	
$4 [Au_{2}{\mu-(CH_{2})_{2}PPh_{2}}(\mu-dppm)][ClO_{4}]$	85	43.3	3.4	(1.0)	133	34.7 (t)	36.1 (d)
$[Au_2{\mu-(CH_2)_2PPh_2}(\mu-dppe)][ClO_4]$	74	43.3	3.45		126	35.3(t)	38.3 (d)
$6 [Au_2{\mu-(CH_2)_2PPh_2}(\mu-dppa)][ClO_4]$	80	41.35	3.3	1.5	136	34.4(t)	80.3 (d)
7 $[Au_2{\mu-(CH_2)_2PPh_2}(\mu-o-Ph_2PC_5H_4N)][ClO_4]$	90	38.8 (38.4)	2.95 (2.9)	1.1 (1.45)	126	36.7 (d) (14.7)	42.5 (d)

^a Calculated values in parentheses. ^b In acetone, ohm⁻¹ cm² mol⁻¹. ^c Recorded in CDCl₃ at 121 MHz, referenced to external H₃PO₄. Coupling constants in Hz are given in parentheses; s = singlet, d = doublet and t = triplet.

Fig. 1 The two independent molecules of complex 2 in the crystal. Radii are arbitrary

dppm){ $(\mu$ -CH₂)₂S(O)NMe₂][BF₄]¹⁹ (dppm = Ph₂PCH₂-PPh₂) where the cations pack pairwise with short intermolecular contacts (2.959 Å).

The two dimers are located almost perpendicular to each other [the angle between the planes $Au_2(S_2C)(PP)$ is 70°] in such a manner as to form a chain of four gold atoms, with Au-Au-Au angles close to linearity (maximum deviation 6.5°). In the crystal the two dimeric units are paired across symmetry centres (Fig. 2) with the shortest $Au(3) \cdots Au(4i)$ contacts of 3.696(2) Å. Ignoring the Au \cdots Au contacts, the co-ordination around the gold atoms is almost linear: the C-Au-S angles lie in the range 174.7(5)–178.3(6)°. The conformation of the eightmembered rings is an 'envelope' form, with the ylide P atom lying out of the plane of the other seven atoms.

The Au–C distances, which fall in the range 2.052(20)–2.086(23) Å, are similar to those found in $[Au_2{\mu-(CH_2)_2-PPh_2}_2]$ [2.091(7) and 2.085(7) Å],¹³ and the Au–S bond lengths 2.293(6)–2.323(6) Å are of the same order as those in bis(dithiocarbamato)digold(1) complexes.^{16–18}

Fig. 2 Stereographic packing diagram for complex 2 with H atoms omitted for clarity. Short non-bonded contacts are indicated by dashed lines

In a similar way, treating the same bis(ylide) dinuclear gold(1) complex with $[Au_2(\mu\text{-diphosphine})_2][ClO_4]_2$ [diphosphine = dppm, $Ph_2PCH_2CH_2PPh_2$ (dppe) or $Ph_2PNHPPh_2$ (dppa)] in 1:1 molar ratio gives the cationic heterobridged $[Au_2]\mu$ - $(CH_2)_2PPh_2$ (µ-diphosphine) [ClO₄] (Scheme 2). Complexes 4-6 are air- and moisture-stable white (4, 5) or yellow (6) solids. They behave as 1:1 electrolytes in acetone solutions and their IR spectra show bands at 1100s (br) and 620m cm⁻¹, which are characteristic of the $[ClO_4]^-$ anion; a band at *ca*. 570m cm⁻¹ is due to $v(Au-C_{ylide})$.¹³ Compounds 4 and 5 were characterised by positive-ion FAB mass spectrometry. The highest peaks at m/z = 991 (4) and 1005 (5) correspond to the cations [M - ClO_4]⁺. Other peaks appear at m/z = 581 and 595 {4, 44; 5, 5; $[M - ClO_4 - Au - (CH_2)_2PPh_2]^+$ and 411 (4, 90; 5, 10%; $[Au\{(CH_2)_2PPh_2\}]^+$). The ³¹P-{¹H} NMR spectra show a triplet at ca. δ 34.8 for the ylidic phosphorus and a doublet for the two phosphorus atoms of the diphosphine (Table 1). The ¹H NMR spectra show the resonances of the ylide methylene protons at δ 1.9 as a doublet of doublets (5) or as apparent doublet of triplets (4, 6) (see Experimental section). The cyclic voltammogram of complex 6 shows an irreversible oxidation wave with a peak potential at 0.92 V.

(b) Reactions with Precipitation of AgCl or [AgCl(dppm)].— The reaction of $[N(PPh_3)_2][(AuCl)_2\{\mu-(CH_2)_2PPh_2\}]$ with $[Ag(S_2CNMe_2)]_6$ in the molar ratio 3:1 in dichloromethane leads to the precipitation of AgCl. From the solution a mixture of complex 1 and $[N(PPh_3)_2][S_2CNMe_2]$ is obtained (Scheme 3) which cannot be separated because of their similar solubilities in organic solvents.

The complex $[N(PPh_3)_2][(AuCl)_2{\mu-(CH_2)_2PPh_2}]$ reacts with the silver derivative $[Ag_2(OClO_3)_2(dppm)_3]$ (1:1 molar ratio in dichloromethane) to give a white precipitate of

Scheme 2 $X = CH_2 4$, $CH_2CH_2 5$ or NH 6

Scheme 3 $S-S = S_2CNMe_2 1$

[AgCl(dppm)]. From the solution a mixture of complex 4 and $[N(PPh_3)_2][ClO_4]$ is obtained (Scheme 4), which can be separated because of their different solubilities in methanol.

(c) Reactions with Formation of $[Au(C_6F_5)(PPh_3)]$.—Complexes 4–6 can also be obtained by treating equimolar amounts of $[(AuPPh_3)_2\{\mu-(CH_2)_2PPh_2\}][ClO_4]$ and $[\{Au(C_6F_5)\}_2(\mu-diphosphine)]$ according to Scheme 5. In a similar way, by treating the same cationic ylide with $[\{Au(C_6F_5)\}_2(\mu-o-Ph_2PC_5H_4N)]$ the new heterobridged complex 7 is obtained (Scheme 6). Complex 7 is an air- and moisture-stable yellow solid and behaves as a 1:1 electrolyte in acetone solution. The IR spectrum shows bands at 1100s, (br) and 620m cm⁻¹ from ClO_4^- and at 565m cm⁻¹, from $v(Au-C_{ylide})$. The ³¹P-{¹H}</sup> NMR spectrum shows two doublets for the

The ³¹P-{¹H} NMR spectrum shows two doublets for the two different phosphorus atoms (Table 1) and the ¹H NMR spectrum two signals for the two different CH₂ groups at δ 2.15 [d, *J*(PH) 13.1] and 1.89 [dd, *J*(PH) 12.0 and 9.0 Hz].

Experimental

Infrared spectra were recorded on a Perkin-Elmer 559 or 883 spectrophotometer, over the range 4000–200 cm⁻¹, by using Nujol mulls between polyethylene sheets, ¹H and ³¹P NMR spectra on a Varian UNITY 300 in CDCl₃ solutions; chemical shifts are quoted relative to SiMe₄ (¹H) and H₃PO₄ (external,

Scheme 5 $X = CH_2 4$, $CH_2CH_2 5$ or NH 6

Scheme 6 $P-N = o-Ph_2PC_5H_4N7$

³¹P). The C, H and N analyses were performed with a Perkin Elmer 2400 microanalyser. Conductivities were measured in acetone solution with a Philips PW 9509 apparatus. Mass spectra were recorded on a VG Autospec.

Electrochemical studies were carried out using an EG and G model 273 potentiostat, in conjunction with a three-electrode cell. The auxiliary electrode was a platinum wire and the working electrode a platinum bead. The reference was an aqueous saturated calomel electrode (SCE) separated from the test solution by a fine-porosity frit and an agar bridge saturated with KCl. The CH₂Cl₂ solutions were 5×10^{-4} mol dm⁻³ in complex and 0.1 mol dm⁻³ in [NBu₄][PF₆] as the supporting electrolyte. Under these conditions the *E*° values for the couples [Fe(η -C₅H₅)₂]⁺-[Fe(η -C₅H₅)₂] and [Fe(η -C₅M₆)₂]⁺-[Fe(η -C₅M₆)₂] used as internal standards, are 0.47 and -0.09 V respectively.

The yields, C, H and N analyses, conductivities and ${}^{31}P{-}{{}^{1}H}$ NMR data are listed in Table 1. All reactions were carried out at room temperature.

Syntheses.— $[Au_2{\mu-(CH_2)_2PPh_2}(\mu-S_2CNR_2)]$ (R = Me 1, Et 2 or CH₂Ph 3). These complexes can be obtained in three different ways.

(a) To a solution of $[Au_2\{\mu-(CH_2)_2PPh_2\}_2]^{15}$ (0.082 g, 0.1 mmol) in dichloromethane (40 cm³) was added $[Au_2(\mu-S_2CNR_2)_2]$ {obtained by reaction of $[Au(tht)_2][ClO_4]^{20}$ and a slight excess of NaS_2CNR_2 } [0.1 mmol; R = Me (0.064 g), Et (0.069 g), or CH₂Ph (0.094 g)]. After stirring for 4 d (1), 1 d (2) or 2 h (3) the unreacted starting material was filtered off. The clear solution was evaporated to *ca*. 5 cm³ and addition of diethyl ether led to precipitation of complexes 1–3.

(b) To a solution of $[N(PPh_3)_2][(AuCl)_2\{\mu-(CH_2)_2PPh_2\}]$ (0.122 g, 0.1 mmol) in dichloromethane (20 cm³) was added $[Ag(S_2CNMe_2)]_6$ (obtained by reaction of $AgClO_4$ and a slight excess of NaS₂CNMe₂) (0.046 g, 0.033 mmol) and the mixture was stirred for 90 min, protected from light. The AgCl precipitated was filtered off and the solution evaporated to *ca*. 5 cm³. Addition of diethyl ether (15 cm³) led to precipitation of a mixture of complex 1 and $[N(PPh_3)_2][S_2CNMe_2]$.

Au(1)-C(1)	2.083(19)	Au(1)-S(1)	2.305(6)
Au(1)-Au(2)	2.868(1)	Au(2)-C(2)	2.052(20)
Au(2)-S(2)	2.307(6)	Au(2)-Au(3)	2.984(1)
P(1)-C(1)	1.749(20)	P(1)-C(2)	1.777(20)
P(1)-C(11)	1.805(12)	P(1) - C(21)	1.819(12)
S(1)-C(5)	1.721(21)	S(2) - C(5)	1.737(22)
C(5) - N(1)	1.305(27)	Au(3)-C(3)	2.071(19)
Au(3) - S(3)	2.323(6)	Au(3) - Au(4)	2.867(1)
$Au(3) \cdots Au(4i)$	3.696(2)	Au(4)-C(4)	2.086(23)
Au(4)–S(4)	2.293(6)	P(2) - C(4)	1.738(22)
P(2) - C(3)	1.766(19)	P(2) - C(31)	1.809(13)
P(2)-C(41)	1.843(10)	S(3)-C(6)	1.736(19)
S(4) - C(6)	1.719(20)	C(6) - N(2)	1.304(27)
		., .,	. ,
C(1) - Au(1) - S(1)	174.7(5)	C(1)-Au(1)-Au(2)	90.8(5)
S(1) - Au(1) - Au(2)	94.12(14)	C(2)-Au(2)-S(2)	178.3(6)
C(2) - Au(2) - Au(1)	90.0(5)	S(2) - Au(2) - Au(1)	91.00(14)
C(2) - Au(2) - Au(3)	96.5(5)	S(2) - Au(2) - Au(3)	82.52(14)
Au(1) - Au(2) - Au(3)	173.4(1)	C(1)-P(1)-C(2)	110.7(10)
C(1) - P(1) - C(11)	108.8(8)	C(2)-P(1)-C(11)	111.5(8)
C(1)-P(1)-C(21)	109.0(8)	C(2) - P(1) - C(21)	111.4(8)
C(11)-P(1)-C(21)	105.2(7)	C(5)-S(1)-Au(1)	113.1(8)
C(5)-S(2)-Au(2)	115.4(8)	P(1)-C(1)-Au(1)	110.6(10)
P(1)-C(2)-Au(2)	110.4(10)	N(1)-C(5)-S(1)	119.5(17)
N(1)-C(5)-S(2)	114.7(16)	S(1)-C(5)-S(2)	125.8(14)
C(3) - Au(3) - S(3)	175.5(6)	C(3)-Au(3)-Au(4)	89.1(5)
S(3)-Au(3)-Au(4)	92.89(13)	C(3) - Au(3) - Au(2)	92.2(5)
S(3) - Au(3) - Au(2)	86.06(13)	Au(4)-Au(3)-Au(2)	175.7(1)
C(4) - Au(4) - S(4)	175.4(6)	C(4) - Au(4) - Au(3)	92.0(6)
S(4) - Au(4) - Au(3)	92.63(14)	C(4) - P(2) - C(3)	112.3(10)
C(4) - P(2) - C(31)	109.4(10)	C(3) - P(2) - C(31)	111.7(9)
C(4) - P(2) - C(41)	109.8(9)	C(3)-P(2)-C(41)	110.4(8)
C(31)-P(2)-C(41)	102.9(7)	C(6)-S(3)-Au(3)	113.0(7)
C(6) - S(4) - Au(4)	114.6(7)	P(2)-C(3)-Au(3)	112.0(10)
P(2)-C(4)-Au(4)	107.8(12)	N(2)-C(6)-S(4)	115.7(15)
N(2)-C(6)-S(3)	117.4(16)	S(4) - C(6) - S(3)	126.8(12)
	. ,		()

 Table 2
 Selected bond lengths (Å) and angles (°) for complex 2

Symmetry of	operator: ((1)	I —	х,	1 -	<i>y</i> , 1	l —	Ζ.
-------------	-------------	-----	-----	----	-----	--------------	-----	----

Table 3 Atomic coordinates ($\times 10^4$) for complex 2

(c) To a solution of $[(AuPPh_3)_2\{\mu-(CH_2)_2PPh_2\}][ClO_4]$ (0.123 g, 0.1 mmol) in dichloromethane (20 cm³) was added $[NBu_4][\{Au(C_6F_5)\}_2(\mu-S_2CNMe_2)]$ {obtained by reaction of $[Au(C_6F_5)(tht)]^{21}$ (tht = tetrahydrothiophene) and a slight excess of $[NBu_4][S_2CNMe_2]$ } (0.109 g, 0.1 mmol) and the mixture stirred for 4 h. Concentration of the solution to *ca*. 3 cm³ and addition of diethyl ether (15 cm³) gave a mixture of complex 1, $[Au(C_6F_5)(PPh_3)]$ and NBu_4ClO_4 . The complex $[Au(C_6F_5)(PPh_3)]$ was removed by washing the solid with diethyl ether (4 × 5 cm³) and NBu_4ClO_4 was removed by washing the resulting solid with MeOH-Et₂O (1:1 ratio, 4 × 5 cm³). Complex 1 was recrystallised from dichloromethanediethyl ether.

¹H NMR: 1, δ 7.78–7.45 (m, Ph), 3.46 (s, Me) and 1.87 [d, J(PH) = 12.9, CH_2]; 2, δ 7.78–7.46 (m, Ph), 3.88 [c, J(HH) = 7.0, CH_2N], 1.87 [d, J(PH) = 12.7, CH_2P] and 1.27 (t, CH_3); 3, δ 7.78–7.28 (m, Ph), 5.14 (s, CH_2N) and 1.91 [d, J(PH) = 12.7 Hz, CH_2P].

 $[Au_2\{\mu-(\bar{CH}_2)_2PPh_2\}(\mu-L-L)][CIO_4](L-L = dppm 4, dppe 5, dppa 6, or o-Ph_2PC_5H_4N 7)$. These complexes can be obtained in three different ways.

(a) To a solution of $[Au_2{\mu-(CH_2)_2PPh_2}_2]^{15}$ (0.082 g, 0.1 mmol) in dichloromethane (30 cm³) was added $[Au_2(\mu-L-L)_2][CIO_4]_2^{22}$ [0.1 mmol; L-L = dppm (0.136 g), dppe (0.139 g), or dppa (0.136 g)]. After stirring for the mixture for 2 h the solution was concentrated to *ca*. 5 cm³. Addition of diethyl ether (20 cm³) led to precipitation of complexes **4–6**.

(b) To a solution of $[N(PPh_3)_2][(AuCl)_2{\mu-(CH_2)_2PPh_2}]$ (0.122 g, 0.1 mmol) in dichloromethane (20 cm³) was added $[Ag_2(OClO_3)_2(dppm)_3]$ (0.157 g, 0.1 mmol) and the mixture was stirred for 2 h, protected from light. The [AgCl(dppm)]precipitated was filtered off and the solution was evaporated to *ca*. 5 cm³. A new crop of [AgCl(dppm)] was formed. Filtration and subsequent addition of diethyl ether (20 cm³) led to the precipitation of a mixture containing complex 4, $[N(PPh_3)_2]$ - $[ClO_4]$ and a small amount of [AgCl(dppm)]. The salt $[N(PPh_3)_2][ClO_4]$ was removed by washing with methanol (2 × 2 cm³). Complex 4 was recrystallised from dichloromethane-diethyl ether.

(c) To a solution of $[(AuPPh_3)_2{\mu-(CH_2)_2PPh_2}][ClO_4]$ (0.123 g, 0.1 mmol) in dichloromethane (20 cm³) was added $[{Au(C_6F_5)}_2(\mu-L-L)]^{22,23}$ [0.1 mmol; L-L = dppm (0.111 g),

Atom	x	У	z	Atom	x	У	Z
Au(1)	1 982.8(7)	6 340.8(7)	729.2(5)	Au(3)	4 538.2(6)	6 487.0(7)	4 295.8(5)
Au(2)	3 144.9(7)	6 293.3(7)	2 494.9(5)	Au(4)	5 793.9(7)	6 500.3(8)	6 029.3(5)
P(1)	1 744(4)	4 015(5)	1 356(4)	P(2)	7 220(4)	7 201(5)	4 332(4)
S(1)	2 910(5)	8 158(5)	665(4)	S(3)	2 911(5)	6 494(5)	5 078(4)
S(2)	4 259(5)	8 068(5)	2 495(4)	S(4)	4 280(5)	6 492(5)	6 933(4)
C(1)	1 030(17)	4 714(16)	701(13)	C(3)	5 990(16)	6 600(17)	3 570(13)
C(2)	2 141(18)	4 727(17)	2 534(14)	C(4)	7 248(19)	6 516(20)	5 309(15)
C(5)	3 886(18)	8 747(19)	1 611(15)	C(6)	3 069(17)	6 463(17)	6 296(14)
N(1)	4 448(16)	9 783(16)	1 679(13)	N(2)	2 199(16)	6 466(16)	6 796(13)
C(11)	2 954(10)	3 852(12)	731(9)	C(31)	7 381(12)	8 638(10)	4 747(10)
C(12)	4 009(11)	4 074(12)	1 202(7)	C(32)	6 492(10)	9 088(12)	4 639(10)
C(13)	4 900(9)	3 859(14)	710(10)	C(33)	6 602(12)	10 169(12)	5 034(11)
C(14)	4 736(11)	3 422(14)	-253(10)	C(34)	7 599(14)	10 800(10)	5 538(11)
C(15)	3 681(13)	3 200(13)	-725(7)	C(35)	8 487(11)	10 350(12)	5 646(11)
C(16)	2 790(10)	3 416(13)	-233(9)	C(36)	8 378(11)	9 269(13)	5 251(11)
C(21)	847(11)	2 625(9)	1 367(10)	C(41)	8 487(9)	7 242(11)	3 664(8)
C(22)	1 163(10)	1 993(12)	1 988(9)	C(42)	9 261(11)	6 726(11)	3 957(8)
C(23)	513(13)	919(11)	2 003(10)	C(43)	10 212(10)	6 743(12)	3 449(10)
C(24)	-454(13)	477(9)	1 396(11)	C(44)	10 388(10)	7 276(13)	2 648(9)
C(25)	-770(10)	1 109(12)	774(10)	C(45)	9 614(12)	7 791(12)	2 355(8)
C(26)	-120(12)	2 183(11)	760(9)	C(46)	8 663(10)	7 774(11)	2 863(9)
C(51)	5 307(22)	10 397(24)	2 442(18)	C(55)	1 049(20)	6 370(20)	6 339(16)
C(52)	6 479(30)	10 364(31)	2 169(25)	C(56)	937(26)	7 496(25)	6 360(21)
C(53)	4 213(22)	10 494(22)	986(17)	C(57)	2 204(19)	6 490(18)	7 839(14)
C(54)	3 322(29)	10 983(29)	1 278(23)	C(58)	2 030(20)	5 323(20)	8 125(16)

dppe (0.113 g), dppa, (0.111 g) or o-Ph₂PC₅H₄N (0.099 g)] and the mixture stirred for 1 h. Concentration of the solution to ca. 3 cm³ and addition of diethyl ether (15 cm³) gave a mixture of complexes 4-7 and $[Au(C_6F_5)(PPh_3)]$. The latter was removed by washing the solid with diethyl ether $(4 \times 5 \text{ cm}^3)$. Complexes 4-7 were recrystallised from dichloromethane-diethyl ether.

¹H NMR: 4, δ 7.78–7.35 (m, Ph), 3.68 [t, J(PH) = 11.4, PCH₂P] and 1.97 ['dt', J(PH) = 13.4, N = 8.2, CH₂P]; 5, δ 7.75–7.35 (m, Ph), 2.79 [d, J(PH) = 11.9, $(CH_2)_2$] and 1.92 $[dd, J(PH) = 13.1 \text{ and } 8.1, CH_2P]; 6, \delta 7.78-7.35 (m, Ph), 6.7$ (br s, NH) and 1.87 ['dt', J(PH) = 13.1, N = 8.2 Hz, CH_2P]; 7, δ 7.74–7.35 (m, Ph and C₅H₄), 2.15 [d, J(PH) = 13.1, CH₂] and 1.89 [dd, J(PH) = 12.0 and 9.0 Hz, CH_2].

Structure Determination of Compound 2.-Crystal data. $C_{19}H_{24}Au_2NPS_2$, M = 755.42, triclinic, space group $P\overline{1}$, $\alpha = 12.377(2), b = 12.806(3), c = 14.146(3) \text{ Å}, \alpha = 97.67(3), \beta = 91.40(3), \gamma = 106.18(3)^{\circ}, U = 2129.6(8) \text{ Å}^{3}, Z = 4, D_{c} = 2.356 \text{ Mg m}^{3}, \lambda(\text{Mo-K}\alpha) = 0.710 \text{ 73} \text{ Å}, \mu = 14.04 \text{ mm}^{-1}, \beta = 10.18(3)^{\circ}$ T = -40 °C, F(000) = 1400.

A yellow prism $0.36 \times 0.17 \times 0.13$ mm was mounted on a glass fibre and used to collect 5867 intensities to $2\theta_{max}$ 45° (Siemens AED-2 diffractometer with monochromated Mo-Ka radiation). An absorption correction based on Ψ scans was applied, with transmission factors 0.24-0.62. Merging equivalents gave 5553 independent reflections ($R_{int} 0.035$) which were used for all calculations (program system SHELXL 93).²⁴ Cell constants were refined from setting angles of 72 reflections in the range 20 22.92-36.18°.

Structure solution and refinement. The structure was solved by the heavy-atom method and subjected to full matrix leastsquares refinement on F^2 (Au, P and S atoms anisotropic, idealised phenyl groups and other H atoms using a riding model). The weighting scheme was $w^{-1} = \sigma^2 (F^2) + (aP)^2 + (aP)^2$ bP, where $3P = F_0^2 + 2F_c^2$, with a = 0.061 and b = 34.2014. Refinement proceeded to $wR(F^2)$ 0.156, conventional R(F)0.056 for 203 parameters, S = 1.054; maximum $\Delta \rho 1.4$ e Å⁻³ Selected bond lengths and angles are given in Table 2, final atomic coordinates in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (no. PB91-0122) and the Fonds der Chemischen Industrie for financial support.

References

- 1 H. Schmidbaur, Organogold Compounds, Gmelin Handbuch der Anorganischen Chemie, Springer, Berlin, 1980.
- 2 R. Usón and A. Laguna, Coord. Chem. Rev., 1986, 70, 1
- 3 P. G. Jones, Gold Bull., 1981, 14, 102; 1981, 14, 159; 1983, 16, 114; 1986, 19, 46.
- 4 P. Pyykko, Chem. Rev., 1988, 88, 563.
- 5 H. Schmidbaur, Gold Bull., 1990, 23, 11.
- 6 H. R. C. Jaw, M. M. Savas, R. D. Rogers and W. R. Mason, Inorg. Chem., 1989, 28, 1028.
- 7 Md. N. I. Khan, S. Wang and J. P. Fackler, jun., Inorg. Chem., 1989, 28, 3579.
- 8 Md. N. I. Khan, C. King, D. D. Heinrich, J. P. Fackler, jun. and L. C. Porter, Inorg. Chem., 1989, 28, 2150.
- 9 H. Schmidbaur and J. R. Mandl, Angew. Chem., Int. Ed. Engl., 1977, 16, 640.
- 10 R M. Davila, A. Elduque, T. Grant, R. J. Staples and J. P. Fackler, jun., Inorg. Chem., 1993, 32, 1749.
- 11 R. Narayanaswamy, M. A. Young, E. Parkhurst, M. Ouellette, M. E. Kerr, D. M. Ho, R. C. Elder, A. E. Bruce and M. R. M. Bruce, Inorg. Chem., 1993, 32, 2506.
- 12 R. Usón, A. Laguna, M. Laguna, A. Usón and M. C. Gimeno, Organometallics, 1987, 6, 682
- 13 H. Schmidbaur and R. Franke, Inorg. Chim. Acta, 1975, 13, 85; Angew. Chem., 1975, 108, 1321.
- 14 H. J. A. Blaauw, R. J. F. Nivard and G. J. M. Van der Kerk, J. Organomet. Chem., 1964, 2, 236.
- 15 J. D. Basil, H. H. Murray, J. P. Fackler, jun., J. Tocher, A. M. Mazany, B. Trzcinska-Bancroft, H. Knachel, D. Dudis, T. J. Delord and D. O. Marler, J. Am. Chem. Soc., 1985, 107, 6908
- 16 R. Hesse and P. Jennische, Acta Chem. Scand., 1972, 26, 3855.
- 17 P. Jennische, H. Anacker-Eickhoff and A. Wahlberg, Acta Crystallogr., Sect A, 1975, 31, 5143
- 18 D. D. Heinrich, J. C. Wang and J. P. Fackler, jun., Acta Crystallogr. Sect. C, 1990, **46**, 1444. 19 I. J. B. Lin, C. W. Liu, L. K. Lin and Y. S. Wen, Organometallics,
- 1992, 11, 1447.
- 20 R. Usón, A. Laguna, M. Laguna, J. Jiménez, M. P. Gómez and A. Sainz, J. Chem. Soc., Dalton Trans., 1990, 3457.
- 21 R. Usón, A. Laguna and M. Laguna, Inorg. Synth., 1990, 26, 85.
- 22 R. Usón, A. Laguna, M. Laguna, M. N. Fraile, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1986, 291.
- 23 R. Usón, A. Laguna, J. Vicente and J. García, Rev. Acad. Cienc. Exactas, Fis. Quim. Nat. Zaragoza, 1976, 31, 77.
- 24 G. M. Sheldrick, SHELXL 93, A Program for Crystal Structure Refinement (pre-release version), University of Göttingen, 1992.

Received 30th November 1993; Paper 3/07082D