Different Co-ordination Behaviour of 1,2-Diaminoethane (en) and Tetracyanonickelate(II) upon Accommodation of Polar Guest Molecules in Their Metal Complex Hosts: Crystal Structures of $\left[\mathrm{M}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2}(\mathrm{M}=\mathrm{Ni}, \mathrm{Cu}$, $\mathbf{Z n}$ or Cd$)$ and $\left[\{\mathrm{Cd}(\mathrm{en})\}_{2}(\mathrm{en})\left\{\mathrm{Ni}(\mathrm{CN})_{4}\right\}_{2}\right] \cdot 4 \mathrm{PhOH} \dagger$

Hidetaka Yuge and Toschitake Iwamoto*
Department of Chemistry, College of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153, Japan

Abstract

The single-crystal structures have been determined for aniline and phenol clathrates. Aniline clathrates $\left[\mathrm{M}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2}(\mathrm{M}=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ or Cd ; en $=1,2$-diaminoethane) are isomorphous, having monoclinic space group $P 2_{1} / c(Z=2)$. The unit cell parameters a, b, c and β, and R index for the reflections used are: $\mathrm{M}=\mathrm{Ni}, 9.452(3), 10.125(3), 13.440(3) \AA$ and $107.27(2)^{\circ}, 0.0443$ for 1806 ; for $\mathrm{M}=\mathrm{Cu}$. 9.547 (4), 10.621 (5), 12.746 (3) \AA and $107.89(2)^{\circ} .0 .0635$ for 1861; for $M=\mathrm{Zn}, 9.550(3), 10.407$ (2), 13.026(2) \AA and $107.50(1)^{\circ}, 0.0513$ for 1758; and for $M=C d, 9.924(2), 10.545(3), 12.510(1) \AA$ and $107.63(1)^{\circ}, 0.0456$ for 1829. The guest PhNH_{2} molecules are accommodated among [$-\mathrm{M}(\mathrm{en})_{2}-\mathrm{NC}-$ $\left.\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]_{n}$ chains extending along the b axis. The bis(en)-chelated M atoms are linked with trans-di- μ-cyano-dicyanonickelate(II) moieties alternately, and adopt an elongated octahedral configuration along the chain. The phenol clathrate $\left[\{\mathrm{Cd}(\mathrm{en})\}_{2}(\mathrm{en})\left\{\mathrm{Ni}(\mathrm{CN})_{4}\right\}_{2}\right] \cdot 4 \mathrm{PhOH}$ belongs to the triclinic system, space group $P \overline{1}$, with $a=11.868(1), b=13.030(1), c=7.7113(6) \AA, \alpha=105.956$ (7), $\beta=94.951(8), \quad \gamma=91.584(9)^{\circ}, \quad Z=1$ and $R=0.0410$ for 4095 reflections. Three kinds of crystallographically independent PhOH molecules are enclathrated in the three-dimensional host framework in which the en-chelated Cd atoms are linked with infinite $\left[>\mathrm{Ni}<(\mathrm{CN}-\mathrm{Cd}-\mathrm{NC}-)_{2}\right]_{\mathrm{n}}$ chains and $\mathrm{Cd}-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\mathrm{Cd}$ and $\mathrm{Cd}-\mathrm{en}-\mathrm{Cd}$ bridges. Interhost, interguest and host-guest hydrogen-bond formation stabilize the whole crystal structures, which are compared with those of $\left[\mathrm{M}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$ complexes and the $\left[\mathrm{Cd}(\mathrm{en}) \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6}$ clathrate.

With regard to the Hofmann-type and analogous inclusion compounds, ${ }^{1,2}$ the Hofmann-en-type $\left[\mathrm{Cd}(\mathrm{en}) \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{G}$ ($\mathrm{G}=\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$ or $\mathrm{C}_{6} \mathrm{H}_{6}$) has a host structure similar to that of the Hofmann-type $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{G}(\mathrm{G}=$ $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}, \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}, \mathrm{C}_{6} \mathrm{H}_{6}$ or PhNH_{2}): the guest G molecules are accommodated between the layers of the catena-[cadmium(II) tetra- μ-cyanonickelate(II) $]$ network. The NH_{3} ligands protrude into the layers in the Hofmann-type compound, but the 1,2diaminoethane (en) spans the layers at every Cd atom in the Hofmann-en type. Since the Cd -en-Cd span is $c a .8 .0 \AA$ the latter host cannot accommodate aniline as guest; powder X-ray data suggest that an interlayer distance of $c a .8 .65 \AA(\mathrm{M}=\mathrm{Cd}$, $\mathbf{M}^{\prime}=\mathbf{P d}$) is the smallest which can accommodate aniline in the clathrates $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{M}^{\prime}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2}(\mathrm{M}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}$, Ni or $\mathrm{Cd} ; \mathrm{M}^{\prime}=\mathrm{Ni}$ or Pd$) .{ }^{1}$ However, when the square-planar $\mathrm{Ni}(\mathrm{CN})_{4}$ is replaced by the tetrahedral $\mathrm{Cd}(\mathrm{CN})_{4}$, both $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cd}(\mathrm{CN})_{4}\right]$ and $\left[\mathrm{Cd}(\mathrm{en}) \mathrm{Cd}(\mathrm{CN})_{4}\right]$ hosts enclathrate aniline molecules; ${ }^{3}$ in the latter, distortion of the en-reinforced three-dimensional host framework and the hydrogen bonds between guests in neighbouring cavities are favourable to the enclathration of aniline molecules. Sopková ${ }^{4}$ reported several non-stoichiometric compounds containing aniline and phenol such as $\left[\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 0.14 \mathrm{PhNH}_{2}$ and $\left[\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Pt}-\right.$ $\left.(\mathrm{CN})_{4}\right] \cdot 0.14 \mathrm{PhOH}$ containing twice as much en in comparison with the Hofmann-en type; little was described of their crystal structures.

[^0]We obtained an isostructural series of inclusion compounds $\left[\mathrm{M}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2}(\mathrm{M}=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ or Cd$)$ as single crystals; a phenol-guest compound $\left[\{\mathrm{Cd}(\mathrm{en})\}_{2}(\mathrm{en})\{\mathrm{Ni}-\right.$ $\left.\left.(\mathrm{CN})_{4}\right\}_{2}\right] \cdot 4 \mathrm{PhOH}$ was also prepared under similar conditions. This paper describes their crystal structures in detail.

Experimental

Preparation.- $($ a $)\left[\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 1$ and $[\mathrm{Cu}-$ $\left.(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 2$. To an aqueous solution containing 5 mmol each of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ and 10 mmol of en, the appropriate amount of citric acid was added to adjust the pH to 9 in a final volume of $c a .100 \mathrm{~cm}^{3}$. After a small amount of precipitate had been filtered off, the solution was placed on a layer of neat PhNH_{2} and allowed to stand in a refrigerator at $c a .5{ }^{\circ} \mathrm{C}$ for a few weeks. Mauve and blue needle-like crystals were obtained for compounds 1 and 2 respectively (Found: C, 46.1; H, 5.80; N, 26.0. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{Ni}_{2} 1$ requires 45.5 ; H, 5.75 ; N, 26.5. Found: C, 45.2; H, 5.80; N, 25.5. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{CuN}_{10} \mathrm{Ni} 2$ requires $\mathrm{C}, 45.1 ; \mathrm{N}, 5.70 ; \mathrm{N}, 26.3 \%$).
(b) $\left[\mathrm{Zn}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 3$ and $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot$ $2 \mathrm{PhNH}_{2} 4$. Yellow needles were obtained for both compounds 3 and 4 by procedures similar to the above except that $\mathrm{ZnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ and 50 mmol of en were used (Found C, 44.3; H, 5.65; N, 25.7. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{NiZn} 3$ requires C, 44.9; H, 5.65; N, 26.2. Found: C, 42.3; H, 5.30; N, 23.3. $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{CdN}_{10} \mathrm{Ni} 4$ requires C, $41.3 ; \mathrm{H}, 5.20 ; \mathrm{N}, 24.1 \%$).
(c) $\left[\{\mathrm{Cd}(\mathrm{en})\}_{2}(\mathrm{en})\left\{\mathrm{Ni}(\mathrm{CN})_{4}\right\}_{2}\right] \cdot 4 \mathrm{PhOH} 5$. Using neat PhOH in place of neat PhNH_{2} in (b) yellow plate-like crystals of

Table 1 Crystallographic and selected experimental data for compounds $1-5{ }^{\text {a }}$

Compound	1	2	3	4	5
Formula	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{Ni}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{CuN}_{10} \mathrm{Ni}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{10} \mathrm{NiZn}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{CdN}_{10} \mathrm{Ni}$	$\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{Ni}_{2} \mathrm{O}_{4}$
M	527.91	532.76	534.61	581.63	1107.09
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	$P 2_{1} / c$ (no. 14)	$P 2_{1 / c}$ (no. 14)	$P 2_{1 / c}$ (no. 14)	$P 2_{1} / \mathrm{c}$ (no. 14)	$P \overline{1}$ (no. 2)
a / \AA	9.452(3)	9.547(4)	9.550(3)	9.924(2)	11.868(1)
b / \AA	10.125(3)	10.621(5)	10.407(2)	10.545(3)	13.030(1)
c / \AA	13.440(3)	12.746(3)	13.026(2)	12.510(1)	7.7113(6)
$\alpha /{ }^{\circ}$	90	90	90	90	105.956(7)
$\beta /{ }^{\circ}$	107.27(2)	107.89(2)	107.50(1)	107.63(1)	94.951(8)
$\gamma /{ }^{\circ}$	90	90	90	90	91.584(9)
U / \AA^{3}	1228.2(6)	1230.0(7)	1234.8(4)	1247.7(4)	1140.7(2)
Z	2	2	2	2	1
$D_{\mathrm{m}}, D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.43(1), 1.43	1.47(2), 1.44	1.42(1), 1.44	1.58(2), 1.55	1.59(1), 1.61
$F(000)$	552	554	556	592	558
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	15.67	16.63	17.88	16.34	17.86
Crystal size/mm	$0.50 \times 0.40 \times 0.20$	$0.52 \times 0.38 \times 0.18$	$0.50 \times 0.40 \times 0.20$	$0.38 \times 0.28 \times 0.26$	$0.32 \times 0.28 \times 0.20$
$h k l$ ranges	0-13, 0-14,	$0-13,0-14$,	$0-13,0-14$,	$0-13,0-14$,	$0-16,-18$ to 18 ,
($4<2 \theta<60^{\circ}$)	-18 to 18	-17 to 17	-18 to 17	-17 to 16	-10 to 10
Scan width/ ${ }^{\circ}$	$1.155+0.3 \tan \theta$	$1.155+0.3 \tan \theta$	$1.155+0.3 \tan \theta$	$1.050+0.3 \tan \theta$	$0.787+0.3 \tan \theta$
Transmission factors	0.77-1.00	0.73-1.00	0.81-1.00	0.92-1.00	0.87-1.00
Reflections measured	4102	4177	4126	4105	7101
Unique reflections	2874	2906	2836	2909	6134
$N_{\text {r }}{ }^{\text {b }}$	1806	1861	1758	1829	4095
$N_{p}{ }^{\text {b }}$	148	148	148	148	294
g^{6}	3.3×10^{-4}	9.0×10^{-4}	1.4×10^{-4}	5.5×10^{-4}	2.0×10^{-4}
$R, R^{\prime}{ }^{\text {b }}$	0.0443, 0.0567	$0.0635,0.0955$	$0.0513,0.0553$	0.0456, 0.0643	$0.0410,0.0438$
Goodness of fit ${ }^{\text {b }}$	1.881	2.283	2.073	1.776	1.454
$(\Delta / \sigma)_{\text {max }}$	0.016	0.007	0.024	0.013	0.017
Maximum, minimum $\Delta \rho / \mathrm{e} \AA^{-3}$	$+0.40,-0.52$	+0.89, -0.69	+0.38, -0.45	+0.65, -0.59	$+0.85,-0.58$

compound 5 were obtained (Found: C, 42.2; H, 4.55; N, 17.1. $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{Cd}_{2} \mathrm{~N}_{14} \mathrm{Ni}_{2} \mathrm{O}_{4}$ requires C, $\left.41.2 ; \mathrm{H}, 4.35 ; \mathrm{N}, 17.7 \%\right)$. ${ }^{*}$ Attempts to obtain crystals of the compounds with $\mathrm{M}=\mathrm{Ni}, \mathrm{Cu}$ or Zn in place of Cd were not successful.

Crystallography.-The crystallographic and selected experimental data for compounds $\mathbf{1} 5$ are listed in Table 1. Singlecrystal X-ray measurements were carried out at room temperature on a Rigaku AFC-5R four-circle diffractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha_{1}$ radiation $(\lambda=$ $0.70926 \AA$) from a rotating molybdenum anticathode for each single-crystal specimen coated with epoxy resin. The cell dimensions were refined using 25 reflections ($33 \leqslant 2 \theta \leqslant 35^{\circ}$). Three standard reflections were monitored after every 200 for 4 and 5, after every 150 for 1 and 3, and five were monitored after every 150 for 2: no significant decay was observed. Lorentz, polarization and empirical absorption corrections ${ }^{5}$ were applied for all compounds. An extinction correction was applied only for 5 according to the equation $F_{\text {corr }}=F_{c}\left\{1-\left[x\left(F_{\mathrm{c}}\right)^{2}\right\}\right.$ $\sin \theta]\} ; x$ was refined to $1.7(2) \times 10^{-7}$. The Cd and Ni atoms in 4 and 5 were located from Patterson syntheses. All non-H atoms found in the subsequent Fourier and Fourier difference syntheses were refined anisotropically through full-matrix least-

[^1]squares procedures. The atomic positions found for 4 were applied as an initial model for 1-3. Hydrogen atoms were located, but not refined, at calculated positions and included in the final F_{c} calculations.

All the calculations were performed with the program SHELX 76^{6} on a HITAC M-680H computer in the Computer Centre of the Institute for Molecular Science, Okazaki. Atomic scattering factors were taken from ref. 7 for $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Ni}$ and Zn , and from SHELX 76^{6} for $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O .

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates and thermal parameters.

Results and Discussion

The refined atomic parameters for compounds $1-4$ are listed in Table 2, and for 5 in Table 3. The ORTEP ${ }^{8}$ views of the structures of $\mathbf{4}$ and 5 are shown in Figs. 1 and 2. Compounds 1-3 are isostructural with 4. Interatomic distances and angles are summarized in Table 4 for 1-4, and in Table 5 for 5 .

Structures of Compounds 1-4.-The space group $P 2_{1} / c$ was uniquely determined from the systematic absences; compounds 1-4 are isostructural with one another. The host complex has a chain structure of $\left[-\mathrm{M}(\mathrm{en})_{2}-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]_{n}$, in which the $\mathrm{Ni}(\mathrm{CN})_{4}{ }^{2-}$ behaves as a bidentate bridging ligand through the N atoms of the CN groups in trans positions between the chelated $\mathrm{M}(\mathrm{en})_{2}{ }^{2+}$ moieties. The catenation mode of the $\mathrm{Ni}(\mathrm{CN})_{4}$ may be denoted as trans-one-dimensional. ${ }^{2 b}$ The infinite chain involves protrusion of the en-chelate rings from the octahedral M at $0, \frac{1}{2}, 0$ along the $\pm a$ direction and that of the terminal CN from the square-planar Ni along the $\pm(a-c)$ direction so that the cavities for the guest aniline molecules in the interchain space are centred approximately at $\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$ and the equivalent positions in the $P 2_{1} / c$ space group.

Table 2 Final atomic coordinates for compounds 1-4

Atom	X/a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
$\left[\mathrm{Ni}(\mathrm{en})_{2} \mathrm{~N}\right.$	$\left.\mathrm{N})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 1$	$\left[\mathrm{Cu}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 2$					
$\mathrm{Ni}(1){ }^{*}$	0	0	0	$\mathrm{Ni}{ }^{*}$	0	0	0
$\mathrm{Ni}(2){ }^{*}$	0	$\frac{1}{2}$	0	Cu*	0	$\frac{1}{2}$	0
N(1)	-0.0247(5)	$0.2935(4)$	0.0201(4)	N(1)	-0.0379(7)	$0.2734(4)$	0.0441(5)
N (2)	$0.1206(7)$	0.0650(6)	-0.1778(5)	N(2)	0.1381 (7)	0.0836(5)	-0.1702(5)
N(3)	0.1166(5)	0.4534(4)	-0.1065(4)	N(3)	0.0982(6)	0.4427 (5)	-0.1106(4)
N(4)	0.2100(5)	0.4966(4)	0.1080(3)	N(4)	0.2036(6)	$0.5005(4)$	0.1080(4)
C(1)	-0.0185(6)	0.1809(4)	0.0150(4)	C(1)	-0.0246(6)	0.1683(5)	0.0287(4)
$\mathrm{C}(2)$	0.0771 (7)	0.0371(5)	$-0.1109(5)$	C(2)	0.0879(7)	0.0492(6)	$-0.1059(4)$
C(3)	0.2688(7)	0.4139(6)	-0.0440(5)	C(3)	0.2527(9)	$0.4116(7)$	-0.0541(7)
C(4)	0.3227(7)	0.4983(6)	0.0496(5)	C(4)	0.3113(9)	$0.4958(6)$	0.0473(7)
N (11)	$0.8047(10)$	$0.2722(6)$	0.2121(6)	$\mathrm{N}(11)$	0.8133(10)	$0.2727(7)$	0.2341 (7)
C(11)	$0.6618(9)$	0.2478 (6)	0.2108(6)	C(11)	$0.6665(10)$	0.2520(6)	0.2203(7)
$\mathrm{C}(12)$	$0.5746(12)$	$0.1665(7)$	0.1314(7)	$\mathrm{C}(12)$	0.5903(12)	0.1750 (7)	$0.1334(7)$
C(13)	$0.4258(14)$	0.1428(8)	0.1332(9)	C(13)	$0.4410(15)$	0.1472 (9)	$0.1276(11)$
C(14)	$0.3682(14)$	$0.1954(11)$	0.2089 (10)	$\mathrm{C}(14)$	0.3729(17)	$0.2008(14)$	$0.2058(12)$
C(15)	0.4602(13)	0.2749(9)	0.2854(9)	$\mathrm{C}(15)$	$0.4577(13)$	$0.2730(9)$	$0.2835(9)$
C(16)	$0.6028(11)$	0.3034(7)	0.2872(6)	$\mathrm{C}(16)$	$0.6012(11)$	$0.3057(8)$	$0.2936(7)$
$\left[\mathrm{Zn}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 3$				$\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 4$			
Ni^{*}	0	0	0	Ni^{*}	0	0	0
Zn *	0	$\frac{1}{2}$	0	Cd*	0	$\frac{1}{2}$	0
$\mathrm{N}(1)$	-0.0286(7)	0.2826(4)	0.0338(5)	N(1)	-0.0267(7)	$0.2762(5)$	0.0435(6)
$\mathrm{N}(2)$	0.1340(8)	0.0777 (7)	-0.1714(5)	N(2)	$0.1538(8)$	0.0846(6)	-0.1614(6)
N(3)	0.1137(6)	0.4443(5)	-0.1115(4)	N(3)	0.1256(6)	$0.4325(5)$	-0.1210(4)
N(4)	0.2129(5)	0.5000 (5)	0.1103(4)	N(4)	0.2314(6)	0.5015(5)	$0.1156(4)$
C(1)	-0.0206(7)	0.1751(5)	0.0229(5)	C(1)	-0.0167(6)	0.1696(6)	0.0312(5)
C(2)	0.0851(8)	0.0442(6)	-0.1068(5)	C(2)	0.0974(8)	0.0491(6)	-0.1001(6)
C(3)	0.2662(8)	0.4105(8)	-0.0479(7)	C(3)	0.2700(8)	0.4039(8)	-0.0507(7)
C(4)	0.3210 (7)	0.4982(8)	0.0485(6)	C(4)	0.3233(7)	$0.4988(7)$	0.0440(7)
N(11)	$0.8071(12)$	0.2801 (9)	0.2235(7)	$\mathrm{N}(11)$	0.8128(11)	$0.3028(10)$	$0.2316(8)$
$\mathrm{C}(11)$	$0.6676(10)$	0.2548(9)	0.2169(8)	$\mathrm{C}(11)$	$0.6794(11)$	0.2659(9)	0.2212(9)
$\mathrm{C}(12)$	0.5821(16)	0.1737(9)	0.1326(7)	$\mathrm{C}(12)$	0.6046(13)	0.1853(8)	0.1343(7)
C(13)	$0.4358(16)$	$0.1483(11)$	$0.1328(12)$	C(13)	$0.4653(13)$	$0.1515(10)$	0.1241 (10)
C(14)	0.3278(18)	0.2053(13)	$0.2122(10)$	C(14)	$0.3805(23)$	0.1950(13)	$0.1994(11)$
C(15)	$0.4639(15)$	$0.2807(13)$	$0.2865(10)$	C(15)	$0.4659(13)$	0.2709(13)	$0.2787(13)$
C(16)	0.6040(13)	0.3093(9)	0.2921 (7)	C(16)	0.6074(13)	0.3147(8)	$0.2988(7)$

* Special position at the inversion centre; multiplicity $=0.5$.

Table 3 Final atomic coordinates for compound 5

Atom	X / a	Y / b	Z/c	Atom	X/a	Y / b	Z/c
Cd	0.245 62(3)	$0.19412(3)$	$0.11275(4)$	$\mathrm{O}(11)$	0.244 4(4)	0.712 2(4)	$0.4905(6)$
$\mathrm{Ni}(1)^{\text {a,b }}$	0	0	$\frac{1}{2}$	C(11)	0.235 3(4)	$0.7408(4)$	0.6710 (7)
$\mathrm{Ni}(2)^{a, b}$	$\frac{1}{2}$	$\frac{1}{2}$	0	C(12)	$0.1487(5)$	$0.8090(4)$	0.7327 (9)
$\mathrm{N}(1)$	0.148 4(3)	0.090 2(3)	0.2751 (5)	C(13)	0.1360 (5)	$0.8395(5)$	0.9157 (9)
N(2)	0.132 4(4)	$0.1271(3)$	0.8431 (5)	C(14)	0.207 2(6)	0.805 4(5)	1.035 3(9)
N(3)	0.358 9(4)	0.3031 (3)	-0.012 1(6)	C(15)	0.2937 (6)	0.739 4(5)	$0.9709(9)$
N(4)	0.424 2(4)	$0.6007(4)$	$0.3657(6)$	C(16)	0.3083 (5)	0.7050 (4)	$0.7868(8)$
N(5)	0.120 6(4)	$0.3262(3)$	0.2273 (6)	$\mathrm{O}(21)^{\text {a,c }}$	$0.0189(9)$	0.640 6(8)	$0.3311(12)$
N(6)	0.339 7(4)	0.2921 (4)	0.3927 (6)	C(21)	0.0119 (7)	0.574 9(5)	$0.1665(9)$
N(7)	0.3503 (4)	0.043 9(4)	0.020 2(7)	C(22)	0.103 9(6)	0.553 3(6)	0.072 3(9)
C(1)	0.093 6(4)	0.0557 (3)	$0.3614(5)$	C(23)	0.0941 (6)	0.478 6(7)	-0.0946 (9)
C(2)	$0.0818(4)$	0.0809 9)	$0.7115(5)$	$\mathrm{O}(31)^{\mathrm{c}, \text { d }}$	0.313 3(29)	-0.062 8(22)	0.5177 (34)
C(3)	0.4121 (4)	0.376 6(4)	-0.0115(6)	$\mathrm{O}(32)^{\text {c,e }}$	0.356 4(15)	0.122 8(16)	0.6221 (22)
C(4)	0.454 6(4)	$0.5628(4)$	0.2298 (7)	C(31)	0.395 2(13)	$-0.0414(10)$	0.491 4(16)
C(5)	0.1827 (8)	0.4053 (6)	0.390 6(9)	C(32)	0.4171 (12)	0.067 3(9)	0.5730 (12)
C(6)	0.2640 (7)	$0.3617(7)$	0.493 2(9)	C(33)	0.525 2(13)	$0.1093(7)$	0.5809 (12)
C(7)	0.4740 (4)	0.0521 (4)	0.0408 (7)				

${ }^{a}$ Multiplicity $0.5 .{ }^{b}$ Special position at the inversion centre. ${ }^{\text {c }}$ Atom in disorder. ${ }^{d}$ Multiplicity $0.23(1) .{ }^{e}$ Multiplicity $0.27(1)$.

Hydrogen bonds are suggested between the host complex chains and between the host and the guest. Atom $\mathrm{N}(2)$ of the terminal CN group on the Ni in one chain is almost within hydrogen-bonding distance between the en NH_{2} groups, $\mathrm{N}(3)$ and $\mathrm{N}(4)$, chelated to the M in the adjacent chain; additionally the NH_{2} group of the guest aniline, $\mathrm{N}(11)$, is directed toward $\mathrm{N}(2)$. One of the en NH_{2} groups, $\mathrm{N}(3)$, may also form a
hydrogen bond with $\mathrm{N}(11)$. The respective distances between the N atoms in 1-4 are 3.294(7), 3.355(7), 3.391(8) and 3.619(8) for $\mathrm{N}(2) \cdots \mathrm{N}(3)$, 3.292(9), 3.214(9), 3.254(9) and 3.24(1) for $\mathrm{N}(2) \cdots \mathrm{N}(4), \quad 3.35(1), \quad 3.28(1), \quad 3.35(1)$ and $3.45(1)$ for $\mathrm{N}(2) \cdots \mathrm{N}(11)$, and $3.304(9), 3.70(1), 3.40(1)$ and $3.25(1) \AA$ for $\mathrm{N}(3) \cdots \mathrm{N}(11)$. Some of these appear to be too long for hydrogen bonds, although the critical distance, e.g. $3.3 \AA$, is

Ni at $0,0,0$
Cd at $0, \frac{1}{2}, 0$

(a)

(b)

Fig. 1 Projections of $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2} 4$ along (a) the b axis and (b) the a axis; 30\% probability ellipsoids. Anisotropic peripheries have been shown for the guest aniline molecules. The atomic numbering is shown at the top

($\mathrm{PhOH}-1$)

(PhOH-3)

$\mathrm{Ni}(2)$ at $\frac{1}{2}, \frac{1}{2}, 0$;

(a)

(b)

Fig. 2 Perspective views of $\left[\left\{\mathrm{Cd}(\mathrm{en})_{2}\right\}(\mathrm{en})\left\{\mathrm{Ni}(\mathrm{CN})_{4}\right\}_{2}\right] \cdot 4 \mathrm{PhOH} 5$ (a) with the phenol guest molecules 1-3 and (b) without the guests; 30% probability ellipsoids. The atomic numbering is shown at the top; $\overline{\mathrm{T}}(\mathrm{O})$ at $0, \frac{1}{2}, 0$ for $\mathrm{PhOH}-2$ and at $\frac{1}{2}, 0, \frac{1}{2}$ for $\mathrm{PhOH}-3$

Table 4 Selected interatomic distances (\AA) and angles (${ }^{\circ}$) for compounds 1-4

	1	2	3	4
$\mathrm{Ni}-\mathrm{C}(1)$	1.856(4)	1.906(5)	1.866(6)	1.849(6)
$\mathrm{Ni}-\mathrm{C}(2)$	1.881(6)	1.863(6)	1.867(7)	1.871(7)
$\mathrm{M}-\mathrm{N}(1)$	$2.130(4)$	2.593(5)	$2.336(5)$	2.454(5)
$\mathrm{M}-\mathrm{N}(3)$	2.103(4)	2.005(5)	$2.138(5)$	2.345 (5)
$\mathrm{M}-\mathrm{N}(4)$	2.083(4)	1.966(5)	$2.107(5)$	2.313(5)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.144(6)	1.180(6)	1.134(7)	1.143(8)
$\mathrm{C}(2)-\mathrm{N}(2)$	$1.130(7)$	1.128(7)	1.134(8)	1.142(8)
$\mathrm{N}(3)-\mathrm{C}(3)$	1.489(8)	1.433(9)	$1.485(9)$	1.468(9)
$\mathrm{N}(4)-\mathrm{C}(4)$	1.499(7)	1.443(9)	1.489(8)	1.460 (9)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.481(9)	1.55(1)	1.51(1)	1.52(1)
$\mathrm{N}(11)-\mathrm{C}(11)$	1.37(1)	1.34(1)	1.34(1)	1.35(1)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.41(1)	1.40(1)	1.43(1)	1.40(1)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.43(1)	1.40 (1)	1.42(2)	1.40(1)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.40(2)	1.46(2)	1.47(2)	1.51(2)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.39(2)	1.32(2)	1.34(2)	$1.35(2)$
$\mathrm{C}(15)-\mathrm{C}(16)$	1.37(1)	1.35(1)	$1.35(1)$	1.43(2)
$\mathrm{C}(16)-\mathrm{C}(11)$	1.42(1)	$1.39(1)$	1.42(1)	1.46(1)
$\mathrm{N}(2) \cdots \mathrm{N}\left(3^{1}\right)$	3.294(7)	3.355(7)	3.391 (8)	3.619(8)
$\mathrm{N}(2) \cdots \mathrm{N}\left(4^{\text {II }}\right.$)	3.292(9)	3.214(9)	3.254(9)	3.24(1)
$\mathrm{N}(2) \cdots \mathrm{N}\left(11^{\mathrm{HI}}\right)$	3.35 (1)	3.28(1)	3.35 (1)	3.45(1)
$\mathrm{N}(3) \cdots \mathrm{N}\left(11^{\text {IV }}\right.$)	3.304(9)	3.70 (1)	3.40(1)	3.25(1)
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	87.7(2)	88.0 (3)	$88.2(3)$	88.3 (3)
$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(3)$	88.0(2)	88.6(2)	88.7(2)	88.0(2)
$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(4)$	90.7(2)	90.9(2)	90.8(2)	91.2(2)
$\mathrm{N}(3)-\mathrm{M}-\mathrm{N}(4)$	83.5(2)	87.1(2)	83.1(2)	77.6(2)
$\mathrm{M}-\mathrm{N}(1)-\mathrm{C}(1)$	163.9(4)	150.3(5)	156.4(5)	153.6(6)
$\mathrm{Ni}-\mathrm{C}(1)-\mathrm{N}(1)$	175.7(4)	178.1(5)	176.6(6)	175.6(6)
$\mathrm{Ni}-\mathrm{C}(2)-\mathrm{N}(2)$	176.8(5)	177.1(6)	176.3(7)	176.7(7)
$\mathrm{M}-\mathrm{N}(3)-\mathrm{C}(3)$	106.9(3)	108.6(4)	107.4(4)	106.8(4)
$\mathrm{M}-\mathrm{N}(4)-\mathrm{C}(4)$	108.2(3)	107.2(4)	108.3(4)	107.6(4)
$\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(4)$	110.8(5)	108.6(6)	110.9(6)	$112.2(6)$
$\mathrm{N}(4)-\mathrm{C}(4)-\mathrm{C}(3)$	108.6(5)	$110.5(6)$	109.5(5)	110.9(5)
$\mathrm{N}(11)-\mathrm{C}(11)-\mathrm{C}(12)$	118.1(9)	116.8(9)	120(1)	122(1)
$\mathrm{N}(11)-\mathrm{C}(11)-\mathrm{C}(16)$	121.1(8)	118.4(9)	120(1)	120(1)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	120.8(8)	124.8(9)	120(1)	119(1)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	116.3(9)	115(1)	116(1)	120(1)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	123(1)	121(1)	123(1)	126(1)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	118(1)	118(1)	116(2)	107(2)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	122(1)	125(1)	126(1)	133(2)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	119.9(8)	116.5(9)	120(1)	115(1)

Symmetry operations I $-x, y-\frac{1}{2},-z-\frac{1}{2}$; II $x,-y+\frac{1}{2}, z-\frac{1}{2}$; III $x-1,-y+\frac{1}{2}, z-\frac{1}{2}$; IV $-x+1,-y+1,-z$.
rather arbitrary. The fact is that the $\mathrm{N} \cdot \mathrm{M}$ interatomic distances depend on \mathbf{M} and that hydrogen-bond formation is most plausible between $N(2)$ and $N(4)$ for all the structures.

Structure of Compound 5.-The host structure in Fig. 2 is built up of two kinds of $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties centred on $\mathrm{Ni}(1)$ and $\mathrm{Ni}(2)$ respectively, and of en ligands, one being chelating and the other bridging to the respective Cd atoms. The en-chelated $\mathrm{Cd}(\mathrm{en})$ moieties are linked to $\mathrm{Ni}(1)(\mathrm{CN})_{4}$ to form an infinite $\left\rangle \mathrm{Ni}<[\mathrm{CN}-\mathrm{Cd}(\mathrm{en})-\mathrm{NC}-]_{2}\right\}_{n}$ extension along the c axis of the crystal, in which $\mathrm{Ni}(1)$ is on the inversion centre at $0,0, \frac{1}{2}$. By depicting the square-planar $\mathrm{Ni}(\mathrm{CN})_{4}$ as X , the infinite extension of XXX ... involving a $\mathrm{Cd}(\mathrm{en})$ at every corner is seen as a doubly bridged one-dimensional extension. ${ }^{2 b}$ One $\mathrm{Cd}(\mathrm{en})$ at x, y, z is linked through the μ-trans- $\mathrm{NC}-\mathrm{Ni}(2)(\mathrm{CN})_{2}-\mathrm{CN}$ - moiety to the $\mathrm{Cd}(\mathrm{en})$ in the neighbouring unit cell related by the inversion centre at $\frac{1}{2}, \frac{1}{2}, 0$ where the $\mathrm{Ni}(2)$ is located. The $\mathrm{Cd}(\mathrm{en})$ is additionally linked through the bridging en to another $\mathrm{Cd}(\mathrm{en})$ at $1-x,-y,-z$. Hence, six-co-ordination of the Cd is accomplished with two N atoms from the chelating en, one from the bridging en, two from the CN groups in the double-onedimensional extension and one from the μ-trans $-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-$ CN - linkage. Eventually a complicated three-dimensional

Table 5 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for compound 5

$\mathrm{N}(1)-\mathrm{C}(1)$	1.868(4)	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.136(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.405(7)$	$\mathrm{O}(31)-\mathrm{C}(31)$	1.05(3)
$\mathrm{Ni}(1)-\mathrm{C}(2)$	1.855(4)	$\mathrm{C}(2)-\mathrm{N}(2)$	$1.136(5)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.380(8)$	$\mathrm{O}(32)-\mathrm{C}(32)$	1.05(2)
$\mathrm{Ni}(2)-\mathrm{C}(3)$	1.869(4)	$\mathrm{C}(3)-\mathrm{N}(3)$	$1.131(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.369(9)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.39(1)$
$\mathrm{Ni}(2)-\mathrm{C}(4)$	1.869(5)	$\mathrm{C}(4)-\mathrm{N}(4)$	$1.124(6)$	$\mathrm{C}(14)-\mathrm{C}(15)$	1.393(9)	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.37(1)$
$\mathrm{Cd}-\mathrm{N}(1)$	2.414(4)	$\mathrm{N}(5)-\mathrm{C}(5)$	1.508(8)	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.394(8)$	$\mathrm{C}(33)-\mathrm{C}\left(31^{\text {IV }}\right.$)	1.36 (2)
$\mathrm{Cd}-\mathrm{N}\left(2^{1}\right)$	$2.313(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	1.42(1)	$\mathrm{C}(16)-\mathrm{C}(11)$	1.373(7)	$\mathrm{N}(4) \cdots \mathrm{O}(11)$	2.711(7)
$\mathrm{Cd}-\mathrm{N}(3)$	$2.371(4)$	$\mathrm{N}(6)-\mathrm{C}(6)$	$1.418(8)$	$\mathrm{O}(21)-\mathrm{C}(21)$	1.32 (1)	$\mathrm{N}(4) \cdots \mathrm{N}\left(6^{\mathrm{V}}\right)$	3.275 (7)
$\mathrm{Cd}-\mathrm{N}(5)$	2.339(4)	$\mathrm{N}(7)-\mathrm{C}(7)$	$1.460(6)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1.36(1)	$\mathrm{N}(6) \cdots \mathrm{O}(32)$	3.19(2)
$\mathrm{Cd}-\mathrm{N}(6)$	2.351(4)	$\mathrm{C}(7)-\mathrm{C}\left(7^{\text {II }}\right)$	$1.505(7)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.377(9)$	$\mathrm{O}(1) \cdots \mathrm{O}(21)$	2.86(1)
$\mathrm{Cd}-\mathrm{N}(7)$	$2.325(4)$	$\mathrm{O}(11)-\mathrm{C}(11)$	$1.353(6)$	$\mathrm{C}(23)-\mathrm{C}\left(21^{\text {III }}\right)$	1.41(1)	$\mathrm{O}(11) \cdots \mathrm{O}\left(31^{\mathrm{VI}}\right)$	2.97(3)
$\mathrm{C}(1)-\mathrm{Ni}(1)-\mathrm{C}(2)$	90.6(2)		$\mathrm{Ni}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	178.4(4)		$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.8(6)
$\mathrm{C}(3)-\mathrm{Ni}(2)-\mathrm{C}(4)$	89.2(2)		$\mathrm{Ni}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$177.5(4)$		$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	119.4(6)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}\left(2^{1}\right)$	95.0(1)		$\mathrm{Ni}(2)-\mathrm{C}(3)-\mathrm{N}(3)$	177.6(4)		$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	121.7(6)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(3)$	172.3(1)		$\mathrm{Ni}(2)-\mathrm{C}(4)-\mathrm{N}(4)$	178.0(5)		$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$117.2(6)$
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(5)$	85.2(1)		$\mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(1)$	169.1(4)		$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}(22)$	121.9(8)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(6)$	87.7(2)		$\mathrm{Cd}-\mathrm{N}\left(2^{\text {I }}\right)-\mathrm{C}\left(2^{\text {I }}\right.$)	170.6(4)		$\mathrm{O}(21)-\mathrm{C}(21)-\mathrm{C}\left(23^{\mathrm{II}}\right)$	117.6(8)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(7)$	84.8(2)		$\mathrm{Cd}-\mathrm{N}(3)-\mathrm{C}(3)$	155.9(4)		$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.9(7)
$\mathrm{N}\left(2^{1}\right)-\mathrm{Cd}-\mathrm{N}(3)$	92.6(1)		$\mathrm{Cd}-\mathrm{N}(5)-\mathrm{C}(5)$	107.5(4)		$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}\left(23^{\text {III }}\right)$	120.4(6)
$\mathrm{N}\left(2^{1}\right)-\mathrm{Cd}-\mathrm{N}(5)$	93.0(2)		$\mathrm{Cd}-\mathrm{N}(6)-\mathrm{C}(6)$	109.5(4)		$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}\left(21^{1 \mathrm{l}}\right)$	119.7(7)
$\mathrm{N}\left(2^{1}\right)-\mathrm{Cd}-\mathrm{N}(6)$	168.7(2)		$\mathrm{Cd}-\mathrm{N}(7)-\mathrm{C}(7)$	121.2(3)		$\mathrm{O}(31)-\mathrm{C}(31)-\mathrm{C}(32)$	108(3)
$\mathrm{N}\left(2^{1}\right)-\mathrm{Cd}-\mathrm{N}(7)$	86.5(2)		$\mathrm{N}(5)-\mathrm{C}(5)-\mathrm{C}(6)$	$115.5(6)$		$\mathrm{O}(31)-\mathrm{C}(31)-\mathrm{C}\left(33^{\text {IV }}\right)$	127(2)
$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}(5)$	95.4(2)		$\mathrm{N}(6)-\mathrm{C}(6)-\mathrm{C}(5)$	116.0(6)		$\mathrm{O}(32)-\mathrm{C}(32)-\mathrm{C}(31)$	126(2)
$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}(6)$	85.0(2)		$\mathrm{N}(7)-\mathrm{C}(7)-\mathrm{C}\left(7^{\text {11 }}\right.$)	113.2(4)		$\mathrm{O}(32)-\mathrm{C}(32)-\mathrm{C}(33)$	116(1)
$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}(7)$	94.7(2)		$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{C}(12)$	116.8(5)		$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}\left(33^{\text {Iv }}\right.$)	124(1)
$\mathrm{N}(5)-\mathrm{Cd}-\mathrm{N}(6)$	76.2(2)		$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{C}(16)$	121.0(5)		$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	118(1)
$\mathrm{N}(5)-\mathrm{Cd}-\mathrm{N}(7)$	169.9(2)		$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	122.2(5)		$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}\left(31^{\text {Iv }}\right)$	118(1)
$\mathrm{N}(6)-\mathrm{Cd}-\mathrm{N}(7)$	104.7(2)		$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	118.6(6)			

Symmetry operations: I $x, y, z-1 ; \mathrm{II}-x+1,-y,-z$ III $-x,-y+1,-z ; \mathrm{IV}-x+1,-y,-z+1 ; \mathrm{V}-x+1,-y+1,-z+1: \mathrm{VI} x, y+1, z$.
framework is formed involving three kinds of cavities each accommodating one phenol molecule.
Phenol molecule 1 ($\mathrm{PhOH}-1$) is located on general positions between the square mesh of the double-one-dimensional linkage and the $\mathrm{Ni}(2)(\mathrm{CN})_{4}$ moiety, with its aromatic ring almost perpendicular to the mesh; there are two such molecules in the unit cell. Molecule $2(\mathrm{PhOH}-2)$, sandwiched by the en chelate rings, takes a disorder related to the inversion centre at $0, \frac{1}{2}, 0$. Molecule 3 ($\mathrm{PhOH}-3$), sandwiched by the bridging en ligands, takes a disorder related to another inversion centre at $\frac{1}{2}, 0, \frac{1}{2}$. In addition to the disorder caused by the inversion centre, two O atoms of $\mathrm{PhOH}-3, \mathrm{O}(31)$ and $\mathrm{O}(32)$, were observed independently with an occupancy ratio $23: 27$. The hydrogen bonds involving the OH groups of the PhOH molecules, $\mathrm{O}(11)$, $\mathrm{O}(21)$ and $\mathrm{O}(31)$, the NH_{2} group of en, $\mathrm{N}(6)$, and the terminal N of the $\mathrm{Ni}(2)(\mathrm{CN})_{4}, \mathrm{~N}(4)$, have $\mathrm{O}(11) \cdots \mathrm{O}(21), \mathrm{O}(11) \cdots \mathrm{O}(31)$, $\mathrm{N}(4) \cdots \mathrm{O}(11), \mathrm{N}(6) \cdots \mathrm{O}(32)$ and $\mathrm{N}(4) \cdots \mathrm{N}(6)$ distances ranging from 2.7 to $3.3 \AA$.

Comparison of the Structures among the Aniline Clathrates and the Host Complexes.--Isostructural series of $\left[\mathrm{M}(\mathrm{en})_{2}-\right.$ $\left.\mathrm{M}^{\prime}(\mathrm{CN})_{4}\right]_{n}$ metal complexes without guests are known for $\mathbf{M}=\mathrm{Ni} \mathbf{1}^{\prime}, \mathrm{Cu} \mathbf{2}^{\prime}$ and $\mathrm{Zn} \mathbf{3}^{\prime}$ with $\mathrm{M}^{\prime}=\mathrm{Ni},{ }^{9}$ and $\mathrm{M}=\mathrm{Ni}$ with $\mathbf{M}^{\prime}=\mathrm{Pd},{ }^{10}$ having a one-dimensional chain of $\left[-\mathrm{M}(\mathrm{en})_{2}\right.$-trans-$\mathrm{NC}-\mathrm{Ni}($ or Pd$\left.)(\mathrm{CN})_{2}-\mathrm{CN}-\right]_{n}$, which are also isostructural with the one-dimensional chain of the present host complex of the aniline clathrates, although $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]_{n} 4^{\prime}$ has a zigzag chain of $\left[-\mathrm{Cd}(\mathrm{en})_{2}-c i s-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]_{n}$ with the cis-onedimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety. ${ }^{11}$

The trans-one-dimensional catenation chain in compounds $\mathbf{1}^{\prime}-\mathbf{3}^{\prime}$ bends at every N of $\mathrm{M}-\mathrm{N}-\mathrm{C}$ with angle δ of $155.6(4)^{\circ}$ for $\mathbf{1}^{\prime}, 123.6(4)^{\circ}$ for $\mathbf{2}^{\prime}$ and $148.0(7)^{\circ}$ for $\mathbf{3}^{\prime}$ so as to form intrachain hydrogen bonds between the terminal N of the unidentate CN group and the NH_{2} group of the chelating en. Each of the octahedral MN_{6} co-ordination spheres is elongated along the chain, in particular for $\mathbf{2}^{\prime}$ due to the Jahn-Teller effect on the Cu^{2+}. The elongation of the $\mathrm{Cu}-\mathrm{N}$ bond and the bending of $\mathrm{Cu}-\mathrm{N}-\mathrm{C}$ angle in $\mathbf{2}^{\prime}$ causes the formation of interchain hydrogen bonds, reducing U / Z to $334 \AA^{3}$ in comparison with

342 and $345 \AA^{3}$ for $\mathbf{1}^{\prime}$ and $\mathbf{3}^{\prime}$. Disorder in the conformation of the en chelate ring was reported for $\mathbf{1}^{\prime}$ and $\mathbf{3}^{\prime}$ but not for $\mathbf{2}^{\prime}$. Calculated from literature data, ${ }^{9}$ the interchain $\mathrm{N} \cdots \mathrm{N}$ distances between the CN and en are 3.278(7), 3.343(7), 3.442(9) and 3.490(8) \AA for $\mathbf{1}^{\prime}, 3.116(6)$ and $3.218(4) \AA$ for 2', and 3.331(9) and $3.40(1) \AA$ for 3^{\prime}, although the interchain hydrogen bonds were not discussed in the original literature.

Accommodation of aniline molecules in the interchain space makes the trans-one-dimensional catenation chain straight for $\mathbf{1 - 3}$, and in the case of $\mathbf{4}$ the cis-one-dimensional form in $\mathbf{4}^{\prime}$ becomes trans; no disorder has been observed for the conformation of the en chelate ring. Upon accommodation of the guest, the $\mathrm{M}-\mathrm{N}$ bond along the chain increases to a small extent: $\mathrm{Ni}-\mathrm{N}$ by $0.004, \mathrm{Cu}-\mathrm{N}$ by 0.060 and $\mathrm{Zn}-\mathrm{N}$ by $0.059 \AA$; the angle δ increases to $163.9(4), 150.4(5)$ and $156.4(5)^{\circ}$. The distortion of the one-dimensional chain is reduced and the crystal packing appears to be stabilized with the formation of hydrogen bonds between the host and the guest in addition to the interchain ones.

Comparison of the Structures among $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$. $2 \mathrm{PhNH}_{2} 4,\left[\{\mathrm{Cd}(\mathrm{en})\}_{2}(\mathrm{en})\left\{\mathrm{Ni}(\mathrm{CN})_{4}\right\}_{2}\right] \cdot 4 \mathrm{PhOH} 5$ and $[\mathrm{Cd}(\mathrm{en})-$ $\left.\mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} 6$.-The inclusion compounds 4,5 and the known ${ }^{2}$ Hofmann-en-type $\left[\mathrm{Cd}(\mathrm{en}) \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{C}_{6} \mathrm{H}_{6} 6$ have the same molar ratio of $\mathrm{CdNi}(\mathrm{CN})_{4}$:guest $=1: 2$ but differ in the content of en; they are all prepared under similar experimental conditions. However, the resulting crystal structures are quite different and accompanied with a change in the $\mathrm{CdNi}(\mathrm{CN})_{4}$:en ratio from 1:2 to $2: 3$ to $1: 1$. As for the co-ordination of the en ligand to the Cd , it is chelating in $\mathbf{4}$, chelating and singly bridging in 5 and a catena-single-one-dimensional linkage builder in 6. The $\mathrm{Ni}(\mathrm{CN})_{4}$ acts as a catena-trans-onedimensional linkage builder in 4, catena-doubly-one-dimensional and trans-bridging ligand in 5, and catena-tetra-close-two-dimensional linkage builder in 6, respectively. The differences in the host structures are deduced from the interaction of the host with the guest molecules, i.e. the guest determines the host structure.

With regard to the guest molecules, differences are seen in the
absence or presence of a substituent group: no substituent in compound 6 but acidic OH in 5 and basic NH_{2} in 4 . The polar substituents in $\mathbf{4}$ and 5 are favourable to the formation of hydrogen bonds with the host and/or neighbouring guest. Although the aniline in 4 as well as in 1-3 is accommodated in the cavity in a considerably different way from that of the Hofmann-en-type compounds, the host structure of 5 partially resembles that of the latter. Molecule PhOH-3 is trapped between a couple of the bridging en ligands, and $\mathrm{PhOH}-1$ is capped with the mesh of doubly-one-dimensional $[>\mathrm{Ni}<$ $(\mathrm{CN}-\mathrm{Cd}-\mathrm{NC}-)_{2}$] at one side, whereas the $\mathrm{C}_{6} \mathrm{H}_{6}$ in 6 is clipped with a couple of bridging en ligands and capped with the close-two-dimensional meshes at both sides, top and bottom. These arrangements and orientations of the guest phenol molecules are fixed with the host-guest and interguest hydrogen-bond formation.

Hofmann's benzene, aniline and phenol compounds $\mathrm{Ni}(\mathrm{CN})_{2}$. $\mathrm{NH}_{3} \cdot \mathrm{G}\left[=\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot 2 \mathrm{G}\right]$ where $\mathrm{G}=\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{PhNH}_{2}$ or $\mathrm{PhOH} \cdot \mathrm{H}_{2} \mathrm{O}$ were reported as anomalous nickel compounds because the neutral, basic and acidic aromatic hydrocarbons had resulted in similar compositions. ${ }^{12}$ After the single-crystal structure had been determined for the benzene compound, ${ }^{13}$ powder X-ray diffraction data indicated that the Hofmann-type aniline compounds were isostructural to the benzene one; ${ }^{2}$ the Hofmann-type phenol compounds may also be assumed to be isostructural.

In contrast with the Hofmann-type compounds, the difference in the chemical functionality among the three aromatic guests leads to differences in the crystal structures of 46 where the $\left(\mathrm{NH}_{3}\right)_{2}$ ligands in the Hofmann-type $\left[\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{G}$ are replaced by one en for $\mathrm{C}_{6} \mathrm{H}_{6}, 1.5$ en for PhOH and 2 en for PhNH_{2}.

References

1 T. Iwamoto, T. Miyoshi, T. Miyamoto, Y. Sasaki and S. Fujiwara, Bull. Chem. Soc. Jpn., 1967, 40, 1174; T. Nakano, T. Miyoshi,
T. Iwamoto and Y. Sasaki, Bull. Chem. Soc. Jpn., 1967, 40, 1297; M. Morita, T. Miyoshi, T. Miyamoto, T. Iwamoto and Y. Sasaki, Bull. Chem. Soc. Jpn., 1967, 40, 1556; T. Iwamoto, T. Nakano, M. Morita, T. Miyoshi, T. Miyamoto and Y. Sasaki, Inorg. Chim. Acta, 1968, 2, 313.
2 T. Iwamoto, (a) in Inclusion Compounds, eds. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Academic Press, London, 1984, vol. 1, ch. 2, pp. 29-57; (b) in Inclusion Compounds, eds. J. L. Atwood, J. E. D. Davies and D. D. MacNicol, Oxford University Press, Oxford, 1991, vol. 5, ch. 6, pp. 177-212.
3 H. Yuge and T. Iwamoto, J. Inclusion Phenom., 1992, 14, 217.
4 A. Sopková, J. Mol. Struct., 1981, 75, 81 and refs. therein.
5 A. T. C. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
6 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.
7 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
8 C. K. Johnson, ORTEP II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
9 J. Černák, J. Chomič, D. Baloghová and M. Dunaj-Jurčo, Acta Crystallogr., Sect. C, 1988, 44, 1902; J. Cernák, I. Potočňák, J. Chomič and M. Dunaj-Jurčo, Acta Crystallogr., Sect. C., 1990, 46, 1098; J. Lokaj, K. Gyerová, A. Sopková, J. Sivý, V. Kettmann and V. Vrábel, Acta Crystallogr., Sect. C, 1991, 47, 2447.

10 M. Rüegg and A. Ludi, Theor. Chim. Acta, 1971, 20, 193.
11 G. B. Jameson, W. Bachmann, H. R. Oswald and E. Dubler, Acta Crystallogr., Sect. A, 1981, 37, C88.
12 K. A. Hofmann and F. Höchtlen, Chem. Ber., 1903, 36, 1149.
13 H. M. Powell and R. H. Rayner, Nature (London), 1949, 163, 566; R. H. Rayner and H. M. Powell, J. Chem. Soc., 1952, 319.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

[^1]: * The analytical results contain some discrepancies from the required values probably due to insufficient washing of the products before the analysis; however, too much washing sometimes caused decomposition of the products which are unstable under ambient conditions, gradually liberating the guest molecules. The discrepancies do not indicate guestdeficient compositions: the $\mathrm{C}: \mathrm{H}: \mathrm{N}$ ratios in the found values suggest excessive amounts of the guest aromatic molecules adsorbed on the products. The occupancy factors refined for the guests in the structure refinement were all greater than unity: $1.029(8), 1.074(10), 1.047(8)$ and 1.051(10) for PhNH_{2} in 1, 2, 3 and 4, and 1.053(6), 1.089(8) and 1.107(11) for $\mathrm{PhOH}-1,-2$ and -3 in 5.

