Synthesis of Homo- and Hetero-dinuclear Complexes containing Alkynyl Bridges. Molecular Structure of cis,trans-[(OC)(C₆F₅)₂Pt(μ - η ²-C=CPh)Pt(C=CPh)(PPh₃)₂][†]

Jesús R. Berenguer,^a Juan Forniés,^{*,a} Elena Lalinde,^{*,b} Fransisco Martínez,^a Esteban Urriolabeitia^a and Alan J. Welch^c

 ^a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza, C.S.I.C. 50009, Zaragoza, Spain
^b Departamento de Química, Universidad de La Rioja 26001, Logroño, Spain

^c Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ, UK

Terminal organotransition-metal acetylides *trans*-[Pt(C=CR)₂L₂] (R = Ph or Bu^t, L = PPh₃ or PEt₃), *cis*-[Pt(C=CBu^t)₂L₂] (L = PPh₃ or PEt₃), [Pt(C=CR)₂(dppe)] (R = Bu^t or SiMe₃, dppe = Ph₂PCH₂-CH₂PPh₂) and [Au(C=CR)(PPh₃)] (R = Ph or Bu^t) reacted with *cis*-[Pt(C₆F₅)₂(CO)(thf)] (thf = tetrahydrofuran) to give, under alkynylation of the fragment Pt(C₆F₅)₂(CO), the μ - η ²-acetylide-bridged dinuclear zwitterionic complexes [(OC)(C₆F₅)₂Pt⁻(μ - η ²-C=CR)M⁺L_n]. The phenylacetylide complex [(OC)(C₆F₅)₂Pt⁻(μ - η ²-C=CPh)Pt⁺(C=CPh)(PPh₃)₂] has been characterised by X-ray structural analysis.

Extensive studies have focused on the chemical behaviour of transition-metal complexes bearing a C=C functional group, that is metal acetylides M-C=CR and η^2 -acetylene complexes.¹ The interest in this area is due principally to the wide variety of chemical processes undergone by the acetylenic group coordinated to mono- or poly-nuclear metal fragments² and to the richness of their co-ordination modes.³

Polynuclear μ -acetylide complexes⁴ in which the acetylide ligand is σ bonded to one metal centre and η^2 bonded to the other have also attracted much attention as models for surface-bound species.^{5h} However most studies have dealt with complexes which contain additional bridging ligands (Ph₂PCH₂PPh₂, SR, PR₂, *etc.*); very few monoacetylide dinuclear complexes without any additional bridging ligands are known.⁵

Following our recent work on alkyne- and acetylide-containing platinum complexes⁶ we have shown that reactions of *cis*-[Pt(C₆F₅)₂(thf)₂] (thf = tetrahydrofuran) with alkynes and bis(σ -alkynyl) derivatives yield a variety of products including the first bis(η^2 -alkyne)platinum(II) complexes^{6a,b} and several homo- and hetero-dinuclear doubly acetylide-bridged complexes.^{6f h} Since we have found in previous studies that mononuclear *cis*-[Pt(C₆F₅)₂(CO)(thf)]⁷ reacts easily with alkynes RC=CR (R = Ph or Et) giving rise to mono(η^2 alkyne)platinum(II) complexes^{6b} it could be anticipated that its reactions with simple terminal organotransition-metal acetylides, L_nM-C=CR, would provide an entry to dinuclear mono(μ -acetylide) complexes.

In this paper we describe the preparation and properties of several μ - η^2 -acetylide dinuclear zwitterionic complexes [(OC)-(C₆F₅)₂Pt (μ - η^2 -C=CR)M⁺L_n] obtained by reaction between *cis*-[Pt(C₆F₅)₂(CO)(thf)] and several metal alkynyl complexes L_nMC=CR. The structure of *cis*,*trans*-[(OC)(C₆F₅)₂Pt⁻(μ - η^2 -C=CPh)Pt⁺(C=CPh)(PPh₃)₂] 1 has been established by single-crystal X-ray diffraction. To the best of our knowledge, this is

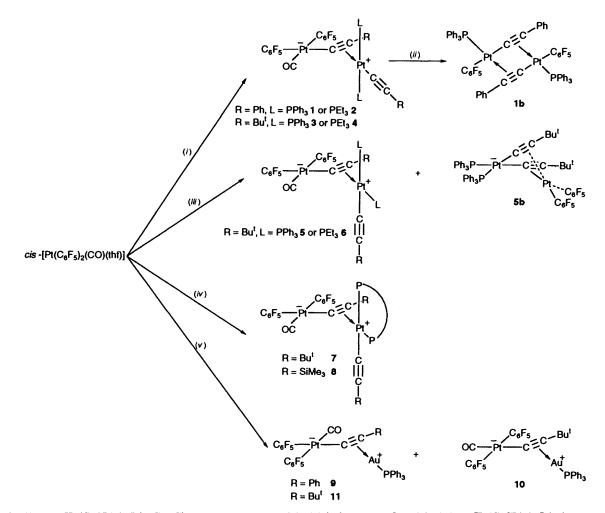
the first example of a diplatinum complex in which the metal centres are connected by only a μ - η^2 -acetylide ligand.

Results and Discussion

Initial attempts to use mononuclear monoacetylide platinum complexes such as *trans*-[PtX(C=CR)(PPh₃)₂] (X = C₆F₅, R = Ph, Bu' or SiMe₃; X = Cl, R = Ph) as building blocks for monoacetylide-bridged diplatinum compounds were unsuccessful. Thus, reactions with *cis*-[Pt(C₆F₅)₂(CO)(thf)] afford a mixture of products which could not be separated by recrystallisation. We therefore turned our interest to bis-(acetylide) mononuclear platinum complexes [Pt(C=CR)₂L₂]. The reactions of these complexes with *cis*-[Pt(C₆F₅)₂(CO)(thf)] are summarised in Scheme 1.

Reactions of trans-[Pt(C=CR)₂L₂] with cis-[Pt(C₆F₅)₂(CO)-(thf)].—The complexes trans-[Pt(C=CR)₂L₂] (R = Ph or Bu^t, L = PPh₃ or PEt₃) react with cis-[Pt(C₆F₅)₂(CO)(thf)] in CH₂Cl₂ (molar ratio 1:1) to form, under alkynylation of the fragment 'Pt(C₆F₅)₂(CO)', the μ - η ²-monoacetylide-bridged diplatinum zwitterionic complexes 1–4 shown in Scheme 1 (*i*). Owing to the presence of two terminal acetylide ligands in the starting materials and with the aim of obtaining trinuclear derivatives, similar reactions but using 2 equivalents of cis-[Pt(C₆F₅)₂(CO)(thf)] were also carried out. However this does not result in incorporation of a second Pt(C₆F₅)₂(CO) fragment and produces complexes 1–4.

Complexes 1-4 were isolated as white solids, except for 1 which is pale yellow, and were characterised spectroscopically (see Experimental section and Table 1). Complex 1 was also fully characterised by single-crystal X-ray diffraction analysis which provided unambiguous structural assignment as illustrated in Fig. 1(a). Selected interatomic distances and angles are collected in Table 2.


This study confirms the presence of only one phenylacetylide ligand bridging two separated platinum moieties. The molecule consists of two organometallic moieties, $Pt(1)(C_6F_5)_2(CO)$ and $Pt(2)(C=CPh)(PPh_3)_2$, connected by a μ - η^2 -C=CPh ligand

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

Table 1 Fluorine-19 and ³¹P NMR data for the complexes ^a

Complex	Fortho ^b	F _{para}	F _{meta}	δ(Ρ)	¹ J(¹⁹⁵ Pt- ³¹ P)/Hz
1	-121.8(377), -123.2(335)	-166.7, -167.0	-169.8, -170.2	19.7	2462
2	-118.3(324), -118.7(376)	-160.9, -161.1	-164.2, -164.6	14.2	2213
3	-116.7 (370), -118.0 (330)	-161.9, -162.0	-164.8, -165.4	17.3	2537
4	-118.5° (\approx 330, \approx 375)	-161.2, -162.0	-164.2, -165.0	10.5	2312
6ª	-119.4^{e} (2 F),	- 161.1	-164.3	7.9	3263
	-114.9 (d, 1 F, 395), -116.7 ^e (1 F)		$-167.5^{e}, -165.2^{e}$	2.3	2234
75	$-112.9 (\approx 350), -116.1 (397)$	-160.2, -161.2	-163.2	40.21	2284
					2577
8	<i>−</i> 115.5 (≈365), <i>−</i> 117.3 (413)	-161.7, -162.5	-1 64 .8	40.04	2211
				39.8	2430
9	-117.4 (381), -118.12 (342)	- 160.9	-164.2	35.9	
10	-115.6 (291)	- 160.9	-164.0	35.6	

^{*a*} In CDCl₃, chemical shifts are reported in ppm with external references to CFCl₃ and 85% H₃PO₄ respectively. ^{*b*} $^{3}J(^{195}\text{Pt}-F_{o})/\text{Hz}$ in parentheses. ^{*c*} Each F_{ortho} is isochronous. ^{*a*} Data at -56 °C; at room temperature: $\delta - 118.0$ [d, F_{ortho} , $^{3}J(^{195}\text{Pt}-F_{o}) = 330$ Hz], -162.0 (m, F_{para}), -164.8, -165.5 (m, F_{meta}); both triplets corresponding to F_{para} signals are overlapped giving a multiplet. ^{*c*} Broad signal. ^{*f*} Data at -56 °C; $\delta - 112.2$ (m), -115.5 (d), -117 (m), -118.1 (m) (F_{ortho}); -160.4 (t), -161.7 (t) (F_{para}); -162.1 (m), -163.4 (m), -163.6 (m), -165.0 (m) (F_{meta}) (see Fig. 2).

Scheme 1 (i) trans-[Pt(C=CR)₂L₂] in CH₂Cl₂, room temperature, 1 h; (ii) in benzene, reflux, 1 h; (iii) cis-[Pt(C=CR)₂L₂] in benzene, room temperature, 2 min (mixture of 5 and 5b) or 1 min (6); (iv) [Pt(C=CR)₂(dppe)] in Et₂O, -10 °C, 20 min; (v) [Au(C=CR)(PPh₃)] in CH₂Cl₂, room temperature, 5 min (9); in benzene, room temperature, immediate (10); in Et₂O, room temperature, 3 min (mixture of 10 and 11)

which is σ bonded to the former and π bonded to the latter. Both platinum atoms are in approximately square-planar environments with the C₆F₅ groups mutually *cis* at Pt(1) and the PPh₃ ligands mutually *trans* at Pt(2). Thus, although the *cis* and *trans* geometries around the platinum centres have been preserved throughout the reaction, an unexpected alkynylation of the synthon $Pt(C_6F_5)_2(CO)$ has taken place yielding a more polar complex (in fact, 1 is formally zwitterionic) than would otherwise have been expected. This process is noteworthy, since the less-polar complex [(Ph_3P)_2(PhC=C)Pt(μ -C=CPh)Pt(C₆-

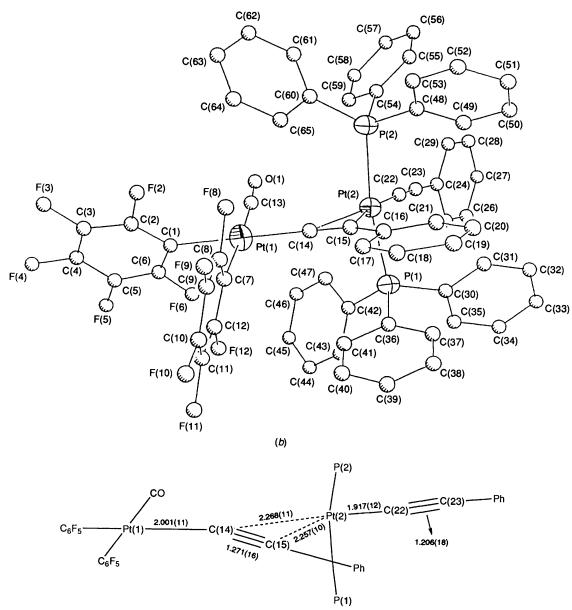


Fig. 1 (a) View of the structure of complex cis, trans-[(OC)(C_6F_5)₂Pt(μ -C=CPh)(PPh₃)₂] 1 with the atomic numbering scheme. (b) Schematic view of the μ - η^2 -bonded acetylide group with bond lengths in Å

 $F_{5}_{2}(CO)$] could have been expected. However, the enhanced acidity of the metal centre in *cis*-[Pt(C₆F₅)₂(CO)(thf)], brought about by the electron-withdrawing nature of the C₆F₅ groups and by the good π -acceptor properties of the CO ligand, could be responsible for the formation of 1.

Each of the two moieties shows the expected structural features. Thus, the Pt(1)–C pentafluorophenyl [Pt(1)–C(1) 2.048(11); Pt(1)–C(7) 2.035(13) Å] and carbonyl [Pt(1)–C(13) 1.839(15) Å] distances are similar to those found in $[(\eta-C_5H_5)(OC)_2Rh\rightarrow Pt(C_6F_5)_2(CO)]^7$ and *cis*-[Pt(C_6F_5)_2(CO)-{SC(S)P(C_6H_{11})_3}].⁸

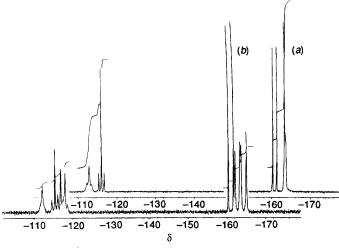
The Pt(2)–P [Pt(2)–P(1) 2.324(3), Pt(2)–P(2) 2.350(3) Å] and Pt(2)–C (terminal acetylide) [Pt(2)–C(22) 1.917(12)] distances are typical for platinum(II) complexes.⁹ The terminal phenylacetylide ligand has a C–C triple bond of length 1.207(18) Å which is similar to those found in other σ -alkynyl complexes of platinum.⁹ The Pt(1)–C(13)–O(1) [176.5(11)], Pt(2)–C(22)– C(23) [176.7(12)] and C(22)–C(23)–C(24) [177.2(13)°] angles indicate nearly linear sp hybridisation at C(13), C(22) and C(23) respectively, as expected.

The skeleton of the bridging acetylide group [Fig. 1(b)] has the following structural features. (i) The Pt(1)–C=CPh σ -bond length [Pt(1)–C(14) 2.001(11) Å] falls in the usual range but is slightly longer than Pt(2)–C=CPh [Pt(2)–C(22) 1.917(12) Å]. (ii) The C–C triple bond C(14)–C(15) [1.271(16) Å] is slightly elongated due to co-ordination to Pt(2). (iii) The Pt(2)– C(acetylide bridging) distances [Pt(2)–C(14) 2.268(11), Pt(2)– C(15) 2.257(10) Å] are equal (within experimental error) indicating that the η^2 linkage is symmetric. (iv) The acetylenic skeleton Pt(1)–C(14)–C(15)–C(16) acquires a cis-bent arrange ment such that the angles at C_a [Pt(1)–C(14)–C(15)] and at C_b [C(14)–C(15)–C(16)] are 165.0(9) and 157.9(10)° respectively and remains nearly planar [the torsion angle around the C(14)–C(15) bond is 17.4°]. (v) The C=C [C(14)–C(15)] vector is oriented essentially perpendicular to the local co-ordination plane of Pt(2) [the angle formed by the vector defined by Pt(2)]

Table 2 Bond lengths (Å) and angles (°) for complex 1

$\begin{array}{l} Pt(1)-C(1)\\ Pt(1)-C(13)\\ Pt(2)-P(1)\\ Pt(2)-C(14)\\ Pt(2)-C(22)\\ P(1)-C(36)\\ P(2)-C(48)\\ P(2)-C(60)\\ F(2)-C(3)\\ F(4)-C(5)\\ F(6)-C(8) \end{array}$	2.048(11) 1.839(15) 2.324(3) 2.268(11) 1.917(12) 1.827(7) 1.814(7) 1.828(8) 1.349(16) 1.326(17) 1.382(19)	Pt(1)-C(7) Pt(1)-C(14) Pt(2)-P(2) Pt(2)-C(15) P(1)-C(30) P(1)-C(30) P(1)-C(42) P(2)-C(54) F(1)-C(2) F(3)-C(4) F(5)-C(6) F(7)-C(9)	$\begin{array}{c} 2.035(13)\\ 2.001(11)\\ 2.350(3)\\ 2.257(10)\\ 1.804(7)\\ 1.816(6)\\ 1.835(7)\\ 1.366(15)\\ 1.354(17)\\ 1.374(15)\\ 1.323(19) \end{array}$	F(8)-C(10) F(10)-C(12) C(1)-C(2) C(2)-C(3) C(4)-C(5) C(7)-C(8) C(8)-C(9) C(10)-C(11) C(14)-C(15) C(22)-C(23)	$\begin{array}{c} 1.416(21)\\ 1.349(17)\\ 1.356(17)\\ 1.367(19)\\ 1.367(23)\\ 1.381(19)\\ 1.384(24)\\ 1.367(29)\\ 1.271(16)\\ 1.206(18) \end{array}$	$\begin{array}{l} F(9)-C(11)\\ O(1)-C(13)\\ C(1)-C(6)\\ C(3)-C(4)\\ C(5)-C(6)\\ C(7)-C(12)\\ C(9)-C(10)\\ C(11)-C(12)\\ C(15)-C(16)\\ C(23)-C(24) \end{array}$	$\begin{array}{c} 1.373(24)\\ 1.166(18)\\ 1.364(19)\\ 1.373(20)\\ 1.373(20)\\ 1.339(22)\\ 1.411(29)\\ 1.315(24)\\ 1.448(13)\\ 1.478(16) \end{array}$
$\begin{array}{c} C(1) - Pt(1) - C(7) \\ C(7) - Pt(1) - C(13) \\ C(7) - Pt(1) - C(14) \\ P(1) - Pt(2) - P(2) \\ P(2) - Pt(2) - C(14) \\ P(2) - Pt(2) - C(15) \\ P(1) - Pt(2) - C(22) \\ C(14) - Pt(2) - C(22) \\ Pt(2) - P(1) - C(30) \\ C(30) - P(1) - C(36) \\ C(2) - C(2) - C(36) \\ P(1) - C(1) - C(2) \\ C(2) - C(1) - C(6) \\ F(1) - C(2) - C(3) \\ F(2) - C(3) - C(4) \\ F(3) - C(4) - C(5) \\ F(4) - C(5) - C(4) \\ C(4) - C(5) - C(6) \\ F(5) - C(6) - C(5) \\ \end{array}$	87.9(5) 176.8(6) 87.4(5) 170.4(1) 97.8(3) 93.5(3) 85.8(4) 159.0(5) 112.4(3) 105.3(4) 107.0(4) 105.8(3) 103.0(4) 107.5(4) 122.7(12) 115.0(11) 122.7(12) 117.8(13) 118.9(13) 119.3(13) 113.1(13)	$\begin{array}{c} C(1)-Pt(1)-C(13)\\ C(1)-Pt(1)-C(14)\\ C(13)-Pt(1)-C(14)\\ P(1)-Pt(2)-C(14)\\ P(1)-Pt(2)-C(15)\\ C(14)-Pt(2)-C(15)\\ C(14)-Pt(2)-C(22)\\ C(15)-Pt(2)-C(22)\\ Pt(2)-P(1)-C(36)\\ Pt(2)-P(1)-C(42)\\ C(36)-P(1)-C(42)\\ C(36)-P(1)-C(42)\\ Pt(2)-P(2)-C(54)\\ Pt(2)-P(2)-C(54)\\ Pt(2)-P(2)-C(60)\\ C(54)-P(2)-C(60)\\ Pt(1)-C(1)-C(6)\\ F(1)-C(2)-C(1)\\ C(1)-C(3)-C(4)\\ F(3)-C(4)-C(3)\\ C(3)-C(4)-C(5)\\ F(4)-C(5)-C(6)\\ F(5)-C(6)-C(1)\\ C(1)-C(6)-C(5)\\ \end{array}$	$\begin{array}{c} 88.9(6) \\ 174.8(4) \\ 95.8(5) \\ 90.1(3) \\ 90.2(3) \\ 32.6(4) \\ 88.7(4) \\ 167.3(5) \\ 112.8(3) \\ 113.0(3) \\ 105.9(4) \\ 115.6(3) \\ 120.9(4) \\ 102.5(4) \\ 124.1(9) \\ 119.1(11) \\ 125.9(12) \\ 119.6(13) \\ 120.8(13) \\ 124.4(14) \\ 119.7(11) \\ 127.1(13) \end{array}$	$\begin{array}{l} Pt(1)-C(7)-C(8)\\ C(8)-C(7)-C(12)\\ F(6)-C(8)-C(9)\\ F(7)-C(9)-C(8)\\ C(8)-C(9)-C(10)\\ F(8)-C(10)-C(11)\\ F(9)-C(11)-C(10)\\ C(10)-C(11)-C(12)\\ F(10)-C(12)-C(11)\\ Pt(1)-C(13)-O(1)\\ Pt(1)-C(13)-O(1)\\ Pt(1)-C(15)-C(14)\\ C(14)-C(15)-C(16)\\ C(15)-C(16)-C(21)\\ C(22)-C(23)-C(24)\\ C(23)-C(24)-C(29)\\ P(1)-C(30)-C(35)\\ P(1)-C(36)-C(41)\\ P(1)-C(48)-C(53)\\ P(2)-C(54)-C(59)\\ P(2)-C(60)-C(65)\\ \end{array}$	$122.5(11) \\113.4(13) \\112.9(13) \\124.4(17) \\113.3(15) \\123.6(18) \\117.0(16) \\118.9(19) \\114.1(15) \\176.5(11) \\165.0(9) \\74.2(7) \\157.9(10) \\118.9(5) \\177.2(13) \\120.5(6) \\121.8(3) \\120.2(3) \\117.5(3) \\123.5(3) \\118.0(3) \\120.1(3) \\120$	$\begin{array}{l} \text{Pt}(1)-\text{C}(7)-\text{C}(12)\\ \text{F}(6)-\text{C}(8)-\text{C}(7)\\ \text{C}(7)-\text{C}(8)-\text{C}(9)\\ \text{F}(7)-\text{C}(9)-\text{C}(10)\\ \text{F}(8)-\text{C}(10)-\text{C}(9)\\ \text{C}(9)-\text{C}(10)-\text{C}(11)\\ \text{F}(9)-\text{C}(11)-\text{C}(12)\\ \text{F}(10)-\text{C}(12)-\text{C}(7)\\ \text{C}(7)-\text{C}(12)-\text{C}(11)\\ \text{Pt}(1)-\text{C}(12)-\text{C}(11)\\ \text{Pt}(2)-\text{C}(14)-\text{Pt}(2)\\ \text{Pt}(2)-\text{C}(15)-\text{C}(16)\\ \text{C}(15)-\text{C}(16)-\text{C}(17)\\ \text{Pt}(2)-\text{C}(22)-\text{C}(23)\\ \text{C}(23)-\text{C}(24)-\text{C}(25)\\ \text{P}(1)-\text{C}(30)-\text{C}(31)\\ \text{P}(1)-\text{C}(36)-\text{C}(37)\\ \text{P}(1)-\text{C}(36)-\text{C}(43)\\ \text{P}(2)-\text{C}(48)-\text{C}(49)\\ \text{P}(2)-\text{C}(54)-\text{C}(55)\\ \text{P}(2)-\text{C}(60)-\text{C}(61)\\ \end{array}$	$\begin{array}{c} 124.0(10)\\ 120.5(13)\\ 126.6(16)\\ 122.2(17)\\ 114.9(17)\\ 121.5(17)\\ 124.0(17)\\ 119.6(13)\\ 126.3(15)\\ 121.5(5)\\ 73.2(7)\\ 127.7(7)\\ 121.1(5)\\ 176.7(12)\\ 119.5(6)\\ 118.1(3)\\ 119.5(3)\\ 122.5(3)\\ 116.5(3)\\ 121.9(3)\\ 119.7(3)\\ \end{array}$

and the midpoint of the C \equiv C bond and the C(14)–C(15) vector is 90.54°] and is inclined by 4° to the normal to this plane.


The very long $Pt(1) \cdots Pt(2)$ distance (3.727 Å) clearly indicates that both metal centres are bound only through the μ - η^2 bridging phenylacetylide ligand.

The IR spectra of complexes 1-4 show v(CO) at wavenumbers (2078 1, 2083 2, 2092 3, 2084 cm^{-1} 4) lower than for the corresponding vibration of the precursor $cis - [Pt(C_6F_5)_2 -$ (CO)(thf)] (2124 cm⁻¹).⁷ This fact can be interpreted as a consequence of the alkynylation process of the fragment $Pt(C_6F_5)_2(CO)$. The increase in electron density allows the Pt atom to be a better π donor towards CO in the resulting anionic unit $Pt(C_6F_5)_2(C \equiv CR)(CO)$ than in the neutral cis- $[Pt(C_6F_5)_2(CO)(thf)]$ derivative. On the other hand, there is a medium intensity v(C=C) band (1959 1, 1954 2, 1987 3, 1980 cm⁻¹ 4) in the expected region for side-on μ - η^2 -C=CR groups $^{6c-h}$ which can be assigned to the acetylide bridging ligand. Complexes 1 and 2 also display a weak absorption $(2127 1, 2128 \text{ cm}^{-1} 2)$ due to the terminal C=CPh group. For complexes 3 and 4 this absorption has not been observed. As expected, two strong absorptions around 800 cm⁻¹, due to the IR-active vibrations of the X-sensitive modes of the C_6F_5 groups, are observed for all complexes.^{6a,b,f,7} The NMR data for all the complexes $[^{1}H$ (Experimental section), ^{19}F and ^{31}P (Table 1)] are in good agreement with the molecular structure found for complex 1. Thus, as expected, the two Bu' groups for the tert-butylacetylide derivatives 3 and 4 are clearly inequivalent, while both phosphorus atoms of the phosphine ligands for all complexes are equivalent. Moreover the presence of a ${}^{3}J(Pt-P)$ coupling (29 Hz) for complex 1 suggests that the binuclear structure is retained in solution. On the other hand, the ¹⁹F NMR spectra exhibit two sets of three signals (2:1:2)

which can be assigned to two inequivalent C_6F_5 groups, thus confirming unequivocally a mutually *cis* disposition of these groups for all these compounds.

It should be noted that in these complexes the n^2 -acetylenic interaction is quite stable. Thus, when a dichloromethane solution of $cis, trans-[(OC)(C_6F_5)_2Pt(\mu-C\equiv CPh)Pt(C\equiv CPh) (PPh_3)_2$] 1 is treated at room temperature with PhC=CPh, pyridine, CO, PPh₃ or HBF₄ (molar ratio 1:1) the starting material is recovered in all cases. Even when the reaction between 1 and PPh₃ (molar ratio 1:1) is carried out in CH₂Cl₂ at reflux (2.5 h) most of the starting complex (60%) is recovered, although in this case small amounts of trans-[Pt(C=CPh)2- $(PPh_3)_2$ (3.2%) and *trans*-[Pt(C₆F₅)(C=CPh)(PPh_3)_2]^{6h} (2.9%) are also obtained. Since we have recently communicated that treatment of the doubly bridged derivative $[{Pt(C_6F_5)(\mu C=CPh(PPh_3)_2$ (1b in Scheme 1) with PPh₃ (molar ratio) renders trans- $[Pt(C_6F_5)(C=CPh)(PPh_3)_2]$ in quantitative yield, it seems sensible to assume that the formation of trans-[Pt- $(C_6F_5)(C=CPh)(PPh_3)_2$ in the above reaction takes place through 1b as an intermediate. Moreover, 1b was formed by refluxing 1 in benzene (1 h) in the absence of PPh₃ [Scheme 1(ii)].

Reactions of cis-[Pt(C=CR)₂L₂] with cis-[Pt(C₆F₅)₂(CO)-(thf)].—The cis-bis(σ -alkynyl) complexes cis-[Pt(C=CBu¹)₂-(PEt₃)₂] and [Pt(C=CR)₂(dppe)] (R = Bu⁴ or SiMe₃, dppe = Ph₂PCH₂CH₂PPh₂) react with cis-[Pt(C₆F₅)₂(CO)(thf)] [Scheme 1 (*iii*) and (*iv*)] forming the mono(μ -acetylide) diplatinum complexes **6–8**. However the similar reaction of cis-[Pt(C=CBu⁴)₂(PPh₃)₂] in benzene (2 min) leads to a mixture of the analogous mono(μ -acetylide) **5** and the already described bis(μ -acetylide) **5b**^{6f} complexes in a 5:1 molar ratio. Although

Fig. 2 The ¹⁹F NMR spectra of the complex cis-[(OC)(C₆F₅)₂Pt(μ -C=CBu^t)Pt(C=CBu^t)(dppe)] 7: at 20 (*a*) and -56 °C (*b*)

complex 5 can be fully characterised by IR, ¹H, ³¹P and ¹⁹F NMR spectroscopies (see below) it proved too unstable in solution to be isolated in a pure form. Moreover it was found that when the above 5–5b mixture (5:1 ratio) was stirred in acetone only 5b could be obtained (see Experimental section). This fact suggests that 5 is slowly transformed into 5b presumably by displacement of a CO ligand caused by the terminal C=CBu⁴ and subsequent σ migration of the bridging C=CBu⁴ group.

Complexes 6-8 are moderately stable in the solid state, but their solutions slowly darken, yielding intractable dark solids. These solids are probably mixtures including complexes structurally related to 5b. Spectroscopic data for complexes 5-8 (Experimental section, Table 1) are in accord with the structures depicted in Scheme 1, and consequently, these are tentatively proposed. Thus, the presence of a CO ligand and acetylide bridging ligand is inferred from the IR spectra. These show bands in the 2090-2099 and 1941-2007 cm⁻¹ regions which are assigned to the v(CO) and bridging v(C=C) vibrations respectively [for complexes 7 and 8 the spectra in Nujol exhibit two v(CO) absorptions but, as expected, in benzene solution only one]. The positions of these bands compare well with those observed for complexes 1-4. In particular, the v(CO) band is substantially lower in energy than that of neutral cis- $[Pt(C_6F_5)_2(CO)(thf)]$ (2124 cm⁻¹) suggesting that the formation of the binuclear derivatives takes place with an increase in electron density [formal alkynylation of $Pt(C_6F_5)_2(CO)$] in accord with the proposed structures. Moreover, two absorptions of the same intensity are observed in the 792-802 cm⁻¹ region due to the IR-active vibrations of the X-sensitive C_6F_5 modes which indicates that, as for the starting complex cis-[Pt(C_6F_5)₂(CO)(thf)], the C_6F_5 groups are mutually *cis* (this fact is also confirmed by ¹⁹F NMR spectroscopy).

The NMR data confirm the mutually *cis* disposition of both the C_6F_5 groups and phosphine ligands. The ³¹P-{¹H} NMR spectra of complexes **5** and **6** exhibit two phosphorus resonances [singlets, ²J(P-P) not resolved] showing different platinum-phosphorus coupling constants which indicate that the two phosphine ligands are inequivalent. The signal with the greater coupling constant could be tentatively assigned to the phosphine ligand *trans* to the η^2 -acetylenic bond. ^{6h,10} Complex **8** exhibits a similar AB pattern in its ³¹P NMR spectrum indicating that both phosphorus atoms of the dppe ligands are inequivalent. In contrast, the spectrum of **7** showed only one sharp resonance, but the pattern of the ¹⁹⁵Pt satellite peaks confirmed the expected AB nature, in which evidently the nonequivalent phosphorus nuclei have coincidental chemical shifts.

The ¹⁹F NMR spectra are particularly informative. First,

at room temperature, the spectra of all complexes (see Table 1 and Experimental section for 5) imply the presence of two inequivalent C₆F₅ groups in each compound thus confirming the mutually cis disposition of these groups. On the other hand, the resonances due to o-fluorine atoms, which appear at low field, provide additional information on the behaviour of these complexes in solution. A representative ¹⁹F NMR spectrum, corresponding to complex 7, is given in Fig. 2. As can be seen two different (probably one associated with each C_6F_5 group) F_{ortho} resonances are clearly observed at room temperature; one appears as a sharp doublet and the other as a slightly broadened peak (the same pattern is observed for complex 8), the latter suggesting a dynamic process. If it is assumed that both resonances are due to different C₆F₅ groups, the observed pattern suggests that at room temperature the co-ordination plane of the platinum centre containing the C_6F_5 groups is a time-averaged plane of symmetry. At -56 °C the F_{ortho} resonances and also the multiplet due to F_{meta} are split and the spectrum of 7 shows well separated signals for each of the five fluorine atoms in the two non-equivalent C_6F_5 ligands, as expected for a rigid conformation of the two C_6F_5 rings.

The observed spectrum of complex 7, as well as that of 8, at room temperature can be tentatively explained by assuming a rapid rotation of the C_6F_5 rings around the Pt- C_6F_5 bonds. Moreover, the broadening observed for the low-field signal in the Fortho region suggests that the energy barrier for this process is different in each C_6F_5 ring. This is even more pronounced for complexes 5 and 6. Thus, at low temperature both the latter showed five well separated signals for one C_6F_5 ring and only three (F_{ortho} as a broad singlet) for the other C_6F_5 group. At room temperature the two different Fortho signals of the former C_6F_5 ring practically disappear into the baseline, only a sharp doublet remaining which probably arises from rapid rotation (on the NMR time-scale at this temperature) of the other C_6F_5 group. Unfortunately the poor stability of the compounds at higher temperature precluded the acquisition of spectra with high-temperature simplification.

Finally it was also decided to explore the reactivity of the complexes $[Au(C \equiv CR)(PPh_3)]$ (R = Ph or Bu^t) toward cis- $[Pt(C_6F_5)_2(CO)(thf)]$ with the aim of preparing heterodinuclear derivatives of platinum. The results of this study are shown in Scheme 1(v). The complex $[Au(C=CPh)(PPh_3)]$ reacts in CH₂Cl₂ to give the mono(µ-phenylacetylide) binuclear complex cis-[(OC)(C_6F_5)₂Pt(μ -C=CPh)Au(PPh₃)] 9 as a white microcrystalline product. Analytical data and the IR, ¹⁹F and ³¹P-{¹H} NMR spectra of this complex (see Experimental section and Table 1) are in accord with the structure shown in Scheme 1. In contrast, reaction of [Au(C=CBu')(PPh₃)] leads to a mixture of the unexpected trans (10) and cis (11) [(OC)- $(C_6F_5)_2$ Pt(μ -C=CBu^t)Au(PPh₃)] (see Experimental section). Thus, complex 10 can be isolated as a white microcrystalline solid (38% yield) by recrystallisation of the first fraction of the reaction carried out in benzene. From the mother-liquors, only mixtures of 10 and 11 were obtained. The IR spectrum in Nujol of 10 exhibits two strong bands at 2105 and 2025 cm⁻¹ which are easily assigned to v(CO) and bridging v(C=C) vibrations respectively. These values compare well with those observed for this general family of mono(µ-acetylide) complexes. Only one strong absorption due to the X-sensitive mode of the C_6F_5 groups is observed at 780 cm⁻¹, suggesting a mutually *trans* disposition of these ligands.¹¹ This fact is unequivocally confirmed by ¹⁹F NMR spectroscopy. The spectrum of 10 shows three signals in a 2:1:2 ratio due to Fortho (isochronous), F_{para} and F_{meta} (isochronous) respectively, indicating that the two C_6F_5 groups are equivalent.

On the other hand, the treatment of a suspension of $[Au(C \equiv CBu^{1})(PPh_{3})]$ with *cis*- $[Pt(C_{6}F_{5})_{2}(CO)(thf)]$ in diethyl ether renders, after 3 min of stirring, a dark solution. By treatment of this solution with charcoal, filtration, evaporation and subsequent addition of cold hexane to the residue, a white solid was obtained. The IR, ¹H, ³¹P-{¹H} and ¹⁹F (see

Experimental section) NMR spectra of this solid indicate that it is a mixture of complexes 10 and 11 in an approximately 1:2 molar ratio. The IR spectrum of the crude solid contains two strong bands at 2105 and 2016 cm⁻¹, characteristic of v(CO) and v(C=C) bridging vibrations respectively. The ¹H and ³¹P NMR spectra shows two singlets at δ 1.27 (11) and 1.17 (10) and at 35.3 (11) and 35.6 (10) for the Bu⁴ and PPh₃ groups.

Experimental

All manipulations were carried out under a nitrogen atmosphere. Solvents were dried by standard procedures and distilled under dry N_2 before use. The C, H and N analyses and IR spectra were obtained as described elsewhere.⁶ The NMR spectra were recorded on either a Varian XL 200 or a Unity 300 instrument, mass spectra on a V G Autospec.

spectra we received on chief a variant RE 200 of a Only 300 instrument, mass spectra on a V G Autospec. The complexes *trans*-[Pt(C=CR)₂(PPh₃)₂]^{6*h*} (R = Ph or Bu¹), *cis*-[Pt(C=CBu¹)₂(PPh₃)₂],^{6*f*} [Pt(C=CBu¹)₂(dppe)],^{6*f*} [Au(C=CR)(PPh₃)] (R = Ph¹² or Bu¹)¹³ and *cis*-[Pt(C₆F₅)₂-(CO)(thf)]⁷ were prepared by literature methods, *trans*-[Pt(C=CR)₂(PEt₃)₂] (R = Ph or Bu¹)¹⁴ and [Pt(C=CSi-Me₃)₂(dppe)]¹⁵ by treating *cis*-[PtCl₂(PEt₃)₂] or [PtCl₂-(dppe)] with Li(C=CR) in Et₂O and *cis*-[Pt(C=CBu¹)₂(PEt₃)₂] by treating [Pt(C=CBu¹)₂(cod)]^{6*f*} (cod = cycloocta-1,5-diene) with PEt₃ (molar ratio 1:2).

cis, trans-[(OC)(C₆F₅)₂Pt(μ -C=CPh)Pt(C=CPh)(PPh₃)₂] 1. —To a solution of trans-[Pt(C=CPh)₂(PPh₃)₂] (0.103 g, 0.11 mmol) in CH₂Cl₂ (20 cm³) was added cis-[Pt(C₆F₅)₂(CO)(thf)] (0.081 g, 0.11 mmol) and the mixture stirred at room temperature for 1 h. The resulting yellow solution was evaporated under reduced pressure to ca. 1 cm³. Slow addition of EtOH (4 cm³) afforded a pale yellow microcrystalline solid 1. Yield 73% [Found (Calc.): C, 53.2 (52.80); H, 2.65 (2.70%)]. IR (cm⁻¹): v(CO) 2078s; v(C=C) 2127w and 1959m; v(C₆F₅)_{x-sens} 802s and 795s. ¹H NMR (CDCl₃): δ 7.68 (m, 10 H), 7.36 (m, 20 H), 6.9 (m, 4 H), 6.74 (m, 2 H), 6.61 (m, 2 H) and 6.13 (d, 2 H). Electron impact (EI) mass spectrum: molecular peak not observed.

cis, trans-[(OC)(C₆F₅)₂Pt(μ -C=CPh)Pt(C=CPh)(PEt₃)₂] 2. —The synthesis was performed as described for complex 1 starting from trans-[Pt(C=CPh)₂(PEt₃)₂] (0.165 g, 0.26 mmol) and cis-[Pt(C₆F₅)₂(CO)(thf)] (0.164 g, 0.26 mmol). In this case 2 was precipitated as a white solid by adding diethyl ether and cooling to -30 °C overnight. Yield 50% [Found (Calc.): C, 41.40 (41.35); H, 3.70 (3.30%)]. IR (cm⁻¹): v(CO) 2083s; v(C=C) 2128m and 1954m; the absorptions due to v(C₆F₅)_{X-sens} could not be assigned unambiguously since the PEt₃ ligand shows internal absorptions in this region; the observed bands are 802s (sh), 770s and 760s. ¹H NMR (CDCl₃): δ 7.36, 7.2 (m, 10 H, Ph); 2.0 (m, 12 H, CH₂, PEt₃) and 1.2 (q, 18 H, CH₃, PEt₃). EI mass spectrum: m/z = 1192 ($M^+ + 2$ H) and 1163 ($M^+ -$ CO + H).

cis, trans-[(OC)(C₆F₅)₂Pt(μ -C≡CBu¹)Pt(C≡CBu¹)(PPh₃)₂] 3. —To a solution of trans-[Pt(C≡CBu¹)₂(PPh₃)₂] (0.3 g, 0.34 mmol) in CH₂Cl₂ (20 cm³) was added cis-[Pt(C₆F₅)₂(CO)(thf)] (0.214 g, 0.34 mmol) and the mixture stirred at room temperature for 1 h. The resulting solution was filtered and the solution evaporated to ≈2 cm³. Slow addition of hexane produced complex 3 as a white solid. Yield 52% [Found (Calc.): C, 51.70 (50.90); H, 3.65 (3.35%)]. IR (cm⁻¹): v(CO) 2092s; v(C≡C) 1987m; v(C₆F₅)_{X-sens} 799s and 787s. ¹H NMR (CDCl₃): δ 7.78, 7.44 (m, 30 H, PPh₃); 0.3 (s, 9 H, Bu¹) and 0.18 (s, 9 H, Bu⁴). EI mass spectrum: molecular peak not observed.

cis, trans-[(OC)(C₆F₅)₂Pt(μ -C=CBu¹)Pt(C=CBu¹)(PEt₃)₂] 4. —This complex is prepared from trans-[Pt(C=CBu¹)₂(PEt₃)₂] (0.112 g, 0.18 mmol) and cis-[Pt(C₆F₅)₂(CO)(thf)] (0.111 g, 0.18 mmol) in a similar fashion to that for **2**. Yield 30% [Found (Calc.): C, 37.85 (38.60); H, 4.45 (4.20%)]. IR (cm⁻¹): v(CO) 2084s; v(C=C) 1980w; v(C₆F₅)_{X-sens} 799s and 787s. ¹H NMR (CDCl₃): δ 2.08 (m, CH₂, PEt₃), 1.2 (CH₃, PEt₃), 1.17 (Bu¹) [partial overlapping of a quintuplet centred at 1.2 due to CH₃ (PEt₃) and a singlet at 1.17 due to Bu¹] and 1.07 (s, Bu¹).

Reaction of cis-[Pt(C=CBu^t)₂(PPh₃)₂] with cis-[Pt(C₆F₅)₂-(CO)(thf)] to give a Mixture of $cis, cis-[(OC)(C_6F_5)_2Pt(\mu C = CBu^{t})Pt(C = CBu^{t})(PPh_{3})_{2}$ 5 and $[{(Ph_{3}P)_{2}Pt(\mu - C = CBu^{t})_{2}}]$ $Pt(C_6F_5)_2$] **5b**—A solid mixture of *cis*-[$Pt(C \equiv CBu^t)_2(PPh_3)_2$] (0.15 g, 0.17 mmol) and $cis-[Pt(C_6F_5)_2(CO)(thf)]$ (0.107 g, 0.17 mmol) was dissolved in benzene (4 cm^3) and the resulting pale yellow solution stirred for 2 min. Evaporation of the solvent to ca. 1 cm³, addition of hexane (3 cm^3) and cooling in a freezer $(-30 \,^{\circ}\text{C})$ caused the precipitation of a white solid (100 mg, yield 41%). The NMR spectra of this solid showed it to be a mixture of complexes 5 and 5b in 5:1 ratio. When using longer reaction times, the proportion of **5b** increases. IR (cm^{-1}) of 5: v(CO) 2090s; v(C=C) 1994w; $v(C_6F_5)_{X-sens}$ 802s and 794s. NMR (CDCl₃) of 5: ¹H (at - 56 °C) δ 7.4-7.1 (m, Ph, PPh₃), 0.88 (s, Bu^t), 0.29 (s, Bu^t); (at room temperature) 7.3-7.0 (m, Ph, PPh₃), 0.86 (br, s, Bu^t), 0.27 (s, br, Bu^t); ³¹P NMR (at room temperature) δ 16.3 [br, s, $J(1^{95}\text{Pt}-3^{12}\text{P}) = 2392$] and 12.8 [br, s, $J(^{195}\text{Pt}-^{31}\text{P}) = 2613 \text{ Hz}]; {}^{19}\text{F} \text{ NMR} (at -56 °C) -111 (br,$ 1 F) and -115.7 (d, 1 F) (this signal partly overlapped with F_{ortho} signals due to **5b**) (F_{ortho} of one C_6F_5 group), -118.3 (s, br, 2 F, F_{ortho} of the other C_6F_5), -160.95 (1 F) and -161.4 (1 F) (two t, F_{para} of both C_6F_5), -164.0 (m, 2 F, F_{meta} of one C_6F_5), -161.1 (1 F) and -164.6 (1 F) [two m, F_{meta} of other C_6F_5 group]; (at room temperature) the F_{ortho} signals at $\delta - 111$ and -115.7 and the F_{meta} signals at -161.1 and -164.6respectively practically disappear into the baseline; ca. -114(broad hump), -117.9 [sharp d, 2 F, ${}^{3}J(Pt-F_{ortho}) = 386$ Hz], -161.6 and -162.4 (two t) and -164.6 (m).

A 0.14 g amount of the above mixture (5:1) was dissolved in acetone (10 cm³) and stirred for 5 h. Evaporation of the resulting dark orange solution to *ca*. 1 cm³ and addition of ethanol rendered complex **5b** (30 mg). On cooling (-30 °C) the filtrate, more **5b** (30 mg) was obtained.

cis, cis-[(OC)(C₆F₅)₂Pt(μ -C=CBu¹)Pt(C=CBu¹)(PEt₃)₂] 6.— A mixture of cis-[Pt(C=CBu¹)₂(PEt₃)₂] (0.17 g, 0.29 mmol) and cis-[Pt(C₆F₅)₂(CO)(thf)] (0.18 g, 0.29 mmol) was dissolved in benzene (4 cm³). The resulting yellow solution was stirred for 1 min and evaporated to ca. 1 cm³. By addition of diethyl ether (5 cm³) a white solid, identified as complex **6**, separated. Yield 46% [Found (Calc.): C, 38.35 (38.60); H, 4.45 (4.20%)]. IR (cm⁻¹): v(CO) 2093s; v(C=C) 2007m; v(C₆F₅)_{X-sens} 798s and 790s. ¹H NMR (CDCl₃): (at 20 °C) δ 1.1, 2.1, 1.8 (very broad resonances due to unresolved overlapping of signals); (at -56 °C) 2.2, 1.8 (m, CH₂, PEt₃); 1.25 (s) and 1.12 (s) (Bu¹ partly overlapped with a complex m due to the methyl resonances of the PEt₃ ligands). EI mass spectrum: m/z = 1122 (M⁺ - CO) and 431 [Pt(PEt₃)₂⁺, 100%].

cis-[(OC)(C₆F₅)₂Pt(µ-C≡CBu¹)Pt(C≡CBu¹)(dppe)] 7.—The complex cis-[Pt(C₆F₅)₂(CO)(thf)] (0.12 g, 0.19 mmol) was added to a suspension of cis-[Pt(C≡CBu¹)₂(dppe)] (0.14 g, 0.19 mmol) in diethyl ether (20 cm³) at -10 °C and the mixture stirred for 20 min at room temperature. The resulting pale yellow solution was then filtered and evaporated to small volume (≈1 cm³). By addition of hexane (≈3 cm³) and on standing at -30 °C (30 d), white crystals of complex 7 were obtained. Yield 63% [Found (Calc.): C, 46.90 (46.65); H, 3.20 (3.20%)]. IR (cm⁻¹): v(CO) (solid) 2101s and 2091s, (in benzene) 2097s; v(C≡C) 1997m; v(C₆F₅)_{X-sens} 801s and 792s. ¹H NMR (CDCl₃): (at -50 °C) δ 8.3, 7.9, 7.45 (m, br, 20 H, Ph, dppe), ≈2.5 (m, br, 4 H, CH₂CH₂, dppe), 0.98 (s, 9 H, Bu¹) and 0.63 (s, 9 H, Bu¹); (at room temperature) same pattern but the Bu¹

Table 3 Fractional atomic coordinates ($\times 10^4$) for complex 1

Atom	x	У	z	Atom	x	У	Ζ
Pt(1)	1080(1)	1214(1)	2894(1)	C(26)	-1602	5428	2863
Pt(2)	380(1)	2577(1)	3991(1)	C(27)	-2482	5477	3032
P(1)	1509(2)	3246(1)	3667(2)	C(28)	-2854	4962	3369
P(2)	-802(2)	2042(2)	4451(2)	C(29)	-2346	4397	3537
F (1)	763(6)	-302(3)	2588(4)	C(30)	1425(6)	4067(3)	3982(4)
F(2)	664(6)	- 1023(4)	1390(4)	C(31)	1172	4161	4660
F(3)	917(7)	-461(4)	122(4)	C(32)	1150	4785	4943
F(4)	1185(8)	817(4)	56(4)	C(33)	1381	5316	4548
F(5)	1214(7)	1556(4)	1229(4)	C(34)	1634	5222	3870
F(6)	1748(6)	154(4)	4129(4)	C(35)	1656	4598	3587
F(7)	3393(8)	-356(5)	4618(5)	C(36)	2662(4)	2980(4)	4050(4)
F(8)	4865(7)	- 46(6)	3990(7)	C(37)	3078	3224	4718
F(9)	4643(7)	830(6)	2850(7)	C(38)	3923	2982	5047
F(10)	3032(6)	1362(4)	2408(5)	C(39)	4352	2495	4707
O(1)	-774(8)	1743(5)	2285(6)	C(40)	3936	2251	4040
C(1)	1000(9)	662(5)	1977(6)	C(41)	3092	2494	3711
C(2)	868(9)	10(6)	1963(7)	C(42)	1483(5)	3287(4)	2695(3
C(3)	813(9)	-379(7)	1366(8)	C(43)	2255	3434	2389
C(4)	935(10)	-95(8)	725(7)	C(44)	2193	3465	1639
C(5)	1089(11)	557(8)	687(7)	C(45)	1358	3349	1195
C(6)	1086(10)	902(6)	1313(8)	C(46)	585	3202	1501
C(7)	2323(9)	804(6)	3241(7)	C(47)	648	3171	2251
C(8)	2465(11)	355(7)	3794(8)	C(48)	- 571(5)	2164(4)	5422(3
C(9)	3280(14)	47(8)	4061(9)	C(49)	-493	2805	5661
C(10)	4011(12)	240(10)	3713(12)	C(50)	- 343	2941	6401
C(11)	3886(13)	668(9)	3148(11)	C(51)	-272	2435	6901
C(12)	3071(11)	924(7)	2947(8)	C(52)	-350	1794	6662
C(12)	-50(11)	1554(7)	2536(8)	C(53)	499	1658	5923
C(14)	1236(7)	1692(5)	3836(6)	C(54)	- 1947(4)	2392(4)	4194(4
C(15)	1457(7)	1866(5)	4492(7)	C(55)	-2486	2567	4708
C(16)	1962(5)	1868(4)	5222(3)	C(56)	-3372	2798	4487
C(17)	1823	2352	5713	C(57)	-3719	2854	3752
C(18)	2335	2352	6407	C(58)	-3181	2680	3237
C(19)	2985	1870	6611	C(59)	-2295	2449	3458
C(20)	3123	1386	6119	C(60)	-1010(7)	1177(3)	4289(5)
C(20) C(21)	2612	1385	5425	C(61)	-1905	945	4145
C(21) C(22)	-428(8)	3298(6)	3746(7)	C(62)	- 2069	294	3966
C(22) C(23)	-910(8)	3761(7)	3566(7)	C(62)	-1338	-125	3933
C(23) C(24)	-1466(6)	4348(4)	3368(5)	C(64)	-443	107	4077
C(25)	-1094	4863	3031	C(65)	-279	758	4255

resonances are broader. EI mass spectrum: $m/z = 1283 (M^+ - CO)$ and 593 [Pt(dppe)⁺, 100%].

cis-[(OC)(C₆F₅)₂Pt(µ-C≡CSiMe₃)Pt(C≡CSiMe₃)(dppe)] 8. —The synthesis was performed as described for complex 7, starting from cis-[Pt(C≡CSiMe₃)₂(dppe)] (0.25 g, 0.32 mmol) and cis-[Pt(C₆F₅)₂(CO)(thf)] (0.2 g, 0.32 mmol). Yield 70% [Found (Calc.): C, 43.85 (43.75); H, 3.05 (3.15%)]. IR (cm⁻¹): v(CO) (solid) 2101s and 2092s, (in benzene) 2099s; v(C≡C) 2058s and 1946s; v(C₆F₅)_{X-sens} 802s and 793s. ¹H NMR (CDCl₃): δ 7.8, 7.5, 7.3 (m, 20 H, Ph, dppe), 2.4 (m, 4 H, CH₂CH₂, dppe), 0.03 (s, 9 H, SiMe₃) and -0.31 (s, 9 H, SiMe₃). EI mass spectrum: $m/z = 1315 (M^+ - CO)$ and 593 [Pt(dppe)⁺].

cis-[(OC)(C₆F₅)₂Pt(μ -C=CPh)Au(PPh₃)] **9**.—To a CH₂Cl₂ (10 cm³) solution of cis-[Pt(C₆F₅)₂(CO)(thf)] (0.175 g, 0.28 mmol) was added [Au(C=CPh)(PPh₃)] (0.156 g, 0.28 mmol) and the mixture stirred at -10 °C for 5 min. The resulting dark solution was treated with charcoal and filtered through Kieselguhr. By concentrating the resulting orange solution to ≈ 2 cm³, addition of hexane (5 cm³) and standing overnight at -30 °C, a white microcrystalline solid, identified as complex **9**, separated. Yield 58% [Found (Calc.): C, 42.10 (41.90); H, 1.90 (1.80%)]. IR (cm⁻¹): v(CO) 2097s; v(C=C) 2021m and v(C₆F₅)_{X-sens} 800s(br). ¹H NMR (CDCl₃): δ 7.5, 7.3 (m, Ph, PPh₃). EI mass spectrum: m/z = 1089 ($M^+ - CO$) and 459 [Au(PPh₃)⁺, 100%]. Reaction of cis-[Pt(C₆F₅)₂(CO)(thf)] with [Au(C=CBu¹)-(PPh₃)].—To prepare complex 10, [Au(C=CBu¹)(PPh₃)] (0.17 g, 0.32 mmol) was added to a colourless solution of cis-[Pt(C₆F₅)₂(CO)(thf)] (0.2 g, 0.32 mmol) in benzene (4 cm³). The resulting orange solution was immediately evaporated to small volume (≈ 1 cm³), mixed with hexane (4 cm³) and cooled to -30 °C yielding a white solid. Subsequent recrystallisation from C₆H₆-hexane at -30 °C gave complex 10 as a white crystalline solid (0.13 g, yield 38%). Evaporation of the mother-liquors to dryness and addition of hexane (15 cm³) afforded a white solid (20 mg) identified by IR spectroscopy as a mixture of cis (11) and trans (10) isomers. By concentrating the hexane solution (to 5 cm³) and cooling overnight at -30 °C an additional fraction of 10 and 11 was obtained.

Complex 10. [Found (Calc.): C, 41.20 (40.50); H, 2.15 (2.20%)]: IR (cm⁻¹) v(CO) 2105s, v(C=C) 2025s and v(C₆- F_5)_{X-sens} 780s. ¹H NMR (CDCl₃) δ 7.5, 7.3 (m, 15 H, PPh₃) and 1.17 (s, 9 H, Bu^t). EI mass spectrum: $m/z = 1072 (M^+ - CO + 3 H)$ and 460 [Au(PPh₃)⁺ + H, 100%].

Preparation of a Mixture (2:1) of cis-[(OC)(C_6F_5)₂Pt(μ -C=CBu')Au(PPh₃)] 11 and Complex 10.—To a suspension of [Au(C=CBu')(PPh₃)] (0.14 g, 0.26 mmol) in diethyl ether (10 cm³) was added cis-[Pt(C_6F_5)₂(CO)(thf)] (0.163 g, 0.26 mmol) and the mixture stirred for 3 min during which time practically all the suspension dissolved. The resulting dark solution was treated with charcoal, filtered through Kieselguhr and evaporated to

dryness. On treating the residue with cold hexane (20 cm³) a white solid formed (90 mg, yield 31% based on Pt) which on the basis of IR, ¹H, ¹⁹F and ³¹P NMR spectra was found to be a mixture of complexes 11 and 10 in *ca*. 2:1 ratio (Found: C, 40.90; H, 2.20%). IR (cm⁻¹): v(CO) 2105s; v(C=C) 2016m; v(C₆F₅)_{X-sens} 800s, 790s cm⁻¹ (probably due to the *cis* isomer 11) and 780 (sh) (*trans* isomer 10). NMR (CDCl₃): ¹H, δ 7.5, 7.4, 7.3 (complex m, Ph, PPh₃); 1.27 (s, 11) and 1.17 (s, 10) (2:1 ratio, Bu¹); ³¹P NMR, 35.3 (s, major isomer 11) and 35.6 (s, minor isomer 10) (2:1 ratio), ¹⁹F NMR (major isomer 11), -117.6 [J(Pt-F_o) = 383], -118.2 [J(Pt-F_o) = 344] (F_{ortho}); -161.24, -161.32 (both t corresponding to F_{para} signals are overlapped); -164.5 (m, F_{meta}); (minor isomer 10), -115.6 [(F_{ortho}), J(Pt-F_o) = 291 Hz], -160.9 (t, F_{para}) and -164.0 (m, F_{meta}); ratio of isomers 11:10 2:1.

A second fraction of a pure sample of complex 10 (40 mg) was collected when the hexane filtrate was concentrated and stored overnight at -30 °C.

Crystal Structure Determination.—Suitable crystals of complex 1 were obtained by slow diffusion of hexane into a CH₂Cl₂ solution of the corresponding crude product. Intensity data were recorded at room temperature using graphite-monochromated Mo-K α X-radiation. An Enraf-Nonius CAD 4 diffractometer was employed ($4 \le 2\theta \le 44^\circ$). Accurate lattice parameters were determined from the positions of 25 reflections (18 < 2 θ < 20°). Intensity data were collected by ω -2 θ scans and were corrected for Lorentz and polarisation effects.

Crystal data. $C_{65}H_{40}F_{10}OP_2Pt_2$, M = 1479.14, monoclinic, space group $P2_1/n$, a = 14.824(2), b = 20.622(3), c = 18.729(7)Å, $\beta = 99.36(2)^\circ$, U = 5649(2) Å³, Z = 4, $D_c = 1.73$ g cm⁻³, F(000) = 2856, $\mu = 50.8$ cm⁻¹, 6904 unique data, 5278 observed data [$F > 4\sigma(F)$] for the refinement of 625 parameters, $w = [1/\sigma^2(F) + 0.000 \ 68 \ F^2$], R = 0.0424. R' = 0.049, $\Delta/\sigma = 0.001$, largest difference peaks 0.75 and -0.61 e Å⁻³.

Structure solution and refinement. The structure was solved by the use of Patterson and Fourier methods and refined by full-matrix least squares. All calculations were carried out with SHELXTL-PLUS.¹⁶ An empirical absorption correction was applied.¹⁷ All non-hydrogen atoms were refined using anisotropic thermal parameters. The carbon atoms of the Ph groups were refined as rigid rings. Hydrogen atoms were omitted. Calculations were performed on a Micro VAX 8300 computer. Final atomic coordinates are given in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain) for financial support (Project PB92-0364) and for a Formación de Personal Investigador grant (to J. R. B.). E. L. thanks the Universidad de La Rioja and the Instituto de Estudios Riojanos for financial support.

References

- I R. Nast, Coord. Chem. Rev. 1982, 47, 89; A. J. Carty, Pure Appl. Chem., 1982, 54, 113; M. I. Bruce, Pure Appl. Chem., 1986, 58, 553; 1990, 6, 1021.
- J. P. Collman, L. S. Hegedus, J. R. Norton and R. G. Finke, *Principles and Applications of Organotransition Metal Chemistry*, 2nd edn., University Science Books, Mill Valley, CA, 1987; P. S. Braterman (Editor), *Reactions of Coordinated Ligands*, Plenum, New York, 1986, vol. 1; S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 1976, 14, 245; J. Holton, M. F. Lappert, R. Pearce and P. I. W. Yarrow, Chem. Rev., 1983, 83, 135; M. I. Bruce, Chem. Rev., 1991, 91, 197.
- 3 P. R. Raithby and M. J. Rosales, *Adv. Inorg. Chem. Radiochem.*, 1985, **29**, 169; E. Sappa, A. Tiripicchio and P. Braunstein, *Coord. Chem. Rev.*, 1985, **65**, 219; *Chem. Rev.*, 1983, **83**, 203.

- 4 W. F. Smith, J. Yule, N. J. Taylor, H. N. Paik and A. Carty, Inorg. Chem. 1977, 16, 1593; M. A. Ciriano, J. A. K. Howard, J. L. Spencer, F. G. A. Stone and H. Wadepohl, J. Chem. Soc., Dalton Trans., 1979, 1749; M. Cowie and S. J. Loeb, Organometallics, 1985, 4, 852; K. R. Grundy and S. P. Deraniyagala, Organometallics, 1985, 4, 424; A. T. Hutton, C. R. Langrick, D. M. McEwan, P. G. Pringle and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1985, 2121; N. W. Alcock, T. J. Tem, P. G. Pringle, P. Bergamini and O. Traverso, J. Chem. Soc., Dalton Trans., 1987, 1659; A. Blagg, R. Robson, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1987, 2171; A. A. Cherkas, L. H. Randall, S. A. Maclaughlin, G. N. Mott, N. J. Taylor and A. J. Carty, Organometallics, 1988, 7, 969; D. Seyferth, J. B. Hoke and D. R. Wheeler, J. Organomet. Chem., 1988, 341, 421; A. J. Carty, A. A. Cherkas and L. H. Randall, Polyhedron, 1988, 7, 1045; L. Manojlovic-Muir, A. N. Henderson, I. Treurnicht and R. J. Puddephatt, Organometallics, 1989, 8, 2055; G. Erker, W. Frömberg, R. Benn, R. Mynott, K. Angermund and Krüger, Organometallics, 1989, 8, 911; G. Erker, M. Albretch, Krüger and S. Werner, Organometallics, 1991, 10, 3791; S. Top, M. Gunn, G. Jaouen, J. Vaissermann, J. C. Daran and J. R. Thornback, J. Organomet. Chem., 1991, 414, C22; S. Top, M. Gunn, G. Jaouen, J. Vaissermann, J. C. Daran and M. J. McGlinchey, Organometallics, 1992, 11, 1201; A. D. Horton and A. G. Orpen, Angew. Chem., Int. Ed. Engl., 1992, 31, 876; F. J. García Alonso, V. Riera, M. A. Ruiz, A. Tiripicchio and M. Tiripicchio Camellini, Organometallics, 1992, 11, 370; A. A. Cherkas, S. Doherty, M. Cleroux, G. Hogart, L. H. Randall, S. M. Breckenridge, N. J. Taylor and A. J. Carty, Organometallics, 1992, 11, 1701; M. A. Esteruelas, O. Lahuerta, J. Modrego, O. Nürnberg, L. A. Oro, L. Rodriguez, E. Sola and H. Werner, Organometallics, 1993, 12, 266; P. J. Stang and D. Cao, Organometallics, 1993, 12, 996; S. Yamazaki and A. J. Deeming, J. Chem. Soc., Dalton Trans., 1993, 3051
- 5 (a) M. I. Bruce, O. M. Abu Salah, R. E. Davis and N. V. Raohavan, J. Organomet. Chem., 1974, 64, C48; (b) O. M. Abu Salah and M. I. Bruce, J. Chem. Soc., Dalton Trans., 1975, 2311: (c) N. E. Kolobova, V. V. Skripkin, T. V. Rozantseva, Yu. T. Struchkov, G. G. Aleksandrov and V. G. Adrianov, J. Organomet. Chem., 1981, 218, 351; (d) X. Solans, J. Solans, C. Miravitlles, D. Miguel, V. Riera and J. M. Rubio-Gonzalez, Acta Crystallogr., Sect. C, 1986, 42, 975; (e) G. A. Garriedo, D. Miguel, V. Riera and X. Solans, J. Chem. Soc., Dalton Trans., 1987, 2867; (f) M. Appel, J. Heidrich and W. Beck, Chem. Ber., 1989, 122, 889; (h) M. Akita, M. Terada, S. Oyama and Y. Moro-Oka, Organometallics, 1990, 9, 816; (i) K. G. Frank and J. P. Selegue, J. Am. Chem. Soc., 1990, 112, 6414; (j) M. H. Chisholm, C. M. Cook, J. C. Hoffman and W. F. Streib, J. Chem. Soc., Dalton Trans., 1991, 929; (k) M. D. Curtis, A. Meyer and W. M. Butter, Organometallics, 1992, 11, 4343.
- 6 (a) R. Usón, J. Forniés, M. Tomás, B. Menjón and A. J. Welch, J. Organomet. Chem. 1986, 304, C24; (b) R. Usón, J. Forniés, M. Tomás, B. Menjón, C. Fortuño, A. J. Welch and D. E. Smith, J. Chem. Soc., Dalton Trans., 1993, 275; (c) P. Espinet, J. Forniés, F. Martínez, M. Tomás, E. Lalinde, M. T. Moreno, A. Ruiz and A. J. Welch, J. Chem. Soc., Dalton Trans., 1990, 791; (d) P. Espinet, J. Forniés, F. Martínez, M. Sotés, E. Lalinde, M. T. Moreno, A. Ruiz and A. J. Welch, J. Organomet. Chem., 1991, 403, 253; (e) J. Forniés, M. A. Gómez-Saso, E. Lalinde, M. T. Moreno and A. J. Welch, New J. Chem., 1992, 16, 483; (f) J. Forniés, M. A. Gómez-Saso, E. Lalinde, F. Martínez and M. T. Moreno, Organometallics, 1992, 11, 2873; (g) J. R. Berenguer, L. R. Falvello, J. Forniés, E. Lalinde and M. Tomás, Organometallics, 1993, 12, 6; (h) J. R. Berenguer, J. Forniés, E. Lalinde, F. Martínez, M. T. Moreno, A. J. Welch and J. C. Cubero, Polyhedron, 1993, 12, 1797.
- 7 R. Usón, J. Forniés, P. Espinet, C. Fortuño, M. Tomás and A. J. Welch, J. Chem. Soc., Dalton Trans., 1988, 3005.
- 8 R. Usón, J. Forniés, M. A. Usón, J. F. Yagüe, P. G. Jones and K. Meyer-Base, J. Chem. Soc., Dalton Trans., 1986, 947.
- 9 (a) F. R. Hartley, Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1982, vol. 6, p. 471; (b) J. P. Carpenter and C. M. Lukerhart, Inorg. Chim. Acta, 1991, 190, 7; (c) P. J. Stang and M. H. Kowalsky, J. Am. Chem. Soc., 1989, 11, 3356.
- 10 Ref. 9(a), p. 706.
- 11 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1986, 5, 1581.
- 12 R. J. Cross and M. F. Davidson, J. Chem. Soc., Dalton Trans., 1986, 411.
- 13 R. Usón, A. Laguna, E. J. Fernandez, M. D. Villacampa, E. Ruiz

and M. J. Torres, 'IX Reunión Anual de Química Organometálica', Oviedo, September, 1989.

- 14 A. Sebald, B. Wrackmeyer and W. Beck, Z. Naturforsch., Teil B, 1983, 38, 45.
- 15 A. Sebald and B. Wrackmeyer, Z. Naturforsch., Teil B, 1983, 38, 1156.
- 16 SHELXTL-PLUS, Software Package for the Determination of Crystal Structures, Release 4.0, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1990.
- 17 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.

Received 22nd November 1993; Paper 3/06944C