# Synthesis, Structure and Relative Hydrolytic Stability of cis $-\left[\mathrm{PtCl}_{2} \mathrm{~L}\right]$ and cis- $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ where L is the Bidentate Triaminophosphine Ligand $\left[\mathrm{MeNCH} \mathbf{C H}_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{PN}(\mathrm{Me}) \mathrm{CH}_{2}\right]_{2}{ }^{*}$ 

John Powell, Alan Lough and Michael Raso<br>Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 1A1, Canada


#### Abstract

The ligand $\mathrm { MeN } \mathrm { NCH } _ { 2 } \mathrm { CH } _ { 2 } \mathrm { N } ( \mathrm { Me } ) \mathrm { PN } ( \mathrm { Me } ) \mathrm { CH } _ { 2 } \mathrm { CH } _ { 2 } \mathrm { N } ( \mathrm { Me } ) \longdiv { \mathrm { PN } ( \mathrm { Me } ) \mathrm { CH } _ { 2 } \mathrm { CH } _ { 2 } \mathrm { N } M e }$ (L) reacted with [\{Pt$\left.\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\right\}_{2}\right]$ to give a mixture of cis-[ $\left.\mathrm{PtCl}_{2} \mathrm{~L}\right]$ and trans $-\left[\left\{\mathrm{PtCl}_{2}(\mu-\mathrm{L})\right\}_{2}\right]$ and with $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ (nbd $=$ norbornadiene) to give cis- $\left[\mathrm{W}(\mathrm{CO})_{4} L\right]$ and $\left[\left\{\mathrm{W}(\mathrm{CO})_{4}(\mu-\mathrm{L})\right\}_{n}\right] \quad(n=2-4)$. The ligand L and [ $\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}$ ] are readily hydrolysed to give $\mathrm{HPO}_{3}{ }^{2-}, 2 \mathrm{MeNHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \mathrm{Me}^{+}$and $\mathrm{MeNHCH} \mathrm{CH}_{2} \mathrm{NHMe}^{2}$. In contrast the complex $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right]$ is considerably more resistant to ligand hydrolysis. The molecular structures of cis-[ $\left.\mathrm{PtCl}_{2} \mathrm{~L}\right]$, cis- $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ and $\left[\mathrm{W}(\mathrm{CO})_{4}\left(\mathrm{MeNHCH}_{2} \mathrm{CH}_{2} \mathrm{NHMe}\right)\right]$ \{a hydrolysis product of the reaction of $\left[W(C O)_{4} L\right]$ with water\} have been determined by single-crystal X-ray diffraction studies. Crystal data (all monoclinic): $c i s-\left[\mathrm{PtCl}_{2} \mathrm{~L}\right]$, space group Cc, $a=17.986(2), b=9.286(1), c=$ 12.059(1) $\AA, \beta=91.07(1)^{\circ}, Z=4, R=0.024\left(R^{\prime}=0.028\right) ;$ cis-[W(CO)L], space group $P n, a=$ 15.611 (3) , $\quad b=8.437(2), \quad c=27.604(6), \quad \beta=99.78(3)^{\circ}, \quad Z=6, \quad R=0.036\left(R^{\prime}=0.039\right) ;\left[W(C O)_{4}-\right.$ $\left(\mathrm{MeNHCH} \mathrm{CH}_{2} \mathrm{NHMe}\right.$, space group $C 2 / c, a=22.960(2), \quad b=7.456(1), \quad c=14.039(1) \AA, \beta=$ $106.60(1)^{\circ}, Z=8, R=0.040\left(R^{\prime}=0.045\right)$.


Metal complexes of chelating bidentate tertiary phosphine ligands have been extensively studied for the last 25 years. Recently several groups have turned their attention to the chemical properties of metal complexes of bi- and multi-dentate phosphite ligands. ${ }^{1-3}$ There is however very little published work relating to complexes of corresponding bidentate triaminophosphine ligands. This may be, in part, because of the known susceptibility of the $\mathrm{P}-\mathrm{N}$ bond to undergo hydrolysis. ${ }^{4}$ In this paper we report the synthesis of the bidentate triaminophosphine ligand $\left[\mathrm{MeNCH} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{P} N(\mathrm{Me})-\right.$ $\left.\mathrm{CH}_{2}\right]_{2}(\mathrm{~L})$ and the synthesis and structures of the complexes $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right]$ and $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$. Whilst free L and co-ordinated L in $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ are easily hydrolysed, the complex $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right]$ is considerably more resistant to ligand hydrolysis.

## Results and Discussion

The compound L was obtained from the reaction of $\mathrm{PCl}_{3}$ with $N, N^{\prime}$-dimethylethane-1,2-diamine in dry benzene in the presence of triethylamine [equation (1)]. Removal of

$$
2 \mathrm{PCl}_{3}+6 \mathrm{MeNHCH}_{2} \mathrm{CH}_{2} \mathrm{NHMe}^{2}+6 \mathrm{NEt}_{3}
$$


[ $\left.\mathrm{NEt}_{3} \mathrm{H}\right] \mathrm{Cl}$ by filtration and the solvent in vacuo gave L as a white crystalline solid which was used in subsequent reactions without further purification.
The platinum compound cis- $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right] 1$ was obtained from the addition of L to the stoichiometrically required amount of $\left[\left\{\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\right\}_{2}\right]$ [equation (2)]. Monitoring of the crude

[^0]
reaction product, which was pale yellow, by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy indicated the presence of cis- $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right] 1\left[\delta\left({ }^{31} \mathrm{P}\right)\right.$ $64.6,{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 4967 \mathrm{~Hz}$ and a second complex which is probably the trans-dimeric complex $\left[\mathrm{Cl}_{2} \mathrm{Pt}(\mu-\mathrm{L})_{2} \mathrm{PtCl}_{2}\right] 2$ $\left[\delta\left({ }^{31} \mathrm{P}\right) 21.3,{ }^{1} J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right) 2432 \mathrm{~Hz}\right.$. On standing in polar solvents 2 isomerizes to the monomeric complex 1 which recrystallizes from dichloromethane as white prisms.

The tungsten complex $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right] 3$ was obtained by treating L with $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ (nbd = norbornadiene) in refluxing benzene for 48 h [equation (3)]. The infrared spectrum in the $v(\mathrm{CO})$ region of the crude product is consistent with the formulation $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$. No absorptions associated with tri- or penta-carbonyl species were observed. However the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the crude product shows the presence of 3 as the major product ( $c a .75 \%$ ) together with three minor products ( $c a .8 \%$ each) tentatively assigned as $\left[\left\{\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right\}_{n}\right](n=24 ; 35$; or 46$)$ in which L functions as a bridging ligand. The complex cis-[W(CO) $\left.{ }_{4} \mathrm{~L}\right]$ was obtained as yellow prisms on recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.


$+\left[\left(\mathrm{W}(\mathrm{CO})_{4}(\mu-\mathrm{L})\right]_{3}\right]$
$+\left[\left(\mathrm{W}(\mathrm{CO})_{4}(\mu-\mathrm{L})\right\}_{4}\right]$
4

The molecular structure of $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right] \mathbf{1}$ as determined by single-crystal X-ray diffraction is shown in Fig. 1. Bond lengths and angles are listed in Table 1. As expected the immediate co-ordination geometries of the Pt atom and the six nitrogen atoms are close to planar with very slight deviations from planarity occurring for five of the six N atoms. The sum of the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}-\mathrm{P}$ angles varies from $346^{\circ}$ for $\mathrm{N}(5)$ to $358^{\circ}$ for $\mathrm{N}(1)$. Atom $\mathrm{N}(5)$ lies almost in the $\mathrm{PtCl}_{2} \mathrm{P}_{2}$ plane and the $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Pt}$ ring adopts a distorted boat configuration.

The molecular structure of $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ as determined by single-crystal X-ray diffraction is shown in Fig. 2. There are three molecules in the asymmetric unit. Bond lengths and angles for molecule A are given in Table 2. Molecules B and C have similar geometries. The complex exhibits the anticipated octahedral geometry at tungsten whilst the nitrogen atoms of the L ligand exhibit slight distortions from planar geometry. The sum of angles $\mathrm{C}-\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}-\mathrm{P}$ varies from $349^{\circ}$ for $\mathrm{N}(2)$ to $360^{\circ}$ for $\mathrm{N}(6)$. The $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{~W}$ ring adopts a distorted chair configuration.

A question of concern with respect to pursuing further studies of the co-ordination chemistry of the triaminophosphine $L$ was the relative stability/reactivity of its complexes to hydrolytic cleavage of the $\mathrm{P}-\mathrm{N}$ bonds. A qualitative assessment of the hydrolytic stabilities of 2 and 3 has been obtained by monitoring the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of these complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$ in the presence of a small amount of added water at $20^{\circ} \mathrm{C}$. Solutions were ca. $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ in complex and water was added in a $c a .50$-fold excess. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the initially formed platinum complex indicated the presence of cis- $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right] 1$ as the major solution species together with the trans dimer 2. Within 1 h the signal of the trans complex had disappeared and the only signal observable was that of the cis complex 1. This observation is consistent with a trans dimer to cis monomer isomerization in the relatively polar $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$-water medium. The resulting spectrum remained unchanged after 7 d at $20^{\circ} \mathrm{C}$ indicating that no hydrolysis of the $\mathrm{P}-\mathrm{N}$ bonds had taken place. In contrast the tungsten complex $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right] 3$ and the presumed oligomers 4-6 are hydrolytically unstable. A ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR study of a mixture of complexes 3-6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}$-water at $20^{\circ} \mathrm{C}$ shows that concurrent with the loss of the signals of these complexes a new signal assignable to a tungsten intermediate is observed at $\delta 101$ with $J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}\right)=280 \mathrm{~Hz}$. This peak reaches a maximum intensity after $c a .2 \mathrm{~h}$ reaction time and then disappears. A plausible structure for this intermediate is the anionic complex $\left[\mathrm{W}(\mathrm{CO})_{4}\left\{\left[\mathrm{MeNCH} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{PO}\right]_{2} \mathrm{H}\right\}\right]^{-7}$ which is structurally analogous to the known compound $\left[\mathrm{NEt}_{3} \mathrm{H}\right]\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\left(\mathrm{PPh}_{2} \mathrm{O}\right)_{2} \mathrm{H}\right\}\right] .{ }^{5}$ Throughout the reaction a peak at $\delta 4$ grows in and represents the sole phosphoruscontaining product at the end of the reaction. The chemical shift and the observed $J\left({ }^{1} \mathrm{H}^{31} \mathrm{P}\right)$ of 558 Hz are consistent with this species being the expected hydrolysis product $\mathrm{HPO}_{3}{ }^{2-} .{ }^{6}$ Upon



Fig. 1 Two views of the molecular structure of $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right] 1$

Table 1 Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right] 1$

| $\mathrm{Pt}-\mathrm{Cl}(1)$ | $2.378(3)$ | $\mathrm{Pt}-\mathrm{Cl}(2)$ | $2.365(3)$ |
| :--- | :---: | :--- | :---: |
| $\mathrm{Pt}(1)$ | $2.230(3)$ | $\mathrm{Pt}-\mathrm{P}(2)$ | $2.228(3)$ |
| $\mathrm{P}(1)-\mathrm{N}(1)$ | $1.663(11)$ | $\mathrm{P}(1)-\mathrm{N}(2)$ | $1.680(11)$ |
| $\mathrm{P}(1)-\mathrm{N}(5)$ | $1.686(8)$ | $\mathrm{P}(2)-\mathrm{N}(3)$ | $1.685(11)$ |
| $\mathrm{P}(2)-\mathrm{N}(4)$ | $1.662(10)$ | $\mathrm{P}(2)-\mathrm{N}(6)$ | $1.654(12)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.460(17)$ | $\mathrm{N}(1)-\mathrm{C}(3)$ | $1.419(17)$ |
| $\mathrm{N}(2)-\mathrm{C}(2)$ | $1.472(17)$ | $\mathrm{N}(2)-\mathrm{C}(4)$ | $1.438(17)$ |
| $\mathrm{N}(3)-\mathrm{C}(5)$ | $1.477(14)$ | $\mathrm{N}(3)-\mathrm{C}(7)$ | $1.413(16)$ |
| $\mathrm{N}(4)-\mathrm{C}(6)$ | $1.434(15)$ | $\mathrm{N}(4)-\mathrm{C}(8)$ | $1.455(17)$ |
| $\mathrm{N}(5)-\mathrm{C}(9)$ | $1.448(14)$ | $\mathrm{N}(5)-\mathrm{C}(11)$ | $1.468(14)$ |
| $\mathrm{N}(6)-\mathrm{C}(10)$ | $1.452(15)$ | $\mathrm{N}(6)-\mathrm{C}(12)$ | $1.465(17)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.510(20)$ | $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.499(18)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.521(15)$ |  |  |
| $\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$ | $87.4(1)$ | $\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{P}(1)$ | $85.0(1)$ |
| $\mathrm{Cl}(2)-\mathrm{Pt}(1)$ | $169.1(1)$ | $\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{P}(2)$ | $177.0(1)$ |
| $\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{P}(2)$ | $89.5(1)$ | $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(2)$ | $98.0(1)$ |
| $\mathrm{Pt}-\mathrm{P}(1)-\mathrm{N}(1)$ | $110.5(4)$ | $\mathrm{Pt}-\mathrm{P}(1)-\mathrm{N}(2)$ | $120.2(4)$ |
| $\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2)$ | $94.4(5)$ | $\mathrm{Pt}(\mathrm{P}(1)-\mathrm{N}(5)$ | $115.4(3)$ |
| $\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(5)$ | $106.3(5)$ | $\mathrm{N}(2)-\mathrm{P}(1)-\mathrm{N}(5)$ | $107.4(5)$ |
| $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{N}(3)$ | $114.3(4)$ | $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{N}(4)$ | $121.4(4)$ |
| $\mathrm{N}(3)-\mathrm{P}(2)-\mathrm{N}(4)$ | $92.4(5)$ | $\mathrm{Pt}-\mathrm{P}(2)-\mathrm{N}(6)$ | $112.1(4)$ |
| $\mathrm{N}(3)-\mathrm{P}(2)-\mathrm{N}(6)$ | $112.1(6)$ | $\mathrm{N}(4)-\mathrm{P}(2)-\mathrm{N}(6)$ | $102.8(5)$ |
| $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(1)$ | $112.5(9)$ | $\mathrm{P}(1)-\mathrm{N}(1)-\mathrm{C}(3)$ | $125.1(9)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$ | $120.8(11)$ | $\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(2)$ | $111.9(8)$ |
| $\mathrm{P}(1)-\mathrm{N}(2)-\mathrm{C}(4)$ | $122.3(8)$ | $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(4)$ | $117.0(10)$ |
| $\mathrm{P}(2)-\mathrm{N}(3)-\mathrm{C}(5)$ | $111.4(8)$ | $\mathrm{P}(2)-\mathrm{N}(3)-\mathrm{C}(7)$ | $124.7(8)$ |
| $\mathrm{C}(5)-\mathrm{N}(3)-\mathrm{C}(7)$ | $118.8(10)$ | $\mathrm{P}(2)-\mathrm{N}(4)-\mathrm{C}(6)$ | $112.9(8)$ |
| $\mathrm{P}(2)-\mathrm{N}(4)-\mathrm{C}(8)$ | $123.0(8)$ | $\mathrm{C}(6)-\mathrm{N}(4)-\mathrm{C}(8)$ | $119.9(9)$ |
| $\mathrm{P}(1)-\mathrm{N}(5)-\mathrm{C}(9)$ | $117.6(7)$ | $\mathrm{P}(1)-\mathrm{N}(5)-\mathrm{C}(11)$ | $116.6(7)$ |
| $\mathrm{C}(9)-\mathrm{N}(5)-\mathrm{C}(11)$ | $111.9(9)$ | $\mathrm{P}(2)-\mathrm{N}(6)-\mathrm{C}(10)$ | $122.9(8)$ |
| $\mathrm{P}(2)-\mathrm{N}(6)-\mathrm{C}(12)$ | $120.4(8)$ | $\mathrm{C}(10)-\mathrm{N}(6)-\mathrm{C}(12)$ | $116.4(10)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $107.3(11)$ | $\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(1)$ | $105.9(10)$ |
| $\mathrm{N}(3)-\mathrm{C}(5)-\mathrm{C}(6)$ | $106.0(9)$ | $\mathrm{N}(4)-\mathrm{C}(6)-\mathrm{C}(5)$ | $104.0(9)$ |
| $\mathrm{N}(5)-\mathrm{C}(9)-\mathrm{C}(10)$ | $113.1(9)$ | $\mathrm{N}(6)-\mathrm{C}(10)-\mathrm{C}(9)$ | $111.5(9)$ |
|  |  |  |  |
|  |  |  |  |

completion of the reaction a yellow crystalline material had formed in the NMR tube. It was identified as $\left[\mathrm{W}(\mathrm{CO})_{4}\right.$ ( $\mathrm{MeNHCH}_{2} \mathrm{CH}_{2} \mathrm{NHMe}$ )] $\mathbf{8}$ by single-crystal X-ray diffraction.

Table 2 Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right] 3$

| $\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})$ | $2.516(4)$ | $\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$ | $2.525(4)$ | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | 1.458(27) | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$ | 1.372(24) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W (1A)-C(1A) | 1.934(17) | $W(1 A)-C(2 A)$ | 1.976(17) | $\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | 1.384(29) | $\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | 1.399(25) |
| W (1A)-C(3A) | 2.011(16) | $\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 2.017(16) | $\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | 1.477(20) | $\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | 1.457(22) |
| $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | 1.686(16) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ | 1.724(14) | $\mathrm{N}(4 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | 1.400(26) | $\mathrm{N}(4 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | 1.455(24) |
| $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})$ | 1.687(13) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})$ | 1.683(14) | $\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | $1.498(23)$ | $\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$ | 1.424(21) |
| $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})$ | $1.669(13)$ | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(6 \mathrm{~A})$ | 1.642(14) | $\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$ | $1.505(21)$ | $\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$ | $1.415(26)$ |
| $\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | $1.186(25)$ | $\mathrm{O}(2 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 1.144(21) | $\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | 1.534(31) | $\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | $1.468(25)$ |
| $\mathrm{O}(3 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 1.156(21) | $\mathrm{O}(4 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 1.162(20) | C(13A)-C(14A) | 1.501(25) |  |  |
| $\mathrm{P}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})$ | 104.0(1) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | 84.1(5) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$ | 124.8(14) | $\mathrm{C}(5 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$ | 117.5(17) |
| $\mathrm{P}(2 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$ | 171.1(5) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 170.2(5) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | 112.5(12) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | 120.2(13) |
| $\mathrm{P}(2 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 85.4(5) | $\mathrm{C}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$ | 86.3(7) | $\mathrm{C}(6 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$ | 116.7(16) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$ | 111.7(9) |
| $\mathrm{P}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 92.1(5) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 88.2(5) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | 121.4(12) | $\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$ | 118.3(13) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 88.2(7) | $\mathrm{C}(2 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$ | 85.7(7) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | 114.8(12) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | 123.0(12) |
| $\mathrm{P}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 93.0(5) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 90.4(5) | $\mathrm{C}(8 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$ | 117.5(15) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | 116.8(10) |
| $\mathrm{C}(1 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 92.6(7) | $\mathrm{C}(2 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 89.3(7) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$ | 122.0(11) | $\mathrm{C}(13 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$ | 114.1(13) |
| $\mathrm{C}(3 \mathrm{~A})-\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$ | 174.9(7) | $\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$ | 117.0(5) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$ | 120.3(11) | $\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$ | $125.7(12)$ |
| $\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ | 113.8(5) | $\mathrm{N}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$ | 92.5(7) | $\mathrm{C}(14 \mathrm{~A})-\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$ | $114.0(13)$ | $\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{O}(1 \mathrm{~A})$ | 177.4(14) |
| $\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})$ | 119.6(5) | $\mathrm{N}(1 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})$ | 101.7(7) | $\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{O}(2 \mathrm{~A})$ | $117.1(13)$ | $\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{O}(3 \mathrm{~A})$ | 173.1(16) |
| $\mathrm{N}(2 \mathrm{~A})-\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(5 \mathrm{~A})$ | 108.4(7) | $\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})$ | 118.1(5) | $\mathrm{W}(1 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{O}(4 \mathrm{~A})$ | 177.7(17) | $\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$ | 105.6(18) |
| $\mathrm{W}(1 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})$ | 114.4(5) | $\mathrm{N}(3 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(4 \mathrm{~A})$ | 90.7(7) | $\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | 108.7(19) | $\mathrm{N}(3 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$ | 103.9(14) |
| $W(1 A)-P(2 A)-N(6 A)$ | 117.7(5) | $N(3 A)-P(2 A)-N(6 A)$ | 102.5(7) | $N(4 A)-C(8 A)-C(7 A)$ | 107.5(16) | $\mathrm{N}(5 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$ | 111.3(14) |
| $\mathrm{N}(4 \mathrm{~A})-\mathrm{P}(2 \mathrm{~A})-\mathrm{N}(6 \mathrm{~A})$ | 109.7(7) | $\mathrm{P}(1 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$ | 113.2(12) | $\mathrm{N}(6 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$ | $111.9(13)$ |  |  |



Fig. 2 The molecular structure of $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right] 3$


The molecular structure is shown in Fig. 3 and bond lengths and angles are given in Table 3.

For comparison purposes the hydrolysis of compound L under similar conditions to that of $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ was also investigated. Initial hydrolysis of free L is essentially complete in $c a$. 20 min . Four new signals of similar magnitude and exhibiting one-bond ${ }^{1} J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right)$ spin-spin coupling were observed at $\delta\left({ }^{31} \mathrm{P}\right) 11.1\left[{ }^{1} J\left({ }^{3}{ }^{1} \mathrm{P}-{ }^{1} \mathrm{H}\right)=565\right], 10.3(556), 4.0$ $\left(558, \mathrm{HPO}_{3}{ }^{2-}\right)$ and $-4.0(648 \mathrm{~Hz})$. After $24 \mathrm{~h} \mathrm{HPO}_{3}{ }^{2-}$ is the final hydrolysis product. The intermediate hydrolysis products were not structurally identified.

In conclusion the reaction of the bidentate triaminophosphine $L$ with tungsten carbonyl and platinum chloro complexes has been investigated with a view to assessing the hydrolytic stability of L when co-ordinated to a transition metal. The platinum and tungsten complexes $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right]$ and $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ exhibit markedly different reactivities with L being rapidly hydrolysed when co-ordinated to $\mathrm{W}^{\circ}$ whilst at $20^{\circ} \mathrm{C}\left[\mathrm{PtCl}_{2} \mathrm{~L}\right]$

Table 3 Bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{W}(\mathrm{CO})_{4}\left(\mathrm{MeNHCH}_{2}\right.\right.$ $\mathrm{CH}_{2} \mathrm{NHMe}$ )] 8

| W-N(1) | $2.297(8)$ | W-N(2) | $2.308(11)$ |
| :--- | :---: | :--- | :---: |
| W-CC(1) | $1.947(10)$ | $\mathrm{W}-\mathrm{C}(2)$ | $1.986(12)$ |
| $\mathrm{W}-\mathrm{C}(3)$ | $2.017(10)$ | $\mathrm{W}-\mathrm{C}(4)$ | $2.023(9)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.181(13)$ | $\mathrm{O}(2)-\mathrm{C}(2)$ | $1.141(16)$ |
| $\mathrm{O}(3)-\mathrm{C}(3)$ | $1.152(13)$ | $\mathrm{O}(4)-\mathrm{C}(4)$ | $1.142(12)$ |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | $1.511(16)$ | $\mathrm{N}(1)-\mathrm{C}(7)$ | $1.487(18)$ |
| $\mathrm{N}(2)-\mathrm{C}(6)$ | $1.477(17)$ | $\mathrm{N}(2)-\mathrm{C}(8)$ | $1.495(14)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | $1.483(18)$ |  |  |
| $\mathrm{N}(1)-\mathrm{W}-\mathrm{N}(2)$ | $76.5(3)$ | $\mathrm{N}(1)-\mathrm{W}-\mathrm{C}(1)$ | $173.4(4)$ |
| $\mathrm{N}(2)-\mathrm{W}-\mathrm{C}(1)$ | $97.0(4)$ | $\mathrm{N}(1)-\mathrm{W}-\mathrm{C}(2)$ | $95.9(4)$ |
| $\mathrm{N}(2)-\mathrm{W}-\mathrm{C}(2)$ | $172.3(4)$ | $\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(2)$ | $90.7(5)$ |
| $\mathrm{N}(1)-\mathrm{W}-\mathrm{C}(3)$ | $92.7(4)$ | $\mathrm{N}(2)-\mathrm{W}-\mathrm{C}(3)$ | $91.2(4)$ |
| $\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(3)$ | $87.8(4)$ | $\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(3)$ | $88.9(5)$ |
| $\mathrm{N}(1)-\mathrm{W}-\mathrm{C}(4)$ | $91.2(3)$ | $\mathrm{N}(2)-\mathrm{W}-\mathrm{C}(4)$ | $92.1(4)$ |
| $\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(4)$ | $88.7(4)$ | $\mathrm{C}(2)-\mathrm{W}-\mathrm{C}(4)$ | $88.3(4)$ |
| $\mathrm{C}(3)-\mathrm{W}-\mathrm{C}(4)$ | $175.5(4)$ | $\mathrm{W}-\mathrm{N}(1)-\mathrm{C}(5)$ | $114.1(6)$ |
| $\mathrm{W}-\mathrm{N}(1)-\mathrm{C}(7)$ | $108.7(7)$ | $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(7)$ | $111.3(8)$ |
| $\mathrm{W}-\mathrm{N}(2)-\mathrm{C}(6)$ | $115.6(8)$ | $\mathrm{W}-\mathrm{N}(2)-\mathrm{C}(8)$ | $107.6(8)$ |
| $\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(8)$ | $109.7(8)$ | $\mathrm{W}-\mathrm{C}(1)-\mathrm{O}(1)$ | $177.1(9)$ |
| $\mathrm{W}-\mathrm{C}(2)-\mathrm{O}(2)$ | $179.6(10)$ | $\mathrm{W}-\mathrm{C}(3)-\mathrm{O}(3)$ | $175.4(10)$ |
| $\mathrm{W}-\mathrm{C}(4)-\mathrm{O}(4)$ | $175.2(10)$ | $\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$ | $108.0(9)$ |
| $\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$ | $110.3(9)$ |  |  |

is essentially inert with no evidence of hydrolysis after 7 d . This difference in reactivity is possibly a reflection of the relative degree of positive charge residing on the P atoms in the two complexes and/or the ease with which the respective metals can accommodate negative charge in an intermediate such as 9 . The proposed intermediate is structurally analogous to the recently reported iron complex 11 which was obtained via nucleophilic displacement of phenoxy groups from the co-ordinated $\mathrm{P}(\mathrm{OPh})_{3}$ ligand of $\mathbf{1 0}$ [see equation (4)]. ${ }^{7}$ The results obtained


10

Table 4 Crystal data, details of intensity measurements and least-squares parameters

|  | 1 | 3 | 8 |
| :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ | $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~W}$ | $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~W}_{4}$ |
| Crystal colour/habit | Colourless, block | Yellow, needle | Yellow, needle |
| Crystal size/mm | $0.15 \times 0.15 \times 0.10$ | $0.30 \times 0.15 \times 0.10$ | $0.2 \times 0.15 \times 0.1$ |
| $M_{\text {r }}$ | 586.3 | 616.3 | 382.0 |
| Crystal class | Monoclinic | Monoclinic | Monoclinic |
| Space group | Cc | Pn | C2/c |
| $a / \AA$ | 17.986(2) | 15.611(3) | 22.960(2) |
| b/A | 9.286(1) | 8.437(2) | 7.456 (1) |
| $c / \AA$ | 12.059(1) | 27.604(6) | 14.039(1) |
| $\beta /{ }^{\circ}$ | 91.07(1) | 99.78(3) | 106.60(1) |
| $U / \AA^{3}$ | 2013.7(7) | 3544.9(13) | 2303.2(3) |
| $\boldsymbol{Z}$ | 4 | 6 | 8 |
| $D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$ | 1.934 | 1.732 | 2.203 |
| $\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$ | 73.99 | 50.56 | 100.27 |
| $F(000)$ | 1144 | 1824 | 1424 |
| $\omega$ Scan width/ ${ }^{\circ}$ | $1.10+0.60 \tan \theta$ | $0.52+0.57 \tan \theta$ | $0.82+0.55 \tan \theta$ |
| Range $2 \theta$ collected/ ${ }^{\circ}$ | 5.6-52.0 | 4.3-54.0 | 6.1-54.0 |
| Absorption correction | Semiempirical | Semiempirical | Semiempirical |
| Minimum, maximum transmission coefficients | 0.373, 0.485 | 0.347, 0.799 | 0.111, 0.606 |
| Total no. reflections | 2254 | 8535 | 2856 |
| No. unique reflections | 2089 | 7573 | 2371 |
| $R_{\text {int }}$ | 0.000 | 0.000 | 0.036 |
|  | 1901 | 5438 | 1900 |
| Weighting $g$ | 0.0003 | 0.0003 | 0.0000 |
| $R$ | 0.024 | 0.036 | 0.040 |
| $R^{\prime}$ | 0.028 | 0.039 | 0.045 |
| Goodness of fit | 0.96 | 1.26 | 2.53 |
| Largest and mean $\Delta / \sigma$ | 0.13, 0.02 | 0.00, 0.00 | 0.00, 0.00 |
| Parameters refined | 208 | 543 | 137 |
| Maximimum, minimum density in $\Delta F$ map/e $\AA^{-3}$ | 0.76, 0.51 | 1.09, 0.00 | 1.41, -1.14 |



Fig. 3 The molecular structure of $\left[\mathrm{W}(\mathrm{CO})_{4}\left(\mathrm{MeNHCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right.\right.$ Me)] 8
suggest that the rate of hydrolysis of co-ordinated bidentate triaminophosphines may be tuned by appropriate choice of metal, oxidation state and complementary ligands. Further studies of the chemistry of co-ordinated $L$ and structurally related ligands are in progress.

## Experimental

Proton NMR spectra were recorded on a Varian Gemini 200, ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra on a Varian Gemini 300 spectrometer. All ${ }^{1} \mathrm{H}$ NMR spectra were recorded in $\mathrm{CDCl}_{3}$ solution and referenced to $\mathrm{SiMe}_{4},{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra in $\mathrm{CDCl}_{3}$ and referenced to $\mathrm{H}_{3} \mathrm{PO}_{4}$. The IR spectra were recorded on a Nicolet 5DX Fourier-transform spectrometer using 0.5 mm NaCl solution cells. All reactions (unless otherwise specified) were done under a nitrogen atmosphere using dry degassed solvents. The complexes $\left[\left\{\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\right\}_{2}\right]^{8}$ and $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right]^{9}$ were prepared as reported in the literature.

Table 5 Atomic coordinates for $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right] 1$

| Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| Pt | 0.13330 | 0.0208 (3) | 0.87960 |
| $\mathrm{Cl}(1)$ | 0.232 5(2) | $-0.1235(3)$ | 0.951 2(3) |
| $\mathrm{Cl}(2)$ | 0.059 0(2) | -0.189 8(3) | 0.880 5(3) |
| $\mathrm{P}(1)$ | 0.2101 (2) | 0.2051 (3) | 0.9109 (3) |
| $\mathrm{P}(2)$ | 0.036 5(2) | 0.144 9(3) | $0.8131(3)$ |
| $\mathrm{N}(1)$ | 0.228 4(6) | 0.222 1(12) | 1.045 9(9) |
| N(2) | 0.299 9(6) | 0.193 2(12) | $0.8760(9)$ |
| N(3) | -0.016 5(5) | 0.220 2(13) | $0.9111(8)$ |
| N(4) | -0.036 2(5) | $0.0631(10)$ | 0.753 8(9) |
| N(5) | 0.178 6(4) | 0.3668 (8) | 0.867 1(7) |
| N(6) | 0.0611 (5) | 0.262 6(12) | 0.717 6(9) |
| C(1) | 0.307 9(7) | 0.236 4(18) | 1.070 4(12) |
| C(2) | 0.3489 (6) | $0.1727(15)$ | 0.973 9(12) |
| C(3) | 0.1777 (8) | 0.192 0(14) | $1.1315(11)$ |
| C(4) | $0.3228(7)$ | 0.128 3(15) | 0.773 9(11) |
| C(5) | -0.095 9(6) | 0.185 5(16) | 0.893 2(10) |
| C(6) | -0.0979(6) | 0.049 1(12) | $0.8267(11)$ |
| C(7) | 0.002 6(7) | $0.3457(13)$ | $0.9715(10)$ |
| C(8) | -0.029 9(8) | -0.033 1(14) | 0.659 1(12) |
| C(9) | 0.1780 (6) | 0.394 6(11) | 0.749 0(9) |
| $\mathrm{C}(10)$ | 0.1373 (6) | 0.279 4(12) | $0.6819(9)$ |
| $\mathrm{C}(11)$ | 0.2036 (7) | 0.492 8(11) | $0.9312(14)$ |
| $\mathrm{C}(12)$ | $0.0069(7)$ | 0.366 3(15) | 0.673 0(12) |

## Preparations.- $\mathrm{MeNCH} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me}) \mathrm{P} \mathrm{N}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}-$

(Me) $\mathrm{PN}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NMe}$ (L). To syn- $N, N^{\prime}$-dimethylethane-1,2-diamine ( $25 \mathrm{~cm}^{3}$ ) in benzene ( $600 \mathrm{~cm}^{3}$ ) was added $\mathrm{PCl}_{3}$ ( 15.4 $\mathrm{cm}^{3}$ ) in benzene ( $15 \mathrm{~cm}^{3}$ ). Then triethylamine ( $67.45 \mathrm{~cm}^{3}$ ) was added quickly and the reaction allowed to stir for 2 h . The precipitate of $\left[\mathrm{NEt}_{3} \mathrm{H}\right] \mathrm{Cl}$ was filtered off and washed with benzene ( $2 \times 75 \mathrm{~cm}^{3}$ ). Removal of the solvent from the filtrate and washings gave the required product L as a moisturesensitive white crystalline solid. Yield $52 \%$. The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CDCl}_{3}$ showed two doublets at $\delta 2.42\left[J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right)\right.$ $=14.4]$ and $2.54(12.0 \mathrm{~Hz})$ in the expected $6: 12$ ratio assignable

Table 6 Atomic coordinates for $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right] 3$

| Atom | $x$ | $y$ | $z$ | Atom | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W(1A) | 1.0 | 0.933 04(6) | 1.0 | C(3B) | $0.8562(10)$ | 0.693 3(19) | $0.6251(6)$ |
| P(1A) | 0.987 4(2) | $0.7117(5)$ | $1.0603(2)$ | C(4B) | 1.066 8(9) | 0.863 6(19) | 0.713 5(6) |
| $\mathrm{P}(2 \mathrm{~A})$ | 1.0997 (3) | 0.819 2(5) | 0.945 5(2) | C(5B) | 0.869 3(11) | $1.1095(22)$ | 0.788 5(7) |
| $\mathrm{O}(1 \mathrm{~A})$ | 0.869 1(10) | 1.109 4(18) | 1.055 3(7) | C(6B) | 0.803 2(13) | 0.977 8(26) | 0.777 7(8) |
| $\mathrm{O}(2 \mathrm{~A})$ | 0.984 6(8) | $1.2323(13)$ | 0.9313 (5) | C(7B) | 1.1819 (12) | 0.895 2(23) | 0.585 3(7) |
| O(3A) | 0.835 9(9) | $0.8113(18)$ | 0.925 9(7) | C(8B) | 1.137 2(11) | 0.739 8(22) | $0.5637(8)$ |
| $\mathrm{O}(4 \mathrm{~A})$ | 1.159 9(8) | $1.0918(16)$ | 1.070 2(6) | C(9B) | 0.991 4(11) | $1.2100(20)$ | 0.752 4(7) |
| N(1A) | 0.973 3(10) | 0.766 6(17) | $1.1172(5)$ | C(10B) | 0.724 5(11) | 0.844 1(23) | 0.704 6(7) |
| $\mathrm{N}(2 \mathrm{~A})$ | 0.889 3(8) | $0.6119(18)$ | 1.049 2(5) | C(11B) | $1.1465(12)$ | $1.1083(23)$ | $0.6375(7)$ |
| N(3A) | $1.1581(7)$ | 0.9480 (15) | 0.917 4(5) | C(12B) | 0.987 7(13) | 0.656 3(26) | 0.533 9(8) |
| N(4A) | $1.0487(10)$ | $0.7523(16)$ | $0.8912(5)$ | C(13B) | 0.881 4(12) | 1.199 1(21) | 0.619 9(7) |
| N (5A) | 1.067 6(8) | 0.574 9(15) | $1.0728(5)$ | C(14B) | 0.872 3(10) | 1.083 9(20) | $0.5788(6)$ |
| N(6A) | 1.173 2(9) | 0.688 4(17) | 0.969 8(5) | C(15B) | 0.777 8(12) | 1.275 1(21) | 0.673 4(7) |
| C(1A) | 0.917 4(10) | 1.042 1(19) | 1.033 3(6) | C(16B) | 0.9831 (13) | 1.115 2(26) | 0.524 8(7) |
| C(2A) | 0.992 6(10) | 1.1229 (20) | $0.9567(6)$ | W(1C) | 0.484 74(5) | $0.28271(7)$ | $0.81405(3)$ |
| C(3A) | 0.898 9(11) | $0.8481(21)$ | $0.9519(7)$ | P(1C) | $0.6060(2)$ | 0.387 6(4) | 0.877 4(2) |
| C(4A) | 1.102 6(11) | $1.0335(20)$ | 1.043 8(6) | $\mathrm{P}(2 \mathrm{C})$ | 0.381 1(2) | $0.5163(5)$ | $0.7967(2)$ |
| C(5A) | 0.888 1(13) | 0.7240 (24) | 1.1281 (8) | $\mathrm{O}(1 \mathrm{C})$ | 0.5901 (8) | -0.0331(12) | 0.809 9(5) |
| C(6A) | 0.853 6(16) | $0.5916(28)$ | 1.0913 (9) | $\mathrm{O}(2 \mathrm{C})$ | 0.3438 (8) | 0.113 9(14) | 0.735 6(5) |
| C(7A) | 1.119 2(10) | $0.9718(20)$ | 0.865 3(6) | $\mathrm{O}(3 \mathrm{C})$ | 0.5938 (9) | 0.399 7(16) | 0.734 0(5) |
| C(8A) | 1.079 0(13) | 0.816 6(22) | 0.850 4(8) | $\mathrm{O}(4 \mathrm{C})$ | 0.4016 (8) | 0.143 2(18) | 0.9011 (5) |
| C(9A) | 1.017 6(13) | 0.888 1(23) | 1.1440 (8) | N (1C) | 0.669 2(8) | 0.255 9(15) | 0.914 3(5) |
| C(10A) | 0.875 8(13) | $0.4883(24)$ | 1.014 5(7) | $\mathrm{N}(2 \mathrm{C})$ | 0.693 2(7) | 0.455 4(14) | $0.8556(5)$ |
| C(11A) | $1.2047(12)$ | $1.0814(23)$ | 0.943 9(7) | N(3C) | 0.374 3(10) | $0.5881(18)$ | 0.740 4(5) |
| C(12A) | 1.004 9(14) | $0.5979(24)$ | 0.8851 (8) | $\mathrm{N}(4 \mathrm{C})$ | 0.2731 (8) | 0.474 1(17) | 0.786 4(5) |
| C(13A) | $1.1113(11)$ | 0.524 5(21) | $1.0309(7)$ | N (5C) | 0.577 3(7) | $0.5163(15)$ | $0.9166(5)$ |
| C(14A) | 1.180 6(10) | 0.641 4(21) | 1.023 0(6) | N(6C) | 0.3860 (7) | 0.670 1(13) | 0.837 6(5) |
| C(15A) | 1.067 7(11) | 0.455 3(19) | 1.109 6(6) | $\mathrm{C}(1 \mathrm{C})$ | $0.5527(9)$ | 0.083 4(18) | $0.8132(6)$ |
| C(16A) | 1.233 2(12) | $0.6098(24)$ | 0.944 9(7) | C(2C) | 0.397 7(10) | 0.178 8(18) | $0.7629(6)$ |
| W(1B) | 0.959 56(5) | $0.78051(6)$ | 0.670 95(3) | C(3C) | $0.5515(11)$ | $0.3631(22)$ | $0.7625(7)$ |
| $\mathrm{P}(1 \mathrm{~B})$ | 0.8751 (2) | 1.0070 (5) | $0.7005(2)$ | C(4C) | 0.4311 (11) | 0.198 8(21) | 0.868 6(7) |
| $\mathrm{P}(2 \mathrm{~B})$ | $1.0180(2)$ | 0.898 1(5) | 0.599 2(2) | C(5C) | 0.753 8(10) | 0.233 5(19) | 0.9001 (7) |
| $\mathrm{O}(1 \mathrm{~B})$ | 1.0609 (8) | 0.469 9(14) | 0.649 7(5) | C(6C) | 0.775 2(9) | 0.388 9(18) | 0.8791 (6) |
| $\mathrm{O}(2 \mathrm{~B})$ | 0.903 4(10) | $0.5983(15)$ | 0.760 2(5) | C(7C) | 0.2838 (12) | $0.6053(25)$ | 0.7141 (8) |
| $\mathrm{O}(3 \mathrm{~B})$ | 0.8009 (8) | 0.637 7(16) | 0.5983 (5) | C (8C) | 0.2360 (14) | 0.489 3(30) | $0.7369(8)$ |
| $\mathrm{O}(4 \mathrm{~B})$ | $1.1307(8)$ | $0.9011(15)$ | 0.7403 (5) | C(9C) | 0.631 9(12) | $0.1207(23)$ | 0.935 2(7) |
| N(1B) | 0.926 8(8) | 1.089 3(15) | 0.7541 (5) | C(10C) | 0.695 8(11) | 0.604 8(20) | $0.8309(7)$ |
| N(2B) | 0.788 9(7) | 0.957 9(16) | 0.724 8(5) | C(11C) | 0.434 5(14) | 0.701 6(26) | $0.7275(9)$ |
| N(3B) | $1.1227(7)$ | $0.9618(18)$ | 0.6141 (6) | C(12C) | 0.237 3(12) | 0.361 2(25) | 0.8190 (8) |
| N(4B) | 1.045 8(10) | 0.778 1(17) | $0.5563(6)$ | C(13C) | $0.4869(9)$ | 0.578 6(19) | $0.9110(6)$ |
| N(5B) | 0.834 5(7) | 1.155 9(14) | 0.660 2(5) | C(14C) | 0.465 8(11) | 0.7019 (19) | 0.870 6(6) |
| N(6B) | 0.955 7(8) | 1.032 2(15) | 0.5660 (5) | C(15C) | 0.6415 (10) | 0.603 7(20) | $0.9518(6)$ |
| C(1B) | 1.022 6(12) | 0.5870 (22) | 0.655 8(7) | C(16C) | 0.324 6(11) | 0.803 2(21) | $0.8279(7)$ |
| C(2B) | 0.924 8(10) | 0.666 9(20) | 0.726 6(7) |  |  |  |  |

Table 7 Atomic coordinates for $\left[\mathrm{W}(\mathrm{CO})_{4}\left(\mathrm{MeNHCH}_{2} \mathrm{CH}_{2} \mathrm{NHMe}\right)\right] 8$

| Atom | $x$ | $l$ <br> W | $0.37514(2)$ |
| :--- | :--- | ---: | :--- |
| $\mathrm{O}(1)$ | $0.4483(4)$ | $-0.19951(5)$ | $0.96615(3)$ |
| $\mathrm{O}(2)$ | $0.3078(4)$ | $0.1477(12)$ | $1.0330(7)$ |
| $\mathrm{O}(3)$ | $0.4812(5)$ | $0.3879(14)$ | $1.1289(6)$ |
| $\mathrm{O}(4)$ | $0.2696(4)$ | $-0.0294(10)$ | $0.8240(7)$ |
| $\mathrm{N}(1)$ | $0.3284(4)$ | $0.4648(10)$ | $0.9050(7)$ |
| $\mathrm{N}(2)$ | $0.4180(5)$ | $0.2730(12)$ | $0.8413(6)$ |
| $\mathrm{C}(1)$ | $0.4194(5)$ | $-0.0236(14)$ | $1.0061(8)$ |
| $\mathrm{C}(2)$ | $0.3322(5)$ | $0.1668(13)$ | $1.0693(8)$ |
| $\mathrm{C}(3)$ | $0.4427(5)$ | $0.3255(14)$ | $1.0681(8)$ |
| $\mathrm{C}(4)$ | $0.3081(5)$ | $0.0570(12)$ | $0.8717(8)$ |
| $\mathrm{C}(5)$ | $0.3176(6)$ | $0.5883(15)$ | $0.9836(9)$ |
| $\mathrm{C}(6)$ | $0.4241(6)$ | $0.1237(19)$ | $0.7757(9)$ |
| $\mathrm{C}(7)$ | $0.3647(7)$ | $0.5549(14)$ | $0.8465(8)$ |
| $\mathrm{C}(8)$ | $0.3803(5)$ | $0.4190(16)$ | $0.7807(8)$ |

to the NMe groups, together with multiplets at $\delta 2.95$ and 3.20 assignable to the $\mathrm{CH}_{2}$ protons; $\delta\left({ }^{31} \mathrm{P}\right) 114(\mathrm{~s}) .{ }^{10}$
[ $\left.\mathrm{PtCl}_{2} \mathrm{~L}\right]$ 1. A solution of $\mathrm{L}(0.725 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was slowly added to $\left[\left\{\mathrm{Pt}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}_{2}\right\}_{2}\right](0.66 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$. After 1 h removal of the solvent gave a pale yellow solid which consisted of a mixture of complexes 1 and $2 .{ }^{11} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR: 1,
$\delta 64.6, J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right)=4967 ; 2, \delta 21.3, J\left({ }^{195} \mathrm{Pt}^{-31} \mathrm{P}\right)=2432 \mathrm{~Hz}$. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by slow evaporation gave 1 as white prisms ( $72 \%$, m.p. $166-167^{\circ} \mathrm{C}$ ). ${ }^{1} \mathrm{H}$ NMR: $\delta 2.47$ $\left[J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) 9.2\right.$, NMe (bridge) $], 2.81\left[J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) 11 \mathrm{~Hz}\right.$, NMe (ring)] and 3.25-3.51 (broad overlapping multiplets, $\mathrm{CH}_{2}$ ) (Found: C, $25.30 ; \mathrm{H}, 5.25 ; \mathrm{N}, 14.00$. Calc. for $\mathrm{C}_{12} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{P}_{2} \mathrm{Pt}$ : C, $25.60 ; \mathrm{H}, 5.15 ; \mathrm{N}, 14.35 \%$ ).
$\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ 3. A solution of $\mathrm{L}(1.56 \mathrm{~g})$ in benzene $\left(80 \mathrm{~cm}^{3}\right)$ was slowly added to a refluxing solution of $\left[\mathrm{W}(\mathrm{CO})_{4}(\mathrm{nbd})\right]$ $(1.72 \mathrm{~g})$ in benzene $\left(250 \mathrm{~cm}^{3}\right)$. The reaction was refluxed for 48 $h$. Removal of the solvent gave a yellow-green solid. IR [v(CO) region]: $2010 \mathrm{~m}, 1901$ (sh, br) and 1882vs (br) $\mathrm{cm}^{-1}$. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed the presence of four products: $\delta 118\left\{J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}\right) 315,\left[\mathrm{~W}(\mathrm{CO})_{4} \mathrm{~L}\right] 3\right\}, 121$ $\left\{J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}\right) 290,\left[\left\{\mathrm{~W}(\mathrm{CO})_{4}(\mu-\mathrm{L})\right\}_{2}\right] 4\right\}, 124\left\{J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}\right)\right.$ $\left.360,\left[\left\{\mathrm{~W}(\mathrm{CO})_{4}(\mu-\mathrm{L})\right\}_{3}\right] 5\right\}$ and $124.5\left\{J\left({ }^{183} \mathrm{~W}-{ }^{31} \mathrm{P}\right) 370 \mathrm{~Hz}\right.$, $\left.\left[\left\{\mathrm{W}(\mathrm{CO})_{4}(\mu-\mathrm{L})\right\}_{4}\right] 6\right\}$. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane via slow evaporation gave $\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ as yellow prisms $(42 \%$ yield, m.p. $\left.170-171^{\circ} \mathrm{C}\right)$. IR [v(CO) region]: $2010 \mathrm{~m}, 1909 \mathrm{~s}$ and $1875 \mathrm{vs} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta 2.38\left[J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) 6.8\right.$, virtual triplet, NMe (bridge) $], 2.67\left[J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) 11.5\right.$, virtual triplet, NMe (ring)], 3.18 [br m, $\mathrm{NCH}_{2}$ (ring) $]$ and $3.34\left[J\left({ }^{31} \mathrm{P}-{ }^{1} \mathrm{H}\right) 23\right.$ Hz , virtual triplet, $\mathrm{NCH}_{2}$ (bridge)] (Found: C, $31.50 ; \mathrm{H}, 5.15$; $\mathrm{N}, 13.35$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~W}: \mathrm{C}, 31.20 ; \mathrm{H}, 4.90 ; \mathrm{N}$, $13.65 \%$ ).

Hydrolysis Experiments.-A $0.02 \mathrm{~mol} \mathrm{dm}^{-3}$ solution $\left(5 \mathrm{~cm}^{3}\right)$ of $\left[\mathrm{PtCl}_{2} \mathrm{~L}\right],\left[\mathrm{W}(\mathrm{CO})_{4} \mathrm{~L}\right]$ or L in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}(9: 1 \mathrm{v} / \mathrm{v})$ was placed in a NMR tube (diameter 5 mm ) and water $\left(1 \mathrm{~cm}^{3}\right)$ added. The sample was monitored by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy.

X-Ray Structural Determinations.-Intensity data for compounds 1, 3 and 8 were collected on an Enraf-Nonius CAD-4 diffractometer at room temperature, using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ( $\lambda=0.71073 \AA$ ). The $\omega$-scan technique was applied with variable scan speeds. Intensities of three standard reflections measured every 2 h , for each crystal, showed negligible variation. For all compounds the heavy-atom positions were solved by Patterson methods and the locations of all non-hydrogen atoms were determined from subsequent Fourier difference syntheses. In each case all non-hydrogen atoms were refined with anisotropic thermal parameters (except for $\mathbf{3}$ where carbon atoms were refined with isotropic thermal parameters) by full-matrix least squares to minimize $\Sigma w\left(F_{\mathrm{o}}-\right.$ $\left.F_{\mathrm{c}}\right)^{2}$, where $w^{-1}=\sigma^{2}\left(F_{\mathrm{o}}\right)+g F_{\mathrm{o}}{ }^{2}$. Hydrogen atoms were positioned on geometric grounds ( $\mathrm{C}-\mathrm{H} 0.96 \AA$ ) and included in the refinement as riding atoms with general thermal parameters for each structure [0.105(10) for $\mathbf{1 ,}, 0.0800$ for $\mathbf{3}$ and $0.073(12) \AA^{3}$ for 8]. Crystal data, data collection, and least-squares parameters are listed in Table 4. All calculations were performed using SHELXTL PC ${ }^{11}$ on a $486-66$ personal computer. Relevant bond angles and distances are given in Tables 1-3 and atomic coordinates in Tables 5-7.
Additional material available from the Cambridge Crystallo-
graphic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

## Acknowledgements

We thank the Natural Sciences and Engineering Research Council of Canada for financial support.

## References

1 M. J. Baker, K. N. Harrison, A. G. Orpen, P. G. Pringle and G. Shaw, J. Chem. Soc., Chem. Commun., 1991, 803.

2 T. J. Kwok and D. J. Wink, Organometallics, 1993, 12, 1954.
3 M. J. Baker and P. G. Pringle, J. Chem. Soc., Chem. Commun., 1993, 314.

4 H. Goldwhite, Introduction to Phosphorus Chemistry, Cambridge University Press, Cambridge, 1981, p. 12.
5 G. M. Gray and C. S. Kraihanzel, J. Organomet. Chem., 1978, 146, 23.

6 J. R. Parks, J. Am. Chem. Soc., 1957, 78, 757.
7 H. Nakazawa, K. Kubo and K. Miyoshi, J. Am. Chem. Soc., 1993, 115, 5863.
8 J. Chatt and M. L. Searle, Inorg. Synth., 1968, 17, 210.
9 R. B. King and A. Fronzaglic, Inorg. Chem., 1966, 5, 1837.
10 F. Ramirez, A. V. Patwardham, H. J. Kayler and C. P. Smith, J. Am. Chem. Soc., 1967, 89, 6276.

11 G. M. Sheldrick, SHELXTL PC, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1990.


[^0]:    * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

