1,4,7-Triazacyclononane-1,4,7-triyltrimethylenetris(phenylphosphinate) enforces Octahedral Geometry: Crystal and Solution Structures of its Metal Complexes and Comparative Biodistribution Studies of Radiolabelled Indium and Gallium Complexes \dagger

Eleanor Cole, ${ }^{a}$ Royston C. B. Copley, ${ }^{a}$ Judith A. K. Howard, ${ }^{a}$ David Parker, ${ }^{*, a}$ George Ferguson, ${ }^{b}$
John F. Gallagher, ${ }^{b}$ Branko Kaitner, ${ }^{b}$ Alice Harrison ${ }^{c}$ and Louise Royle ${ }^{\text {a,c }}$ c
${ }^{a}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK
${ }^{\text {b }}$ Department of Chemistry, University of Guelph, Guelph. Ontario, N1G 2W1, Canada
${ }^{c}$ MRC Radiobiology Unit, Chilton, Didcot, OX11 ORD, UK

Abstract

1,4,7-Triazacyclononane-1,4,7-triyltrimethylenetris(phenylphosphinate) formed C_{3}-symmetric complexes with the divalent ions of $\mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}$ and Zn and structurally similar complexes with the trivalent ions of $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ga}$ and In . For each of the eight crystal structures examined, the ligand adopts the same rigid conformation and a single chiral diastereoisomer is formed (RRR or SSS at each stereogenic phosphorus centre). The geometry around the metal centre is slightly distorted octahedral. The copper(II) complex only undergoes a Jahn-Teller distortion below 100 K , and the pink cobalt(11) complex only slowly oxidises to the dark blue cobalt(iII) complex. The chiral gallium(iII) complex may be resolved by preparative HPLC, and its 'H NMR spectrum has been fully assigned with the aid of two-dimensional methods. The indium-111 and gallium-67 complexes have been examined in vivo and exhibit selective biliary clearance associated with their lipophilic nature.

We have begun to explore the complexation chemistry of α-aminoalkylphosphinic acids pinpointing differences from the analogous α-aminocarboxylate ligands. ${ }^{1,2}$ There are several basic differences in the chemistry of these two systems that are particularly striking. First, the phosphinate moiety is more difficult to protonate on oxygen than is the corresponding carboxylate, i.e. it possesses a lower $\mathrm{p} K_{\mathrm{a}}$ value. This applies both to the free compound and to its metal complexes, so that enhanced kinetic stability with respect to acid-catalysed metal dissociation may result, as is required for in vivo applications. ${ }^{3}$ An illustration of this effect is given by the relative $\mathrm{p} K_{\mathrm{a}}$ values of the monoanionic complexes of yttrium with 1,4,7,10-tetra-azacyclododecane- $N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tetraacetic acid ($\mathrm{H}_{4} \mathrm{~L}^{2}$) and of the methylphosphinate analogue $\mathrm{H}_{4} \mathrm{~L}^{3}, 3.07$ and $1.28(298 \mathrm{~K}$, $\left.I=0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right) .^{4}$ Secondly, when one of the phosphinate oxygens binds to a metal centre, the oxygens are rendered diastereotopic because a new stereogenic centre is created at phosphorus. Thus in systems such as $\mathrm{H}_{3} \mathrm{~L}^{1}$ (with three equivalent phosphorus centres), two diastereoisomers may result from the co-operative binding of all six ligand donor atoms, both of which are chiral (i.e. $R R R / S S S$ and $R S R / S R S$ diastereoisomers may form). Finally, the pentavalency of phosphorus allows control over complex lipophilicity (and solubility) through variation of the substituent at phosphorus, e.g. alkyl or aryl, in addition to providing a site for further functionalisation. ${ }^{5}$
This paper describes the detailed complexation chemistry of one example of this class of compounds 1,4,7-triazacyclononane-1,4,7-triyltrimethylenetris(phenylphosphinic acid) $\left(\mathrm{H}_{3} \mathrm{~L}^{1}\right)$. This is an example of a rigid hexadentate ligand based on the [9]ane N_{3} skeleton and in principle its metal complexes may

[^0]adopt any structure between the limiting octahedral or trigonalprismatic geometries. ${ }^{6}$ Complexes of this compound with iron(III), cobalt-(II) and -(III), nickel(II), copper(II), zinc(II), gallium(III) and indium(III) have been prepared and structurally characterised by X-ray and solution NMR methods. In one case, for the neutral gallium(III) complex, the chiral complex has been resolved. Part of this work has been published in a preliminary communication. ${ }^{7}$ For both indium and gallium, radiolabelled complexes have been prepared, using ${ }^{67} \mathrm{Ga}\left(\gamma, t_{\frac{1}{2}}\right.$ 3.25 d) or ${ }^{111} \mathrm{In}\left(\gamma, t_{\frac{1}{2}} 2.81 \mathrm{~d}\right)$, and their relative biodistribution studied in animals as a function of time.

Results and Discussion

The compound $\mathrm{H}_{3} \mathrm{~L}^{1}$ may be obtained by two different syntheses. Direct reaction of $1,4,7$-triazacyclononane with phenylphosphinic acid in the presence of aqueous formaldehyde, under acidic conditions, yields the product directly, but contaminated with $\mathrm{PhP}\left(\mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{O}_{2} \mathrm{H}$. A two-step reaction sequence is preferred whereby co-condensation of $1,4,7-$ triazacyclononane with paraformaldehyde and $\mathrm{PhP}(\mathrm{OMe})_{2}$ in tetrahydrofuran under anhydrous conditions yields the intermediate trimethyl ester, which is readily hydrolysed (HCl -water) following purification of the ester by chromatography on neutral alumina. ${ }^{5}$ Admixture of stoichiometric quantities of $\mathrm{H}_{3} \mathrm{~L}^{1}$ with metal nitrate salts in aqueous solution led to rapid formation of the metal complexes, which crystallised upon slow evaporation. In the case of $\mathrm{Ga}^{\mathrm{III}}, \mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{In}^{\text {III }}$, neutral complexes were formed, whereas for $\mathrm{Cu}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ monoanionic complexes were formed and the counter ion in each case was the oxonium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$. In the case of the cobalt(II) complex, the pink crystalline solid, either when left in contact with aerated aqueous solution over 5-6 weeks or following addition of aqueous hydrogen peroxide, changed (over 2-3 weeks) to a dark blue neutral cobalt(III) crystalline

Table 1 Selected structural data for the complexes of $\mathrm{H}_{3} \mathrm{~L}^{1}$ with metal ions [estimated standard deviations (e.s.d.s) in parentheses]

Complex	Twist a angle, $\alpha /^{\circ}$	$\mathrm{M}-\mathrm{O} / \AA$	$\mathrm{M}-\mathrm{N} / \AA$	$(\mathrm{M}-\mathrm{N})-(\mathrm{M}-\mathrm{O}) / \AA$	Ionic radius $/ \AA$
$\left[\mathrm{CoL}^{1}\right]^{-b}$	$25.3(1)$	$2.103(2)$	$2.168(3)$	0.065	0.75
$\left[\mathrm{NiL}^{1}\right]^{-}$	$25.4(1)$	$2.083(3)$	$2.104(3)$	0.021	0.69
$\left[\mathrm{CuL}^{1}\right]^{-}$	$25.6(2)$	$2.099(3)$	$2.134(3)$	0.035	0.73
$\left[\mathrm{ZnL}^{1}\right]^{-}$	$25.4(1)$	$2.072(1)$	$2.205(1)$	0.046	0.65
$\left[\mathrm{FeL}^{1}\right]^{c}$	$24.5(1)$	$1.932(2)$	$0.135(6)$	0.62	
$\left[\mathrm{GaL}^{1}\right]^{c}$	$26.0(2)$	$2.912(4)$	$0.303(1)$	0.208	0.8
$\left[\mathrm{InL}^{1}\right]^{c}$	$23(1)$	$2.095(1)$			

${ }^{a}$ Under the system adopted here, $\alpha=0$ (trigonal prismatic) and 30° (octahedral). This twist angle is therefore half the magnitude of that adopted by some workers. ${ }^{8 b}$ A preliminary analysis of the cobalt(III) complex gives mean bond lengths Co-O 1.93 and $\mathrm{Co}-\mathrm{N} 1.95 \AA$: the effective ionic radius of $\mathrm{Co}^{\text {III }}$ is $0.55 \AA \AA^{c}$ Mean values are given.

$H_{3} L^{4}$
$\mathrm{H}_{4} \mathrm{~L}^{3}$

complex. This slow oxidation process was confirmed by the fact that the product was diamagnetic (d^{6}, spin-paired) and conductivity studies (293 K) in dry methanol solution indicated clearly that the complex product was no longer a $1: 1$ electrolyte: $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CoL}^{1}\right], 297 ;\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CuL}^{1}\right], 303 ;\left[\mathrm{GaL}^{1}\right], 98$; and $\left[\mathrm{CoL}^{1}\right], 96 \Omega^{-1} \mathrm{~cm}^{-1}$.

Structural Analyses.-In Table 1 selected molecular parameters are presented for the two sets of isostructural complexes. In the series of anionic complexes (crystallising in space group $P \overline{3}$, no. 147), the 'twist angle' [measuring the deviation of the N_{3} and O_{3} moieties from octahedral $\left(\alpha=30^{\circ}\right)$ or trigonalprismatic geometry $\left.\left(\alpha=0^{\circ}\right)\right]$ is essentially constant for d^{7} to d^{10} complexes. A representative structure of the cobalt(II) complex is shown (Fig. 1). For the neutral complexes with iron, gallium, indium and cobalt, crystallising in space group $P \overline{1}$ [see Fig. 2 for the indium(III) complex] no real change in the twist angle is seen and all of the complexes adopt a slightly distortedoctahedral geometry.

This consistent behaviour is also apparent in the variation of

Fig. 1 View down the three-fold axis in the crystal of the anionic cobalt(II) complex. The copper, nickel and zinc complexes are isostructural
the lengths for the metal-nitrogen and -oxygen bonds. In the series of anionic complexes (Co to Zn) the $\mathrm{M}-\mathrm{O}$ and $\mathrm{M}-\mathrm{N}$ bond lengths vary in a manner which is consistent with the differences in ionic radius, although the $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{N}$ distances are perhaps slightly longer than might have been expected based on this premise alone. For the neutral complexes, mean $\mathrm{M}-\mathrm{N}$ and $\mathrm{M}-\mathrm{O}$ bond lengths are given (Table 1). Although the complexes do possess an approximate three-fold axis of symmetry, for a given complex, variations in the M-N or M-O bond lengths are very small ($<0.01 \AA$). These distances are therefore essentially equal, given that crystal-packing forces could cause such small differences. As expected the M-O bond distances ($M=G a^{11}$, $\mathrm{Fe}^{\text {III }}, \mathrm{In}^{\text {III }}$ or $\mathrm{Co}^{\text {IIII }}$) are considerably shortened with respect to the $\mathrm{M}-\mathrm{N}$ bond lengths (and in comparison to the related anionic complexes), due to the difference between donor-acceptor $\mathrm{M}-\mathrm{N}$ and highly ionic $\mathrm{M}-\mathrm{O}$ bonds. Again, variations in the $\mathrm{M}-\mathrm{O}$ distances within the group of neutral complexes echo changes in ionic radius.

These results demonstrate that the co-ordination environment around the metal centre is determined essentially by the mimimisation of intramolecular ligand interactions, involving the PPh groups. The rigid ligand is imposing its preferred geometry on the metal ion and overrides any effects on complex geometry due to either crystal-field stabilisation energies, as is commonly seen in for example hexaamine cage complexes, ${ }^{9}$ or π-bonding effects which have been proposed, for example, to favour trigonal-prismatic geometries in certain iron(iii) complexes, ${ }^{10,11}$ although trigonal-prismatic geometry may be imposed by rigid donor-atom arrays which are unable to distort to provide octahedral co-ordination. ${ }^{12,13}$

Table 2 Comparison of structural parameters for complexes of $H_{3} L^{1}$ with those of $H_{3} L^{4}$

	L^{1}			L^{4}		
M	Twist angle, $\alpha /^{\circ}$	M-N/ \AA	M-O/ \AA	Twist angle, $\alpha /{ }^{\circ}$	M-N/ \AA	M-O/ \AA
$\mathrm{Cu}^{\text {ila }}$	25.6(1)	2.134(3)	2.099(3)	13.3(2)	$2.115(3)$	$1.978(2)$
					2.197(3)	$2.205(3)$
					2.039(2)	2.141(3)
$\mathrm{Ni}^{\mathrm{II}}{ }^{\text {b }}$	25.4(1)	2.104(3)	2.083(3)	22.5(9)	2.04	2.08
$\mathrm{Fe}^{\mathrm{III}}$	24.5(1)	2.205 (3)	1.932(2)	12.6	2.181(3)	$1.962(2)$
$\mathrm{Ga}^{\text {III }}$	26.0(2)	$2.135(6)$	$1.912(4)$	23.8	2.104(6)	1.933(6)
$\mathrm{In}^{111 \mathrm{I}}$	23.6(1)	$2.303(1)$	2.095(1)	$10.4{ }^{\text {d }}$	2.258(4)	2.094(4)

${ }^{a}$ The complex of L^{4} has undergone a Jahn-Teller distortion at $298 \mathrm{~K}^{8}{ }^{5}$ The nickel complex of L^{4} has average distances $\mathrm{M}-\mathrm{N} 1.93(1)$ and $\mathrm{M}-\mathrm{O}$ 1.91 (1) $\AA ; \alpha=26.5^{\circ} .^{16}$ c The iron(III) complex of 1,4,7-triazacyclononane-1,4,7-triyltrimethylenetriphosphonate has $\mathrm{Fe}-\mathrm{N} 2.206(2)$ and $\mathrm{Fe}-\mathrm{O}$ $1.945(2) \AA .{ }^{17 \mathrm{~d}}$ For the corresponding ($R R R$)-tripropionate complex. ${ }^{15}$

Fig. 2 Molecular structure of $\left[\mathrm{InL}^{1}\right]$ at 150 K . The complexes of $\mathrm{Ga}^{\text {III }}$, $\mathrm{Co}^{\mathrm{III}}$ and $\mathrm{Fe}^{\mathrm{III}}$ are isostructural

Comparison with Analogous Carboxylate Complexes.--It is instructive to compare these phosphinate complexes with the corresponding complexes of $1,4,7$-triazacyclononane- $N, N^{\prime}, N^{\prime \prime}$ triacetic acid, $\mathrm{H}_{3} \mathrm{~L}^{4} .{ }^{8.14-16}$ Whilst the N_{3} moiety is identical, there are significant differences in the five-membered chelates involving the anionic donors, Scheme 1, arising primarily from the longer $\mathrm{P}-\mathrm{C}$ and $\mathrm{P}-\mathrm{O}$ bonds compared to the corresponding $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds. Thus the chelate bite angle $\mathrm{N}-\mathrm{M}-\mathrm{O}$ (ideally 90° around an octahedral centre) is more acute for the carboxylate than it is in the phosphinate series. The copper(II) and iron(III) complexes of $\mathrm{H}_{3} \mathrm{~L}^{4},{ }^{8}$ as well as the related [9]ane N_{3} tripropionate complex of indium(III) ${ }^{15}$ (Table 2), possess lower twist angles $\left(10-13^{\circ}\right)$ than those found for the gallium(III) nickel-(II) and -(III) complexes of $\mathrm{H}_{3} \mathrm{~L}^{4}(\alpha=22-$ 26.5°). Thus other factors are contributing towards complex geometry in this series, such as crystal-field effects as has been discussed by other authors. ${ }^{8,16}$

The copper(II) complex of $\mathrm{H}_{3} \mathrm{~L}^{4}$ and of the analogous trimethylenetris(phosphonic acid) analogue are not C_{3} symmetric at room temperature and have undergone a JahnTeller distortion, so that one of the three $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bonds is elongated (each is ca. $2.20 \AA$). In contrast, the triphosphinate copper(II) complex has not undergone such a distortion at 293 K . Furthermore a structural analysis at 123 K revealed that the complex crystallised in the same space group and no significant structural changes were observed in the $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bond lengths or in the anisotropy of the thermal parameters for the bound O and N atoms. Examples of

$\phi{ }^{\circ}$ Phosphinate		Carboxylate
M		
Co	85	
Ni	86	
Zn	85	79
Cu	86	83
Ga	86	78
Fe	84	78
ln	82	

Scheme 1
$\mathrm{Cu}(\mathrm{N}-\mathrm{N})_{3}, \mathrm{CuN}_{6}, \mathrm{Cu}(\mathrm{O}-\mathrm{O})_{3}$ and CuO_{6} chromophores that apparently possess an E_{1} ground state at room temperature are quite rare, but have been described previously. ${ }^{18-20}$ Although they are in apparent contradiction of the Jahn-Teller theorem, which suggests that spin or orbitally degenerate ground states should distort so as to remove the degeneracy, the observed C_{3} symmetry may be considered to result from 'time averaging' of electronic-vibronic couplings. At sufficiently low temperatures a distorted structure is adopted as the 'dynamic Jahn-Teller' effect is 'frozen out'. Although not seen in the structural analyses of $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CuL}^{1}\right]$,* the onset of a Jahn-Teller distortion was revealed by variable-temperature ESR studies. At 298 K a single isotropic resonance was observed $\left[g=2.22, \Delta H_{\mathrm{pp}}=185 \mathrm{G}\right.$ $\left.\left(1.85 \times 15^{2} \mathrm{~T}\right)\right]$ whereas at 8.6 K the axial g tensors were resolved ($g_{\|}=2.58, g_{\perp}=2.14$) consistent with a distorted lowtemperature structure.

Another feature of the copper(II) complex of $\mathrm{H}_{3} \mathrm{~L}^{1}$ that is distinct from the $\left[\mathrm{CuL}^{4}\right]^{-}$complexes is the protonation behaviour. The carboxylate complex protonates at low pH $\left(\mathrm{p} K_{\mathrm{a}}=2.77\right)^{21}$ and the equilibrium is monitored easily by changes in the visible spectrum of the complex in solution. For $\left[\mathrm{CuL}^{1}\right]^{-}$, not only does the complex crystallise as its oxonium ion salt in the range $\mathrm{pH} 2-5$ in the presence of Na^{+}or K^{+}as counter ion, but also no change was discerned in the visible spectrum ($293 \mathrm{~K}, I=0.1 \mathrm{~mol} \mathrm{dm}^{-3}$, water) over the range pH

[^1]Table 3 Variation of ${ }^{71}$ Ga NMR spectral parameters in six-coordinate [9]ane N_{3}-based gallium complexes

Complex ${ }^{a}$	$\delta_{\mathrm{Ga}}{ }^{\text {b }}$	w_{2} / Hz
$\left[\mathrm{GaL}^{4}\right]$	171	210
$\left[\mathrm{GaL}^{5}\right]$	139	200
$\left[\mathrm{GaL}^{1}\right]$	132	560
$\left[\mathrm{GaL}^{7}\right]^{c}$	130	1220

${ }^{a}$ The first three complexes were unchanged over 6 months in $6 \mathrm{~mol} \mathrm{dm}^{-3}$ $\mathrm{HNO}_{3} \cdot{ }^{23}{ }^{b}$ Relative to $\left[\mathrm{Ga}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, i.e. $\mathrm{Ga}\left(\mathrm{NO}_{3}\right)_{3}$ in $6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ $\mathrm{HNO}_{3}(\delta=0) .{ }^{c} \mathrm{H}_{3} \mathrm{~L}^{7}=1,4,7$-Triazacyclononane-1,4,7-triyltrimethylenetris(benzylphosphinic acid); the complex did appear to dissociate within 21 d at 293 K , as judged by the appearance of a singlet at $\delta 0$ (aquagallium ion) and the disappearance of the resonance at $\delta+130$.

2-9. This behaviour is consistent with the premise that phosphinate complexes are more difficult to protonate than are their carboxylate analogues, and has been observed previously in the behaviour of the analogous rare-earth-metal and lanthanide complexes of 1,4,7,10-tetraazacyclododecane ([12]ane N_{4}) phosphinate complexes. ${ }^{1,3,22}$

Solution NMR Studies.-The diamagnetic complexes of cobalt(III) (low-spin d^{6}), zinc(II) (d^{10}) and gallium(III) (d^{10}) have been studied by solution NMR methods. The gallium complex of $\mathrm{H}_{3} \mathrm{~L}^{1}$ was studied by ${ }^{71} \mathrm{Ga}$ NMR ($I=\frac{3}{2}, 39.6 \%$ natural abundance, quadrupolar moment $=0.112$) spectroscopy and the observed linewidths were compared to those obtained with related complexes (Table 3). The linewidth of the ${ }^{71} \mathrm{Ga}$ resonance is a sensitive function of molecular symmetry. In the C_{3}-symmetric complex with $\mathrm{H}_{3} \mathrm{~L}^{423}$ the electric field gradient at the nucleus is very small and the interaction with the nuclear quadrupole moment gives rise to very little line broadening. A similar situation must be occurring with the trimethylenetris(methylphosphinate) complex GaL^{5} (Table 3) which possesses a similarly sharp resonance. For $\left[\mathrm{GaL}^{1}\right]$ and the $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ analogue slight but significant deviations from C_{3} symmetry must be occurring (as confirmed by the crystal structure of $\left[\mathrm{GaL}^{1}\right]$) so that a broadened resonance results.
The ${ }^{1} \mathrm{H}$ NMR spectra of the cobalt(iII) and gallium(iII) complexes were very similar. All of the proton resonances of [GaL^{1}] have been assigned with the aid of twodimensional correlation spectroscopy (COSY), heteronuclear correlation spectroscopy (HETCOR) and one-dimensional nuclear Overhauser effect (NOE) experiments. In the protondecoupled ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{GaL}^{1}\right]\left(293 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}\right)$ the $\mathrm{NCH}_{2} \mathrm{P}$ methylene group resonated as a doublet (${ }^{1} J_{\mathrm{CP}}=91$ Hz) and the ring methylene carbons were distinguished by virtue of their differing carbon-phosphorus coupling constants. The resonance at $\delta 57.6$ (corresponding to $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{A}} \cdot \mathrm{N}$ in the assignment scheme used, where H_{A} and $H_{A^{\prime}}$ are on C^{2}) appeared as a doublet (${ }^{3} J_{\mathrm{PC}}=12.5 \mathrm{~Hz}$) while the other $\mathrm{CH}_{2} \mathrm{~N}$ (i.e. for C^{3}) peak gave a singlet at $\delta 53.4$. In the former case, there is a $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}^{2}$ dihedral angle of 180° (see Figs. 3 and 4) giving rise to the significant three-bond coupling observed and in the latter case the $\mathrm{P}-\mathrm{C}-\mathrm{N}-\mathrm{C}^{3}$ dihedral angle is approximately 90° and the coupling constant is too small to be seen ${ }^{3} J_{\mathrm{PC}} \leqslant 1 \mathrm{~Hz}$.
In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{GaL}^{1}\right.$] the diastereotopic methylene $\left(\mathrm{NCH}_{2} \mathrm{P}\right)$ protons resonated as two doublets of doublets (${ }^{2} J_{\mathrm{HH}}=-14.1$ and ${ }^{2} J_{\mathrm{PH}}=4.6 \mathrm{~Hz}$) at $\delta 3.51$ and 3.25 . The doublet of doublets at $\delta 3.25$ showed a strong nuclear Overhauser enhancement with the phenyl o-hydrogens (at δ 8.04), clearly indicating that this proton was the 'pro- S ' hydrogen. In support of this assignment, the pro- R resonance (at $\delta 3.51$) was deshielded by the proximate anisotropic phosphorus-oxygen double bond (Fig. 3), and hence resonated to higher frequency of the pro- S hydrogen.
For the nine-membered ring the coupling pattern observed was typical of an $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ multiplet structure (Fig. 4), wherein A

Fig. 3 Assignment of the proton NMR spectrum of [GaL ${ }^{1}$] (293 K , $\mathrm{CD}_{3} \mathrm{OD}$) related to the crystal structure analysis. For assignments of protons see Fig. 4
and B are designated as 'axial' hydrogens and A^{\prime} and B^{\prime} the 'equatorial' hydrogens (see Fig. 3). The two 'equatorial' protons define a dihedral angle of close to 90°, so that a very small coupling constant is expected $\left({ }^{3} J_{\mathrm{HH}} \leqslant 1 \mathrm{~Hz}\right)$. Thus the 'equatorial' hydrogens $\mathrm{H}_{\mathrm{A}^{\prime}}$, and $\mathrm{H}_{\mathrm{B}^{\prime}}$ ' with two observable couplings are readily distinguished from the 'axial' hydrogens, H_{A} and H_{B}, which possess three. Assignments made from the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment were confirmed by a ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HETCOR experiment.

Given that the gallium complex crystallises in space group $P \overline{1}$, there are two enantiomers in the unit cell in equal proportion corresponding to an $R R R$ or $S S S$ configuration at each phosphorus centre.* In the proton-decoupled ${ }^{31} \mathrm{P}$ NMR spectrum a single resonance was obtained, but in the presence of 2 equivalents of the chiral solvating agent 1 -(9-anthryl)-2,2,2-trifluoroethanol ${ }^{24}$ two singlets appeared in 1:1 ratio ($\Delta \delta_{\mathbf{p}}=0.19,293 \mathrm{~K}, \mathrm{C}_{6} \mathrm{D}_{6}$) consistent with the formation of the anisochronous diastereoisomeric complexes. The two enantiomers of [GaL^{1}] could also be resolved by chiral HPLC. Using as a chiral stationary phase the chiral triphenylmethyl methacrylate polymer [Daicel, 'Chiralcek' OT-(+); eluent $\mathrm{MeOH}]$, the two enantiomers eluted with a difference in retention time of $0.9 \mathrm{~min}\left(10^{\circ} \mathrm{C}, t_{\mathrm{R}}=20.9\right.$ and 21.8 min$)$. Using a semipreparative column, samples of the two enantiomers were obtained giving optical rotations of $\alpha\left(589 \mathrm{~nm}, 20^{\circ} \mathrm{C}, 1.1 \mathrm{~g}\right.$ $100 \mathrm{~cm}^{-3}$ in MeOH$)=-85.7(2.0)$, and $-87.5(2.0)^{\circ}$ for the peaks at $t_{\mathrm{R}} 20.9$ and 21.8 min (HPLC) respectively.

Biodistribution Studies of $\left[{ }^{111} \mathrm{InL}^{1}\right]$ and $\left[{ }^{67} \mathrm{GaL}^{1}\right]$.-Given that the ${ }^{71} \mathrm{Ga}$ NMR studies with [GaL^{1}] indicated that the complex was stable with respect to dissociation for at least 6 months in $6 \mathrm{~mol} \mathrm{dm}^{-3}$ nitric acid, it was thought likely that the complex would remain intact in vivo for at least 3 half-lives $\left({ }^{67} \mathrm{Ga}, t_{\frac{1}{2}}=3.25 \mathrm{~d}\right)$. We have previously demonstrated that there is a strong correlation between the stability in vivo of a radiolabelled complex and its kinetic stability with respect to acid-catalysed dissociation. ${ }^{2-4,22}$ Accordingly the ${ }^{67}$ Ga-radiolabelled complex of $\mathrm{H}_{3} \mathrm{~L}^{1}$ was prepared and its biodistribution examined in congenitally athymic nude mice as a function of time and the results compared to those obtained with the analogous complexes [$\left.{ }^{67} \mathrm{GaL}^{4}\right]^{25}$ and the PMe and $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ analogues of $\mathrm{H}_{3} \mathrm{~L}^{1}$.

Concentrations of radioactivity (${ }^{67} \mathrm{Ga}$) in selected tissues after administration of each of these complexes $\dagger\left(c a .2 \mathrm{nmol} \mathrm{g}^{-1}\right.$

* In all of the X-ray and solution NMR analyses this single diastereoisomer was formed. Similar behaviour has been observed in the [12]aneN N_{4} series, where $R R R R$ and $S S S S$ enantiomers are preferred. ${ }^{1,3,22}$
\dagger Full details of this study, including a comparison with the ${ }^{111} \mathrm{In}$ labelled complexes, and their behaviour in tumour-bearing animals, will be published separately.

Fig. 4 The ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY NMR spectrum of [GaL $\left.{ }^{1}\right]$ in the region $\delta 3-4$ showing assignments of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime \prime}$ multiplet and of H_{S} and H_{R} on $\mathrm{C}(1)$

Fig. 5 Biodistribution in mice of $\left[{ }^{67} \mathrm{GaL}^{1}\right]$ and the related complexes at 1 h in mice, compared to that of $\left[\mathrm{GaL}^{4}\right]$
body mass, i.e. a tracer level) at 1 and 24 h are plotted in Figs. 5 and 6. In comparison gallium citrate clears much more slowly from the blood and non-selectively accumulates in various tissues, such as the liver, spleen and femur. ${ }^{25}$ The high level of activity for $\left[{ }^{67} \mathrm{GaL}^{1}\right]$ and the $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ analogue in the biliary tract at 1 h (e.g. small and large intestine) is quite distinctive from the behaviour observed with the more hydrophilic complexes of $\mathrm{H}_{3} \mathrm{~L}^{4}$ and $\mathrm{H}_{3} \mathrm{~L}^{5}$ which clear exclusively via the kidney. By 24 h the activity has mostly cleared from the animal, although there is some hint that the $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ complex is dissociating, given its higher relative concentrations in the blood, liver and spleen. The more lipophilic complexes [of L^{1}
and the $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ analogue] are therefore preferentially and rapidly clearing from the animal via the biliary system (liver, gall bladder, intestines) and may therefore be of some interest in PET (positron emission tomography) imaging of the biliary tract with ${ }^{68} \mathrm{Ga}$-labelled complexes $\left({ }^{68} \mathrm{Ga}, t_{\frac{1}{2}} 68 \mathrm{~min}\right)$. It has previously been noted that the ${ }^{68} \mathrm{Ga}$-labelled complex of $\mathrm{H}_{4} \mathrm{~L}^{6}$ clears by both the kidney and the biliary route, but with little preference. ${ }^{26}$

Similar experiments were undertaken with ${ }^{111} \mathrm{In}$-radiolabelled complexes. Again at 1 h (Fig. 7), the complexes of $\mathrm{H}_{3} \mathrm{~L}^{1}$ and the $\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ analogue showed between 30 and 50% of the activity in the biliary tract whereas the hydrophilic complexes of $\mathrm{H}_{3} \mathrm{~L}^{4}$ and the analogue $\mathrm{H}_{3} \mathrm{~L}^{5}$ cleared via the renal system. However, for all the [9$] \mathrm{aneN}_{3}$ 'phosphinate' indium complexes where the alkyl group R attached to P is $\mathrm{Me}, \mathrm{Ph}, \mathrm{CH}_{2} \mathrm{Ph}$ and also $\operatorname{Pr}^{\mathrm{i}}$, at 24 h the biodistribution data revealed that there was significant retention of ${ }^{111} \mathrm{In}$ in the liver and femur compared to the behaviour of the carboxylate complex of $\mathrm{H}_{3} \mathrm{~L}^{4}$. For example, for [$\left.{ }^{111} \operatorname{InL}{ }^{4}\right]$ at 24 h , there was 0.002% of the injected dose per gram of tissue in the blood and 0.05% in both the liver and the femur. In contrast for $\left[{ }^{111}{ }^{1 n L} L^{1}\right]$ there was 0.25% in the blood at this time and 0.84 and 0.80% in the liver and femur respectively. For both [${ }^{111} \mathrm{InL}^{1}$] and the other phosphinate complexes there was on average 20 times as much of the radiolabel in the kidney or the liver at 24 h , compared to [${ }^{111} \mathrm{InL}^{4}$]. It is apparent that, with these phosphinate complexes, premature dissociation of the ${ }^{111}$ In radiolabel does occur in vivo, in contrast to the behaviour of the gallium-labelled complexes.

The relative lipophilicity of the indium-111 complexes was measured by studying the partition $(\log P)$ of the various radiolabelled complexes in water-octanol, octanol-phosphatebuffered saline, water-butanol and butanol-phosphate-buffered

(b)

Fig. 6 (a) Biodistribution in mice of $\left[{ }^{67} \mathrm{GaL}^{1}\right]$ and related complexes at 24 h . (b) Partial biodistribution (\% injected dose per gram of tissue) in mice of [${ }^{67} \mathrm{GaL}^{1}$] and related complexes at 24 h
saline systems, Table 4. There is a reasonably good correlation between the $\log P$ values obtained and the amount of activity $\left({ }^{67} \mathrm{Ga}\right.$ or $\left.{ }^{111} \mathrm{In}\right)$ found in the gut at 1 h . Clearly, lipophilic neutral complexes of [9]ane N_{3} derivatives clear selectively via the biliary system, but this mode of clearance cannot, presumably, involve the so-called 'anionic liver transporter', ${ }^{22}$ given the charge neutrality of these complexes.

Experimental

Commercial solvents were dried from an appropriate drying agent prior to use according to standard procedures. Water was purified by the MilliQ or Purite system. Proton and carbon-13 NMR spectra were recorded on Bruker AC-250 (250.1 and 62.9 MHz respectively), Varian VXR-400 or Bruker AM 500 spectrometers, ${ }^{31} \mathrm{P}$ NMR spectra on a Bruker AC- 250 spectrometer operating at 101.1 MHz . The ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR chemical shifts are given to higher frequency of SiMe_{4}. Gallium-71 NMR spectra were recorded on the Bruker AC-250 at 76.2 MHz , with shifts given relative to $\left[\mathrm{Ga}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\left(6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HNO}_{3}\right.$, $\delta_{\mathrm{Ga}}=0$). Mass spectra were recorded with a VG 7070 E spectrometer operating in positive-ion FAB mode, using glycerol or m-nitrobenzyl alcohol as the matrix. Infrared spectra were recorded as KBr discs or as a mull in Nujol with a Mattson Sirius 100 FT spectrometer. Melting points were determined on a Reichert-Köfler block and are uncorrected. Visible spectra were recorded with a Uvikon 930 spectrophotometer. The HPLC analyses and separations were effected with a Varian 5560 instrument fitted with a diode-array detector. The

Fig. 7 Biodistribution of selected [$\left.{ }^{111} \mathrm{InL}\right]$ complexes at 1 h in mice

Table 4 Partition coefficient $(\log P)$ for ${ }^{111}$ In-radiolabelled [9]ane N_{3} macrocyclic complexes with e.s.d.s in parentheses ${ }^{a}$

L	$\log P$			
	Octanolwater	Octanol pbs	Butanolwater	Butanol pbs
L^{4}	-4.92(29)	-4.51(46)	-2.54(04)	-2.98(04)
L^{5}	-3.80(11)	-3.68(31)	-1.88(02)	-2.06(01)
$\mathrm{L}^{9}{ }^{\text {b }}$	-3.38(07)	-3.62(21)	-1.79(03)	-2.22(01)
$\mathrm{L}^{8 c}$	- 1.92(02)	-1.89(04)	-0.98(12)	-0.99(13)
$L^{7 d}$	+0.13(22)	+0.10(21)	+0.54(20)	+0.34(21)
L^{1}	+0.33(26)	+0.24(28)	+0.63(23)	+0.49(23)

${ }^{a}$ The correlation (linear regression, R^{2}) between the amount of the ${ }^{111}$ In-radiolabelled complex found in the gut (at 1 h) and the measured $\log P$ value varied between 0.76 (octanol-water) and 0.81 (butanolwater). This was for all of the ${ }^{111} \mathrm{In}$-labelled complexes discussed above. Full details will be reported elsewhere; pbs = phosphate-buffered saline. $\quad{ }^{b} \mathrm{H}_{3} \mathrm{~L}^{9}=$ rac-1,4,7-Triazacyclononane- $N, N^{\prime}, N^{\prime \prime}$-tripropionic acid. $\quad{ }^{c} \mathrm{H}_{3} \mathrm{~L}^{8}=1,4,7$-Triazacyclononane-1,4,7-triyltrimethylenetris(isopropylphosphinic acid). ${ }^{d} \mathrm{H}_{3} \mathrm{~L}^{7}=1,4,7$-Triazacyclononane-1,4,7triyltrimethylenetris(benzylphosphinic acid).
preparative separation of the metal complexes was carried out using a Daicel Chiralcel OT (+) column (J. T. Baker, UK).

Crystal structure data are presented in Table 5 together with the data collection, absorption correction and data analyses parameters. All data were collected with graphitemonochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$. Roomtemperature data for the complexes of $\mathrm{Ni}, \mathrm{Fe}, \mathrm{Ga}$ and Cu were recorded ${ }^{7}$ on a CAD-4 diffractometer and all computations were carried out using the NCRVAX ${ }^{27}$ system on a Silicon graphics 4D-35TG computer. The low-temperature data were measured on a Rigaku AFC-6S four-circle diffractometer fitted with an Oxford Cryostream cooling device. Structure solutions and refinements were effected using the CRYSTALS ${ }^{28}$ program on a microVax 3300 computer, following data reductions with TEXSAN. ${ }^{29}$ The molecular structures are shown in Figs. 1 and 2 for representative complexes giving the atomic numbering scheme. Selected molecular parameters are given in Table 6, atomic coordinates in Table 7.

Additional material available from the Cambridge Crystallographic Data Centre, comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles. The data for the copper(II) and gallium(III) complexes have been deposited previously. ${ }^{7}$

The ligand $\mathrm{H}_{3} \mathrm{~L}^{1}$ was prepared as its dihydrochloride salt according to our published procedure. ${ }^{5}$

Complex Preparation.--Two examples are representative.

$\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CuL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. To a solution of $\mathrm{H}_{3} \mathrm{~L}^{1} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
Table 5 Summary of cell data, data collection and refinement details

Compound	[$\left.\mathrm{FeL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$	[$\left.\mathrm{GaL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$
Formula	$\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{FeN}_{3} \mathrm{O}_{11} \mathrm{P}_{3}$	$\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{GaN}_{3} \mathrm{O}_{11} \mathrm{P}_{3}$
M	734.4	748.3
Colour, habit	Yellow block	Colourless block
Crystal size/mm	$0.15 \times 0.15 \times 0.20$	$0.25 \times 0.14 \times 0.10$
Crystal system	Triclinic	Triclinic
Space group	PT	$P \overline{1}$
a / \AA	11.941(7)	11.883(3)
b / \AA	12.4275(8)	12.468(4)
c / \AA	11.9678(9)	11.842(5)
$\alpha /{ }^{\circ}$	98.525(6)	99.39(1)
$\beta /{ }^{\circ}$	99.522(6)	98.47(1)
$\gamma /{ }^{\circ}$	79.155(6)	79.97(1)
U / \AA^{3}	1707.7(2)	1691.7(4)
Z	2	2
$F(000)$	770	780
Molecular symmetry	Approx. three-fold	Approx. three-fold
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.43	1.47
μ / cm^{-1}	6.3	10.1
Minimum, maximum absorption correction	0.934, 0.998	0.870, 0.912
2θ range/ ${ }^{\circ}$	4-54	4-54
T/K	294	294
Reflections measured	7429	7702
Reflections unique	7429	7362
Reflections with $I \geqslant 3 \sigma(I)$	4456	3149
R, R^{\prime}, goodness of fit	$0.38,0.045,1.24$	0.051, 0.059, 1.19
Minimum, maximum density in final Δ map/e \AA^{-3}	-0.39, 0.35	-0.49, 0.50

Table 6 Selected molecular dimensions (distances in \AA, angles in ${ }^{\circ}$) with e.s.d.s in parentheses
(a) $\left[\mathrm{FeL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$

$\mathrm{Fe}-\mathrm{O}(11)$	1.938(2)	$\mathrm{Fe}-\mathrm{N}(7)$	2.206(3)	$\mathrm{O}(11)-\mathrm{Fe}-\mathrm{O}(21)$	100.5(1)	$\mathrm{O}(21)-\mathrm{Fe}-\mathrm{O}(31)$	100.6(1)
$\mathrm{Fe}-\mathrm{O}(21)$	1.931(2)	$\mathrm{P}(1)-\mathrm{O}(11)$	1.535(2)	$\mathrm{O}(11)-\mathrm{Fe}-\mathrm{O}(31)$	99.7(1)	$\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(4)$	79.4(1)
$\mathrm{Fe}-\mathrm{O}(31)$	1.928(2)	$\mathrm{P}(1)-\mathrm{O}(12)$	1.496(2)	$\mathrm{O}(11)-\mathrm{Fe}-\mathrm{N}(1)$	83.7(1)	$\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(7)$	78.9(1)
$\mathrm{Fe}-\mathrm{N}(1)$	$2.217(3)$	$\mathrm{P}(1)-\mathrm{C}(1)$	1.830(3)	$\mathrm{O}(11)-\mathrm{Fe}-\mathrm{N}(4)$	163.0(1)	$\mathrm{N}(4)-\mathrm{Fe}-\mathrm{N}(7)$	79.6(1)
$\mathrm{Fe}-\mathrm{N}(4)$	$2.192(3)$			$\mathrm{O}(11-\mathrm{Fe}-\mathrm{N}(7)$	95.4(1)		
(b) $\left[\mathrm{InL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$							
In -O(11)	2.0995(9)	In-N(7)	2.306(1)	$\mathrm{O}(11)-\mathrm{In}-\mathrm{O}(21)$	101.12(4)	$\mathrm{O}(21)-\mathrm{In}-\mathrm{O}(31)$	100.81(4)
$\mathrm{In}-\mathrm{O}(21)$	2.0927(9)	$\mathrm{P}(11)-\mathrm{O}(11)$	1.540(1)	$\mathrm{O}(11)-\mathrm{In}-\mathrm{O}(31)$	99.95(4)	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(4)$	78.61(4)
In-O(31)	2.0918(9)	$\mathrm{P}(1)-\mathrm{O}(12)$	1.498(1)	$\mathrm{O}(11)-\mathrm{In}-\mathrm{N}(1)$	82.27(4)	$\mathrm{N}(1)-\mathrm{In}-\mathrm{N}(7)$	78.08(4)
In-N(1)	2.314(1)	$\mathrm{P}(1)-\mathrm{C}(1)$	1.843(1)	$\mathrm{O}(11)-\mathrm{In}-\mathrm{N}(4)$	160.82(4)	$\mathrm{N}(4)-\mathrm{In}-\mathrm{N}$ (7)	78.49(4)
In-N(4)	2.289(1)			$\mathrm{O}(11)-\mathrm{In}-\mathrm{N}(7)$	96.21(4)		
(c) $\left[\mathrm{GaL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$							
$\mathrm{Ga}-\mathrm{O}(11)$	1.917(4)	Ga-N(7)	2.139(5)	$\mathrm{O}(11)-\mathrm{Ga}-\mathrm{O}(21)$	96.2(2)	$\mathrm{O}(21)-\mathrm{Ga}-\mathrm{O}(31)$	96.5(2)
$\mathrm{Ga}-\mathrm{O}(21)$	1.908(4)	$\mathrm{P}(1)-\mathrm{O}(11)$	1.533(5)	$\mathrm{O}(11)-\mathrm{Ga}-\mathrm{O}(31)$	95.7(2)	$\mathrm{N}(1)-\mathrm{Ga}-\mathrm{N}(4)$	82.3(2)
$\mathrm{Ga}-\mathrm{O}(31)$	1.911(4)	$\mathrm{P}(1)-\mathrm{O}(12)$	1.489(5)	$\mathrm{O}(11)-\mathrm{Ga}-\mathrm{N}(1)$	86.1(2)	$\mathrm{N}(1)-\mathrm{Ga}-\mathrm{N}(7)$	82.0(2)
$\mathrm{Ga}-\mathrm{N}(1)$	2.146 (5)	$\mathrm{P}(1)-\mathrm{C}(1)$	1.846(8)	$\mathrm{O}(11)-\mathrm{Ga}-\mathrm{N}(4)$	168.3(2)	$\mathrm{N}(4)-\mathrm{Ga}-\mathrm{N}(7)$	82.2(2)
$\mathrm{Ga}-\mathrm{N}(4)$	$2.121(5)$			$\mathrm{O}(11)-\mathrm{Ga}-\mathrm{N}(7)$	94.7(2)		
(d) $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CoL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}^{*}$							
$\mathrm{Co}-\mathrm{O}(1)$	2.103(2)	$\mathrm{P}(1)-\mathrm{O}(2)$	1.511(2)	$\mathrm{O}(1)-\mathrm{Co}-\mathrm{O}(1 \mathrm{~A})$	96.7(1)	$\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(1 \mathrm{~B})$	167.3(1)
$\mathrm{Co}-\mathrm{N}(1)$	$2.168(3)$	$\mathrm{P}(1)-\mathrm{C}(4)$	1.838(3)	$\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(1)$	85.0(1)	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(1 \mathrm{~A})$	82.3(1)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.525(3)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.496(4)	$\mathrm{O}(1)-\mathrm{Co}-\mathrm{N}(1 \mathrm{~A})$	95.6(1)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	117.7(2)
(e) $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{NiL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$							
$\mathrm{Ni}-\mathrm{O}(1)$	2.083(3)	$\mathrm{P}(1)-\mathrm{O}(2)$	1.506(3)	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{O}(1 \mathrm{~A})$	94.23(12)	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(1 \mathrm{~B})$	95.29(18)
$\mathrm{Ni}-\mathrm{N}(1)$	2.104(3)	$\mathrm{P}(1)-\mathrm{C}(4)$	1.836(4)	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(1)$	86.08(11)	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(1 \mathrm{~A})$	84.36(12)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.518(3)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.487(5)	$\mathrm{O}(1)-\mathrm{Ni}-\mathrm{N}(1 \mathrm{~A})$	170.43(11)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	117.83(16)
$(f)\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ZnL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$							
$\mathrm{Zn}-\mathrm{O}(1)$	2.072(1)	$\mathrm{P}(1)-\mathrm{O}(2)$	1.512(1)	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(1 \mathrm{~A})$	97.97(4)	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{N}(1 \mathrm{~B})$	165.73(4)
$\mathrm{Zn}-\mathrm{N}(1)$	2.218(1)	$\mathrm{P}(1)-\mathrm{C}(4)$	1.842(1)	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{N}(1)$	84.99(4)	$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(1 \mathrm{~A})$	80.83(5)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.529(1)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.491(2)	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{N}(1 \mathrm{~A})$	95.42(5)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	117.50(7)
$(\mathrm{g})\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CuL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$							
$\mathrm{Cu}-\mathrm{O}(1)$	2.099(3)	$\mathrm{P}(1)-\mathrm{O}(2)$	1.505(3)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{O}(1 \mathrm{~A})$	95.06(9)	$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(1 \mathrm{~A})$	83.10(13)
$\mathrm{Cu}-\mathrm{N}(1)$	2.134(3)	$\mathrm{P}(1)-\mathrm{C}(4)$	1.842(4)	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1)$	85.90(11)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	117.52(17)
$\mathrm{Cu}-\mathrm{O}(\mathrm{W} 1)$	3.554(8)	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.486(5)$	$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1 \mathrm{~A})$	95.78(11)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(4)$	104.80(17)
$\mathrm{P}(1)-\mathrm{O}(1)$	1.515(3)			$\mathrm{O}(1)-\mathrm{Cu}-\mathrm{N}(1 \mathrm{~B})$	168.99(11)		

* Symmetry equivalents: A $1-y, x-y, z$; B $1-x+y, 1-x, z$.
$(0.23 \mathrm{~g}, 0.33 \mathrm{mmol})$ in water $\left(2 \mathrm{~cm}^{3}\right)$ was added aqueous copper(II) nitrate solution ($0.01 \mathrm{~mol} \mathrm{dm}{ }^{-3}, 33 \mathrm{~cm}^{3}$) and the solution was heated to $60^{\circ} \mathrm{C}$ for 2 min and then left to cool. On standing for 2 d , blue crystals were deposited which were filtered off and allowed to dry in air ($196 \mathrm{mg}, 80 \%$) (Found: C, 43.4 ; $\mathrm{H}, 6.20 ; \mathrm{Cu}, 8.25 ; \mathrm{N}, 5.60 ; \mathrm{P}, 12.2 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{CuN}_{3} \mathrm{O}_{7} \mathrm{P}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 43.6 ; \mathrm{H}, 5.95 ; \mathrm{Cu}, 8.55 ; \mathrm{N}, 5.65 ; \mathrm{P}, 12.5 \%$); $\lambda_{\max }$ (water): $700 \mathrm{~nm}\left(\varepsilon 82 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$); no change in this absorption band was noted in the range pH 2.2-10.2. FAB mass spectrum (glycerol): $m / z 654\left(M^{+}\right)$.
[$\left.\mathrm{GaL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$. To an aqueous solution of gallium(iII) nitrate ($30 \mathrm{~cm}^{3}, 0.01 \mathrm{~mol} \mathrm{dm}^{-3}$) was added $\mathrm{H}_{3} \mathrm{~L}^{1}$ as a solid ($210 \mathrm{mg}, 0.3$ mmol) and the solution was left to stand for 4 d . The colourless crystals which had formed were filtered off and dried in air (206 $\mathrm{mg}, 92 \%$) (Found: C, 43.3; H, 5.70; N, 5.25; P, 12.0. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{GaN}_{3} \mathrm{O}_{6} \mathrm{P}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 43.2 ; \mathrm{H}, 5.75 ; \mathrm{N}, 5.60 ; \mathrm{P}$, $12.4 \%) ; \delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{OD}\right): 27.36 ; \delta_{\mathrm{Ga}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 132.0\left(w_{1} 560 \mathrm{~Hz}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 53.36\left(\mathrm{CH}_{\mathrm{B}} \mathrm{H}_{\mathrm{B}} \cdot \mathrm{N}\right.$ ring), $57.61\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{A}} \cdot \mathrm{N}\right.$ ring, $\left.{ }^{3} J_{\mathrm{PC}}=12.5\right), 61.6\left(\mathrm{~d}, \mathrm{NCH}_{2} \mathrm{P},{ }^{1} J=91\right), 133.8(\mathrm{~d}, \mathrm{PPh}$, ${ }^{1} J=141$), 133.4 ($\mathrm{m}, o-$ and $p-\mathrm{C}$ of Ph) and 129.7 (d, $m-\mathrm{C}$ of Ph , $\left.{ }^{3} J=13.4 \mathrm{~Hz}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 8.04\left(6 \mathrm{H}, \mathrm{dd}, o-\mathrm{H},{ }^{3} J=7.2\right.$, $\left.{ }^{3} J_{\mathrm{PH}}=12.4\right), 7.56\left(3 \mathrm{H}, \mathrm{dt}, p-\mathrm{H},{ }^{3} J=7.1,{ }^{4} J=1.1\right), 7.46(6 \mathrm{H}$, $\left.\mathrm{dt}, m-\mathrm{H},{ }^{3} J=7.2,{ }^{4} J_{\mathrm{PH}}=3.2\right), 3.75\left[3 \mathrm{H}, \mathrm{ddd},{ }^{2} J\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{A}^{\prime}}\right)=\right.$ $-14,{ }^{3} J\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)=13.8,{ }^{3} J\left(\mathrm{H}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right)=5.5, \mathrm{CH}_{\mathrm{A}} \mathrm{N}$ part of the $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ ' system where A and B represent the 'axial protons': see text for a discussion], $3.61\left[3 \mathrm{H}\right.$, ddd, $\mathrm{CH}_{\mathrm{B}} \mathrm{N},{ }^{2} J\left(\mathrm{H}_{\mathrm{B}} \mathrm{H}_{\mathrm{B}}\right)=$ $-16.8], 3.51\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{NCHP},{ }^{2} J=-14.1,{ }^{2} J_{\mathrm{PH}}=4.6 \mathrm{~Hz}\right), 3.35$ $\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{CH}_{\mathrm{A}^{\prime}} \mathrm{N}\right)$ and $3.25\left(6 \mathrm{H}\right.$, dd $\left.+\mathrm{dd}, \mathrm{CH}_{\mathrm{B}^{\prime}} \mathrm{N}+\mathrm{NCHP}\right)$.

FAB mass spectrum (m-nitrobenzyl alcohol): $m / z 749.3$ $\left(M^{+}+1\right)$ and $748.2\left(M^{+}\right)$.

The following complexes were prepared in a similar manner.
$\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{NiL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Found: C, 43.2; H, 6.10; N, 5.60 ; $\mathrm{Ni}, 7.40 ; \mathrm{P}, 12.8 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{NiO}_{7} \mathrm{P}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 42.9$; $\mathrm{H}, 6.10 ; \mathrm{N}, 5.55 ; \mathrm{Ni}, 7.75 ; \mathrm{P}, 12.3 \%$). FAB mass spectrum (glycerol) $m / z 648\left(M^{+}\right) ; \lambda_{\max }$ (water) 790 and 610 nm .
$\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CoL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Found: C, 43.5 ; H, 6.05 ; Co, 8.55 ; $\mathrm{N}, 5.55 ; \mathrm{P}, 12.0 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{CoN}_{3} \mathrm{O}_{7} \mathrm{P}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ requires C , 43.9 ; $\mathrm{H}, 5.95 ; \mathrm{Co}, 8.00 ; \mathrm{N}, 5.70 ; \mathrm{P}, 12.5 \%$): FAB mass spectrum (glycerol) $m / z 648\left(M^{+}\right) ; \lambda_{\max }$ (water) 521 nm .
$\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ZnL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Found: C, $43.5 ; \mathrm{H}, 6.05 ; \mathrm{N}, 5.65 ; \mathrm{Zn}$, 8.15. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{P}_{3} \mathrm{Zn} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 43.5 ; \mathrm{H}, 5.90$; $\mathrm{N}, 5.65 ; \mathrm{Zn}, 8.75 \%$): mass spectrum FAB (glycerol) $m / z 654$ $\left(M^{+}\right) ; \delta_{\mathbf{P}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 31.2 ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 135.10\left(\mathrm{~d}, \mathrm{PC},{ }^{1} J=140\right)$, $133.34\left(\mathrm{~d}, m-\mathrm{C}\right.$ of $\mathrm{Ph},{ }^{3} J_{\mathrm{PC}}=7$), 133.0 (brs, $\left.p-\mathrm{C}\right), 129.5(\mathrm{~d}, \mathrm{PCC}$, $\left.{ }^{2} J=13\right), 61.53\left(\mathrm{~d}, \mathrm{NCH}_{2} \mathrm{P},{ }^{1} J=100 \mathrm{~Hz}\right), 59.05\left(\mathrm{CH}_{2} \mathrm{~N}\right.$ ring $)$ and $53.06\left(\mathrm{CH}_{2} \mathrm{~N}\right.$ ring); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 8.00(6 \mathrm{H}, \mathrm{br}, \mathrm{m}, o-\mathrm{H}$ of $\mathrm{Ph}), 7.4(6 \mathrm{H}, \mathrm{br} \mathrm{m}, m$ - and $p-\mathrm{H}$ of Ph$), 3.32\left(6 \mathrm{H}\right.$, br dd, $\left.\mathrm{NCH}_{2} \mathrm{P}\right)$ and $2.91\left(12 \mathrm{H}, \mathrm{br}, \mathrm{CH}_{2} \mathrm{~N}\right)$.
[$\left.\mathrm{FeL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Found: C, 44.2; H, 5.90; Fe, 7.60; N, 5.65; P , 12.3. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{FeN}_{3} \mathrm{O}_{6} \mathrm{P}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires C, $44.1 ; \mathrm{H}, 5.90$; $\mathrm{Fe}, 7.60 ; \mathrm{N}, 5.70 ; \mathrm{P}, 12.65 \%$); $\delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 31.4$; FAB mass spectrum (glycerol) $m / z 644\left(M^{+}\right)$.
[$\left.\mathrm{InL}^{1}\right] .5 \mathrm{H}_{2} \mathrm{O}$. (Found: C, $41.1 ; \mathrm{H}, 5.80 ; \mathrm{N}, 5.30 ; \mathrm{P}, 11.4$. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{InN}_{3} \mathrm{O}_{6} \mathrm{P}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 40.8 ; \mathrm{H}, 5.40 ; \mathrm{N}, 5.30 ; \mathrm{P}$, 11.7%); $\delta_{\mathbf{P}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 32.5 ; \mathrm{FAB}$ mass spectrum (glycerol) m / z $704\left(M^{+}\right)$.

Table 7 Fractional atomic coordinates

Atom	x
$(a)\left[\mathrm{FeL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$	
Fe	$0.19986(4)$
$\mathrm{P}(1)$	$0.18390(8)$
$\mathrm{P}(2)$	$-0.01353(8)$
$\mathrm{P}(3)$	$0.35943(8)$
$\mathrm{O}(11)$	$0.19883(20)$
$\mathrm{O}(12)$	$0.28689(20)$
$\mathrm{O}(21)$	$0.03653(18)$
$\mathrm{O}(22)$	$-0.07888(21)$
$\mathrm{O}(31)$	$0.23622(19)$
$\mathrm{O}(32)$	$0.41107(22)$
$\mathrm{N}(1)$	$0.21424(23)$
$\mathrm{N}(4)$	$0.213647(23)$
$\mathrm{N}(7)$	$0.38777(22)$
$\mathrm{C}(1)$	$0.14568(30)$
$\mathrm{C}(2)$	$0.15891(31)$
$\mathrm{C}(3)$	$0.20703(32)$
$\mathrm{C}(4)$	$0.11721(30)$
$\mathrm{C}(5)$	$0.3271(29)$
$\mathrm{C}(6)$	$0.42172(29)$
$\mathrm{C}(7)$	$0.43878(28)$

y
$0.23370(4)$
$0.13557(7)$
$0.25736(8)$
$0.40433(7)$
$0.23629(17)$
$0.08361(19)$
$0.25931(18)$
$0.16660(20)$
$0.37821(17)$
$0.44014(19)$
$0.05292(21)$
$0.17800(22)$
$0.18038(21)$
$0.04170(27)$
$0.01339(27)$
$0.05750(29)$
$0.24811(30)$
$0.20216(29)$
$0.15587(29)$
$0.27405(27)$
z

$0.15897(4)$
$-0.0916(7)$
$0.27672(8)$
$0.23097(7)$
$-0.00269(18)$
$-0.14831(20)$
$0.16633(19)$
$0.27592(24)$
$0.21649(18)$
$0.34907(20)$
$0.11044(23)$
$0.32691(22)$
$0.19508(22)$
$-0.00528(30)$
$0.19554(32)$
$0.31564(31)$
$0.3812(29)$
$0.38867(28)$
$0.31627(30)$
$0.17129(29)$

Atom	x	y	z
C(8)	0.417 24(28)	$0.08078(27)$	$0.11315(31)$
C(9)	$0.33714(31)$	-0.001 8(27)	$0.11123(31)$
C(11)	$0.06013(29)$	0.172 65(26)	-0.194 00(28)
C(12)	0.054 07(32)	$0.12136(30)$	-0.305 28(31)
C(13)	-0.039 83(37)	$0.15135(35)$	-0.385 21(33)
C(14)	-0.1279(36)	$0.23231(38)$	-0.354 68(39)
C(15)	-0.123 61(37)	0.281 92(38)	-0.245 01(43)
C(16)	-0.030 36(35)	$0.25357(33)$	-0.163 90(35)
C(21)	-0.09734(29)	0.390 52(29)	$0.31089(29)$
C(22)	-0.198 54(34)	$0.39913(32)$	0.356 67(34)
C(23)	-0.266 29(38)	$0.50133(36)$	0.377 08(38)
C(24)	-0.234 72(42)	0.593 25(34)	0.352 13(39)
C(25)	-0.133 74(47)	$0.58662(36)$	0.309 65(46)
C(26)	-0.064 64(38)	$0.48489(33)$	0.288 89(40)
C(31)	0.359 55(29)	$0.50414(26)$	$0.13672(28)$
C(32)	0.433 08(36)	0.579 56(35)	$0.16530(35)$
C(33)	$0.42851(44)$	$0.66031(38)$	0.094 08(44)
C(34)	0.353 26(47)	0.664 63(38)	-0.00160(42)
C(35)	0.280 07(48)	0.588 96(45)	$-0.03233(39)$
C(36)	0.283 39(39)	$0.50760(36)$	$0.03690(34)$
C(12)	0.052 1(1)	0.1170 (1)	-0.3173(1)
C(13)	-0.043 9(1)	$0.1437(1)$	-0.4015(1)
C(14)	-0.1375(1)	0.2247 (1)	-0.378 5(1)
C(15)	-0.136 5(1)	0.2789 (1)	-0.271 2(2)
C(16)	-0.041 5(1)	0.253 2(1)	-0.186 6(1)
C(21)	-0.109 5(1)	0.395 2(1)	0.3104 (1)
C(22)	-0.204 1(1)	0.399 4(1)	0.3621 (1)
C(23)	-0.272 6(1)	0.502 2(1)	0.388 3(1)
C(24)	-0.2477(2)	0.600 O(1)	0.363 2(1)
C(25)	-0.152 6(2)	0.596 3(2)	0.314 1(2)
C(26)	-0.083 1(2)	0.494 6(2)	0.2879 (2)
C(31)	$0.3655(1)$	0.5191 (1)	$0.1409(1)$
C(32)	0.446 6(1)	0.5870 (1)	0.1727 (1)
C(33)	0.4491 (2)	0.6703 (2)	0.104 9(2)
C(34)	0.3720 (2)	0.684 9(1)	0.0059 (2)
C(35)	0.292 6(2)	0.617 2(2)	-0.0269(2)
C(36)	0.288 6(2)	0.533 6(2)	0.040 0(1)
$\mathrm{O}(100)$	0.303 08(9)	-0.133 09(9)	-0.2469(1)
O(200)	0.573 2(1)	0.353 07(9)	0.5250 (1)
O(300)	0.583 9(1)	$0.1568(1)$	0.613 9(1)
O(400)	0.2971 (1)	-0.039 5(1)	$-0.4487(1)$
$\mathrm{O}(500)$	0.393 2(1)	0.124 (1)	$-0.3167(1)$

(c) $\left[\mathrm{GaL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Ga	$0.20763(6)$	0.2
$\mathrm{P}(1)$	$0.1871(2)$	0.1
$\mathrm{P}(2)$	$-0.0102(2)$	0.2
$\mathrm{P}(3)$	$0.3576(2)$	0.4
$\mathrm{O}(11)$	$0.2061(4)$	0.23
$\mathrm{O}(12)$	$0.2885(4)$	0.0
$\mathrm{O}(21)$	$0.0446(3)$	0.2
$\mathrm{O}(22)$	$-0.0781(4)$	0.1
$\mathrm{O}(31)$	$0.2347(4)$	0.3
$\mathrm{O}(32)$	$0.4088(4)$	0.43
$\mathrm{~N}(1)$	$0.2154(4)$	0.0
$\mathrm{~N}(4)$	$0.2158(5)$	0.1
$\mathrm{~N}(7)$	$0.3904(4)$	0.1
$\mathrm{C}(1)$	$0.1484(6)$	0.0
$\mathrm{C}(2)$	$0.1604(6)$	0.0
$\mathrm{C}(3)$	$0.2080(6)$	0.0
$\mathrm{C}(4)$	$0.1169(6)$	0.25
$\mathrm{C}(5)$	$0.3289(6)$	0.2
$\mathrm{C}(6)$	$0.4242(6)$	0.1
$\mathrm{C}(7)$	$0.4396(6)$	0.2
$\mathrm{C}(8)$	$0.4200(6)$	0.0
$\mathrm{C}(9)$	$0.3381(6)$	-0.0
$\mathrm{C}(11)$	$0.0634(6)$	0.1

$0.22413(6)$	$0.16563(7)$
$0.1346(2)$	-0.0867
$0.2562(2)$	$0.2272(2)$
$0.4008(2)$	$0.2323(2)$
$0.2337(4)$	$0.0054(4)$
$0.0829(4)$	$-0.1484(4)$
$0.2532(4)$	$0.1659(4)$
$0.1672(4)$	$0.2781(5)$
$0.3715(3)$	$0.2202(4)$
$0.4390(4)$	$0.3498(4)$
$0.0501(4)$	$0.1137(5)$
$0.1785(5)$	$0.3318(5)$
$0.1787(4)$	$0.1967(5)$
$0.0382(6)$	$-0.0016(6)$
$0.0120(6)$	$0.2006(7)$
$0.0585(6)$	$0.3225(7)$
$0.2509(6)$	$0.3850(6)$
$0.2044(6)$	$0.3932(6)$
$0.1568(6)$	$0.3176(6)$
$0.2721(6)$	$0.3176(6)$
$0.0783(6)$	$0.1128(6)$
$-0.0043(6)$	$0.1140(6)$
$0.1735(6)$	$-0.1870(6)$

C(12)	$-0.0250(7)$	$-0.2526(7)$	$-0.1527(7)$
C(13)	$-0.1189(7)$	$-0.2816(7)$	$-0.2313(8)$
C(14)	$-0.1243(7)$	$0.2329(8)$	$-0.3431(8)$
C(15)	$-0.0368(7)$	$0.1525(7)$	$-0.3788(7)$
C(16)	$0.0581(6)$	$0.1222(6)$	$-0.3002(7)$
C(21)	$-0.0933(6)$	$0.3888(6)$	$0.3079(6)$
C(22)	$-0.197(7)$	$0.3997(7)$	$0.3536(7)$
C(23)	$-0.2650(7)$	$0.5012(8)$	$0.3270(8)$
C(24)	$-0.2316(8)$	$0.5915(7)$	$0.3450(8)$
C(25)	$-0.1282(9)$	$0.5832(7)$	$0.3021(9)$
C(26)	$0.0585(7)$	$0.4819(7)$	$0.2838(8)$
C(31)	$0.3556(6)$	$0.4991(6)$	$0.1364(6)$
C(32)	$0.4300(7)$	$0.5763(7)$	$0.1643(7)$
C(33)	$0.4242(8)$	$0.6556(7)$	$0.0938(9)$
C(34)	$0.3490(10)$	$0.6676(8)$	$-0.0031(9)$
C(35)	$0.2770(9)$	$0.5809(9)$	$-0.0317(8)$
C(36)	$0.2800(7)$	$0.5006(7)$	$0.0375(7)$
O(W1)	$0.3019(5)$	$0.1387(5)$	$-0.2387(6)$
O(W2)	$0.5693(6)$	$0.3550(5)$	$0.5252(5)$
O(W3)	$0.5869(0)$	$0.1619(0)$	$0.6164(0)$
O(W4)	$0.2950(8)$	$0.0503(7)$	$-0.4481(7)$
O(W5)	$0.3889(7)$	$0.1160(7)$	$-0.3317(8)$

Table 7 (continued)

Atom	x	y	z	Atom	x	y	z
(d) $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CoL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$							
Co	$\frac{2}{3}$	$\frac{1}{3}$	$0.44619(7)$	C(12)	0.2631 (2)	0.0131 (2)	0.218 6(4)
P(1)	0.426 44(6)	$0.17887(6)$	0.380 51(8)	C(13)	0.218 4(3)	-0.056 1(3)	0.0970 (4)
$\mathrm{O}(1)$	0.523 4(2)	0.282 4(2)	0.326 9(2)	C(14)	0.2851 (3)	-0.0510 (3)	-0.019 3(4)
O(2)	$0.3361(2)$	0.186 6(2)	0.454 0(2)	C(15)	0.393 4(3)	0.0208 (3)	-0.014 2(4)
N(1)	$0.5675(2)$	0.2085 (2)	0.604 5(3)	C(16)	0.4375 (2)	0.088 9(3)	0.1080 (4)
C(2)	0.525 4(2)	0.253 3(2)	0.720 0(3)	$\mathrm{O}(100)$	0.185 4(2)	0.262 2(2)	0.637 4(3)
C(3)	0.640 5(2)	0.174 8(2)	$0.6710(3)$	O(200)	0	0	0.693 7(5)
C(4)	0.481 6(2)	$0.1217(2)$	0.513 8(3)	$\mathrm{O}(300)$	$\frac{2}{3}$	$\frac{1}{3}$	0.054 4(6)
C(11)	0.372 0(2)	0.0860 (2)	0.224 6(3)				
(e) $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{NiL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$							
Ni	$\frac{2}{3}$	$\frac{1}{3}$	0.454 07(10)	C(3)	$0.64035(32)$	0.174 33(31)	0.666 66(47)
P(1)	$0.42904(8)$	0.183 47(8)	0.379 52(13)	C(4)	$0.48190(31)$	0.123 59(30)	$0.51059(47)$
$\mathrm{O}(1)$	$0.52755(21)$	0.287 28(20)	$0.33128(31)$	C(11)	$0.37542(33)$	$0.09176(33)$	0.225 72(48)
$\mathrm{O}(2)$	$0.33801(21)$	$0.19105(23)$	0.450 04(34)	C(12)	$0.26605(36)$	0.018 61(37)	0.217 22(56)
O (W1)	0.189 34(27)	$0.03017(25)$	0.636 22(42)	C(13)	0.223 55(44)	-0.048 58(42)	0.097 82(70)
O(W2)	0	0	0.687 65(90)	C(14)	0.289 54(56)	-0.043 85(44)	-0.014 19(64)
O(W3)	$\frac{2}{3}$	$\frac{1}{3}$	0.052 88(87)	C(15)	0.397 07(53)	0.027 01(46)	-0.008 67(63)
N(1)	$0.56741(24)$	0.209 40(26)	$0.60101(38)$	C(16)	0.440 22(39)	0.094 24(41)	$0.11173(59)$
C(2)	0.524 95(32)	0.253 69(33)	$0.71423(48)$				
$(f)\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{ZnL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$							
Zn	$\frac{2}{3}$	$\frac{1}{3}$	0.440 54(3)	C(12)	0.2631 (1)	0.013 3(1)	$0.2187(2)$
P(1)	$0.42657(3)$	0.179 25(3)	0.380 13(5)	C(13)	0.219 6(2)	-0.055 6(2)	0.0967 (2)
$\mathrm{O}(1)$	0.524 06(9)	0.282 99(9)	0.3267 (1)	C(14)	0.286 2(2)	-0.050 0(2)	-0.019 6(2)
O (2)	0.336 31(9)	$0.1878(1)$	0.4527 (1)	C(15)	0.3951 (2)	0.0227 (2)	-0.013 7(2)
N(1)	$0.5664(1)$	0.207 4(1)	0.605 2(1)	C(16)	0.4389 (1)	0.090 5(2)	0.107 8(2)
C(2)	0.5250 (1)	$0.2531(1)$	0.719 4(2)	$\mathrm{O}(100)$	$0.1868(1)$	0.027 9(1)	0.637 1(2)
C(3)	0.640 2(1)	0.174 4(1)	0.670 0(2)	O(200)	0	0	0.693 6(3)
C(4)	0.4806 (1)	0.121 4(1)	0.514 4(2)	$\mathrm{O}(300)$	$\frac{2}{3}$	$\frac{1}{3}$	$0.0537(4)$
C(11)	0.372 6(1)	0.0871 (1)	0.2250 (2)				
(g) $\left[\mathrm{H}_{3} \mathrm{O}\right]\left[\mathrm{CuL}^{1}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$							
Cu	$\frac{1}{3}$	$\frac{2}{3}$	0.450 48(10)	C(12)	0.7341 (4)	$0.7525(4)$	0.2173 (6)
$\mathrm{P}(1)$	0.571 65(8)	0.754 81(9)	$0.37911(14)$	C(13)	0.778 4(4)	0.728 8(5)	0.099 3(4)
O(1)	$0.47416(23)$	$0.76031(23)$	0.328 6(3)	C(14)	$0.7118(5)$	0.667 4(5)	-0.013 0(6)
O(2)	0.661 68(22)	0.853 43(23)	0.4501 (4)	C(15)	0.603 3(5)	0.6297 (5)	-0.008 0(6)
N(1)	$0.43309(23)$	$0.64291(24)$	0.602 6(4)	C(16)	$0.5610(4)$	0.635 3(4)	0.1115 (6)
C(2)	0.4750 (3)	0.729 5(3)	0.715 8(5)	O(W1)	$\frac{1}{3}$	$\frac{2}{3}$	0.056 6(9)
C(3)	0.3604 (3)	0.5351 (3)	0.667 2(5)	O(W2)	1	1	0.689 8(10)
C(4)	0.5190 (3)	0.642 7(3)	0.5119 9(5)	O(W3)	0.8080 (3)	0.838 9(3)	0.636 9(4)
C(11)	0.6250 (3)	0.7161 (3)	0.225 2(5)				

[$\left.\mathrm{CoL}^{1}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$. This complex was prepared as above except that hydrogen peroxide ($100 \%, 5 \mathrm{~cm}^{3}$) was added to the pink aqueous solution of the cobalt(II) complex. After standing in air at $20^{\circ} \mathrm{C}$ for 2 weeks, dark blue crystals had formed which were filtered off and dried in air (yield 35%) (Found: C, $43.6 ; \mathrm{H}, 6.00$; $\mathrm{N}, 5.50 . \mathrm{C}_{2} 7 \mathrm{H}_{33} \mathrm{CoN}_{3} \mathrm{O}_{6} \mathrm{P}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ requires C, $43.9 ; \mathrm{H}, 5.80 ; \mathrm{N}$, 5.70%); $\delta_{\mathrm{P}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 58.7 ; \delta_{\mathrm{c}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 134.17\left(\mathrm{~d}, \mathrm{PC},{ }^{1} J=138\right)$, $132.7\left(\mathrm{~d}, m-\mathrm{C},{ }^{3} J=14\right), 132.3(\mathrm{~s}, p-\mathrm{C}), 128.11\left(\mathrm{~d}, o-\mathrm{C},{ }^{2} J=12\right)$, $65.90\left(\mathrm{~d}, \mathrm{NCH}_{2} \mathrm{P},{ }^{1} J=85 \mathrm{~Hz}\right), 65.05\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{~N}\right)$ and $61.55(\mathrm{~s}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 8.33(6 \mathrm{H}$, dd, $o-\mathrm{H}), 7.71(3 \mathrm{H}, \mathrm{td}, p-\mathrm{H}), 7.55$ ($6 \mathrm{H}, \mathrm{td}, m-\mathrm{H}$), 4.36 (3 H , ddd, CHN), 4.10 (3 H , ddd, CHN 'equatorial'), 3.85 ($3 \mathrm{H}, \mathrm{dd}, \mathrm{NCHP}$), 3.55 ($3 \mathrm{H}, \mathrm{dd}, \mathrm{CH}^{\prime} \mathrm{N}$ 'axial') and 3.34-3.21 ($6 \mathrm{H}, \mathrm{dd}+\mathrm{dd}, \mathrm{NCH}^{\prime} \mathrm{P}+\mathrm{NCH}^{\prime}$ 'axial'); $\lambda_{\text {max }}$ (water) 565 nm .

Biodistribution Studies and Measurement of Partition Co-efficients.-The methods used to evaluate the biodistribution of the ${ }^{111} \mathrm{In}$ - and ${ }^{67} \mathrm{Ga}$-radiolabelled complexes in mice were as reported earlier. ${ }^{25}$
For the measurement of the partition coefficients of the ${ }^{111}$ In-radiolabelled complexes, the following procedure was used. To a solution of the given macrocyclic ligand ($10 \mu \mathrm{l}$ of a 20 $\mathrm{mmol} \mathrm{dm}{ }^{-3}$ aqueous solution) was added $100 \mu \mathrm{Ci}\left(3.7 \times 10^{6}\right.$ $\mathrm{Bq})$ of ${ }^{111} \mathrm{InCl}_{3}$ (Amersham) plus 10% of indium chloride in ammonium acetate ($0.2 \mathrm{~mol} \mathrm{dm}^{-3}, \mathrm{pH} 5$) to give a total volume of $100 \mu \mathrm{l}$. After $15-30 \mathrm{~min}$ at $37^{\circ} \mathrm{C}$ the mixture was quenched with a 10 -fold excess of diethylenetriamine- $N, N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime}$ -
pentaacetic acid) and the radiolabelled [9]ane N_{3} complex was separated by HPLC on a Poros Q/M column with the eluent ($2 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$) aqueous ammonium acetate (0.15 mol $\mathrm{dm}^{-3}, \mathrm{pH} 6.8$).

Four different mixtures ($1: 1 \mathrm{v} / \mathrm{v}$) were used, comprising (a) octanol-water, (b) octanol-phosphate-buffered saline (pH 7.3 , Dulbeccos-A), (c) butanol-water and (d) butanol-phosphatebuffered saline (pH 7.3). All solvents were 'saturated with their partner' (i.e. allowed to equilibrate for 3 h) before certain volumes for the experiment were dispensed. For each of the above mixtures, three different volume ratios were employed: $0.5 \mathrm{~cm}^{3}+0.5 \mathrm{~cm}^{3}, 0.75 \mathrm{~cm}^{3}+0.25 \mathrm{~cm}^{3}$ and $0.25 \mathrm{~cm}^{3}+0.75$ cm^{3}. To each of these mixtures was added $10 \mu \mathrm{l}$ of a solution containing the ${ }^{111} \mathrm{In}$-radiolabelled [9]ane N_{3} macrocycle (in $0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ ammonium acetate, pH 6.8). The solutions were shaken for 1 h , and then centrifuged for 2 min to allow the phases to separate. Duplicate samples ($100 \mu \mathrm{l}$ each) were taken from each phase of each tube and were counted for radioactivity (LKB Compugamma).

The value of the partition coefficient P was determined as the ratio of the activity (counts min^{-1}) in the organic to the aqueous phase. Results are shown in Table 4. The large standard deviations (in parentheses) for the $\log P$ values obtained with the [9]ane $\mathrm{N}_{3} \mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)$ and PPh complexes in octanol-water occurred because when the volume ratio was varied ($1: 3$ to $1: 1$ to $3: 1$) the $\log P$ values also changed. This effect was not so marked in the butanol-water mixtures.

Acknowledgements

We thank the SERC for support (to R. C. B. C.) and for a CASE award (to E. C. with W. R. Grace Ltd.), the MRC for support (to L. R.), Dr. Dermot O'Hare (Oxford) for the low-temperature ESR measurements, NSERC for continuing support via operating grants (to G. F.), and the University of Durham for an equipment grant.

References

1 C. J. Broan, K. J. Jankowski, R. Kataky and D. Parker, J. Chem. Soc., Chem. Commun., 1990, 1738; C. J. Broan, K. J. Jankowski, R. Kataky, A. M. Randall and A. Harrison, J. Chem. Soc., Chem. Commun., 1990, 1739; 1991, 204.
2 D. Parker, Chem. Soc. Rev., 1990, 19, 271; D. Parker and K. J. Jankowski, in Advances in Metals in Medicine, eds. B. A. Murrer and M. J. Abrams, Jai Press, London, 1993, vol. 1, pp. 29-73.
3 K. P. Pulukkody, T. J. Norman, D. Parker, L. Royle and C. J. Broan, J. Chem. Soc., Perkin Trans. 2, 1993, 605.

4 J. P. L. Cox, K. J. Jankowski, R. Kataky, D. Parker, N. R. A. Beeley, B. A. Boyce, M. A. W. Eaton, K. Millar, A. T. Millican, A. Harrison and C. A. Walker, J. Chem. Soc., Chem. Commun., 1989, 797; C. J. Broan, J. P. L. Cox, A. S. Craig, R. Kataky, D. Parker, G. Ferguson, A. Harrison and A. M. Randall, J. Chem. Soc., Perkin Trans. 2, 1991, 87.
5 E. Cole, C. J. Broan, K. J. Jankowski, D. Parker, K. Pulukkody, B. A. Boyce, N. R. A. Beeley, K. Millar and A. T. Millican, Synthesis, 1992, 63.
6 T. B. Karpishin, T. P. P. Stack and K. N. Raymond, J. Am. Chem. Soc., 1993, 115, 182.
7 E. Cole, D. Parker, G. Ferguson, J. F. Gallagher and B. Kaitner, J. Chem. Soc., Chem. Commun., 1991, 1473.

8 K. Weighardt, U. Bossek, P. Chaudhuri, H. Herrmann, B. C. Menke and J. Weiss, Inorg. Chem., 1982, 21, 4308.
9 P. Comba, A. M. Sargeson, L. M. Engelhardt, J. M. Harrowfield, A. H. White, E. Horn and M. R. Snow, Inorg. Chem., 1985, 25, 2325.

10 R. Hoffmann, J. M. Howell and A. R. Rossi, J. Am. Chem. Soc., 1976, 98, 2484.
11 E. I. Stiefel, R. Eisenberg, R. C. Rosenberg and H. B. Gray, J. Am. Chem. Soc., 1966, 88, 2956.
12 J. A. Bertrand, J. A. Kelly and E. G. Vassien, J. Am. Chem. Soc., 1969, 91, 2394; G. A. Zakrzewski, C. A. Ghilardi and E. C. Lingafelter, J. Am. Chem. Soc., 1971, 93, 4411.

13 H. Al-Sagher, I. Fallis, L. J. Farrugia and R. D. Peacock, J. Chem. Soc., Chem. Commun., 1993, 1499.
14 A. S. Craig, I. M. Helps, H. Adams, N. Bailey, M. Williams and G. Ferguson, Polyhedron, 1989, 8, 2481.

15 R. C. Matthews, D. Parker, G. Ferguson, J. F. Gallagher and B. Kaitner, Polyhedron, 1991, 10, 1951.

16 M. J. van der Merwe, J. C. A. Boeyens and R. D. Hancock, Inorg. Chem., 1983, 22, 3489.
17 M. I. Kabachnik, M. Y. Antipin, B. K. Scherbakov, A. P. Baranov, Y. T. Struchkov, T. Y. Medved and Y. M. Polikarpov, Koord. Khim., 1988, 14, 299; M. Y. Antipin, A. P. Baranov, M. I. Kabachnik, T. Y. Medved, Y. M. Polikarpov, Y. M. Struchkov and B. K. Scherbakov, Izv. Akad. Nauk. SSSR, Ser. Khim., 1986, 31.

18 D. L. Cullen and E. C. Lingafelter, Inorg. Chem., 1970, 9, 1858; 1971, 10, 1264.
19 B. Hathaway, J. Mullane, M. Duggan, A. Murphy, C. Power and B. Walsh, Coord. Chem. Rev., 1981, 36, 267.

20 R. I. Sheldon, A. J. Jircitano, M. A. Beno, J. M. Williams and K. B. Mertes, J. Am. Chem. Soc., 1983, 105, 3028.

21 A. Bevilacqua, R. I. Gelb, W. B. Hebard and L. J. Zompa, Inorg. Chem., 1987, 26, 2699.
22 A. Harrison, C. A. Walker, K. A. Pereira, D. Parker, L. Royle, K. Pulukkody and T. J. Norman, Magn. Reson. Imaging, 1993, 11, 761 ; S. Aimé, M. Botta, K. Senanayake, D. Parker, J. A. K. Howard, G. Williams and A. Batsanov, Inorg. Chem., in the press.
23 A. S. Craig, D. Parker, H. Adams and N. Bailey, J. Chem. Soc., Chem. Commun., 1989, 1792.
24 D. Parker, Chem. Rev., 1991, 91, 1441.
25 A. Harrison, C. A. Walker, K. A. Pereira, D. Parker, L. Royle, R. C. Matthews and A. S. Craig, Nuc. Med. Commun., 1992, 13, 667.

26 M. J. Welch and S. Moerlein, Inorg. Chem. Biol. Med., 1980, 7, 121.
27 E. J. Gabe, Y. Le Page, J.-P. Charland, F. L. Lee and P. S. White, J. Appl. Crystallogr., 1989, 22, 384.

28 P. V. Betteridge, C. K. Prout and D. J. Watkin, CRYSTALS, University of Oxford, 1984.
29 TEXSAN, Molecular Structures Corporation, Houston, TX, 1992.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

[^1]: * The oxonium ion, $\mathrm{H}_{3} \mathrm{O}^{+}$, is located [as in the nickel, zinc and cobalt(II) structures] well away from the ligand heteroatoms and on the three-fold symmetry axis.

