Controlled Hydrolysis Reactions of Solvated $\left[\mathrm{TiCl}_{n}\right]^{(4-n)+}$ Species. Crystal and Molecular Structures of $\left[\mathrm{Mg}(\mathrm{MeCN})_{5}\right]\left[\left\{\mathrm{TiCl}_{4}-\right.\right.$ (MeCN) $\left.\}_{2}(\mu-\mathrm{O})\right] \cdot 4 \mathrm{MeCN}$ and $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right] \cdot 2 \mathrm{MeCN} \dagger$

Gerald R. Willey,*,a Janet Palin ${ }^{*}$ and Michael G. B. Drew ${ }^{b}$
${ }^{a}$ Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
${ }^{b}$ Department of Chemistry. University of Reading, Whiteknights, Reading RG6 2AD, UK

Abstract

Partial hydrolysis reactions of the solvated $\left[\mathrm{TiCl}_{5}(\mathrm{MeCN})\right]^{-}$anion and of the adduct $\mathrm{TiCl}_{4} \cdot 2 \mathrm{MeCN}$ gave the μ-oxo-dititanium anion $\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right]^{2-}$ and the neutral tetranuclear μ-oxo compound $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right]$, respectively, as established by X-ray crystallographic studies. Crystals of $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right] \cdot 4 \mathrm{MeCN} 1$ are monoclinic, space group $P 2_{1} / n, a=14.777(6), b=$ 14.603(6), $c=21.214(10) \AA, \beta=105.3(1)^{\circ}$. The structure contains discrete octahedral $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]^{2+}$ cations, $\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right]^{2-}$ anions and solvent (MeCN) molecules. Crystals of $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\right.\right.$ $\left.0)\}_{4}\right] \cdot 2 \mathrm{MeCN} 2$ are orthorhombic, space group $P 2,2,2, a=12.165(6), b=12.367(6), c=27.927$ (11) \AA. The structure contains discrete $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right]$ units and solvent (MeCN) molecules. In 1 both titanium atoms have an octahedral environment. The Ti-O-Ti bridge is approximately linear [174.7(3) ${ }^{\circ}$] with equivalent Ti-O distances of $1.783(4)$ and $1.764(4) \AA$. By contrast in 2 there are four Ti-O-Ti bridges but in each case the two Ti-O distances are significantly different with mean values of $1.668,1.954 \AA$.

Controlled hydrolysis of $\mathrm{Ti}-\mathrm{X}(\mathrm{X}=$ halogen) bonds is a convenient route to titanoxanes involving either oxo-bridged linkages $\mathrm{Ti}_{n}(\mu-\mathrm{O})_{m}$ or the terminal bonded titanyl $\mathrm{Ti}=\mathrm{O}$ unit. For the former, dinuclear ($n=2$) complexes with single ($m=$ 1) or double ($m=2$) bridging oxygen atoms are, perhaps, the more familiar, particularly where the metal carries an extremely bulky ancillary ligand such as $\mathrm{C}_{5} \mathrm{H}_{5},{ }^{1} \mathrm{C}_{5} \mathrm{H}_{2}\left(\mathrm{SiMe}_{3}\right)_{3},{ }^{2}$ crown ether ${ }^{3}$ or 1,4,7-triazacyclononane ($[9]$ ane $_{3}$), ${ }^{4}$ but multinuclear ($n>2$) titanium complexes in the form of cages and/ or rings are also well documented. ${ }^{5}$ Examples of titanyl compounds are limited to just a handful, viz. $\left[\mathrm{NEt}_{4}\right]_{2}[\mathrm{Ti}(\mathrm{O})$ $\left.\mathrm{Cl}_{4}\right]^{6} \quad[\mathrm{Ti}(\mathrm{O})(\mathrm{oep})]^{7} \quad($ oep $=2,3,7,8,12,13,17,18$-octaethylporphinato dianion) $[\mathrm{Ti}(\mathrm{O})(\text { dmoep })]^{8} \quad($ dmoep $=5,15$-di-hydro-5,15-dimethyl-2,3,7,8,12,13,17,18-octaethylporphinato dianion), $[\mathrm{Ti}(\mathrm{O})(\mathrm{pc})]^{9}\left(\mathrm{pc}=\mathrm{C}_{32} \mathrm{H}_{16} \mathrm{~N}_{8}{ }^{2-}\right.$ the phthalocyaninato dianion) and, more recently, $[\mathrm{Ti}(\mathrm{O}) \mathrm{L}]^{10}\left(\mathrm{H}_{2} \mathrm{~L}=5,14\right.$ -dihydro-6,8,15,17-tetramethyldibenzo $[b, i][1,4,8,11]$ tetraazacyclotetradecine. In all these hydrolysis reactions the stoichiometry of reactants and the experimental conditions employed, in particular the manner of addition of the relatively small amounts of $\mathrm{H}_{2} \mathrm{O}$ involved, appear to be critical with respect to the number and type(s) of product obtained.
In 1963 Feltz ${ }^{11}$ reported that partial hydrolysis of $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})_{2}\right]$ using acetonitrile as bulk solvent leads to the addition compounds $\mathrm{Ti}_{2} \mathrm{Cl}_{6} \mathrm{O} \cdot 4 \mathrm{MeCN}$ and $\mathrm{Ti}_{2} \mathrm{Cl}_{6} \mathrm{O} \cdot 6.5 \mathrm{MeCN}$. Furthermore, direct treatment of $\mathrm{Ti}_{2} \mathrm{Cl}_{6} \mathrm{O} \cdot 4 \mathrm{MeCN}$ and dioxane (diox) yielded an adduct which was formulated as $\mathrm{Cl}_{3} \mathrm{Ti}(\mathrm{O})$ -TiCl_{3}-4diox. Intrigued by these results we decided to take a closer look at hydrolysis reactions of simple chlorotitanium(iv) species, $\left[\mathrm{TiCl}_{n}\right]^{(4-n)+}$, with the objective of X-ray structural characterisation of the product(s). Herein we describe the results obtained from studies of the controlled hydrolysis of (a) the neutral adduct $\left[\mathrm{TiCl}_{4}(\mathrm{MeCN})_{2}\right]$ as a repeat of the Feltz study $(n=4)$ and (b) the solvated pentachloro anion $\left[\mathrm{TiCl}_{5}(\mathrm{MeCN})\right]^{-} \quad(n=5)$, which was obtained as the

[^0]magnesium salt from the reaction system $2 \mathrm{TiCl}_{4}-\mathrm{MgCl}_{2}-$ $\mathrm{MeCN} \longrightarrow\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]\left[\mathrm{TiCl}_{5}(\mathrm{MeCN})\right]_{2}$.

Experimental

All manipulations were carried out using Schlenk and highvacuum line techniques in conjunction with a standard dinitrogen atmosphere glove-box. Solvents were stored over CaH_{2} and sodium-potassium amalgam and distilled under a dinitrogen atmosphere prior to use. The IR spectra were recorded on a Perkin-Elmer 580B instrument with samples as Nujol mulls placed between CsI discs. Elemental analyses were carried out by Medac, Uxbridge, Middlesex.

Preparation of the Complexes.-Solution A. The addition of water for the controlled hydrolysis reactions was effected by syringe injection of the appropriate amount of a standard $\mathrm{H}_{2} \mathrm{O}-$ MeCN solution ($0.0406 \mathrm{~g} \mathrm{~cm}^{-3}$); the latter was prepared by careful addition of $\mathrm{H}_{2} \mathrm{O}(2.030 \mathrm{~g})$ to acetonitrile in a calibrated $50 \mathrm{~cm}^{3}$ volumetric flask.
$\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right] \cdot 4 \mathrm{MeCN}$ 1. A solution of $\mathrm{TiCl}_{4}(2.13 \mathrm{~g}, 11.229 \mathrm{mmol})$ in $\mathrm{MeCN}\left(25 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of $\mathrm{MgCl}_{2}(0.535 \mathrm{~g}, 5.615 \mathrm{mmol})$ in $\mathrm{MeCN}\left(50 \mathrm{~cm}^{3}\right)$. The mixture was warmed $\left(50^{\circ} \mathrm{C}\right)$ and stirred for 5 h to give a clear yellow solution. On cooling this solution to room temperature hydrolysis was induced by the dropwise addition of solution $\mathbf{A}\left(2.50 \mathrm{~cm}^{3}, 5.634 \mathrm{mmol}\right)$ and the resulting deep yellow solution was stirred for a further 24 h . Slow removal of solvent, to approximately one quarter of the original volume, resulted in the deposition of yellow needle crystals. Yield 1.98 g , 38.6% (Found: C, $31.40 ; \mathrm{H}, 3.80 ; \mathrm{Cl}, 29.95 ; \mathrm{N}, 18.20$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{Cl}_{8} \mathrm{MgN}_{12} \mathrm{OTi}_{2}: \mathrm{C}, 31.60 ; \mathrm{H}, 4.00 ; \mathrm{Cl}, 31.10 ; \mathrm{N}$, 18.40%); $\tilde{\mathrm{v}}_{\text {max }} / \mathrm{cm}^{-1}$ (Nujol) 2313, $2286[\mathrm{v}(\mathrm{C} \equiv \mathrm{N})], 786\left[\mathrm{v}_{\text {asym }}{ }^{-}\right.$ (Ti-O-Ti)], 495s, 428s, $405 \mathrm{w}, 390 \mathrm{w}, 345 \mathrm{vs}$ (br) $[\mathrm{v}(\mathrm{Ti}-\mathrm{Cl})]$, 280 vs (sh).
$\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right] \cdot 2 \mathrm{MeCN} 2$. The standard solution A ($2.00 \mathrm{~cm}^{3}, 4.507 \mathrm{mmol}$) was added dropwise to a chilled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathrm{TiCl}_{4}(1.710 \mathrm{~g}, 9.014 \mathrm{mmol})$ in $\mathrm{MeCN}\left(30 \mathrm{~cm}^{3}\right)$ and the resulting deep yellow solution was stirred at room
temperature for 24 h . Following slow removal of solvent, to approximately one quarter of the original volume, the concentrated solution was placed in the refrigerator when light yellow needle crystals deposited. Yield $0.89 \mathrm{~g}, 41.5 \%$ (Found: C, $25.00 ; \mathrm{H}, 3.00 ; \mathrm{Cl}, 29.65 ; \mathrm{N}, 14.30$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{Cl}_{8} \mathrm{~N}_{10^{-}}$ $\mathrm{O}_{4} \mathrm{Ti}_{4}: \mathrm{C}, 25.30 ; \mathrm{H}, 3.20 ; \mathrm{Cl}, 29.85 ; \mathrm{N}, 14.75 \%$); $\tilde{\mathrm{v}}_{\text {max }} / \mathrm{cm}^{-1}$ (Nujol) 2310, $2279[\mathrm{v}(\mathrm{CN})], 780\left[\mathrm{v}_{\text {asym }}(\mathrm{Ti}-\mathrm{O}-\mathrm{Ti})\right], 492 \mathrm{w}, 402$ (sh), 380vs (br) [v(TiCl)], $330(\mathrm{sh}), 274 \mathrm{~s}$.

X-Ray Crystallography.-Crystal data are given in Table 1, together with refinement details. Data for both crystals were collected with Mo-K α radiation using the MAR research image plate system. The crystals were positioned at 75 mm from the X-ray source. 90 Frames were measured at 2° intervals with a counting time of 5 min . Data analysis was carried out with the XDS program. ${ }^{12}$ Both structures were solved using direct methods with SHELX86. ${ }^{13}$ In both structures the nonhydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms on the MeCN groups were included as rigid groups each with a common thermal parameter. Both structures were then refined using SHELXL. ${ }^{14}$ All calculations were carried out on a Silicon Graphics R 4000 workstation at the University of Reading. The final atomic coordinates for 1 and 2 are given in Tables 2 and 3 and important dimensions in Tables 4 and 5.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

Hydrolysis of $\left[\mathrm{TiCl}_{5}\right]^{-}$.-Sobota et al. ${ }^{15}$ have shown that the reaction of MgCl_{2} and TiCl_{4} in tetrahydrofuran (thf) can provide three separate products depending on the ratio of reactants ($\mathrm{Mg}: \mathrm{Ti}$) used. Specifically, with a $1: 2$ stoichiometry the salt $\left[\mathrm{Mg}(\mathrm{thf})_{6}\right]\left[\mathrm{TiCl}_{5}(\text { thf })\right]_{2}$ is formed following chloride transfer to titanium(Iv) acting as a Lewis acid. We have used this route to the desired pentachloro anion but with acetonitrile as solvent; the subsequent hydrolysis reaction was induced by careful introduction of 1 equivalent of water [equation (1)].

Compound 1 was isolated (39% yield) as yellow air- and moisture-sensitive needle crystals; the HCl eliminated was not monitored. Microanalytical and spectroscopic data of 1 are consistent with the proposed formulation. The IR spectrum contains a strong band at $786 \mathrm{~cm}^{-1}\left[\mathrm{v}_{\text {asym }}(\mathrm{Ti}-\mathrm{O}-\mathrm{Ti})\right]$ indicative of a linear μ-oxo linkage of two titanium groups ${ }^{2,16}$ and a sharp doublet at 2313, $2286 \mathrm{~cm}^{-1}[\mathrm{v}(\mathrm{CN})]$ characteristic of coordinated acetonitrile. The broad intense asymmetric band at $345 \mathrm{~cm}^{-1}[\mathrm{v}(\mathrm{TiCl})]$ most likely incorporates a contribution from the $\mathrm{Mg}-\mathrm{N}$ stretching mode of $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]^{2+}\left(v_{14} 330\right.$ cm^{-1}). ${ }^{17}$

The structure of 1 consists of a discrete $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]^{2+}$ cation, a $\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right]^{2-}$ anion and four solvent (MeCN) molecules as depicted in Fig. 1. The structure of the anion is shown in Fig. 2 together with the atom numbering scheme. It contains no crystallographic symmetry; each of the approximately octahedral titanium atoms is bonded to four chlorine atoms in an equatorial plane and a mutually trans MeCN ligand and bridging oxygen atom ($D_{4 h}$). The two Ti-O bond distances are approximately equivalent at 1.783(4), $1.764(4) \AA$, with a Ti-O-Ti angle of $174.7(3)^{\circ}$. The Ti-N bond distances are $2.273(5)$ and $2.278(5) \AA$ and the $\mathrm{Ti}-\mathrm{Cl}$ bond

Fig. 1 Structure of 1 showing the octahedral $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]^{2+}$ cation, the $\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right]^{2-}$ anion and the four solvent MeCN molecules

Fig. 2 Structure of the $\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right]^{2-}$ anion of 1 showing the atomic numbering scheme
distances range from $2.296(2)$ to $2.323(2) \AA$. The two TiCl_{4} moieties are approximately eclipsed with $\mathrm{Cl}-\mathrm{Ti} \cdots \mathrm{Ti}-\mathrm{Cl}$ torsion angles of $<2.0^{\circ}$. These dimensions compare favourably with those found in the isomeric form reported by Krug and Muller, ${ }^{18}$ as an inadvertent hydrolysis product from the $\mathrm{TiCl}_{4}-\mathrm{Se}\left(\mathrm{SiMe}_{3}\right)_{2}-\mathrm{PPh}_{4} \mathrm{Cl}$ reaction system. Here each acetonitrile ligand is in a cis location with respect to the bridging oxygen atom $\left(C_{2 h}\right)$ (see Table 6). The $\left[\mathrm{Mg}(\mathrm{MeCN})_{6}\right]^{2+}$ cation has expected dimensions ${ }^{21}$ with $\mathrm{Mg}-\mathrm{N}$ bond distances ranging between $2.129(6)$ and $2.184(7) \AA$. The four solvent (MeCN) molecules show no close contacts to either cation or anion.

Hydrolysis of in situ $\left[\mathrm{TiCl}_{5}(\mathrm{MeCN})\right]^{-}$anions is seen to involve ligand exchange ($\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{MeCN}$), hydrogen chloride elimination (I) and condensation (II) reactions leading directly to the formation of 1. As mentioned earlier, stabilisation of the single $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ unit normally derives from

Table 1 Crystal data and structure refinement for $\left[\mathrm{Mg}\left(\mathrm{MeCN}_{6}\right]\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right] \cdot 4 \mathrm{MeCN} 1\right.$ and $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right] \cdot 2 \mathrm{MeCN} 2$

	1	2
Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{Cl}_{8} \mathrm{MgN}_{12} \mathrm{OTi}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{C}_{18} \mathrm{~N}_{10} \mathrm{O}_{4} \mathrm{Ti}_{4}$
M	912.36	949.69
T/K	293	293
Crystal system	Monoclinic	Orthorhombic
Space group	$P 2_{1} / n$	$P 2_{1} 2_{1} 2_{1}$
a / \AA	14.777(6)	12.165(6)
b / \AA	14.603(6)	12.367(6)
c / \AA	21.214(10)	27.927(11)
$\beta /{ }^{\circ}$	105.3(1)	
U / \AA^{3}	4415	4202
Z	4	8
$D_{\mathrm{c}} / \mathrm{Mg} \mathrm{m}^{-3}$	1.373	1.492
$\lambda(\mathrm{Mo}-\mathrm{K} \alpha) / \AA$	0.71071	0.71071
μ / mm^{-1}	0.895	1.279
$F(000)$	1856	1880
Crystal size/mm	$0.2 \times 0.2 \times 0.2$	$0.3 \times 0.2 \times 0.1$
θ range $/^{\circ}$	1.99-24.83	2.20-25.00
Index ranges	$-15<h<15,0<k<17,-24<l<24$	$0<h<14,-14<k<14,-33<l<33$
Reflections collected	12765	13094
Independent reflections	6814 [R (int) 0.0237]	7185 [R (int) 0.0569$]$
Refinement method	Full-matrix least squares on F^{2}	Full-matrix least squares on F^{2}
Data/parameters	6814/466	7185/401
Goodness-of-fit on F^{2}	0.940	0.767
Final R indices [$I>3 \sigma(I)$]	0.050 (4806 reflections)	0.055 (4284 reflections)
R indices (all data) $R 1$	0.1108	0.1260
$w R 2$	0.3066	0.3409
Max., min. electron density/e \AA^{-3}	0.524, -1.219	0.577, -0.706

the presence of large bulky substituents on the metal which can act as a steric control against subsequent hydrolysis reactions. What is surprising in the present instance is that with such a high density of chlorine atoms around each metal centre further hydrolysis, perhaps involving 'stray' water molecules from solvent impurity, to give a double $\mathrm{Ti}_{2}(\mu-\mathrm{O})_{2}$ or ring oxo-bridged system was not observed. Presumably the overall negative charge of these anion species effectively minimises nucleophilic attack at the metal.

Hydrolysis of TiCl_{4}.-Treatment of titanium(Iv) chloride (1 mol) (as the bis-adduct species $\mathrm{TiCl}_{4} \cdot 2 \mathrm{MeCN}$ formed in situ) with water (0.5 mol) in acetonitrile provided light yellow needle crystals of the neutral tetranuclear titanoxane $\left[\left\{\mathrm{TiCl}_{2}-\right.\right.$ $\left.\left.(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right]$ 2. The IR spectrum shows characteristic bands at $780\left[\mathrm{v}_{\text {asym }}(\mathrm{Ti}-\mathrm{O}-\mathrm{Ti})\right], 380[\mathrm{v}(\mathrm{TiCl})]$ and a doublet at $2310,2279 \mathrm{~cm}^{-1}[v(\mathrm{CN})]$ characteristic of co-ordinated acetonitrile. The structure of 2, shown in Fig. 3 with the atom labelling used, consists of discrete molecules of the tetramer $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right]$ together with two solvent MeCN molecules. The $\mathrm{Ti}_{4} \mathrm{O}_{4}$ moiety is significantly distorted from planarity: the four oxygen atoms are planar to within $0.06 \AA$ but the titanium atoms are $c a .0 .28 \AA$ alternately above and below this plane. The four $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ angles range from $166.8(6)$ to $172.6(5)^{\circ}$. Within the tetrameric unit the four titanium atoms have equivalent geometries being bonded to two mutually cis terminal chlorine atoms, two mutually cis terminal MeCN ligands and two mutually cis bridging oxygen atoms. The two Ti-O bond distances differ somewhat, with those trans to MeCN (mean value $1.668 \AA$) shorter than those trans to chlorine (mean value $1.954 \AA$). This situation is atypical since in the majority of $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ moieties the individual $\mathrm{Ti}-\mathrm{O}$ bonds are broadly equivalent. The $\mathrm{Ti}-\mathrm{N}$ bond distances trans to the

Fig. 3 Structure of the $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right]$ tetramer in 2 showing the atomic numbering scheme
shorter Ti-O bond are longer at ca. $2.320 \AA$ compared to those trans to the chlorine atoms at $c a .2 .184 \AA$. The Ti-Cl bond distances follow a similar pattern in that those trans to oxygen, albeit the less strongly bound oxygen, are significantly longer at $2.323(4), 2.329(4), 2.341(4), 2.334(4) \AA$ than those trans to nitrogen (MeCN) at 2.287(5), 2.295(5), 2.285(4), 2.280(5) \AA. Condensed titanoxanes containing a $\mathrm{Ti}_{4} \mathrm{O}_{4}$ skeletonal unit are known, e.g. $\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Cl}(\mu-\mathrm{O})\right\}_{4}\right]$, planar $[\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ 159.7(4), 164.8(5) $\left.{ }^{\circ}\right] ;{ }^{5 a}\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{OC}_{9} \mathrm{H}_{11}\right)(\mu-\mathrm{O})\right\}_{4}\right]\left(\mathrm{OC}_{9}-\right.$ $\mathrm{H}_{11}=2,4,6$-trimethylphenoxo), planar [$\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ 153.8(2), $\left.165.6(3)^{\circ}\right] ;{ }^{5 b}\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{HMe}_{4}\right) \mathrm{Br}(\mu-\mathrm{O})\right\}_{4}\right]$, planar [$\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ 149.3(5), $\left.175.7(5)^{\circ}\right] ;{ }^{5 \mathrm{c}} \quad\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)(\mathrm{NCS})(\mu-\mathrm{O})\right\}_{4}\right]$, planar $\left[\mathrm{Ti}-\mathrm{O}-\mathrm{Ti} 148.8(6), 171.2(6), 146.7(4), 177.6(7)^{\circ}\right] ;{ }^{5 d}$ $\left[\left\{(\mathrm{TiCl})_{2}(\mu-\mathrm{O})\left[\mu-\eta^{5}: \eta^{5}-\left(\mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{SiMe}_{2}\right]\right\}_{2}(\mu-\mathrm{O})_{2}\right]$, non-planar

Table 2 Atomic coordinates ($\times 10^{4}$) for compound 1

Atom	x	y	z
Ti(1)	$7789(1)$	7 574(1)	$1584(1)$
$\mathrm{Cl}(11)$	7967 (1)	$6000(1)$	1 681(1)
$\mathrm{Cl}(12)$	9 187(1)	7 705(1)	1310 (1)
$\mathrm{Cl}(13)$	7 770(1)	9150 (I)	$1709(1)$
$\mathrm{Cl}(14)$	6 576(1)	7 483(1)	$2089(1)$
$\mathrm{Ti}(2)$	6 476(1)	7 525(1)	-75(1)
$\mathrm{Cl}(21)$	6 559(1)	$5956(1)$	- 199(1)
$\mathrm{Cl}(22)$	$7751(1)$	7 702(1)	-499(1)
$\mathrm{Cl}(23)$	6 224(1)	$9092(1)$	- 172(1)
$\mathrm{Cl}(24)$	$5002(1)$	$7346(1)$	95(I)
$\mathrm{Mg}(3)$	7 924(2)	2 660(2)	-774(1)
$\mathrm{O}(1)$	7 080(3)	7 556(3)	761(2)
N(11)	8 722(4)	7 573(4)	2 625(2)
C(12)	$9176(5)$	7 532(4)	$3126(3)$
C(13)	$9802(7)$	7491 (6)	3 778(4)
$\mathrm{N}(21)$	5 628(4)	$7515(4)$	$-1141(2)$
C(22)	5 182(5)	7561 (5)	-1641(4)
C(23)	4 565(7)	$7647(8)$	-2 304(4)
N(31)	8 279(4)	2 077(4)	-1597(3)
C(32)	8 565(5)	$1732(5)$	-1974(3)
C(33)	8 930(6)	1313 (6)	-2 465(4)
N(41)	6 577(4)	1 993(4)	-1069(3)
C(42)	5 941(5)	1541 (5)	-1129(3)
C(43)	$5138(5)$	938(5)	-1207(4)
$\mathrm{N}(51)$	7 508(5)	3 259(4)	22(3)
C(52)	$7189(5)$	3 591(5)	384(3)
C(53)	$6775(7)$	4 035(6)	849(4)
N(61)	9 272(5)	3 298(4)	-455(3)
C(62)	9 962(5)	3 663(5)	-347(3)
C(63)	10 853(5)	4 140(5)	-209(4)
N (71)	$7435(5)$	3 917(4)	-1 314(3)
C(72)	$7317(5)$	4 633(5)	-1 503(3)
C(73)	$7175(6)$	5 574(6)	-1736(4)
N(81)	8 419(5)	$1438(4)$	-210(3)
C(82)	8 576(5)	754(5)	28(3)
C(83)	$8782(6)$	-133(6)	350(4)
N(84)	4 654(10)	5 297(10)	-2 202(6)
C(85)	$4757(7)$	4870 (8)	- 1748 (5)
C(86)	$4882(7)$	4 312(7)	-1193(4)
N(87)	7 591(10)	2016 (8)	$1625(6)$
C(88)	7 092(8)	$1562(7)$	1286 (5)
C(89)	$6471(8)$	979(7)	851(7)
N(91)	$9631(7)$	5 325(6)	$-1477(5)$
C(92)	9 574(6)	4 826(6)	- 1879 (5)
C(93)	$9474(8)$	4 168(7)	-2 379(6)
N(94)	9 025(7)	$9617(6)$	-1 325(5)
C(95)	8 247(8)	9 536(5)	-1492(4)
C(96)	7 258(7)	9434 (8)	- $1704(4)$

[Ti-O-Ti 176.2(1), 144.5(1) $\left.{ }^{\circ}\right] ;{ }^{5 e}\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Me}\right) \mathrm{Cl}(\mu-\mathrm{O})\right\}_{4}\right]$, planar [$\left.\mathrm{Ti}-\mathrm{O}-\mathrm{Ti} 1.57 .2(2), 169.1(1)^{\circ}\right],{ }^{5 f}$ but all of these are based on a four-co-ordinate (tetrahedral) metal geometry. The present structure 2 is the first example of a $\mathrm{Ti}_{4} \mathrm{O}_{4}$ core unit with μ-oxo bridging between six-co-ordinate metal centres. A related hydrolysis product of titanium(IV) chloride of empirical formula $\mathrm{TiCl}(\mathrm{OH})_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ contains the cubic octameric titanium cation $\left[\mathrm{Ti}_{8} \mathrm{O}_{12}\left(\mathrm{H}_{2} \mathrm{O}\right)_{24}\right]^{8+} 3$ in which each octahedral metal centre is bonded to three water molecules and three separate $\mu-\mathrm{O}$ bridging atoms $\{\mathrm{Ti}-\mathrm{O}($ mean $) 1.820 \AA$ $[1.791(2)-1.859(2) \AA]$, Ti-O-Ti(mean) 154.6° [153.10(11)156.03(11) $\left.\left.{ }^{\circ}\right]\right\}{ }^{.22}$

Interestingly although the 'expected' Feltz compound $\left[\left\{\mathrm{TiCl}_{3}(\mathrm{MeCN})_{2}\right\}_{2}(\mu-\mathrm{O})\right]$ was not isolated in this present study, the thf (solvate) analogue $\left[\left\{\mathrm{TiCl}_{3}(\mathrm{thf})_{2}\right\}_{2}(\mu-\mathrm{O})\right]$ has been reported by Strel'tsova et al. ${ }^{19}$ and identified by X-ray crystallography as the C_{2} symmetry isomer. Here the two solvent molecules at each metal site are mutually cis with one occupying a trans position with respect to the bridging oxygen

Table 3 Atomic coordinates ($\times 10^{4}$) for compound 2

Atom	x	y	z
$\mathrm{Ti}(1)$	$6178(2)$	$6352(2)$	$1787(1)$
$\mathrm{Cl}(11)$	$5045(3)$	4 959(4)	2048 (2)
$\mathrm{Cl}(12)$	6 600(4)	6 974(4)	2 536(2)
$\mathrm{Ti}(2)$	$7153(2)$	$8763(2)$	$1195(1)$
$\mathrm{Cl}(21)$	5 556(3)	$9802(3)$	$1192(2)$
$\mathrm{Cl}(22)$	6 995(4)	8 259(4)	407(2)
Ti(3)	9 913(2)	$7700(2)$	$1250(1)$
$\mathrm{Cl}(31)$	$11033(3)$	$9114(3)$	981(1)
$\mathrm{Cl}(32)$	$10395(4)$	$7875(4)$	$2037(1)$
Ti(4)	$8725(2)$	5066 (2)	1461 (1)
$\mathrm{Cl}(41)$	10 248(3)	3 921(3)	$1429(2)$
$\mathrm{Cl}(42)$	8 133(3)	4 690(4)	704(2)
$\mathrm{O}(1)$	6 606(6)	7 674(8)	1 466(4)
O(2)	$8703(8)$	$8341(7)$	1241 (4)
$\mathrm{O}(3)$	$9351(7)$	6 228(7)	$1355(3)$
$\mathrm{O}(4)$	7 309(7)	5 642(7)	$1670(3)$
N(11)	5590 (10)	6006 (10)	$1071(5)$
C(111)	5641 (14)	$5687(15)$	719(7)
C(112)	5 620(19)	$5302(21)$	204(8)
N(12)	4 543(10)	7370 (12)	1823 (6)
C(121)	3 964(13)	8031(13)	$1865(6)$
C(122)	3 229(13)	8947 (15)	$1905(8)$
N(21)	7 505(11)	9 534(10)	$1875(4)$
C(211)	7 738(16)	9671(16)	$2252(6)$
C(212)	7847 (22)	10073 (33)	2742 (10)
$\mathrm{N}(22)$	7987 (10)	$10324(10)$	927(6)
C(221)	8470(13)	$11008(13)$	804(6)
C(222)	$9183(21)$	$11925(17)$	639(11)
N(31)	$9698(11)$	$7235(11)$	493(4)
C(311)	$9331(12)$	6 992(13)	131(6)
C(312)	8880 (21)	6 680(20)	-312(8)
N(32)	$11478(11)$	$6673(12)$	$1127(6)$
C(321)	12 047(15)	6016 (16)	$1077(8)$
C(322)	12 856(14)	$5095(20)$	965(12)
N(41)	$9091(9)$	5 235(11)	2 225(5)
C(411)	9241 (13)	5 602(14)	2 586(7)
$\mathrm{C}(412)$	9438(25)	$6043(21)$	3064 (7)
$\mathrm{N}(42)$	7793(11)	3 514(9)	$1711(6)$
C(421)	7075 (17)	2 971(12)	$1753(8)$
C(422)	$6159(18)$	2 245(18)	$1833(10)$
C(100)	686(25)	4 254(25)	38(12)
C(101)	1 272(33)	3 323(33)	51(15)
N(102)	1 693(36)	2494 (39)	105(16)
N(103)	4 297(30)	3041 (34)	709(15)
C(104)	3 726(46)	$2305(43)$	831(20)
C(105)	$3128(38)$	$1712(39)$	$1126(19)$

atom (see Table 6). In comparison the lower valence counterpart $\left[\left\{\mathrm{TiBr}_{2}(\mathrm{py})_{3}\right\}_{2}(\mu-\mathrm{O})\right]$ ($\mathrm{py}=$ pyridine) based on Till adopts the highly symmetric $D_{2 k}$ structure with a trans-trans-eclipsed arrangement of the co-ordinated pyridine ligands (see Table 6). ${ }^{20}$

Allowing for the different nature of the surrounding ligands there is no obvious correlation between $\mathrm{Ti}-\mathrm{O}$ bond distances in the $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ linkages as a reflection of the overall charge. Thus, anionic: $\left[\left\{\mathrm{TiCl}_{4}(\mathrm{MeCN})\right\}_{2}(\mu-\mathrm{O})\right]^{2-}, \mathrm{Ti}-\mathrm{O} 1.804 \AA($ ref. 18$)$ and (mean) $1.774 \AA$ (this work); neutral: $\left[\left\{\mathrm{TiCl}_{3}(\mathrm{thf})_{2}\right\}_{2}(\mu-\mathrm{O})\right]$, Ti-O $1.787 \AA$ (ref. 19); $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{O})\right\}_{4}\right], \mathrm{Ti}-\mathrm{O}($ mean $)$ 1.668, $1.954 \AA$ (this work); cationic: $\left[\left\{\mathrm{Ti}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{2-}\right.$ $(\mu-\mathrm{O})]^{2+}, \mathrm{Ti}-\mathrm{O} 1.829 \AA$ (ref. 23); $\left[\{\mathrm{Ti}(\mathrm{L})\}_{2}(\mu-\mathrm{O})\right]^{2+}\left(\mathrm{H}_{2} \mathrm{~L}=\right.$ 5,14-dihydro-6,8,15,17-tetramethyldibenzo $[b, i][1,4,8,11]$ -
tetraazacyclotetradecine), Ti-O $1.806,1.830 \AA$ [ref. $10(c)]$. When compared with the formal titanyl $\mathrm{T}=0$ linkage, however, there is a clear differential of some $0.2 \AA$ as a result of increased multiple (π) bonding in the latter, viz. $[\mathrm{Ti}(\mathrm{O}) \mathrm{L}], \mathrm{Ti}-\mathrm{O} 1.653 \AA$ $[$ ref. $10(a)],[\mathrm{Ti}(\mathrm{O})(\mathrm{oep})](\mathrm{oep}=2,3,7,8,12,13,17,18$-octaethylporphinato dianion), Ti-O $1.613 \AA$ [ref. (7)].

In simple terms the formation of compound $\mathbf{2}$ can be regarded
as the result of further hydrolysis of the 'expected' Feltz compound $\left[\left\{\mathrm{TiCl}_{3}(\mathrm{MeCN})_{2}\right\}_{2}(\mu-\mathrm{O})\right]$ leading to the tetranuclear titanoxane as a dimeric structure. By extrapolation further hydrolysis of $\mathbf{2}$ could lead in principle (dimerisation) to a cubic octameric derivative $\left[\mathrm{Ti}_{8} \mathrm{O}_{12}(\mathrm{MeCN})_{16} \mathrm{Cl}_{8}\right.$] as the direct analogue of the titanium cation $\mathbf{3}$ with corner metal atoms coordinated by two acetonitrile molecules, one chlorine atom and three separate bridging oxygen atoms. It should be noted that controlled hydrolysis of the $\mathrm{tin}(\mathrm{Iv})$ chloride solvate $\mathrm{SnCl}_{4} \cdot 2$ thf gives the dinuclear derivative $\left[\left\{\mathrm{SnCl}_{3}(\mathrm{thf})\right\}_{2}(\mu-\mathrm{OH})_{2}\right]^{24}$ in which two μ-hydroxy groups are preferred to a single μ-oxo linkage.
Provided there is strict adherence to a $2: 1$ stoichiometry, we can write a general equation for the controlled hydrolysis of six-co-ordinate solvated chlorotitanium(iv) species leading to the generic dititanoxane series, equation (2).

$$
\begin{align*}
2\left[\mathrm{TiCl}_{n} \mathrm{~L}_{6-n}\right]^{(4-n)+} & +\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{~L}} \\
& {\left[\left(\mathrm{TiCl}_{n-1} \mathrm{~L}_{6-n}\right)_{2}(\mu-\mathrm{O})\right]^{(8-2 n)+}+2 \mathrm{HCl} } \tag{2}
\end{align*}
$$

Currently we are still pursuing the dinuclear Feltz ($n=4$) compound and investigating the controlled hydrolysis of the

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in the anion of 1

$\mathrm{Ti}(1)-\mathrm{O}(1)$	$1.783(4)$	$\mathrm{Ti}(2)-\mathrm{O}(1)$	$1.764(4)$
$\mathrm{Ti}(1)-\mathrm{N}(11)$	$2.273(5)$	$\mathrm{Ti}(2)-\mathrm{N}(21)$	$2.278(5)$
$\mathrm{Ti}(1)-\mathrm{Cl}(11)$	$2.316(2)$	$\mathrm{Ti}(2)-\mathrm{Cl}(21)$	$2.314(2)$
$\mathrm{Ti}(1)-\mathrm{Cl}(12)$	$2.296(2)$	$\mathrm{Ti}(2)-\mathrm{Cl}(22)$	$2.306(2)$
$\mathrm{Ti}(1)-\mathrm{Cl}(13)$	$2.318(2)$	$\mathrm{Ti}(2)-\mathrm{Cl}(23)$	$2.318(2)$
$\mathrm{Ti}(1)-\mathrm{Cl}(14)$	$2.323(2)$	$\mathrm{Ti}(2)-\mathrm{Cl}(24)$	$2.316(2)$
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{N}(11)$	$178.5(2)$	$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{N}(21)$	$177.0(2)$
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(12)$	$95.08(14)$	$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(22)$	$98.1(2)$
$\mathrm{N}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(12)$	$83.7(2)$	$\mathrm{N}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(22)$	$84.5(2)$
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(11)$	$95.54(13)$	$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	$96.43(14)$
$\mathrm{N}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(11)$	$83.54(14)$	$\mathrm{N}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	$85.0(2)$
$\mathrm{Cl}(12)-\mathrm{Ti}(1)-\mathrm{Cl}(11)$	$90.93(8)$	$\mathrm{Cl}(22)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	$89.62(7)$
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(13)$	$96.00(14)$	$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(24)$	$95.3(2)$
$\mathrm{N}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(13)$	$84.95(14)$	$\mathrm{N}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(24)$	$82.0(2)$
$\mathrm{Cl}(12)-\mathrm{Ti}(1)-\mathrm{Cl}(13)$	$89.17(7)$	$\mathrm{Cl}(22)-\mathrm{Ti}(2)-\mathrm{Cl}(24)$	$166.54(9)$
$\mathrm{Cl}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(13)$	$168.41(8)$	$\mathrm{Cl}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(24)$	$89.19(7)$
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(14)$	$97.2(2)$	$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(23)$	$95.19(14)$
$\mathrm{N}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(14)$	$84.0(2)$	$\mathrm{N}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(23)$	$83.4(2)$
$\mathrm{Cl}(12)-\mathrm{Ti}(1)-\mathrm{Cl}(14)$	$167.62(9)$	$\mathrm{Cl}(22)-\mathrm{Ti}(2)-\mathrm{Cl}(23)$	$89.08(7)$
$\mathrm{Cl}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(14)$	$89.18(7)$	$\mathrm{Cl}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(23)$	$168.37(8)$
$\mathrm{Cl}(13)-\mathrm{Ti}(1)-\mathrm{Cl}(14)$	$88.25(7)$	$\mathrm{Cl}(24)-\mathrm{Ti}(2)-\mathrm{Cl}(23)$	$89.40(8)$
			$\mathrm{Ti}(2)-\mathrm{O}(1)-\mathrm{Ti}(1)$
		$174.7(3)$	

$\left[\mathrm{TiCl}_{3}(\mathrm{MeCN})_{3}\right]^{+}$cation $(n=3)$ as a possible route to the dinuclear dication $\left[\left\{\mathrm{TiCl}_{2}(\mathrm{MeCN})_{3}\right\}_{2}(\mu-\mathrm{O})\right]^{2+}$.

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compound 2

$\mathrm{Ti}(1)-\mathrm{O}(4)$	$1.664(10)$	$\mathrm{Ti}(3)-\mathrm{O}(2)$	1.672(10)
$\mathrm{Ti}(1)-\mathrm{O}(1)$	1.936(10)	$\mathrm{Ti}(3)-\mathrm{O}(3)$	$1.967(9)$
$\mathrm{Ti}(1)-\mathrm{N}(11)$	2.166(14)	$\mathrm{Ti}(3)-\mathrm{N}(31)$	2.207(13)
$\mathrm{Ti}(1)-\mathrm{Cl}(12)$	2.287(5)	$\mathrm{Ti}(3)-\mathrm{Cl}(32)$	$2.285(4)$
$\mathrm{Ti}(1)-\mathrm{Cl}(11)$	2.323(4)	$\mathrm{Ti}(3)-\mathrm{N}(32)$	$2.314(14)$
$\mathrm{Ti}(1)-\mathrm{N}(12)$	$2.356(13)$	$\mathrm{Ti}(3)-\mathrm{Cl}(31)$	2.341 (4)
$\mathrm{Ti}(2)-\mathrm{O}(1)$	$1.683(10)$	$\mathrm{Ti}(4)-\mathrm{O}(3)$	1.653(9)
$\mathrm{Ti}(2)-\mathrm{O}(2)$	1.960(10)	$\mathrm{Ti}(4)-\mathrm{O}(4)$	1.954(10)
$\mathrm{Ti}(2)-\mathrm{N}(21)$	2.168(12)	$\mathrm{Ti}(4)-\mathrm{N}(41)$	2.191(14)
$\mathrm{Ti}(2)-\mathrm{N}(22)$	2.305(12)	$\mathrm{Ti}(4)-\mathrm{Cl}(42)$	2.280(5)
$\mathrm{Ti}(2)-\mathrm{Cl}(22)$	$2.295(5)$	$\mathrm{Ti}(4)-\mathrm{Cl}(41)$	$2.334(4)$
$\mathrm{Ti}(2)-\mathrm{Cl}(21)$	2.329(4)	$\mathrm{Ti}(4)-\mathrm{N}(42)$	$2.336(12)$
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{O}(1)$	97.6(4)	$\mathrm{O}(3)-\mathrm{Ti}(3)-\mathrm{N}(31)$	82.0(4)
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{N}(11)$	89.3(5)	$\mathrm{O}(2)-\mathrm{Ti}(3)-\mathrm{Cl}(32)$	101.3(4)
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{N}(11)$	80.1(5)	$\mathrm{O}(3)-\mathrm{Ti}(3)-\mathrm{Cl}(32)$	91.9(3)
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{Cl}(12)$	99.9(4)	$\mathrm{N}(31)-\mathrm{Ti}(3)-\mathrm{Cl}(32)$	167.6(4)
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(12)$	94.5(4)	$\mathrm{O}(2)-\mathrm{Ti}(3)-\mathrm{N}(32)$	169.1(5)
$\mathrm{N}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(12)$	170.0(4)	$\mathrm{O}(3)-\mathrm{Ti}(3)-\mathrm{N}(32)$	78.5(4)
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{Cl}(11)$	99.2(3)	$\mathrm{N}(31)-\mathrm{Ti}(3)-\mathrm{N}(32)$	79.2(5)
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{Cl}(11)$	158.6(3)	$\mathrm{Cl}(32)-\mathrm{Ti}(3)-\mathrm{N}(32)$	89.1(4)
$\mathrm{N}(11)-\mathrm{Ti}(1)-\mathrm{Cl}(11)$	87.0(4)	$\mathrm{O}(2)-\mathrm{Ti}(3)-\mathrm{Cl}(31)$	98.8(3)
$\mathrm{Cl}(12)-\mathrm{Ti}(1)-\mathrm{Cl}(11)$	95.5(2)	$\mathrm{O}(3)-\mathrm{Ti}(3)-\mathrm{Cl}(31)$	160.3(3)
$\mathrm{O}(4)-\mathrm{Ti}(1)-\mathrm{N}(12)$	171.2(5)	$\mathrm{N}(31)-\mathrm{Ti}(3)-\mathrm{Cl}(31)$	87.4(3)
$\mathrm{O}(1)-\mathrm{Ti}(1)-\mathrm{N}(12)$	78.2(4)	$\mathrm{Cl}(32)-\mathrm{Ti}(3)-\mathrm{Cl}(31)$	95.1(2)
$\mathrm{N}(11)-\mathrm{Ti}(1)-\mathrm{N}(12)$	82.3(5)	$\mathrm{N}(32)-\mathrm{Ti}(3)-\mathrm{Cl}(31)$	83.3(4)
$\mathrm{Cl}(12)-\mathrm{Ti}(1)-\mathrm{N}(12)$	88.3(4)	$\mathrm{O}(4)-\mathrm{Ti}(4)-\mathrm{O}(3)$	98.2(4)
$\mathrm{Cl}(11)-\mathrm{Ti}(1)-\mathrm{N}(12)$	83.2(4)	$\mathrm{O}(3)-\mathrm{Ti}(4)-\mathrm{N}(41)$	89.8(5)
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{O}(2)$	97.9(4)	$\mathrm{O}(4)-\mathrm{Ti}(4)-\mathrm{N}(41)$	81.5(4)
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{N}(21)$	92.0(5)	$\mathrm{O}(3)-\mathrm{Ti}(4)-\mathrm{Cl}(42)$	99.1(4)
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{N}(21)$	82.5(4)	$\mathrm{O}(4)-\mathrm{Ti}(4)-\mathrm{Cl}(42)$	94.2(3)
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{N}(22)$	172.0(5)	$\mathrm{N}(41)-\mathrm{Ti}(4)-\mathrm{Cl}(42)$	170.6(4)
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{N}(22)$	79.7(4)	$\mathrm{O}(3)-\mathrm{Ti}(4)-\mathrm{Cl}(41)$	98.9(3)
$\mathrm{N}(22)-\mathrm{Ti}(2)-\mathrm{N}(21)$	80.1(5)	$\mathrm{O}(4)-\mathrm{Ti}(4)-\mathrm{Cl}(41)$	158.9(3)
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(22)$	100.5(4)	$\mathrm{N}(41)-\mathrm{Ti}(4)-\mathrm{Cl}(41)$	86.2(3)
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{Cl}(22)$	94.1(3)	$\mathrm{Cl}(42)-\mathrm{Ti}(4)-\mathrm{Cl}(41)$	95.3(2)
$\mathrm{N}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(22)$	167.4(4)	$\mathrm{O}(3)-\mathrm{Ti}(4)-\mathrm{N}(42)$	172.4(5)
$\mathrm{N}(22)-\mathrm{Tl}(2)-\mathrm{Cl}(22)$	87.3(4)	$\mathrm{O}(4)-\mathrm{Ti}(4)-\mathrm{N}(42)$	77.4(4)
$\mathrm{O}(1)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	96.5(3)	$\mathrm{N}(41)-\mathrm{Ti}(4)-\mathrm{N}(42)$	83.4(5)
$\mathrm{O}(2)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	161.6(3)	$\mathrm{Cl}(42)-\mathrm{Ti}(4)-\mathrm{N}(42)$	87.5(4)
$\mathrm{N}(21)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	85.7(4)	$\mathrm{Cl}(41)-\mathrm{Ti}(4)-\mathrm{N}(42)$	84.2(3)
$\mathrm{N}(22)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	84.5(3)	$\mathrm{Ti}(2)-\mathrm{O}(1)-\mathrm{Ti}(1)$	172.3(5)
$\mathrm{Cl}(22)-\mathrm{Ti}(2)-\mathrm{Cl}(21)$	94.4(2)	$\mathrm{Ti}(3)-\mathrm{O}(2)-\mathrm{Ti}(2)$	166.8(6)
$\mathrm{O}(2)-\mathrm{Ti}(3)-\mathrm{O}(3)$	97.8(4)	$\mathrm{Ti}(4)-\mathrm{O}(3)-\mathrm{Ti}(3)$	172.6(5)
$\mathrm{O}(2)-\mathrm{Ti}(3)-\mathrm{N}(31)$	90.2(5)	$\mathrm{Ti}(1)-\mathrm{O}(4)-\mathrm{Ti}(4)$	168.5(6)

Table 6 Molecular geometry and dimensions of [$\mathrm{L}_{5-n} \mathrm{X}_{n} \mathrm{Ti}-\mathrm{O}-\mathrm{TiX}_{n} \mathrm{~L}_{5-n}$] compounds

Acknowledgements

We thank the SERC for a studentship award (to J. P.) and, together with the University of Reading, for funds for the diffractometer. The assistance of Mr. A. W. Johans with the crystallographic investigations is gratefully acknowledged.

References

1 Y. Le Page, J. D. McCowan, B. K. Hunter and R. D. Heyding, J. Organomet. Chem., 1980, 193, 201; S. Ciruelos, T. Cuenca, J. C. Flores, R. Gomez, P. Gomez-Sal and P. Royo, Organometallics, 1993, 12, 944; P. Klein, U. Thewalt, K. Doppert and R. SanchezDelgado, J. Organomet. Chem., 1982, 236, 189; P. Gowik, T. Klapotke and J. Pickardt, J. Organomet. Chem., 1990, 393, 343.

2 J. Okuda and E. Herdtweck, Inorg. Chem., 1991, 30, 1516.
3 G. R. Willey, J. Palin and N. W. Alcock, J. Chem. Soc., Dalton Trans., 1992, 1117; V. K. Bel'skii, B. M. Bulychev and N. R. Strel'tsova, Russ. J. Inorg. Chem., 1992, 37, 778.
4 K . Wieghardt, D. Ventur, Y. H. Tsai and C. Kruger, Inorg. Chim. Acta, 1985, 99, L25; A. Bodner, B. S. P. C. Della Vedova, K. Wieghardt, B. Nuber and J. Weiss, J. Chem. Soc., Chem. Commun., 1990, 1042.
5 (a) A. C. Skapski and P. G. H. Troughton, Acta Crystallogr., Sect. B, 1970, 26, 716; (b) U. Thewalt and K. Döppert, J. Organomet. Chem., 1987, 320, 177; (c) S. I. Troyanov, V. Varga and K. Mach, J. Organomet. Chem., 1991, 402, 201; (d) T. Carofiglio, C. Floriani, A. Sgamellotti, M. Rosi, A. Chiesi-Villa and C. Rizzoli, J. Chem. Soc., Dalton Trans., 1992, 1081; (e) S. Ciruelos, T. Cuenca, J. C. Flores, R. Gómez, P. Gómez-Sal and P. Royo, Organometallics, 1993, 12, 944; (f) J. L. Petersen, Inorg. Chem., 1980, 19, 181; (g) E. Samuel, R. D. Rogers and J. L. Atwood, J. Cryst. Spectrosc. Res., 1984, 14, 573; (h) A. Roth, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Am. Chem. Soc., 1986, 108, 6823; (i) L. M. Babcock, V. W. Day and W. G. Klemperer, J. Chem. Soc., Chem. Commun., 1987, 858; (j) M. P. Gomez-Sal, M. Mena, P. Royo and R. Serrano, J. Organomet. Chem., 1988, 358, 147; (k) L. M. Babcock and W. G. Klemperer, Inorg. Chem., 1989, 28, 2003; (l) F. Palacios, P. Royo, R. Serrano, J. L. Balcazar, I. Fonseca and F. Florencio, J. Organomet. Chem., 1989, 375, 51.
6 W. Haase and H. Hoppe, Acta Crystallogr., Sect. B, 1968, 24, 282.

7 R. Guilard, J.-M. Latour, C. Lecomte, J.-C. Marchon, J. Protas and D. Ripoll, Inorg. Chem., 1978, 17, 1228.

8 P. N. Dwyer, L. Puppe, J. W. Buchler and W. R. Scheidt, Inorg. Chem., 1975, 14, 1782.
9 V. L. Goedken, G. Dessy, C. Ercolani, V. Fares and L. Gastaldi, Inorg. Chem., 1985, 24, 991; W. Hiller and J. Strähle, Z. Kristallogr., 1982, 159, 173.
10 (a) C. H. Yang, J. A. Ladd and V. L. Goedken, J. Coord. Chem., 1988, 19, 235; (b) C. E. Housmekerides, R. S. Pilato, G. L. Geoffroy and A. L. Rheingold, J. Chem. Soc., Chem. Commun., 1991, 563; (c) C. E. Housmekerides, D. L. Ramage, C. M. Kretz, J. T. Shontz, R. S. Pilato, G. L. Geoffroy, A. L. Rheingold and B. S. Haggerty, Inorg. Chem., 1992, 31, 4453.
11 A. Feltz, Z. Anorg. Allg. Chem., 1963, 323, 35.
12 W. Kabsch, J. Appl. Crystallogr., 1988, 21, 916.
13 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
14 G. M. Sheldrick, J. Appl. Crystallogr., in the press.
15 P. Sobota, J. Utko and Z. Janas, J. Organomet. Chem., 1986, 316, 19; P. Sobota, Polyhedron, 1992, 11, 715.

16 M. P. Gomez-Sal, M. Mena, F. Palacios, P. Royo, R. Serrano and S. M. Carreras, J. Organomet. Chem., 1989, 375, 57; K. Doppert, Naturwissenschaften, 1990, 77, 19.
17 J. Reedijk and W. L. Groeneveld, Rev. Trav. Chim. Pays-Bas, 1968, 87, 1079.
18 V. Krug and U. Muller, Acta Crystallogr., Sect. C, 1990, 46, 547.
19 N. R. Strel'tsova, L. V. Ivakina, V. K. Bel'skii, P. A. Storozhenko and B. M. Bulichev, Koord. Khim., 1988, 14, 421.
20 S. I. Troyanov, G. N. Mazo, V. B. Rybakov and K. V. Budkina, Koord. Khim., 1990, 16, 466.
21 M. G. B. Drew, P. P. K. Claire and G. R. Willey, J. Chem. Soc., Dalton Trans., 1988, 215.
22 M. G. Reichmann, F. J. Hollander and A. T. Bell, Acta Crystallogr., Sect. C, 1987, 43, 1681.
23 U. Thewalt and B. Kebbel, J. Organomet. Chem., 1978, 150, 59.
24 S. D. Chappell, L. M. Engelhardt, C. L. Raston and A. H. White, Aust. J. Chem., 1988, 41, 1123; Z. Janas, P. Sobota and T. Lis, J. Chem. Soc., Dalton Trans., 1991, 2429.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

