2159

Cluster Build-up using the $[Os(\eta^6-C_6H_6)(MeCN)_3]^{2+}$ Cation; Synthesis and Structural Characterisation of Some Hexaand Hepta-nuclear Arene-substituted Clusters[†]

Jack Lewis,^{*,a} Chi-Keung Li,^a Catherine A. Morewood,^a M. Carmen Ramirez de Arellano,^a Paul R. Raithby^a and Wing-Tak Wong^b

^a University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK

^b Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Reactions of the cluster dianion $[Os_{6}(CO)_{15}]^{2^{-}}$ with $[Os(\eta^{6}-C_{6}H_{6})(MeCN)_{3}]^{2^{+}}$ and $[Os(C_{6}H_{5}Me)-(CF_{3}SO_{3})_{2}]$ provided $[Os_{6}(CO)_{15}(\eta^{6}-C_{6}H_{6})]$ 1 and $[Os_{6}(CO)_{15}(\eta^{6}-C_{6}H_{5}Me)]$ 2, respectively, in good yield $(\approx 45\%)$. Reduction of the hexaosmium cluster $[Os_{6}(CO)_{18}]$ with $K-Ph_{2}CO$ gave the cluster dianion $[Os_{6}(CO)_{17}]^{2^{-}}$ 3 in quantitative yield. When this dianion was treated with $[Os(\eta^{6}-C_{6}H_{6})(MeCN)_{3}]^{2^{+}}$ the heptanuclear cluster $[Os_{7}(CO)_{17}(\eta^{6}-C_{6}H_{6})]$ 4 was obtained in fair yield, while the corresponding reaction with $[Os(\eta^{6}-C_{6}H_{5}Me)(CF_{3}SO_{3})_{2}]$ gave $[Os_{7}(CO)_{17}(\eta^{6}-C_{6}H_{5}Me)]$ 5 in similar yield (*ca.* 25\%). The four arene clusters have been characterised by spectroscopic techniques, and the molecular geometries of 1, 2 and 4 established by single-crystal X-ray diffraction techniques. In both 1 and 2 the metal framework geometry is best described as a bicapped tetrahedron. In 1 the $\eta^{6}-C_{6}H_{6}$ ligand occupies a site on the central Os_{4} tetrahedron while in 2 in the η^{6} -arene is co-ordinated to one of the capping Os atoms. The metal framework in 4 may be viewed as derived from a bicapped tetrahedron with the seventh metal capping one of the caps to give a chain of four fused tetrahedra. The $\eta^{6}-C_{6}H_{6}$ ligand in 4 occupies a similar site to that found in 1.

The recent characterisation of transition-metal clusters containing μ_3 - η^2 : η^2 : η^2 -arene ligands, in which the arene caps a triangular face of the cluster, has led to an increase in interest in the area of cluster arene complexes¹ because of the use of these molecular species as potential models for the way that arenes coordinate to metal surfaces.² Over the last five years an extensive range of arene-substituted clusters of the cobalt³ and iron⁴ subgroups have been isolated, and the arene groups have been found to co-ordinate in either the terminal η^6 mode or in the face-capping $\mu_3 - \eta^2 : \eta^2 : \eta^2$ mode. For the clusters of the iron subgroup two main methods of synthesis have been developed. The first involves the addition of cyclohexa-1,3-diene to a weakly ligated cluster complex, such as $[Os_3(CO)_{10}(MeCN)_2]$, and its conversion into benzene via a cyclohexadienyl ligand. The second method involves the addition of an $[Os(\eta^6 C_6H_6$ (MeCN)₃]²⁺ cation to a cluster anion.⁵ Recent work within our group has focused on the synthesis and characterisation of higher-nuclearity arene-containing ruthenium and osmium carbonyl clusters.⁶⁻¹⁴ The chemistry of arene-containing hexaruthenium carbido clusters $[Ru_6C(CO)_{14}(arene)]^{15}$ and $[Ru_6C(CO)_{11}(arene)_2]^{11}$ is well documented, and two different structural forms have been observed in the bis(arene) cluster. However, the synthesis of the analogous arenehexaosmium carbido clusters has not been attempted because of the low availability of the starting material, the pentaosmium carbido cluster.

Previously, using the dication $[Os(C_6H_6)(MeCN)_3]^{2+}$ as the arene-containing fragment, we have reported the synthesis and molecular structures of $[Os_5H_4(CO)_{11}(\eta^6-C_6H_6)]^{12}$ and $[Os_6H_2(CO)_{11}(\eta^6-C_6H_6)(\mu_3-\eta^2:\eta^2-C_6H_6)]^{.13}$ In the latter case the two benzene ligands adopt two different bonding modes as in $[Ru_6C(CO)_{11}(\eta^6-C_6H_6)(\mu_3-\eta^2:\eta^2:\eta^2-C_6H_6)]^{.1a}$ As part of our continuing effort in the studies of arene

interaction with metal clusters, we report here the synthesis of the complexes $[Os_6(CO)_{15}(arene)]$ and $[Os_7(CO)_{17}(arene)]$ based on the reaction between a cationic 'Os(arene)' fragment and the dianions $[Os_5(CO)_{15}]^{2^-}$ and $[Os_6(CO)_{17}]^{2^-}$. Two structural forms have been found for the $[Os_6(CO)_{15}(arene)]$ complexes.

Results and Discussion

Our recent work shows that the dication $[Os(C_6H_6)-(MeCN)_3]^{2+}$ can be employed in the synthesis of benzenecontaining clusters. The pentaosmium cluster dianion $[Os_5-(CO)_{15}]^{2-}$ was allowed to react with $[Os(C_6H_6)(MeCN)_3]-[BF_4]_2$ in dichloromethane at room temperature for 1 h. A neutral cluster $[Os_6(CO)_{15}(\eta^6-C_6H_6)]$ 1 was obtained in *ca.* 45% yield after chromatographic separation on silica. It was first characterised by IR, ¹H NMR and mass spectroscopy (Table 1). A singlet at δ 6.03 is consistent with the presence of a η^6 terminally bonded benzene fragment. This chemical shift is comparable to the values observed for $[Os_5H_4(CO)_{11}(\eta^6-C_6H_6)]$ (δ 6.08) and $[Os_5H_4(CO)_{12}-(\eta^6-C_6H_6)]$ (δ 6.05).¹² The ¹H NMR spectrum of 1 shows no change in the chemical shift of the co-ordinated benzene in the temperature range 215–320 K and there appears to be no evidence for benzene migration over the cluster surface on the NMR time-scale.

In order to study the electronic and steric factors which affect the bonding mode of the arene fragment in the clusters, the toluene-containing complex $[Os(C_6H_5Me)(CF_3SO_3)_2]$ has also been synthesised. Reaction of $[Os_5(CO)_{15}]^{2-}$ with $[Os(C_6H_5Me)(CF_3SO_3)_2]$ in dichloromethane gives $[Os_6(CO)_{15}(\eta^6-C_6H_5Me)]$ 2 in ca. 35% yield and trace amounts of $[Os_7(CO)_{17}(\eta^6-C_6H_5Me)]$ 5 (ca. 5%) have been isolated. The ¹H NMR data for 2 show a multiplet at δ 5.8–6.5 which is diagnostic for η^6 co-ordination of the toluene ligand. However, the presence of two singlets at δ 2.66 and 2.53 for the methyl protons indicates that two isomers are present in solution. Variable-temperature NMR studies do not show

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

Compound	IR,ª ṽ(CO)/cm⁻¹	¹ Η NMR (δ) ^b	Mass spectrum, m/z ^c
1	2087w, 1956m, 1923s, 1885w	6.03 (s, 6 H)	1641 (1639)
2	2085w, 2054m, 2022s, 1983w	6.50–5.80 (m) 2.66 (s), 2.53 (s)	1654 (1653)
3	^d 2057w, 2019s, 1987s, 1951w, 1942w		
4	2088w, 2060vs, 2047s, 2024s, 1998w	6.08 (s, 6 H)	1886 (1885)
5	2087w, 2060vs, 2046s, 2024s, 1999w	6.30–5.80 (m, 5 H), 2.58 (s, 3 H)	1900 (1899)

^{*a*} Spectra taken in CH_2Cl_2 . ^{*b*} Spectra taken in $CDCl_3$. ^{*c*} Calculated values in parentheses. ^{*d*} Spectra taken in thf.

evidence of any change in the isomeric ratio of 1.7:1.0 over the temperature range 215–320 K. This suggests the presence of two non-interconverting isomeric forms. A similar type of isomerisation has also been suggested for the complex $[RuOs_5(CO)_{15}-(\eta^6-C_6H_6)]^{.14}$

The hexanuclear cluster $[Os_6(CO)_{18}]$ was treated with an excess of potassium-benzophenone in tetrahydrofuran (thf) at - 78 °C to give an air-sensitive dianionic cluster $[Os_6(CO)_{17}]^{2-1}$ 3 which was not isolated but characterised by IR spectroscopy (Table 1). Treatment of 3 with an excess of the compounds $[Os(C_6H_6)(MeCN)_3][BF_4]_2$ and $[Os(C_6H_5Me)(CF_3SO_3)_2]$, in dichloromethane, gives $[Os_7(CO)_{17}(\eta^6-C_6H_6)]$ 4 and $[Os_7(CO)_{17}(\eta^6-C_6H_5Me)]$ 5, respectively, in ca. 25% yield. The clusters can also be obtained in very low yield (<5%) by treating $[Os_7(CO)_{21}]$ with 3.2 equivalents of Me₃NO in the presence of C_6H_7R (R = H 4 or Me 5). Clusters 4 and 5 were characterised by IR, ¹H NMR and mass spectroscopy (Table 1). The ¹H NMR spectrum of 4 is very similar to that of 1. A strong singlet at δ 6.08 implies the presence of a terminally η^6 -coordinated benzene. For 5 a multiplet at δ 5.8–6.3 (5 H) and a singlet at δ 2.58 (3 H) also suggests a terminally bonded toluene ligand, and in this instance is consistent with the presence of only one isomer. The ¹H NMR spectra of 4 and 5 show no change in the chemical shift of the arene in the temperature range 215-320 K and there appears to be no evidence for arene migration or isomerisation over the cluster surface on the NMR time-scale.

Single crystals suitable for X-ray analysis were obtained for the clusters $[Os_6(CO)_{15}(\eta^6 - C_6H_5R)]$ (R = H 1 or Me 2). The molecular structure of 1 is shown in Fig. 1, while that of 2 is shown in Fig. 2. Selected bond parameters for the two molecules are presented in Tables 2 and 3, respectively. It is assumed that crystallisation of the thermodynamically preferred geometry occurred in both systems. In both 1 and 2 the metal framework is best described as a bicapped tetrahedron. Within this type of framework there are three different metal environments. The capping metals form three metal-metal contacts and have a formal electron count of $17e^-$, and the two different metal environments within the central tetrahedron have four and five metal-metal contacts, respectively, and are associated with formal electron counts of 18 and 19e⁻. The arenemetal fragment adopts the capping position (metal-metal connectivity of three) in the toluene derivative 2 but a tetrahedral position (metalmetal connectivity of four) in the benzene derivative 1. The bicapped-tetrahedral geometry has been observed in the parent osmium binary cluster $[Os_6(CO)_{18}]^{16}$ and in a number of its derivatives.¹⁷ A similar structure has also been observed for the

Table 2 Selected bond lengths (Å) and angles (°) for compound 1

Os(1)-Os(2)	2.720(3)	Os(1)-Os(3)	2.810(3)
Os(1)-Os(4)	2.821(2)	Os(2) - Os(3)	2.788(3)
Os(2)-Os(4)	2.803(3)	Os(2) - Os(5)	2.706(2)
Os(3)-Os(4)	2.759(2)	Os(3) - Os(5)	2.767(2)
Os(3)-Os(6)	2.797(2)	Os(4) - Os(5)	2.757(3)
Os(4)-Os(6)	2.823(3)	Os(5)-Os(6)	2.802(3)
Os(2)-C(1)	2.26(3)	Os(2)-C(2)	2.22(3)
Os(2)-C(3)	2.19(3)	Os(2)C(4)	2.19(3)
Os(2)-C(5)	2.23(3)	Os(2)-C(6)	2.26(3)
Os(2)-Os(1)-Os(3)	60.5(1)	Os(2)-Os(1)-Os(4)	60.7(1)
Os(3)-Os(1)-Os(4)	58.7(1)	Os(1) - Os(2) - Os(3)	61.3(1)
Os(1) - Os(2) - Os(4)	61.4(1)	Os(3) - Os(2) - Os(4)	59.1(1)
Os(1) - Os(2) - Os(5)	111.8(1)	Os(3) - Os(2) - Os(5)	60.5(1)
Os(4)-Os(2)-Os(5)	60.0(1)	Os(1)-Os(3)-Os(2)	58.1(1)
Os(1) - Os(3) - Os(4)	60.9(1)	Os(2)-Os(3)-Os(4)	60.7(1)
Os(1) - Os(3) - Os(5)	107.3(1)	Os(2)-Os(3)-Os(5)	58.3(1)
Os(4)-Os(3)-Os(5)	59.8(1)	Os(1)-Os(3)-Os(6)	116.1(1)
Os(2) - Os(3) - Os(6)	109.8(1)	Os(4)-Os(3)-Os(6)	61.1(1)
Os(5)-Os(3)-Os(6)	60.5(1)	Os(1)-Os(4)-Os(2)	57.8(1)
Os(1)-Os(4)-Os(3)	60.5(1)	Os(2)-Os(4)-Os(3)	60.2(1)
Os(1)-Os(4)-Os(5)	107.3(1)	Os(2)-Os(4)-Os(5)	58.2(1)
Os(3)-Os(4)-Os(5)	58.2(1)	Os(3)-Os(4)-Os(5)	60.2(1)
Os(1)-Os(4)-Os(6)	115.4(1)	Os(2)-Os(4)-Os(6)	108.6(1)
Os(3)-Os(4)-Os(6)	60.1(1)	Os(5)-Os(4)-Os(6)	60.3(1)
Os(2)-Os(5)-Os(3)	61.2(1)	Os(2)-Os(5)-Os(4)	61.7(1)
Os(3)-Os(5)-Os(4)	59.9(1)	Os(2)-Os(5)-Os(6)	112.1(1)
Os(3)-Os(5)-Os(6)	60.3(1)	Os(4)-Os(5)-Os(6)	61.0(1)
Os(3)-Os(6)-Os(4)	58.8(1)	Os(3)-Os(6)-Os(5)	59.2(1)
Os(4)-Os(6)-Os(5)	58.7(1)		

Table 3 Selected bond lengths (Å) and angles (°) for compound 2

Os(1)-Os(2)	2.560(3)	Os(1)-Os(3)	2.757(3)
Os(1)-Os(4)	2.772(3)	Os(1) - Os(5)	2.716(3)
Os(1)-Os(6)	2.868(3)	Os(2) - Os(3)	2.990(3)
Os(2)-Os(6)	2.886(3)	Os(3)-Os(4)	2.842(3)
Os(3) - Os(5)	2.867(3)	Os(3) - Os(6)	2.757(3)
Os(4) - Os(5)	2.772(3)	Os(5) - Os(6)	2.796(3)
Os(2)-C(21)	2.20(7)	Os(2)-C(22)	2.17(5)
Os(2) - C(23)	2.16(5)	$O_{s(2)}-C(24)$	2.24(5)
Os(2)-C(25)	2.23(5)	Os(2)C(26)	2.21(6)
Os(2)-Os(1)-Os(3)	68.3(1)	Os(2)-Os(1)-Os(4)	121.9(1)
Os(3) - Os(1) - Os(4)	61.9(1)	Os(2) - Os(1) - Os(5)	118.8(1)
Os(3)-Os(1)-Os(5)	63.2(1)	Os(4) - Os(1) - Os(5)	60.7(1)
Os(2)-Os(1)-Os(6)	63.9(1)	Os(3) - Os(1) - Os(6)	58.7(1)
Os(4) - Os(1) - Os(6)	108.9(1)	Os(5)-Os(1)-Os(6)	60.0(1)
Os(1) - Os(2) - Os(3)	59.0(1)	Os(1) - Os(2) - Os(6)	63.2(1)
Os(3)-Os(2)-Os(6)	55.9(1)	Os(1)-Os(3)-Os(2)	52.7(1)
Os(1) - Os(3) - Os(4)	59.3(1)	Os(2) - Os(3) - Os(4)	106.1(1)
Os(1) - Os(3) - Os(5)	57.7(1)	Os(2) - Os(3) - Os(5)	101.7(1)
Os(4) - Os(3) - Os(5)	58.1(1)	Os(1)-Os(3)-Os(6)	62.7(1)
Os(2)-Os(3)-Os(6)	60.1(1)	Os(4) - Os(3) - Os(6)	110.0(1)
Os(5)-Os(3)-Os(6)	59.6(1)	Os(1)-Os(4)-Os(3)	58.8(1)
Os(1) - Os(4) - Os(5)	58.7(1)	Os(3)-Os(4)-Os(5)	61.4(1)
Os(1)-Os(5)-Os(3)	59.1(1)	Os(1)-Os(5)-Os(4)	60.7(1)
Os(3)-Os(5)-Os(4)	60.5(1)	Os(1)-Os(5)-Os(6)	62.7(1)
Os(3)-Os(5)-Os(6)	58.3(1)	Os(4)-Os(5)-Os(6)	111.0(1)
Os(1)-Os(6)-Os(2)	52.8(1)	Os(1)-Os(6)-Os(3)	58.7(1)
Os(2)-Os(6)-Os(3)	63.9(1)	Os(1)-Os(6)-Os(5)	57.3(1)
Os(2) - Os(6) - Os(5)	106.2(1)	Os(3)-Os(6)-Os(5)	62.2(1)

mixed-metal cluster $[RuOs_5(CO)_{15}(\eta^6-C_6H_6)]^{14}$ in which the benzene fragment is η^6 co-ordinated to the ruthenium atom in the capping position as in **2**.

In the metal frameworks of the bicapped-tetrahedral clusters of osmium 14,16,17 it is observed that usually there is a metalmetal edge lengthening between metals with different electron counts and connectivities. In 1 the Os–Os bond distances are similar to those of the hexaosmium binary cluster except for Os(1)–Os(2) [2.720(3) Å] which is 0.09 Å shorter than the corresponding Os–Os bond in $[Os_6(CO)_{18}]$. This shortening results in an asymmetric capping mode for the Os(1) atom with the short distance to the arene-ligated metal, Os(2). This distortion may be caused by the variation in the bonding requirements of the benzene moiety compared to the tricarbonyl grouping.

The Os-Os bond distances in compound 2 are different from the corresponding metal-metal distances in the clusters $[Os_6(CO)_{18}]$ and 1. The asymmetry for the capping atom Os(1) in 2 is enhanced with respect to the corresponding capping atom Os(1) in 1. The Os(1)-Os(2) edge in 2, which is bridged by a carbonyl ligand, is shortened by 0.24 and 0.26 Å with respect to the corresponding Os–Os bonds in $[Os_6(CO)_{18}]$ and 1, respectively. This shorter edge, supported by the bridging carbonyl ligand, is as found in $[RuOs_5(CO)_{15}(\eta^6-C_6H_6)]$,¹⁴ but in $[Os_6(CO)_{15}(\eta^6-C_6H_5Me)]$ 2 the carbonyl is only slightly asymmetrically bonded with a $C(O) \cdots Os$ distance of 2.11(5) Å and a deviation from linearity for the Os-C-O angle [146(5)°] compared to the analogous parameters in [RuOs₅- $(CO)_{15}(\eta^6-C_6H_6)$] which are 2.40(9) Å and 171(6)°, respectively.¹⁴ The other two Os-Os edges in which Os(1) is involved in complex 2 are considerably longer (ca. 0.17 Å) with respect to the corresponding edges in $[Os_6(CO)_{18}]$ and 1.

The π acidity of the arene will not be as great as for the tricarbonyl grouping and hence the metal atom bonded to the

Fig. 1 Molecular structure of $[{\rm Os}_6({\rm CO})_{15}(\eta^6{\rm -C}_6{\rm H}_6)]$ 1 showing the atom numbering

Fig. 2 Molecular structure of $[{\rm Os}_6({\rm CO})_{15}(\eta^6{\rm -C}_6{\rm H}_5{Me})]$ 2 showing the atom numbering

arene will be more electron rich than that associated with the metal tricarbonyl grouping. This is reflected in the variation in bonding of $[Os_6(CO)_{18}]$ and 2 with a bridging carbonyl group occurring in the latter compound, consistent with the higher π -bonding basicity of the metal group when co-ordinated to the arene. In terms of the potential electron-donor power of the metal it may be anticipated that the metal arene fragment would be in a tetrahedral position (metal-metal connectivity of four) as in 1, as opposed to a capping position (metal-metal connectivity of three), as this enhances the possibility of a metal-metal donor bond. The difference in the structure of 1 and 2 may also reflect the more sterically demanding requirements of toluene compared to benzene on substitution of the three carbonyls in the initial $[Os_6(CO)_{18}]$ structure.

In the cluster $[RuOs_5(CO)_{15}(\eta^6-C_6H_6)]$ the ruthenium atom is electron deficient $(17e^-)$ as is the osmium atom bonded to the arene in 2, but the incipient character of the bridging carbonyl may be a reflection of the smaller electronegativity of ruthenium with respect to osmium.

In general terms, the position of substitution of the arene group is a balance between electronic and steric factors. Electronic factors, related to the enhanced donor power of the metal arene fragment, would favour substitution at the metal centres in order of their metal-metal connectivities five > four > three. On the basis of steric effects the order of substitution would be reversed in terms of the metal-metal connectivities, three > four > five. The observed substitution in the four connectivity position provides a compromise between the two opposing effects.

In order to investigate further steric factors associated with the structures of compounds 1 and 2 their crystal structures were analysed in terms of intermolecular packing. In both compounds the arene ligands form ribbons generated by the interlocking of two rows of arene fragments in a chevron-like fashion to give the 'herring-bone' pattern previously observed in other monoarene derivatives.⁹ Thus the arene rings on adjacent molecules do not line up parallel with each other thereby generating graphitic packing, but the arene ring on one molecule interlocks with a tricarbonyl group on the next as shown in Figs. 3 and 4 for 1 and 2, respectively. This packing pattern optimises the intermixing of the flat arene fragment and the carbonyl ligands protruding from the cluster surface, so that

Fig. 3 Intermolecular interactions for complex 1

Fig. 4 Intermolecular interactions for complex 2

although the positions of arene substitution are different in the two clusters and the steric requirements of the benzene and toluene ligands are different, the same localised packing interactions are similar in the two cases. The longer-range packing involving the arrangement and orientation of the arene ribbons is responsible for the difference in crystal system and space group for 1 and 2; complex 1 crystallises in space group Pbca and 2 in $P2_1/n$.

The molecular structure of compound 4 is shown in Fig. 5. Selected bond parameters are presented in Table 4. The metal core of $[Os_7(CO)_{17}(\eta^6-C_6H_6)]$ provides an interesting stereochemical variation, and may be described as consisting of four tetrahedra fused together to form a face-sharing chain of tetrahedra. It represents the basic structural unit of a winding helix.¹⁸ The Os–Os distances range from 2.611(1) to 2.922(1) Å, comparable to those found in other high-nuclearity osmium carbonyl clusters. If the synthetic pathway is considered first, it is reasonable to think that the benzene should be co-ordinated to the capped Os(2) atom, however, as in 1, a migration of the benzene from 17-electron Os(2) to 18-electron Os(4) has been observed. Attempts have been made to obtain crystals for 5 but the clusters decomposed upon prolonged standing. According to the structures of 1 and 2, the toluene could be either bound to Os(2) or Os(4), but the close similarities in the IR spectra of complexes 4 and 5 would indicate that 5 has a similar bonding pattern to that of 4.

Experimental

All the reactions were performed under an atmosphere of dry, oxygen-free nitrogen. Technical grade solvents were purified by standard procedures. The complexes $[Os_5(CO)_{15}]^{2^-}$ (ref. 19), $[Os(C_6H_6)(MeCN)_3][BF_4]_2^{20}$ and $[{Os(C_6H_5Me)Cl_2}]^{21}$ were prepared by literature procedures. Mass spectra were recorded using a Kratos model MS 902 spectrometer, IR spectra on a Perkin-Elmer 1710 FT-IR spectrometer and ¹H NMR spectra on a Bruker WH 250 MHz spectrometer.

Preparations.— $[Os_6(CO)_{15}(\eta^6-C_6H_5R)]$. Method 1 (R = H). To a solution of $[N(PPh_3)_2]_2[Os_5(CO)_{15}]$ (50 mg) in dichloromethane (10 cm³) was added $[Os(C_6H_6)(MeCN)_3]$ - $[BF_4]_2$ (25 mg) and the solution stirred for *ca*. 0.5 h. After removal of solvent the solid residue was chromatographed by TLC using CH₂Cl₂-hexane (50:50) as eluent. The dark brown cluster $[Os_6(CO)_{15}(\eta^6-C_6H_6)]$ 1 was isolated as the major product, $R_f 0.7$, *ca*. 45% yield.

Method 2 (R = H or Me). To a solution of $[Os_6(CO)_{18}]$ (50 mg) and an excess of C_6H_7R (R = Me or H) in CH_2Cl_2 (10 cm³) was added dropwise Me₃NO (3.2 equivalents) in dichloromethane (10 cm³) and the solution was stirred for 1 h. After removal of solvent the solid residue was chromatographed by TLC using CH_2Cl_2 -hexane (50:50) as eluent. The dark brown cluster $[Os_6(CO)_{15}(\eta^6-C_6H_3R)]$ was isolated as the major product, $R_f 0.7$, ca. 5% yield. $[Os(C_6H_5Me)(CF_3SO_3)_2]$. The compound $[{Os(C_6H_5-Me)}]$

 $[Os(C_6H_5Me)(CF_3SO_3)_2]$. The compound $[{Os(C_6H_5-Me)Cl_2}_2]$ (20 mg) was suspended in CH_2Cl_2 and $Ag(CF_3SO_3)$ (40 mg) was added with stirring until a white precipitate of AgCl was formed. The solution was filtered and after removal of solvent the yellow oil was dissolved in CH_2Cl_2 and used without further purification.

 $[Os_6(CO)_{15}(\eta^6-C_6H_5Me)]$ and $[Os_7(CO)_{17}(\eta^6-C_6H_5Me)]$. To a solution of $[Os(C_6H_5Me)(CF_3SO_3)_2]$ (25 mg) in dichloromethane (10 cm³) was added $[N(PPh_3)_2]_2[Os_5(CO)_{15}]$ (50 mg) and the solution stirred for *ca*. 0.5 h. After removal of solvent the solid residue was chromatographed by TLC using CH_2Cl_2 -hexane (50:50) as eluent. The first black band was characterised as $[Os_7(CO)_{17}(\eta^6-C_6H_5Me)]$ **5**, R_f 0.8, *ca*. 5% yield. The second brown band was identified as $[Os_6(CO)_{15}-(\eta^6-C_6H_5Me)]$ **2**, R_f 0.7, *ca*. 35% yield.

 $(\eta^{6}-C_{6}H_{5}Me)$] 2, R_{f} 0.7, *ca.* 35% yield. $[Os_{6}(CO)_{17}]^{2^{-}}$ 3. The compound $[Os_{6}(CO)_{18}]$ (50 mg) was suspended in thf (10 cm³) and a solution of K–Ph₂CO (1.1

Fig. 5 Molecular structure of $[Os_7(CO)_{17}(\eta^6-C_6H_6)]$ 4 showing the atom numbering

Table 4 Selected bond lengths (Å) and angles (°) for compound 4

Os(1)-Os(2)	2.913(1)	Os(1) - Os(3)	2.779(1)
Os(1) - Os(4)	2.816(1)	Os(1) - Os(5)	2.841(1)
Os(1) - Os(6)	2.816(1)	Os(2) - Os(3)	2.657(1)
Os(2) - Os(4)	2.744(1)	Os(3) - Os(4)	2.611(1)
Os(3) - Os(5)	2.708(1)	Os(3) - Os(6)	2.716(1)
Os(3) - Os(7)	2.670(1)	Os(4) - Os(6)	2.859(1)
Os(5)-Os(6)	2.847(1)	Os(5) - Os(7)	2.794(2)
Os(6)-Os(7)	2.922(1)	Os(4)-C(1a)	2.19(3)
Os(4)-C(1b)	2.21(3)	Os(4)-C(1c)	2.26(4)
Os(4)-C(1d)	2.29(3)	Os(4)-C(1e)	2.25(3)
Os(4)-C(1f)	2.26(4)		
Os(2)-Os(1)-Os(3)	55.61(3)	Os(2)-Os(1)-Os(4)	57.21(4)
Os(2)-Os(1)-Os(5)	104.05(4)	Os(2)-Os(1)-Os(6)	106.17(4)
Os(3)-Os(1)-Os(4)	55.62(3)	Os(3)-Os(1)-Os(5)	57.60(3)
Os(3)-Os(1)-Os(6)	58.07(3)	Os(4)-Os(1)-Os(5)	106.57(4)
Os(4)-Os(1)-Os(6)	61.01(4)	Os(5)-Os(1)-Os(6)	60.40(4)
Os(1)-Os(2)-Os(3)	59.64(3)	Os(1)-Os(2)-Os(4)	59.62(4)
Os(3)-Os(2)-Os(4)	57.77(4)	Os(1)-Os(3)-Os(2)	64.76(4)
Os(1)-Os(3)-Os(4)	62.91(4)	Os(1)-Os(3)-Os(5)	62.36(4)
Os(1)-Os(3)-Os(6)	61.65(4)	Os(1) - Os(3) - Os(7)	115.69(4)
Os(2)-Os(3)-Os(4)	62.79(4)	Os(2)-Os(3)-Os(5)	115.45(5)
Os(2)-Os(3)-Os(6)	117.00(5)	Os(2) - Os(3) - Os(7)	175.98(5)
Os(4)-Os(3)-Os(5)	117.01(5)	Os(4)-Os(3)-Os(6)	64.90(4)
Os(4)-Os(3)-Os(7)	121.16(5)	Os(5)-Os(3)-Os(6)	63.31(4)
Os(5)-Os(3)-Os(7)	62.57(4)	Os(6)-Os(3)-Os(7)	65.70(4)
Os(1) - Os(4) - Os(2)	63.17(4)	Os(1)-Os(4)-Os(3)	61.46(4)
Os(1)-Os(4)-Os(6)	59.50(3)	Os(2) - Os(4) - Os(3)	59.45(4)
Os(2)-Os(4)-Os(6)	109.67(4)	Os(3)-Os(4)-Os(6)	59.33(3)
Os(1)-Os(5)-Os(3)	60.05(4)	Os(1)-Os(5)-Os(6)	59.36(3)
Os(1)-Os(5)-Os(7)	109.95(4)	Os(3)-Os(5)-Os(6)	58.50(3)
Os(3)-Os(5)-Os(7)	58.06(4)	Os(6)-Os(5)-Os(7)	62.42(4)
Os(1)-Os(6)-Os(3)	60.27(4)	Os(1)-Os(6)-Os(4)	59.49(3)
Os(1)-Os(6)-Os(5)	60.23(4)	Os(1) - Os(6) - Os(7)	107.02(4)
Os(3)-Os(6)-Os(4)	55.78(3)	Os(3)-Os(6)-Os(5)	58.20(3)
Os(3)-Os(6)-Os(7)	56.40(4)	Os(4)-Os(6)-Os(5)	105.29(4)
Os(4) - Os(6) - Os(7)	105.43(4)	Os(5)-Os(6)-Os(7)	57.90(4)
Os(3)-Os(7)-Os(5)	59.36(4)	Os(3)-Os(7)-Os(6)	57.90(4)
Os(5)-Os(7)-Os(6)	59.68(4)		

equivalents) in thf (10 cm^3) was added dropwise with stirring until all the $[Os_6(CO)_{18}]$ had dissolved and a clear brown solution resulted. After removal of solvent the remaining orange-brown oil was dissolved in dichloromethane and used without further purification.

 $[Os_7(CO)_{17}(\eta^6-C_6H_5R)]$ (R = Me or H). Method 1. To a solution of the dianion $[Os_6(CO)_{17}]^{2^-}$ (50 mg) in dichloromethane (10 cm³) was added $[Os(C_6H_6)(MeCN)_3][BF_4]_2$

	1	2	4
Formula	$C_{21}H_6O_{15}O_{56}$	$C_{22}H_{2}O_{15}O_{56}$	$C_{23}H_6O_{17}O_{57}$
М	1639.5	1653.5	1885.7
Crystal colour, habit	Dark red irregular prism	Black block	Black block
Crystal size/mm	$0.25 \times 0.32 \times 0.35$	$0.42 \times 0.46 \times 0.56$	$0.30 \times 0.34 \times 0.40$
Crystal system	Orthorhombic	Monoclinic	Orthorhombic
Space group	Pbca	$P2_1/n$	Pbca
a/Å	16.819(6)	9.651(3)	18.279(9)
$b/ m \AA$	17.732(6)	18.666(4)	18.377(7)
$c/\text{\AA}$	18.160(6)	15.688(5)	18.497(5)
β/°		90.58(2)	
$U/Å^3$	5416(3)	2826(1)	6213(4)
T/\mathbf{K}	150(2)	290(2)	290(2)
Z	8	4	8
$D_{\rm c}/{\rm g~cm^{-3}}$	4.021	3.886	4.030
F(000)	5664	2864	6496
$\mu(Mo-K\alpha)/cm^{-1}$	281.14	269.41	286.35
2θ Range/°	7.0-45.0	5.0-45.0	4.0-45.0
Scan mode	ω–θ	ω–2θ	ω2θ
Scan speed/° min ⁻¹	0.25-1.00	3.0-19.53	1.03-8.24
Scan range (ω)/°	0.90 plus $K\alpha$ separation	1.50 plus Kα separation	$0.55 + 0.34 \tan\theta$
Reflections measured	3520	4145	4509
Unique reflections	3520	3712	4509
Observed reflections (criterion)	$2685 [F > 5\sigma(F)]$	$2620 [F > 5\sigma(F)]$	$3139 [F > 3\sigma(F)]$
Transmission factors	0.0523, 0.0943	0.0424, 0.0783	0.0495, 0.0881
Weighting scheme	$[\sigma^2(F) + 0.002(F)^2]^{-1}$	$[\sigma^2(F) + 0.003(F)^2]^{-1}$	$4F^{2}[\sigma^{2}(F)^{2} + (0.04F^{2})^{2}]$
R	0.087	0.089	0.052
R'	0.105	0.113	0.061

Table 5 Crystal data and data-collection parameters * for the structures of $[Os_6(CO)_{15}(\eta^6-C_6H_6)]$ 1, $[Os_6(CO)_{15}(\eta^6-C_6H_5Me)]$ 2 and $[Os_7(CO)_{17}(\eta^6-C_6H_6)]$ 4

* Details in common: Mo-K α radiation ($\lambda = 0.710$ 69 Å), background measurement, stationary crystal-stationary counter at beginning and end of scan, each for 25% of total scan time.

Table 6 Atomic coordinates $(\times 10^4)$ for compound 1

Atom	x	у	Z	Atom	x	у	Ζ
Os(1)	2 359(1)	8 367(1)	233(1)	O(32)	655(19)	9 616(18)	-411(15)
Os(2)	959(1)	8 091(1)	932(1)	C(33)	1 072(28)	10 436(26)	1 298(22)
Os(3)	1 607(1)	9 535(1)	1 013(1)	O(33)	746(20)	11 001(18)	1 367(16)
Os(4)	2 315(1)	8 376(1)	1 786(1)	C(41)	2 414(29)	8 162(27)	2 807(23)
Os(5)	832(1)	8 887(1)	2 198(1)	O(41)	2 574(20)	8 005(19)	3 415(16)
Os(6)	2 157(1)	9 812(1)	2 441(1)	C(42)	2 275(26)	7 291(26)	1 603(22)
C(1)	771(18)	7 339(17)	- 56(12)	O(42)	2 337(20)	6 666(18)	1 585(16)
C(2)	236	7 940	-83	C(43)	3 386(31)	8 594(28)	1 635(23)
C(3)	-262	8 083	515	O(43)	4 116(19)	8 677(17)	1 531(15)
C(4)	-227	7 626	1 1 39	C(51)	704(30)	9 427(28)	3 045(25)
C(5)	308	7 025	1 166	O(51)	584(24)	9 683(22)	3 646(20)
C(6)	806	6 881	568	C(52)	604(27)	7 984(26)	2 727(22)
C(11)	2 660(24)	7 379(24)	70(21)	O(52)	415(23)	7 465(22)	2 996(19)
O (11)	2 853(19)	6 740(18)	-13(16)	C(53)	-148(27)	9 192(24)	1 922(21)
C(12)	1 973(29)	8 450(26)	- 745(23)	O(53)	-795(19)	9 302(17)	1 710(15)
O(12)	1 746(18)	8 575(17)	-1344(14)	C(61)	1 746(24)	10 799(22)	2 699(18)
C(13)	3 340(22)	8 726(21)	26(17)	O(61)	1 460(22)	11 314(20)	2 890(17)
O(13)	4 013(21)	8 974(19)	-169(17)	C(62)	3 195(24)	10 230(21)	2 248(18)
C(31)	2 579(29)	10 059(25)	685(22)	O(62)	3 806(20)	10 456(18)	2 076(15)
O(31)	3 134(21)	10 346(18)	496(16)	C(63)	2 429(26)	9 657(24)	3 455(21)
C(32)	960(24)	9 576(22)	156(19)	O(63)	2 644(21)	9 608(19)	4 066(16)

(25 mg) or $[Os(C_6H_5Me)(CF_3SO_3)_2]$ and the solution stirred for *ca.* 0.5 h. After removal of solvent the solid residue was chromatographed by TLC using CH_2Cl_2 -hexane (60:40) as eluent. The brown clusters $[Os_7(CO)_{17}(\eta^6-C_6H_6)]$ 4 and $[Os_7(CO)_{17}(\eta^6-C_6H_5Me)]$ 5 were isolated respectively as the major products, R_f 0.8, *ca.* 25% yield.

Method 2. To a solution of $[Os_7(CO)_{21}]$ (50 mg) and an excess of C_6H_7R (R = Me or H) in CH_2Cl_2 (10 cm³) was added dropwise Me_3NO (3.2 equivalents) in dichloromethane (10 cm³) and the solution was stirred for 1 h. After removal of solvent the solid residue was chromatographed by TLC using CH_2Cl_2 -hexane (60:40) as eluent. The dark brown cluster $[Os_7(CO)_{17}(\eta^6-C_6H_5R)]$ was isolated as the major product, R_f 0.8, ca. 3% yield.

X-Ray Analysis of Compounds 1, 2 and 4.—For compound 1 intensity data were collected on a Stoe four-circle diffractometer equipped with an Oxford Cryostream cooling device, for 2 on a Nicolet R3m/V diffractometer and for 4 on an Enraf–Nonius CAD4 diffractometer. In each case the data were corrected for Lorentz polarisation effects and for absorption by the ψ -scan method. The crystals of 1 and 2 were irregular in shape and it was not possible to apply a particularly accurate absorption correction; this resulted in relatively high final residuals. The relevant data for the crystal structure analyses are summarised in Table 5. The structures were solved by a combination of direct methods and Fourier-difference techniques and refined on F by full-matrix least-squares analysis (using the SHELXTL PLUS program²² for 1 and 2, SDP program²³ for 4) until **Table 7**Atomic coordinates ($\times 10^4$) for compound 2

Atom	x	у	Z	Atom	x	у	z
Os(1)	220(2)	7 210(1)	5 973(1)	O(12)	-2393(42)	7 447(24)	4 900(27)
$O_{s(2)}$	-813(2)	6 224(1)	6 906(1)	O(13)	125(42)	5 736(22)	5 173(27)
Os(3)	-148(2)	7 669(1)	7 626(1)	O(31)	277(47)	9 002(26)	8 741(31)
Os(4)	-353(2)	8 647(1)	6 243(1)	Q(32)	-151(36)	6 829(20)	9 287(24)
Os(5)	2 219(2)	8 071(1)	6 646(1)	O(33)	-3287(43)	7 876(24)	7 559(25)
Os(6)	1 952(2)	6 699(1)	7 339(1)	O(41)	-3387(53)	8 913(30)	6 107(37)
can	1 442(45)	7 315(25)	5 127(30)	O(42)	210(46)	10 003(21)	7 211(28)
$\tilde{C}(12)$	-1.351(49)	7 407(27)	5 320(32)	O(43)	46(50)	9 269(27)	4 436(33)
$\tilde{C}(13)$	-66(50)	6 160(28)	5 651(33)	0(51)	4 790(49)	7 363(27)	6 008(30)
C(31)	57(49)	8 495(27)	8 330(32)	O(52)	3 488(73)	8 904(31)	8 097(37)
C(32)	-111(47)	7 087(27)	8 612(31)	O(53)	2 848(57)	9 227(27)	5 288(30)
C(33)	-2141(47)	7 807(25)	7 595(28)	O(61)	4 461(50)	7 159(29)	8 363(25)
C(41)	-2.214(50)	8 773(26)	6 182(31)	O(62)	3 531(48)	5 759(22)	6 128(34)
C(42)	-54(50)	9 490(28)	6 877(32)	O(63)	1 572(55)	5424(31)	8 506(37)
C(43)	73(58)	8 995(32)	5 123(39)	C(20)	-3250(64)	5 623(35)	5 524(41)
C(51)	3 723(72)	7 599(38)	6 159(43)	C(21)	-2559(71)	5 577(39)	6 427(48)
C(51)	3 032(67)	8 642(39)	7 555(45)	C(22)	-3.043(51)	6 109(28)	6 983(33)
C(52)	2484(71)	8 799(40)	5 904(46)	C(22)	-2491(48)	6032(28)	7 775(32)
C(61)	3 460(54)	6 978(29)	7 990(35)	C(24)	-1.595(50)	5 607(28)	8 029(33)
C(61)	2 976(61)	6170(34)	6 563(40)	C(25)	-993(52)	5 125(29)	7 455(33)
C(63)	1 811(54)	5921(30)	8 108(36)	C(25)	-1.500(57)	5123(2)	6 640(37)
O(11)	2 100(37)	7247(26)	<i>4 414(25)</i>	C(20)	- 1 500(57)	5114(51)	0 0 40(57)
Atom	x	у	Z	Atom	x	У	Ζ
$O_{s}(1)$	0 191 01(5)	0 232 49(5)	0 167 08(5)	C(1d)	0.090(2)	0.113(2)	0.338(2)
$O_{s}(2)$	0.03525(5)	0.232(4)(5) 0.243(40(6))	0 135 56(6)	C(1e)	0.033(2)	0.159(2)	0.319(2)
$O_{S}(3)$	0.000220(0) 0.11521(5)	0.129.22(6)	0.07(59(5)		0.092(2)	0.044(2)	0.000(0)
$O_{s}(4)$		0 1 10 2 300	0.070.38(3)	C(IC)	0.072(2)	0.044(2)	0.303(2)
	0.088 40(5)	$0.138\ 23(0)$ $0.128\ 81(5)$	0.076 58(5)	C(1c) C(1b)	0.092(2) 0.040(2)	0.025(2)	0.303(2) 0.249(2)
$O_{s}(5)$	0.088 40(5) 0.252 56(5)	0.138 23(0) 0.128 81(5) 0.176 78(6)	0.076 58(5) 0.214 89(5) 0.037 35(5)	C(1c) C(1b) C(1f)	0.040(2) -0.020(2)	0.025(2) 0.141(2)	0.303(2) 0.249(2) 0.272(2)
Os(5) Os(6)	0.088 40(5) 0.252 56(5) 0.226 37(5)	0.138 23(6) 0.128 81(5) 0.176 78(6) 0.083 64(6)	0.076 58(5) 0.214 89(5) 0.037 35(5) 0.157 53(5)	C(1c) C(1b) C(1f) C(1a)	0.040(2) -0.020(2) -0.016(1)	0.025(2) 0.141(2) 0.074(1)	$\begin{array}{c} 0.303(2) \\ 0.249(2) \\ 0.272(2) \\ 0.233(1) \end{array}$
Os(5) Os(6) Os(7)	0.088 40(5) 0.252 56(5) 0.226 37(5) 0.196 36(6)	0.138 23(0) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6)	0.076 58(5) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6)	C(1c) C(1b) C(1f) C(1a) C(11)	$\begin{array}{c} 0.052(2) \\ 0.040(2) \\ -0.020(2) \\ -0.016(1) \\ 0.178(1) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1)
Os(7) Os(6) Os(7) O(11)	0.088 40(5) 0.252 56(5) 0.226 37(5) 0.196 36(6) 0.172(1)	0.138 23(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1)	0.076 38(5) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6) 0.113(1)	C(1c) C(1b) C(1f) C(1a) C(11) C(12)	$\begin{array}{c} 0.032(2) \\ 0.040(2) \\ -0.020(2) \\ -0.016(1) \\ 0.178(1) \\ 0.165(2) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2)
Os(1) Os(5) Os(6) Os(7) O(11) O(12)	0.088 40(5) 0.252 56(5) 0.226 37(5) 0.196 36(6) 0.172(1) 0.156(1)	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2)	0.076 38(5) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6) 0.113(1) 0.322(1)	C(1c) C(1b) C(1f) C(1a) C(11) C(12) C(13)	$\begin{array}{c} 0.092(2) \\ 0.040(2) \\ - 0.020(2) \\ - 0.016(1) \\ 0.178(1) \\ 0.165(2) \\ 0.287(2) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2)
$O_{s}(5)$ $O_{s}(6)$ $O_{s}(7)$ O(11) O(12) O(13)	0.088 40(5) 0.252 56(5) 0.226 37(5) 0.196 36(6) 0.172(1) 0.156(1) 0.347(1)	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1)	0.076 38(3) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6) 0.113(1) 0.322(1) 0.217(1)	C(1c) C(1b) C(1f) C(1a) C(11) C(12) C(12) C(13) C(21)	$\begin{array}{c} 0.042(2) \\ 0.040(2) \\ -0.020(2) \\ -0.016(1) \\ 0.178(1) \\ 0.165(2) \\ 0.287(2) \\ 0.028(2) \end{array}$	0.074(1) 0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2) 0.069(2)
$\begin{array}{c} Os(1) \\ Os(5) \\ Os(6) \\ Os(7) \\ O(11) \\ O(12) \\ O(13) \\ O(21) \end{array}$	0.088 40(5) 0.252 56(5) 0.226 37(5) 0.196 36(6) 0.172(1) 0.156(1) 0.347(1) 0.023(1)	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.278(2) 0.264(1) 0.364(2)	0.076 38(5) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6) 0.113(1) 0.322(1) 0.217(1) 0.022(2)	$C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(11) \\ C(12) \\ C(13) \\ C(21) \\ C(22)$	$\begin{array}{c} 0.052(2)\\ 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.287(2)\\ 0.028(2)\\ -0.062(2) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2) 0.216(2)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2) 0.069(2) 0.117(2)
Os(1) Os(5) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\end{array}$	0.138 25(6) 0.128 81(5) 0.128 81(5) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1)	0.076 38(3) 0.214 89(5) 0.037 35(5) 0.057 53(5) 0.009 02(6) 0.113(1) 0.322(1) 0.322(1) 0.022(2) 0.107(1)	$C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(11) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23)$	$\begin{array}{c} 0.042(2) \\ 0.040(2) \\ -0.020(2) \\ -0.016(1) \\ 0.178(1) \\ 0.165(2) \\ 0.287(2) \\ 0.028(2) \\ -0.062(2) \\ 0.011(2) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2) 0.216(2) 0.310(2)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2) 0.069(2) 0.117(2) 0.209(2)
Os(5) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\end{array}$	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.344(1)	0.076 38(3) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6) 0.113(1) 0.322(1) 0.217(1) 0.022(2) 0.107(1) 0.259(2)	$C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(11) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(31)$	$\begin{array}{c} 0.052(2)\\ 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.287(2)\\ 0.028(2)\\ -0.062(2)\\ 0.011(2)\\ 0.048(1) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2) 0.216(2) 0.310(2) 0.063(1)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2) 0.069(2) 0.117(2) 0.209(2) 0.075(1)
$\begin{array}{c} O_{s}(5) \\ O_{s}(5) \\ O_{s}(6) \\ O_{s}(7) \\ O(11) \\ O(12) \\ O(13) \\ O(21) \\ O(22) \\ O(23) \\ O(31) \end{array}$	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\end{array}$	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.344(1) 0.015(1)	0.076 38(3) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6) 0.113(1) 0.322(1) 0.217(1) 0.022(2) 0.107(1) 0.259(2) 0.076(1)	$C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \\ C(32)$	$\begin{array}{c} 0.040(2) \\ -0.020(2) \\ -0.016(1) \\ 0.178(1) \\ 0.165(2) \\ 0.0287(2) \\ 0.028(2) \\ -0.062(2) \\ 0.011(2) \\ 0.048(1) \\ 0.072(1) \end{array}$	$\begin{array}{c} 0.025(2) \\ 0.025(2) \\ 0.141(2) \\ 0.074(1) \\ 0.326(2) \\ 0.260(2) \\ 0.252(2) \\ 0.318(2) \\ 0.216(2) \\ 0.310(2) \\ 0.063(1) \\ 0.180(2) \end{array}$	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2) 0.069(2) 0.117(2) 0.209(2) 0.075(1) -0.008(1)
Os(5) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23) O(31) O(32)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\end{array}$	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.344(1) 0.015(1) 0.200(1)	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.22(2)\\ 0.107(1)\\ 0.259(2)\\ 0.076(1)\\ -0.061(1)\\ \end{array}$	$C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(51$	$\begin{array}{c} 0.052(2)\\ 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.287(2)\\ 0.028(2)\\ -0.062(2)\\ 0.011(2)\\ 0.048(1)\\ 0.072(1)\\ 0.347(2) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2) 0.216(2) 0.310(2) 0.063(1) 0.180(2) 0.212(2)	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2) 0.069(2) 0.117(2) 0.209(2) 0.075(1) -0.008(1) 0.060(2)
Os(5) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23) O(31) O(32) O(32)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\end{array}$	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.344(1) 0.344(1) 0.015(1) 0.200(1) 0.225(2)	0.076 38(3) 0.214 89(5) 0.037 35(5) 0.157 53(5) 0.009 02(6) 0.113(1) 0.322(1) 0.217(1) 0.022(2) 0.107(1) 0.259(2) 0.076(1) -0.061(1) 0.070(1)	$C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(52)$	$\begin{array}{c} 0.052(2)\\ 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.0287(2)\\ 0.028(2)\\ -0.062(2)\\ 0.011(2)\\ 0.048(1)\\ 0.072(1)\\ 0.347(2)\\ 0.225(2) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2) 0.216(2) 0.063(1) 0.180(2) 0.212(2) 0.262(2)	$\begin{array}{c} 0.303(2)\\ 0.249(2)\\ 0.272(2)\\ 0.233(1)\\ 0.135(1)\\ 0.264(2)\\ 0.197(2)\\ 0.069(2)\\ 0.117(2)\\ 0.209(2)\\ 0.075(1)\\ -0.008(1)\\ 0.060(2)\\ -0.009(2) \end{array}$
Os(5) Os(6) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23) O(23) O(31) O(32) O(51) O(52)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\\ 0.206(1)\\ \end{array}$	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.38 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.344(1) 0.344(1) 0.015(1) 0.200(1) 0.225(2) 0.312(1)	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.022(2)\\ 0.107(1)\\ 0.259(2)\\ 0.076(1)\\ -0.061(1)\\ 0.070(1)\\ -0.039(1)\\ \end{array}$	$\begin{array}{c} C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(52) \\ C(53) \end{array}$	$\begin{array}{c} 0.052(2)\\ 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.287(2)\\ 0.028(2)\\ -0.062(2)\\ 0.011(2)\\ 0.048(1)\\ 0.072(1)\\ 0.347(2)\\ 0.225(2)\\ 0.292(2) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2) 0.216(2) 0.310(2) 0.063(1) 0.180(2) 0.212(2) 0.262(2) 0.146(2)	$\begin{array}{c} 0.303(2)\\ 0.249(2)\\ 0.272(2)\\ 0.233(1)\\ 0.135(1)\\ 0.264(2)\\ 0.197(2)\\ 0.069(2)\\ 0.117(2)\\ 0.209(2)\\ 0.075(1)\\ -0.008(1)\\ 0.060(2)\\ -0.009(2)\\ -0.050(2) \end{array}$
Os(1) Os(5) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23) O(23) O(31) O(32) O(51) O(53)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\\ 0.206(1)\\ 0.320(1)\\ \end{array}$	0.138 25(6) 0.128 81(5) 0.128 81(5) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.364(2) 0.194(1) 0.344(1) 0.015(1) 0.200(1) 0.225(2) 0.312(1) 0.127(1)	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.022(2)\\ 0.107(1)\\ 0.259(2)\\ 0.076(1)\\ -0.061(1)\\ 0.070(1)\\ -0.039(1)\\ -0.105(1)\\ \end{array}$	$C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(52) \\ C(53) \\ C(51) \\ C(53) \\ C(61) \\ C(61) \\ C(61) \\ C(52) \\ C(61) \\ C(61) \\ C(61) \\ C(52) \\ C(61) \\ C(61$	$\begin{array}{c} 0.052(2)\\ 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.0287(2)\\ -0.062(2)\\ 0.011(2)\\ 0.048(1)\\ 0.072(1)\\ 0.347(2)\\ 0.225(2)\\ 0.292(2)\\ 0.324(1) \end{array}$	0.025(2) 0.141(2) 0.074(1) 0.326(2) 0.260(2) 0.252(2) 0.318(2) 0.216(2) 0.063(1) 0.180(2) 0.212(2) 0.262(2) 0.146(2) 0.062(1)	$\begin{array}{c} 0.303(2)\\ 0.249(2)\\ 0.272(2)\\ 0.233(1)\\ 0.135(1)\\ 0.264(2)\\ 0.197(2)\\ 0.069(2)\\ 0.117(2)\\ 0.209(2)\\ 0.075(1)\\ -0.008(1)\\ 0.060(2)\\ -0.009(2)\\ -0.009(2)\\ 0.133(1) \end{array}$
Os(5) Os(6) Os(7) O(11) O(12) O(21) O(21) O(22) O(23) O(31) O(32) O(51) O(52) O(53) O(61)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\\ 0.206(1)\\ 0.320(1)\\ 0.382(1)\\ \end{array}$	$\begin{array}{c} 0.136\ 25(6)\\ 0.138\ 25(6)\\ 0.128\ 81(5)\\ 0.176\ 78(6)\\ 0.083\ 64(6)\\ 0.038\ 35(6)\\ 0.38\ 61(1)\\ 0.278(2)\\ 0.264(1)\\ 0.364(2)\\ 0.194(1)\\ 0.364(2)\\ 0.194(1)\\ 0.344(1)\\ 0.015(1)\\ 0.200(1)\\ 0.225(2)\\ 0.312(1)\\ 0.127(1)\\ 0.046(1)\\ \end{array}$	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.022(2)\\ 0.107(1)\\ 0.229(2)\\ 0.076(1)\\ -0.061(1)\\ 0.070(1)\\ -0.039(1)\\ -0.105(1)\\ 0.121(1)\\ \end{array}$	$\begin{array}{c} C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(52) \\ C(53) \\ C(61) \\ C(62) \end{array}$	$\begin{array}{c} 0.042(2)\\ 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.028(2)\\ -0.062(2)\\ 0.011(2)\\ 0.048(1)\\ 0.072(1)\\ 0.347(2)\\ 0.225(2)\\ 0.225(2)\\ 0.324(1)\\ 0.324(1)\\ 0.200(2) \end{array}$	$\begin{array}{c} 0.025(2)\\ 0.025(2)\\ 0.141(2)\\ 0.074(1)\\ 0.326(2)\\ 0.260(2)\\ 0.252(2)\\ 0.318(2)\\ 0.216(2)\\ 0.310(2)\\ 0.063(1)\\ 0.180(2)\\ 0.212(2)\\ 0.262(2)\\ 0.146(2)\\ 0.062(1)\\ -0.014(2) \end{array}$	$\begin{array}{c} 0.303(2)\\ 0.249(2)\\ 0.272(2)\\ 0.233(1)\\ 0.135(1)\\ 0.264(2)\\ 0.197(2)\\ 0.197(2)\\ 0.117(2)\\ 0.209(2)\\ 0.075(1)\\ -0.008(1)\\ 0.060(2)\\ -0.009(2)\\ 0.033(1)\\ 0.133(1)\\ 0.171(2) \end{array}$
Os(5) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23) O(23) O(23) O(31) O(32) O(51) O(52) O(53) O(61) O(62)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\\ 0.206(1)\\ 0.320(1)\\ 0.382(1)\\ 0.179(1)\end{array}$	$\begin{array}{c} 0.138\ 25(6)\\ 0.138\ 25(6)\\ 0.128\ 81(5)\\ 0.176\ 78(6)\\ 0.083\ 64(6)\\ 0.038\ 35(6)\\ 0.386(1)\\ 0.278(2)\\ 0.264(1)\\ 0.364(2)\\ 0.194(1)\\ 0.364(2)\\ 0.194(1)\\ 0.344(1)\\ 0.015(1)\\ 0.225(2)\\ 0.312(1)\\ 0.127(1)\\ 0.046(1)\\ -0.073(1)\\ \end{array}$	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.022(2)\\ 0.107(1)\\ 0.2259(2)\\ 0.076(1)\\ -0.061(1)\\ 0.070(1)\\ -0.039(1)\\ -0.105(1)\\ 0.121(1)\\ 0.185(1)\\ \end{array}$	$\begin{array}{c} C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(52) \\ C(53) \\ C(61) \\ C(62) \\ C(63) \end{array}$	$\begin{array}{c} 0.040(2)\\ -0.020(2)\\ -0.016(1)\\ 0.178(1)\\ 0.165(2)\\ 0.028(2)\\ -0.062(2)\\ 0.011(2)\\ 0.048(1)\\ 0.072(1)\\ 0.347(2)\\ 0.225(2)\\ 0.292(2)\\ 0.324(1)\\ 0.200(2)\\ 0.253(2) \end{array}$	$\begin{array}{c} 0.025(2)\\ 0.025(2)\\ 0.141(2)\\ 0.074(1)\\ 0.326(2)\\ 0.260(2)\\ 0.252(2)\\ 0.318(2)\\ 0.216(2)\\ 0.310(2)\\ 0.063(1)\\ 0.180(2)\\ 0.212(2)\\ 0.262(2)\\ 0.146(2)\\ 0.062(1)\\ -0.014(2)\\ 0.099(2) \end{array}$	0.303(2) 0.249(2) 0.272(2) 0.233(1) 0.135(1) 0.264(2) 0.197(2) 0.069(2) 0.117(2) 0.209(2) 0.075(1) -0.008(1) 0.060(2) -0.009(2) 0.133(1) 0.171(2) 0.253(1)
Os(5) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23) O(23) O(31) O(52) O(53) O(53) O(61) O(62) O(63)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\\ 0.206(1)\\ 0.320(1)\\ 0.382(1)\\ 0.179(1)\\ 0.271(1)\end{array}$	0.138 25(6) 0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.344(1) 0.225(2) 0.312(1) 0.127(1) 0.046(1) -0.073(1) 0.102(1)	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.222(2)\\ 0.107(1)\\ 0.2259(2)\\ 0.076(1)\\ -0.061(1)\\ 0.070(1)\\ -0.039(1)\\ -0.105(1)\\ 0.121(1)\\ 0.185(1)\\ 0.313(1)\\ \end{array}$	$\begin{array}{c} C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(21) \\ C(22) \\ C(23) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(52) \\ C(53) \\ C(61) \\ C(62) \\ C(63) \\ C(71) \end{array}$	0.040(2) -0.020(2) -0.016(1) 0.178(1) 0.165(2) 0.287(2) 0.028(2) -0.062(2) 0.011(2) 0.048(1) 0.072(1) 0.347(2) 0.225(2) 0.292(2) 0.324(1) 0.200(2) 0.253(2) 0.286(2)	$\begin{array}{c} 0.025(2)\\ 0.025(2)\\ 0.141(2)\\ 0.074(1)\\ 0.326(2)\\ 0.260(2)\\ 0.252(2)\\ 0.318(2)\\ 0.216(2)\\ 0.310(2)\\ 0.063(1)\\ 0.180(2)\\ 0.212(2)\\ 0.262(2)\\ 0.146(2)\\ 0.062(1)\\ -0.014(2)\\ 0.099(2)\\ -0.006(2) \end{array}$	$\begin{array}{c} 0.303(2)\\ 0.249(2)\\ 0.272(2)\\ 0.233(1)\\ 0.135(1)\\ 0.264(2)\\ 0.197(2)\\ 0.069(2)\\ 0.117(2)\\ 0.209(2)\\ 0.075(1)\\ -0.008(1)\\ 0.060(2)\\ -0.009(2)\\ -0.050(2)\\ 0.133(1)\\ 0.171(2)\\ 0.253(1)\\ -0.018(2)\end{array}$
Os(5) Os(6) Os(6) Os(7) O(11) O(12) O(13) O(21) O(23) O(23) O(23) O(31) O(52) O(53) O(61) O(62) O(63) O(71)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\\ 0.206(1)\\ 0.320(1)\\ 0.382(1)\\ 0.179(1)\\ 0.271(1)\\ 0.343(1)\\ \end{array}$	0.138 25(6) 0.128 81(5) 0.176 78(6) 0.083 64(6) 0.038 35(6) 0.386(1) 0.278(2) 0.264(1) 0.364(2) 0.194(1) 0.344(1) 0.200(1) 0.225(2) 0.312(1) 0.127(1) 0.046(1) -0.073(1) 0.102(1) -0.031(1)	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.022(2)\\ 0.107(1)\\ 0.259(2)\\ 0.076(1)\\ -0.061(1)\\ 0.070(1)\\ -0.039(1)\\ -0.105(1)\\ 0.121(1)\\ 0.185(1)\\ 0.313(1)\\ -0.032(1)\\ \end{array}$	$\begin{array}{c} C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(21) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \\ C(32) \\ C(51) \\ C(52) \\ C(53) \\ C(61) \\ C(62) \\ C(63) \\ C(71) \\ C(72) \end{array}$	0.040(2) -0.020(2) -0.016(1) 0.178(1) 0.165(2) 0.028(2) -0.062(2) 0.011(2) 0.048(1) 0.072(1) 0.347(2) 0.225(2) 0.225(2) 0.324(1) 0.200(2) 0.233(2) 0.286(2) 0.162(2)	$\begin{array}{c} 0.025(2)\\ 0.025(2)\\ 0.141(2)\\ 0.074(1)\\ 0.326(2)\\ 0.260(2)\\ 0.252(2)\\ 0.318(2)\\ 0.216(2)\\ 0.310(2)\\ 0.310(2)\\ 0.063(1)\\ 0.180(2)\\ 0.212(2)\\ 0.262(2)\\ 0.146(2)\\ 0.062(1)\\ -0.014(2)\\ 0.099(2)\\ -0.006(2)\\ 0.044(2) \end{array}$	$\begin{array}{c} 0.303(2)\\ 0.249(2)\\ 0.272(2)\\ 0.233(1)\\ 0.135(1)\\ 0.264(2)\\ 0.197(2)\\ 0.069(2)\\ 0.117(2)\\ 0.209(2)\\ 0.075(1)\\ -0.008(1)\\ 0.060(2)\\ -0.009(2)\\ -0.050(2)\\ 0.133(1)\\ 0.171(2)\\ 0.253(1)\\ -0.018(2)\\ -0.087(2)\end{array}$
Os(5) Os(6) Os(6) Os(7) O(11) O(12) O(13) O(21) O(22) O(23) O(21) O(23) O(31) O(32) O(51) O(52) O(53) O(61) O(62) O(63) O(71) O(72)	$\begin{array}{c} 0.088\ 40(5)\\ 0.252\ 56(5)\\ 0.226\ 37(5)\\ 0.196\ 36(6)\\ 0.172(1)\\ 0.156(1)\\ 0.347(1)\\ 0.023(1)\\ -0.119(1)\\ -0.005(1)\\ 0.004(1)\\ 0.050(1)\\ 0.408(1)\\ 0.206(1)\\ 0.320(1)\\ 0.382(1)\\ 0.382(1)\\ 0.271(1)\\ 0.271(1)\\ 0.343(1)\\ 0.144(1)\end{array}$	$\begin{array}{c} 0.138\ 25(6)\\ 0.128\ 81(5)\\ 0.176\ 78(6)\\ 0.083\ 64(6)\\ 0.038\ 35(6)\\ 0.386(1)\\ 0.278(2)\\ 0.264(1)\\ 0.364(2)\\ 0.194(1)\\ 0.364(2)\\ 0.194(1)\\ 0.344(1)\\ 0.015(1)\\ 0.200(1)\\ 0.225(2)\\ 0.312(1)\\ 0.127(1)\\ 0.046(1)\\ -0.073(1)\\ 0.102(1)\\ -0.031(1)\\ 0.048(2)\\ \end{array}$	$\begin{array}{c} 0.076\ 38(3)\\ 0.214\ 89(5)\\ 0.037\ 35(5)\\ 0.157\ 53(5)\\ 0.009\ 02(6)\\ 0.113(1)\\ 0.322(1)\\ 0.217(1)\\ 0.022(2)\\ 0.107(1)\\ 0.2259(2)\\ 0.076(1)\\ -0.061(1)\\ 0.070(1)\\ -0.039(1)\\ -0.105(1)\\ 0.121(1)\\ 0.185(1)\\ 0.313(1)\\ -0.032(1)\\ -0.147(1)\\ \end{array}$	$\begin{array}{c} C(1c) \\ C(1b) \\ C(1f) \\ C(1a) \\ C(12) \\ C(21) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \\ C(32) \\ C(31) \\ C(52) \\ C(51) \\ C(52) \\ C(53) \\ C(61) \\ C(62) \\ C(63) \\ C(71) \\ C(72) \\ C(73) \end{array}$	0.040(2) -0.020(2) -0.016(1) 0.178(1) 0.165(2) 0.287(2) 0.028(2) -0.062(2) 0.011(2) 0.048(1) 0.072(1) 0.347(2) 0.225(2) 0.225(2) 0.324(1) 0.200(2) 0.253(2) 0.286(2) 0.162(2) 0.147(2)	$\begin{array}{c} 0.025(2)\\ 0.025(2)\\ 0.141(2)\\ 0.074(1)\\ 0.326(2)\\ 0.260(2)\\ 0.252(2)\\ 0.318(2)\\ 0.216(2)\\ 0.310(2)\\ 0.063(1)\\ 0.180(2)\\ 0.212(2)\\ 0.262(2)\\ 0.146(2)\\ 0.062(1)\\ -0.014(2)\\ 0.099(2)\\ -0.006(2)\\ 0.044(2)\\ -0.053(2)\\ \end{array}$	$\begin{array}{c} 0.303(2)\\ 0.249(2)\\ 0.272(2)\\ 0.233(1)\\ 0.135(1)\\ 0.264(2)\\ 0.197(2)\\ 0.069(2)\\ 0.117(2)\\ 0.209(2)\\ 0.075(1)\\ -0.008(1)\\ 0.060(2)\\ -0.009(2)\\ -0.050(2)\\ 0.133(1)\\ 0.171(2)\\ 0.253(1)\\ -0.018(2)\\ -0.087(2)\\ 0.022(2) \end{array}$

convergence was reached. The hydrogen atoms of the coordinated arene molecules were generated in their ideal positions (C-H 0.96 Å) for compounds 2 and 4, and these atoms were allowed to ride on the relevant carbons. For complex 1 the arene ring was constrained to be a regular hexagon with a C-C distance fixed at 1.395 Å. Final atomic coordinates for the three structures are presented in Tables 6-8.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

C.-K. L. gratefully acknowledges the award of a Fellowship from the Croucher Foundation, W.-T. W. thanks the Hong Kong Research Grant Council (RGC) and the University of Hong Kong for financial support and M. C. R. de A. is grateful to the European Economic Community for a bursary under the Human Capital and Mobility Scheme.

References

- 1 H. Wadepohl, Angew. Chem., Int. Ed. Engl., 1992, 31, 247.
- 2 E. L. Muetterties, T. N. Rhodin, E. Band, C. F. Brucker and W. R. Pretzler, *Chem. Rev.*, 1979, **79**, 91; H.-P. Steinrück, W. Huber, T. Pache and D. Menzel, *Surf. Sci.*, 1989, **218**, 293.
- 3 H. Wadepohl, K. Brückner, M. Hermann and H. Pritzkow, Organometallics, 1991, 10, 861; H. Wadepohl, K. Brückner and H. Pritzkow, Angew. Chem., Int. Ed. Engl., 1987, 26, 1259.
- 4 B. F. G. Johnson, J. Lewis, M. A. Gallop and M. Martinelli, Faraday Discuss. R. Soc. Chem., 1991, 92, 241.
- 5 M. A. Gallop, M. P. Gomez-Sal, C. E. Housecroft, B. F. G. Johnson, J. Lewis, S. M. Owen, P. R. Raithby and A. H. Wright, J. Am. Chem. Soc., 1992, 114, 2502.

- 6 D. Braga, F. Grepioni, B. F. G. Johnson, J. Lewis, C. E. Housecroft and M. Martinelli, Organometallics, 1991, 10, 1260.
- 7 M. A. Gallop, B. F. G. Johnson, J. Lewis and P. R. Raithby, J. Chem. Soc., Chem. Commun., 1987, 1809; D. Braga, F. Grepioni, B. F. G. Johnson, E. Parisini, M. Martinelli, M. A. Gallop and J. Lewis, J. Chem. Soc., Dalton Trans., 1992, 807.
- 8 A. T. Brooker, P. A. Jackson, B. F. G. Johnson, J. Lewis and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1991, 707.
- 9 H. Chen, B. F. G. Johnson, J. Lewis, D. Braga, F. Grepioni and E. Parisini, J. Chem. Soc., Dalton Trans., 1991, 215.
- 10 D. Braga, F. Grepioni, P. Sabatino, P. J. Dyson, B. F. G. Johnson, J. Lewis, P. J. Bailey, P. R. Raithby and D. Stalke, J. Chem. Soc., Dalton Trans., 1993, 985.
- 11 (a) M. P. Gomez-Sal, B. F. G. Johnson, J. Lewis, P. R. Raithby and A. H. Wright, J. Chem. Soc., Chem. Commun., 1985, 1682; (b) D. Braga, F. Grepioni, B. F. G. Johnson, H. Chen and J. Lewis, J. Chem. Soc., Dalton Trans., 1991, 2559; (c) P. J. Bailey, D. Braga, P. J. Dyson, F. Grepioni, B. F. G. Johnson, J. Lewis and S. Righi, J. Chem. Soc., Dalton Trans., 1992, 2121.
- 12 J. Lewis, C. K. Li, M. C. Ramirez de Arellano, P. R. Raithby and W. T. Wong, J. Chem. Soc., Dalton Trans., 1993, 1359.
- 13 J. Lewis, C. K. Li, P. R. Raithby and W. T. Wong, J. Chem. Soc., Dalton Trans., 1993, 999.

- 14 R. K. Henderson, P. A. Jackson, B. F. G. Johnson, J. Lewis and P. R. Raithby, Inorg. Chim. Acta, 1992, 198-200, 393.
- 15 R. Mason and W. R. Robinson, Chem. Commun., 1968, 468.
- 16 B. F. G. Johnson, R. D. Johnson and J. Lewis, J. Chem. Soc. A, 1968, 2865; R. Mason, K. M. Thomas and D. M. P. Mingos, J. Am. Chem. Soc., 1973, 95, 3802.
- 17 A. G. Orpen and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1978, 34, 1989; C. Courture, D. H. Farrar, M. P. Gomez-Sal, B. F. G. Johnson, R. A. Kamarudin, F. J. Lahoz, J. Lewis and P. R. Raithby, J. Chem. Soc., Dalton Trans., 1988, 1205.
- 18 C. Zheng, R. Hoffmann and D. R. Nelson, J. Am. Chem. Soc., 1990, 112, 3784.
- 19 C. R. Eady, J. J. Guy, B. F. G. Johnson, J. Lewis, M. C. Malatesta and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1976, 807.
- 20 Y. Hung, W.-J. Kung and H. Taube, Inorg. Chem., 1981, 20, 457.
- 21 S. Stahl and H. Werner, *Organometallics*, 1990, **9**, 1877. 22 SHELXTL PLUS[™], Release 4.0, Siemens Analytical X-ray Instruments, Madison, WI, 1990.
- 23 SDP Structure Determination Package, Enraf-Nonius, Delft, 1985.

Received 22nd March 1994; Paper 4/01712I