Synthesis of Cationic Half-sandwich Rhodium(1) Complexes of 1,4,7-Trithiacyclononane ($[9]$ aneS $_{3}$). The Single-crystal Structures of $\left[\mathbf{R h}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{\mathbf{5}^{\prime}}\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{12}\right)\right] \mathrm{BF}_{4}$ and $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6} \cdot 0.250 \mathrm{Et}_{2}{ }^{\dagger}$

Alexander J. Blake, Robert O. Gould, Malcolm A. Halcrow and Martin Schröder*
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK

Abstract

Reaction of $\left[\mathrm{Rh}_{2} \mathrm{~L}_{2} \mathrm{~L}_{2}^{\prime} \mathrm{Cl}_{2}\right.$] $\left\{\mathrm{L}, \mathrm{L}^{\prime}=\mathrm{C}_{2} \mathrm{H}_{4}, \frac{1}{2} \operatorname{cod}\right.$ or $\frac{1}{2} \mathrm{nbd} ; \mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{~L}^{\prime}=\mathrm{PPr}_{3}{ }_{3}$ or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$; cod = cycloocta1,5 -diene, nbd = norbornadiene (bicyclo[2.2.1] hepta-2,5-diene)\} with 2 molar equivalents of 1,4,7trithiacyclononane ([9]aneS 3_{3}) in the presence of NaBF_{4} or $\mathrm{NH}_{4} \mathrm{PF}_{6}$ at 293 K , or treatment of [$\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)_{2} \mathrm{Cl}$] or $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right.$] with 1 molar equivalent of [9]aneS 3_{3} and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ afforded [$\left.\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{L}\left(\mathrm{L}^{\prime}\right)\right] \mathrm{X}$ [$\mathrm{L}, \mathrm{L}^{\prime}=\mathrm{C}_{2} \mathrm{H}_{4}, \frac{1}{2} \operatorname{cod}, \frac{1}{2} \mathrm{nbd}$ or $\frac{1}{2} \mathrm{C}_{4} \mathrm{H}_{6} ; \mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{~L}^{\prime}=\operatorname{PPr}_{3}{ }_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} ; \mathrm{L}=\mathrm{CO}, \mathrm{L}^{\prime}=\mathrm{PPh}_{3} ; \mathrm{X}=\mathrm{BF}_{4}$ or PF_{6}] in moderate yields. The crystal structure of the complex $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$ has been determined: monoclinic, space group $P 2_{1} / n, a=11.487(3), b=9.459(3), c=15.745(6) \AA, \beta=105.54(3)^{\circ}$ and $Z=$ 4. The cation adopts a trigonal-bipyramidal geometry, with one equatorial and one axial ethene ligand. The complex $\left[\operatorname{Rh}\left([9]\right.\right.$ aneS $\left.\left._{3}\right)(\operatorname{cod})\right] \mathrm{BF}_{4}$ crystallises in the triclinic space group $P \overline{1}$ with $a=11.491(13), b=$ 12.803(6), $c=13.377(15), \alpha=88.12(7), \beta=70.30(8), \gamma=74.68(7)^{\circ}$ and $Z=4$. The two molecules in each asymmetric unit also adopt distorted trigonal-bipyramidal stereochemistries, with the conformation in molecule 1 being related to that of molecule 2 by a 6° rotation of the macrocyclic ring about the central $\mathrm{M}-[9] \mathrm{aneS}_{3}$ axis. The complex $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6}$ crystallises in the monoclinic space group C2/c with $a=18.612(6), b=8.679(5), c=23.756(5), \beta=96.844(18)^{\circ}$ and $Z=8$. The structure shows a quasi-square-pyramidal complex cation. Treatment of $\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right.$] with [9] ane S_{3} and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ yielded the dimeric complex $\left[\mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}(\mu-\mathrm{CO})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$. Reaction of $\left[R h\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]^{+}\left[\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}\right.$ or $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$] with halogenated substrates afforded insoluble $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{X}_{3}\right] \quad(\mathrm{X}=\mathrm{Cl}$ or I$)$, while no reaction was observed with $\mathrm{C}_{6} \mathrm{H}_{6}$ or $\mathrm{SiEt}_{3} \mathrm{H}$. Spectroscopic. structural and chemical evidence indicates that the $\left[\operatorname{Rh}\left([9] \mathrm{aneS}_{3}\right)\right]^{+}$fragment has a high electrophilic character.

The chemistry of half-sandwich rhodium(I) and iridium(I) complexes containing tridentate facially binding ligands such as tris(pyrazolyl)borates, $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ and the tripodal phosphines $\mathrm{X}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}(\mathrm{X}=\mathrm{N}, \mathrm{P}$ or CMe$)$ as protecting groups is of wide interest. ${ }^{1-4}$ Such compounds are isoelectronic with the well known $\left[\mathrm{Rh}\left(\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{L}_{2}\right.$] $(\mathrm{R}=\mathrm{H}$ or Me ; $\mathrm{L}=$ alkene, CO or PR_{3}), ${ }^{5}$ the photochemistry of which has been the subject of several investigations. ${ }^{6}$ Both the cyclopentadienyl complexes and their analogues have been shown to exhibit novel reactivity, particularly towards $\mathrm{C}-\mathrm{H}$ bonds. For example, the unsaturated fragments $\left[\mathrm{M}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{L}\right]\left(\mathrm{M}=\mathrm{Rh}\right.$ or $\mathrm{Ir} ; \mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CO}$ or PMe_{3}) generated by the low-temperature photolysis of $\left[\mathrm{M}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{L}_{2}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}\right.$ or CO$)$ or $\left[\mathrm{M}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{PMe}_{3}\right) \mathrm{H}_{2}\right]$ oxidatively add across a range of alkane, alkene and arene $\mathrm{C}-\mathrm{H}$ bonds, ${ }^{6-8}$ while $\left[\operatorname{Rh}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\} \mathrm{L}_{2}\right] \quad(\mathrm{pz}=$ pyrazolyl; $\mathrm{L}=$ $\mathrm{C}_{2} \mathrm{H}_{4}$ or CO) undergo the same type of reaction under mild thermal conditions. ${ }^{1}$ As part of our studies of the chemistry of the crown thioethers, ${ }^{9}$ we argued that the small-ring macrocycle 1,4,7-trithiacyclononane ($[9] \mathrm{aneS}_{3}$) could also act as a protecting group analogous to the cyclopentadienyl ligand, and that the complexes $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right) \mathrm{L}_{2}\right]^{+}\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CO}\right.$ or PR_{3}) might exhibit novel chemistry. This paper describes the synthesis and structures of several such compounds, together with a preliminary study of their reactivity.

We and others have investigated the chemistry of rhodium(III) with thioether crowns. ${ }^{10-12}$ In particular, we have shown that the octahedral hexathia cation $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{3+}$

[^0]can be reduced electrochemically to give an unusually stable mononuclear d^{7} species $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right)_{2}\right]^{2+} .{ }^{10,12}$ The second reduction product $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{+}$is less stable, and is assumed to adopt either a tetragonal geometry by analogy with the isoelectronic complexes $\left[\operatorname{Pd}\left([9] \text { aneS }_{3}\right)_{2}\right]^{2+13}$ and $\left[\mathrm{Au}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{3+}$ 14 14 or a five-co-ordinate geometry as in $\left[\operatorname{Pt}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+} .{ }^{15}$ Neither $\left[\operatorname{Rh}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}$ nor $[\operatorname{Rh}-$ ($\left.\left.[9] \mathrm{aneS}_{3}\right)_{2}\right]^{+}$has been structurally characterised, and this led us towards the preparation of half-sandwich rhodium(I) complexes of [9]ane S_{3} and to determine their geometry.

Relatively few rhodium(I) complexes of thioether ligands have been reported to date. The reaction of $\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right]$ with 2,5-dithiahexane (dth) affords a polymeric species $\left[\{\mathrm{Rh}(\mathrm{dth})(\mathrm{CO}) \mathrm{Cl}\}_{n}\right]^{16}$ while an analogous reaction with $\mathrm{Et}_{2} \mathrm{~S}$ gives the monomeric trans- $\left[\mathrm{Rh}\left(\mathrm{SEt}_{2}\right)_{2}(\mathrm{CO}) \mathrm{Cl}\right] .{ }^{17}$ The synthesis of $\left[\operatorname{Rh}\left([14] \mathrm{aneS}_{4}\right)\right]^{+} \quad\left([14] \mathrm{aneS}_{4}=1,4,8,11\right.$-tetrathiacyclotetradecane) was first described by Busch and co-workers ${ }^{18}$ who reported this complex to be a strong nucleophile, forming adducts with $\mathrm{O}_{2}, \mathrm{SO}_{2}$, tene (tetracyanoethene) and H^{+}, as well as undergoing oxidative-addition reactions with MeI and MeCOCl . A more recent structural determination has shown that $\left[\mathrm{Rh}\left([14] \mathrm{aneS}_{4}\right)\right]^{+}$adopts a square-planar geometry, with weak intermolecular contacts in the solid state $[\mathrm{Rh} \cdots \mathrm{Rh}$ $3.313(1) \AA]^{19}$ The binuclear complex $\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2}([20]-\right.$ aneS $\left.\left._{6}\right)\right]^{2+}\left([20]\right.$ aneS $_{6}=1,4,7,11,14,17$-hexathiacycloicosane, $\operatorname{cod}=$ cycloocta-1,5-diene) exhibits a five-co-ordinate geometry in the solid state, with each Rh bound to three Sdonors. ${ }^{20}$

A preliminary report on parts of this work has appeared, ${ }^{21}$ while the synthesis and structures of analogous iridium(I) complexes of [9]aneS 3_{3} are described in a companion paper. ${ }^{22}$

Results and Discussion

Reaction of $\left[\mathrm{Rh}_{2} \mathrm{~L}_{4} \mathrm{Cl}_{2}\right.$] [$\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \frac{1}{2} \operatorname{cod}$ or $\frac{1}{2} \mathrm{nbd}$; nbd $=$ norbornadiene (bicyclo[2.2.1]hepta-2,5-diene)] with 2 molar equivalents of [9]aneS 3_{3} in the presence of NaBF_{4} or $\mathrm{NH}_{4} \mathrm{PF}_{6}$ at 293 K affords yellow solutions, from which bright yellow airsensitive ($L=\mathrm{C}_{2} \mathrm{H}_{4}$) or air-stable microcrystalline solids can be isolated in moderate yield. Similarly, treatment of $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)_{2} \mathrm{Cl}\right]$ \{generated in situ from $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4} \mathrm{Cl}_{2}\right]$ and $\left.\mathrm{C}_{4} \mathrm{H}_{6}{ }^{23}\right\}$ with 1 molar equivalent of [9]aneS 3_{3} and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ yields a pale yellow crystalline product. On the basis of microanalytical and IR spectroscopic data, these compounds were formulated as $\left[\operatorname{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{L}_{2}\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}\right.$ or $\left.\mathrm{PF}_{6}\right)$. This assignment is supported further by FAB mass spectrometry. For example, the spectrum of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\operatorname{cod})\right]^{+}$ shows peaks at $m / z=391$ and 282 corresponding to $\left[{ }^{103} \mathrm{Rh}\right.$ ([9]aneS ${ }_{3}$)(cod)] ${ }^{+}$and $\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}-\mathrm{H}\right)\right]^{+}$respectively. Both ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy are consistent with the formation of rhodium($(\mathrm{I}) \pi$ complexes.
The attempted preparation of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]^{+}$ $\left(\mathrm{C}_{8} \mathrm{H}_{14}=\right.$ cyclooctene $)$ by reaction of $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{4} \mathrm{Cl}_{2}\right]$ with [9] aneS ${ }_{3}$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in tetrahydrofuran (thf) at 233 K yielded a yellow solid product, which rapidly decomposed on warming to 293 K and could not be characterised fully. Similarly, reaction of $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{C}_{2} \mathrm{~F}_{4}\right)_{2} \mathrm{Cl}_{2}\right]^{24}$ with [9]aneS ${ }_{3}$ in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in thf at 293 K affords a pale tan solid, which decomposes to a red oil after 12 h at 293 K : IR spectroscopy of this product showed the presence of [9]aneS ${ }_{3}$, $\mathrm{C}_{2} \mathrm{~F}_{4}$ and $\mathrm{PF}_{6}{ }^{-}$, although no further characterisation was possible. Reaction of $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4} \mathrm{Cl}_{2}\right.$] with [9]aneS 3_{3} in the absence of a chloride abstractor gives $\left[\mathrm{Rh}\left([9]\right.\right.$ aneS $\left.\left._{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{Cl}$ only; interestingly, the analogous reaction using the tripodal phosphine ligand tdpme $=\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{3}$ affords $[\mathrm{Rh}$ (tdpme) $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}\right]$. ${ }^{25}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$shows a multiplet at δ 3.22-3.02 assigned to the methylene protons of [9]aneS ${ }_{3}$, and a doublet at $\delta 2.76\left[{ }^{2} J(\mathrm{Rh}-\mathrm{H})=1.6 \mathrm{~Hz}\right]$ assigned to interchanging protons of $\mathrm{C}_{2} \mathrm{H}_{4}$. This spectrum is only slightly broadened at 188 K in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ showing that exchange of the inner and outer ethene proton environments in this complex is a highly facile process. This equilibration could occur either by intermolecular exchange of the ethene ligands, or by rotation of the ethene about the central $\mathrm{Rh}-\mathrm{C}_{2} \mathrm{H}_{4}$ axis. ${ }^{5}$ Given the inertness of $\left[\operatorname{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$towards nucleophilic ligand substitution (see below) the latter mechanism is more likely: this being the case, the estimated activation energy ${ }^{26}$ of $<33 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(T_{\mathrm{c}}<180 \mathrm{~K}\right)$ for this process is the lowest value yet to be reported for ethene rotation in a d^{8} complex. ${ }^{22}$ This suggests that $\mathrm{Rh} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \pi$-back bonding in $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$is rather weak, consistent with the cationic charge on the complex.
We have previously reported the single-crystal structure of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{BF}_{4}$, which exhibits two independent molecules per asymmetric unit. ${ }^{21}$ Unfortunately, the relatively poor crystal did not allow high-precision structural parameters to be obtained, and we therefore carried out a second structural determination on the $\mathrm{PF}_{6}{ }^{-}$salt of this complex. In contrast to the $\mathrm{BF}_{4}{ }^{-}$salt, the structure of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$ contains only one molecule per asymmetric unit. The cation exhibits (Fig. 1, Table 1) an approximate trigonal-bipyramidal stereochemistry, with a shortened axial $\mathrm{Rh}-\mathrm{S}(4)$ bond length $[\mathrm{Rh}-\mathrm{S}(1) 2.446(2), \mathrm{Rh}-\mathrm{S}(4) 2.309(2), \mathrm{Rh}-\mathrm{S}(7)$ 2.411(2) \AA]. These distances are longer than those observed for $[\mathrm{Rh}([9]-$ $\left.\left.\mathrm{aneS}_{3}\right)_{2}\right]^{3+}\left[\mathrm{Rh}-\mathrm{S} 2.332(1), 2.334(1)\right.$ and 2.334(1)]; ${ }^{10}$ this is consistent with the reduced charge on the rhodium(1) complex and again implies only weak Rh -[9]aneS $\mathrm{S}_{3} \pi$-back donation. Interestingly, the axial ethene ligand $[\mathrm{C}(1 \mathrm{E})-\mathrm{C}(2 \mathrm{E})]$ shows significantly longer $\mathrm{Rh}-\mathrm{C}$ and shorter $\mathrm{C}=\mathrm{C}$ distances than does the equatorial ethene [C(3E)-C(4E)]: $\mathrm{Rh}-\mathrm{C}(1 \mathrm{E}) 2.203(10)$, Rh-C(2E) 2.226(8), Rh-C(3E) 2.124(9), Rh-C(4E) 2.149(7), intra- $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{C}(1 \mathrm{E})-\mathrm{C}(2 \mathrm{E}) 1.316(15), \mathrm{C}(3 \mathrm{E})-\mathrm{C}(4 \mathrm{E}) 1.398(12)$, $\mathbf{R h}-\mathrm{X}(1) 2.114(8), \mathrm{Rh}-\mathrm{X}(2) \mathbf{2 . 0 1 9}(7) \AA ; \mathbf{S}(1)-\mathrm{Rh}-\mathrm{X}(1) 98.3(3)$,

Table 1 Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ for $[R h-$ ([9]aneS ${ }_{3}$) $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$

Rh-S(1)	2.446(2)	Rh-S(4)	2.309(2)
Rh-S(7)	2.411(2)	$\mathrm{Rh}-\mathrm{C}(1 \mathrm{E})$	$2.203(10)$
$\mathrm{Rh}-\mathrm{C}(2 \mathrm{E})$	2.226 (8)	$\mathrm{Rh}-\mathrm{C}(3 \mathrm{E})$	2.124(9)
$\mathrm{Rh}-\mathrm{C}(4 \mathrm{E})$	2.149(7)	$\mathrm{S}(1)-\mathrm{C}(2)$	1.813(7)
$\mathrm{S}(1)-\mathrm{C}(9)$	1.831(8)	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.527(11)$
$\mathrm{C}(3)-\mathrm{S}(4)$	1.821(7)	S(4)-C(5)	1.811(8)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.514(9)	$\mathrm{C}(6)-\mathrm{S}(7)$	1.828(6)
$\mathrm{S}(7)-\mathrm{C}(8)$	1.812(6)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.532(10)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(4)$	87.1(1)	$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(7)$	86.1(1)
$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{S}(7)$	87.1(1)	Rh-S(1)-C(2)	99.8(2)
Rh-S(1)-C(9)	105.0(2)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(9)$	101.9(3)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	114.8(5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	111.8(5)
Rh-S(4)-C(3)	107.3(2)	$\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)$	102.8(2)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	101.2(4)	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	113.2(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	111.6(4)	$\mathrm{Rh}-\mathrm{S}(7)-\mathrm{C}(6)$	103.8(2)
$\mathrm{Rh}-\mathrm{S}(7)-\mathrm{C}(8)$	102.1(3)	$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	101.5(3)
$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	115.4(4)	$\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	112.1(4)
	$C(9)-S(1)-C(2)-C(3)$	-63.8(6)	
	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	131.7(5)	
	$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	-49.5(6)	
	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	134.5(5)	
	$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-63.8(5)	
	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	-51.9(6)	
	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	134.8(5)	
	$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-62.4(5)	
	$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{S}(1)$	-50.4(6)	

$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{X}(1)$ 174.6(3), $\mathrm{S}(7)-\mathrm{Rh}-\mathrm{X}(1)$ 93.4(3), $\mathrm{S}(1)-\mathrm{Rh}-\mathrm{X}(2)$ 129.5(3), S(4)-Rh-X(2) 85.0(3), S(7)-Rh-X(2) 142.9(3), X(1)-Rh-X(2) $91.5(3)^{\circ}$; where $\mathrm{X}(1)$ and $\mathrm{X}(2)$ are the midpoints of the $\mathrm{C}(1 \mathrm{E})-\mathrm{C}(2 \mathrm{E})$ and $\mathrm{C}(3 \mathrm{E})-\mathrm{C}(4 \mathrm{E})$ vectors respectively. The strong trans influence of a thioether donor [in this case $\mathrm{S}(4)$] trans to an alkene ligand $[\mathrm{C}(1 \mathrm{E})-\mathrm{C}(2 \mathrm{E})]$ leading to lengthening of the $\mathrm{Rh}-\mathrm{C}$ bond has been noted previously. ${ }^{20}$ For the related trigonal-bipyramidal complex $\left[\mathrm{Rh}(\right.$ tdpme $\left.)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{Cl}\right], \mathrm{C}=\mathrm{C}$ 1.49(4), $\mathrm{Rh}-\mathrm{C}_{\text {eq }} 2.19(2)$ and 2.20(2) \AA. Significantly, this complex shows a non-fluxional ethene ligand at $308 \mathrm{~K} .{ }^{24}$

The single-crystal structure of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{cod})\right] \mathrm{BF}_{4}$ contains (Fig. 2, Table 2) two crystallographically independent molecules per asymmetric unit. Both cations adopt distorted trigonal-bipyramidal geometries similar to that described for $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$ with $\mathrm{S}(1)$ and $\mathrm{S}(21)$ in the independent molecules occupying axial positions trans to $\mathrm{C}(16)=\mathrm{C}(17)$ and $\mathrm{C}(35)=\mathrm{C}(36)$ respectively. As for $[\mathrm{Rh}([9]-$ aneS $\left.\left.{ }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$, the $\mathrm{Rh}-\mathrm{S}$ bond lengths to axial S-donors, $S(1)$ and $S(21)$, are shortened relative those to the equatorial S-donors. For molecule $1 \mathrm{Rh}(1)-\mathrm{S}(1) 2.321(3), \mathrm{Rh}(1)-\mathrm{S}(4)$ 2.397(2), $\mathrm{Rh}(1)-\mathrm{S}(7)$ 2.447(2), $\mathrm{Rh}(1)-\mathrm{X}(1) 1.975(7)$ and $\mathrm{Rh}(1)-$ $\mathrm{X}(2)$ 2.099(10) $\AA ; \mathrm{S}(1)-\mathrm{Rh}(1)-\mathrm{X}(1) 88.44(2), \mathrm{S}(4)-\mathrm{Rh}(1)-$ $\mathrm{X}(1) 144.25(2), \mathrm{S}(7)-\mathrm{Rh}(1)-\mathrm{X}(1) 128.66(2), \mathrm{S}(1)-\mathrm{Rh}(1)-\mathrm{X}(2)$ 172.35(2), $\mathrm{S}(4)-\mathrm{Rh}(1)-\mathrm{X}(2) 96.42(2), \mathrm{S}(7)-\mathrm{Rh}(1)-\mathrm{X}(2) 100.73(2)$ and $\mathrm{X}(1)-\operatorname{Rh}(1)-\mathrm{X}(2) 84.76(3)^{\circ}$ where $\mathrm{X}(1)$ and $\mathrm{X}(2)$ are the midpoints of $\mathrm{C}(11)=\mathrm{C}(12)$ and $\mathrm{C}(15)=\mathrm{C}(16)$ respectively. For molecule $2 \mathrm{Rh}(2)-\mathrm{S}(21)$ 2.307(3), $\mathrm{Rh}(2)-\mathrm{S}(24) 2.444(2)$, $\mathrm{Rh}(2)-\mathrm{S}(27)$ 2.437(2), $\mathrm{Rh}(2)-\mathrm{X}(3) \quad 1.978(7)$ and $\mathrm{Rh}(2)-$ $\mathrm{X}(4) 2.107(11) \AA ; \mathrm{S}(21)-\mathrm{Rh}(2)-\mathrm{X}(3) 89.15(3), \mathrm{S}(21)-\mathrm{Rh}(2)-$ $\mathrm{X}(4)$ 173.77(3), $\mathrm{S}(24)-\mathrm{Rh}(2)-\mathrm{X}(3) \quad 135.89(3), \mathrm{S}(24)-\mathrm{Rh}(2)-$ $\mathrm{X}(4)$ 97.80(3), $\mathrm{S}(27)-\mathrm{Rh}(2)-\mathrm{X}(3)$ 137.43(3), $\mathrm{S}(27)-\mathrm{Rh}(2)-\mathrm{X}(4)$ 97.47 (3) and $\mathrm{X}(3)-\mathrm{Rh}(2)-\mathrm{X}(4) 84.62(4)^{\circ}$ where $\mathrm{X}(3)$ and $\mathrm{X}(4)$ are the midpoints of $C(31)=C(32)$ and $C(35)=C(36)$ respectively. The pattern of $\mathrm{Rh}-\mathrm{C}$ and $\mathrm{Rh}-\mathrm{S}$ distances is similar in the two molecules [for molecule $1 \mathrm{Rh}(1)-\mathrm{C}(11)$ 2.080(7), $\mathrm{Rh}(1)-$ $\mathrm{C}(12)$ 2.122(7), $\mathrm{Rh}(1)-\mathrm{C}(15) 2.223(10), \mathrm{Rh}(1)-\mathrm{C}(16) 2.202(10)$, $\mathrm{C}(11)=\mathrm{C}(12) \quad 1.429(11)$ and $\mathrm{C}(15)=\mathrm{C}(16) 1.397(11) \AA$: for molecule $2 \mathrm{Rh}(2)-\mathrm{C}(31)$ 2.116(7), $\mathrm{Rh}(2)-\mathrm{C}(32) 2.080(6)$, $\operatorname{Rh}(2)-\mathrm{C}(35) 2.190(11), \operatorname{Rh}(2)-\mathrm{C}(36) 2.224(12), \mathrm{C}(31)=\mathrm{C}(32)$
(a)

(b)

Fig. 1 Two views of the single-crystal structure of $[\mathrm{Rh}([9]$ aneS $\left.\left.\mathrm{S}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$with the numbering scheme adopted. Thermal ellipsoids enclose 50% probability surfaces
$1.401(12)$ and $\mathrm{C}(35)=\mathrm{C}(36) 1.315(14) \AA]$. Interconversion of the geometries exhibited by the two cations, molecules 1 and 2 , involves rotation of the [9]aneS 3_{3} macrocycle by 6° about the central $\mathrm{Rh}-[9] \mathrm{aneS}_{3}$ axis, the overall geometry of the cation in molecule 2 of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\operatorname{cod})\right] \mathrm{BF}_{4}$ being similar to that exhibited by $\left[\mathrm{Rh}_{2}\left([20] \mathrm{aneS}_{6}\right)(\operatorname{cod})_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ in the solid state. ${ }^{20}$
Taken together, the X-ray analyses of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$, $\left[\mathrm{Rh}\left([9]\right.\right.$ aneS $\left.\left._{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{BF}_{4},{ }^{21} \quad\left[\mathrm{Rh}\left([9]\right.\right.$ aneS $\left._{3}\right)$ $(\operatorname{cod})] \mathrm{BF}_{4},\left[\operatorname{Ir}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}{ }^{22}$ and $\left[\operatorname{Ir}\left([9] \mathrm{aneS}_{3}\right)-\right.$ (cod) $\mathrm{PFF}_{6}{ }^{22}$ all reveal five co-ordinate structures based around 18 -electron metal(I) centres. The precise relative geometries observed for these cations may be strongly influenced by crystalpacking forces with rotation of the [9]aneS S_{3} ring about the metal-macrocycle axis being a relatively facile process (see above). Structural isomerism has been observed previously in rhodium(I) complexes of tripodal phosphines; thus, $\left[\mathrm{Rh}\left\{\mathrm{RC}\left(\mathrm{CH}_{2} \mathrm{PPh}\right)_{3}\right\}(\mathrm{nbd})\right] \mathrm{PF}_{6}$ exhibits a square-pyramidal geometry in the solid state for $\mathrm{R}=\mathrm{Me}$, but a trigonalbipyramidal geometry for $\mathrm{R}=\mathrm{H} .{ }^{27}$
The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ at 293 K shows multiplet resonances at $\delta 5.60,2.32$ and 1.08 (each 2 H) corresponding to the butadiene H atoms, and a broad asymmetric resonance at $\delta 3.22-2.85(12 \mathrm{H})$ from the [9]ane S_{3} ligand. A variable-temperature ${ }^{1} \mathrm{H}$ NMR study showed that between 204 and 273 K the resonances due to [9] aneS S_{3} are resolved into two multiplets centred at $\delta 3.15(4 \mathrm{H})$ and $2.91(8 \mathrm{H})$, whilst above 306 K these resonances coalesce
(a)

(b)

Fig. 2 View of the two independent molecules of $\left[\operatorname{Rh}\left([9]\right.\right.$ aneS $\left._{3}\right)$ (cod) $]^{+}$with the numbering scheme adopted: (a) molecule $1,(b)$ molecule 2. Thermal ellipsoids as in Fig. 1
into a broad singlet at $\delta 3.01$. The ${ }^{13} \mathrm{C}$ DEPT (distortionless enhancements by polarisation transfer) spectrum at 293 K exhibits peaks at $\delta 89.98$ [d, ${ }^{1} J(\mathrm{Rh}-\mathrm{C})=5.0$] and 35.37 [d, $\left.{ }^{1} J(\mathrm{Rh}-\mathrm{C})=12.1 \mathrm{~Hz}\right]$ from the $\mathrm{C}_{4} \mathrm{H}_{6}$ ligand, and two broad singlets in the region expected for co-ordinated [9]aneS ${ }_{3}$ at $\delta 36.24$ and 34.69 with an integral ratio of approximately $1: 2$. At 319 K the last two resonances coalesce to a broad singlet at δ 35.9. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances from the $\mathrm{C}_{4} \mathrm{H}_{6}$ ligand are unchanged between 204 and 327 K .
The nature of the fluxional process operating for $[\mathrm{Rh}([9]-$ ane $\left.\left.S_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$is unclear, since any pseudo-rotation that would interchange two out of the three CH_{2} environments of co-ordinated [9]aneS 3_{3} is prevented by the rigidity of the macrocyclic ring. For the isoelectronic species $\left[\mathrm{Fe}(\mathrm{CO})_{3}-\right.$ $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$], carbonyl scrambling has been shown to occur by rotation of the $\mathrm{Fe}(\mathrm{CO})_{3}$ fragment about the central Fe -diene axis, T_{c} for this process being measured as $c a .230 \mathrm{~K} .{ }^{28}$ This is also the most likely mechanism of the fluxionality in $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$, with two of the macrocyclic CH_{2} environments being coincidently NMR equivalent or nearequivalent. An investigation of the NMR behaviour of analogous rhodium complexes containing substituted dienes

Table 2 Bond lengths (\AA), angles and torsion angles $\left({ }^{\circ}\right)$ for $\left[\operatorname{Rh}\left([9] \operatorname{aneS}_{3}\right)(\operatorname{cod})\right] \mathrm{BF}_{4}$

and trithia macrocycles over a wider temperature range would be necessary to confirm this. Interestingly, $\left[\operatorname{Ir}\left([9]\right.\right.$ aneS $\left._{3}\right)$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6}$ exhibits a static structure according to ${ }^{13} \mathrm{C}$ NMR spectroscopy at 293 K , with three distinct resonances for the [9]ane S_{3} ligand being observed. ${ }^{22}$

The single-crystal structure of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6}$ shows (Fig. 3, Table 3) a quasi-square-pyramidal complex cation, with $S(1)$ sitting above the open edge of the co-ordinated diene $[\mathrm{Rh}-\mathrm{S}(1)$ 2.358(1), $\mathrm{Rh}-\mathrm{S}(4) 2.337(1), \mathrm{Rh}-\mathrm{S}(7)$ 2.341(1), $\mathrm{Rh}^{-\mathrm{C}(11)} 2.110(5), \mathrm{Rh}-\mathrm{C}(12) 2.120(5), \mathrm{Rh}-\mathrm{C}(13) 2.127(5)$, $\mathrm{Rh}-\mathrm{C}(14) 2.136(5)$, intra- $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{C}(11)=\mathrm{C}(12) 1.444(7), \mathrm{C}(12)=$ $\mathrm{C}(13) \quad 1.387(7), \quad \mathrm{C}(13)-\mathrm{C}(14) \quad 1.406(7), \quad \mathrm{Rh}-\mathrm{X}(1) 1.989(5)$, $\mathrm{Rh}-\mathrm{X}(2) 2.006(5)$, and $\mathrm{Rh}-\mathrm{X}(3) 2.011(5) \AA ; \mathrm{S}(1)-\mathrm{Rh}-\mathrm{X}(1)$
123.39(15), $\mathrm{S}(1)-\mathrm{Rh}-\mathrm{X}(2) 146.17(15), \mathrm{S}(1)-\mathrm{Rh}-\mathrm{X}(3) 121.69(15)$, $\mathrm{S}(4)-\mathrm{Rh}-\mathrm{X}(1) \quad 147.24(15), \quad \mathrm{S}(4)-\mathrm{Rh}-\mathrm{X}(2) \quad 113.80(15), \quad \mathrm{S}(4)-$ $\mathrm{Rh}-\mathrm{X}(3) 97.73(15), \mathrm{S}(7)-\mathrm{Rh}-\mathrm{X}(1) 98.11(15), \mathrm{S}(7)-\mathrm{Rh}-\mathrm{X}(2)$ 116.18(15), and $S(7)-\mathrm{Rh}^{-X(3)} 148.69(15)^{\circ}$; where $\mathrm{X}(1)$, X(2) and $X(3)$ are the midpoints of $C(11)=C(12), C(12)-C(13)$ and $C(13)=C(14)$ respectively]. This geometry is similar to that adopted by $\left[\operatorname{Ir}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6}{ }^{22}$ and other d^{8} $\left[\mathrm{ML}_{3}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ species such as $\left[\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]$ and $\left[\mathrm{Co}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}:^{29}$ this orientation of a d ${ }^{8} \mathrm{ML}_{3}$ fragment relative to a conjugated diene ligand has been shown to be electronically favoured. ${ }^{30}$ However, the $\mathrm{C}-\mathrm{C}$ distances within the butadiene ligand in $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$are significantly more distorted from those in free $\mathrm{C}_{4} \mathrm{H}_{6}$ than is generally

Table 3 Selected bond lengths (\AA), angles and torsion angles (${ }^{\circ}$) for $\left[\mathrm{Rh}\left([9]\right.\right.$ aneS $\left.\left._{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6} \cdot 0.25 \mathrm{OEt}_{2}$

Rh-S(1)	2.358(1)	Rh-S(4)	2.337(1)
Rh-S(7)	2.341 (1)	Rh-C(11)	2.110 (5)
$\mathrm{Rh}-\mathrm{C}(12)$	$2.120(5)$	$\mathrm{Rh}-\mathrm{C}(13)$	$2.127(5)$
$\mathrm{Rh}-\mathrm{C}(14)$	$2.136(5)$	$\mathrm{S}(1)-\mathrm{C}(2)$	1.817(5)
$\mathrm{S}(1)-\mathrm{C}(9)$	1.824(6)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.517(7)
$\mathrm{C}(3)-\mathrm{S}(4)$	1.818(5)	S(4)-C(5)	1.839(7)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.485(9)$	$\mathrm{C}(6)-\mathrm{S}(7)$	1.813(6)
S (7)-C(8)	1.830(7)	$\mathrm{C}(8)-\mathrm{C}(9)$	1.510(8)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.444(7)$	$\mathrm{C}(12)-\mathrm{C}(13)$	1.387(7)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.406(7)$		
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(4)$	88.7(1)	$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{S}(7)$	87.9(1)
$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{S}(7)$	88.6(1)	$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{C}(11)$	103.8(1)
$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{C}(11)$	$167.2(1)$	$\mathrm{S}(7)-\mathrm{Rh}-\mathrm{C}(11)$	94.6(2)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{C}(12)$	142.8(1)	$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{C}(12)$	127.3(1)
$\mathrm{S}(7)-\mathrm{Rh}-\mathrm{C}(12)$	100.7(2)	$\mathrm{C}(11)-\mathrm{Rh}-\mathrm{C}(12)$	39.9(2)
$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{C}(13)$	140.7(1)	$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{C}(13)$	99.0(1)
$\mathrm{S}(7)-\mathrm{Rh}-\mathrm{C}(13)$	130.4(1)	$\mathrm{C}(11)-\mathrm{Rh}-\mathrm{C}(13)$	69.5(2)
$\mathrm{C}(12)-\mathrm{Rh}-\mathrm{C}(13)$	38.1(2)	$\mathrm{S}(1)-\mathrm{Rh}-\mathrm{C}(14)$	102.7(1)
$\mathrm{S}(4)-\mathrm{Rh}-\mathrm{C}(14)$	95.6(2)	$\mathrm{S}(7)-\mathrm{Rh}-\mathrm{C}(14)$	168.7(1)
$\mathrm{C}(11)-\mathrm{Rh}-\mathrm{C}(14)$	79.1(2)	$\mathrm{C}(12)-\mathrm{Rh}-\mathrm{C}(14)$	68.4(2)
$\mathrm{C}(13)-\mathrm{Rh}-\mathrm{C}(14)$	38.5(2)	$\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(2)$	101.1(2)
$\mathrm{Rh}-\mathrm{S}(1)-\mathrm{C}(9)$	105.3(2)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(9)$	101.8(3)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	115.9(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	113.0(4)
$\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(3)$	105.3(2)	$\mathrm{Rh}-\mathrm{S}(4)-\mathrm{C}(5)$	100.6(2)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	101.3 (3)	$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	114.5(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	112.5(4)	$\mathrm{Rh}-\mathrm{S}(7)-\mathrm{C}(6)$	104.5(2)
$\mathrm{Rh}-\mathrm{S}(7)-\mathrm{C}(8)$	101.4(2)	$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	101.8(3)
$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	114.6(4)	$\mathrm{S}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	111.8(4)
$\mathrm{Rh}-\mathrm{C}(11)-\mathrm{C}(12)$	70.4(3)	$\mathrm{Rh}-\mathrm{C}(12)-\mathrm{C}(11)$	69.6(3)
$\mathrm{Rh}-\mathrm{C}(12)-\mathrm{C}(13)$	$71.2(3)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	117.2(4)
$\mathrm{Rh}-\mathrm{C}(13)-\mathrm{C}(12)$	70.7(3)	$\mathrm{Rh}-\mathrm{C}(13)-\mathrm{C}(14)$	71.1 (3)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	117.8(5)	$\mathrm{Rh}-\mathrm{C}(14)-\mathrm{C}(13)$	70.4(3)

$C(3)-C(2)-S(1)-C(9)$	-67.8
$S(4)-C(3)-C(2)-S(1)$	-45.8
$C(2)-C(3)-S(4)-C(5)$	129.9
$C(6)-C(5)-S(4)-C(3)$	-65.1
$S(4)-C(5)-C(6)-S(7)$	-50.4
$C(5)-C(6)-S(7)-C(8)$	135.0
$C(6)-S(7)-C(8)-C(9)$	-63.9
$C(8)-C(9)-S(1)-C(2)$	132.5
$S(1)-C(9)-C(8)-S(7)$	-48.7
$C(14)-C(13)-C(12)-C(11)$	1.0

Fig. 3 View of the single-crystal structure of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$ with the numbering scheme adopted. Thermal ellipsoids as in Fig. 1.
observed for 1,3 -diene complexes of d^{8} metal ions \{for $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)_{2} \mathrm{Cl}\right] \quad \mathrm{C}=\mathrm{C}$ 1.38(2), $\mathrm{C}-\mathrm{C}$ 1.45(2) $\left.\AA^{31}\right\}$. Whilst equalisation of the $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{C}-\mathrm{C}$ bond lengths is expected on coordination to a metal centre, ${ }^{30,32}$ the degree of distortion observed for $\left[\mathrm{M}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}(\mathrm{M}=\mathrm{Rh}$ or Ir) is unusual for conjugated diene complexes of Group 8-9 metals, and is reminiscent of the metallacyclopent-3-ene structures observed
for 1,3-diene complexes of Nb, Ta and $\mathrm{Zr} .^{33}$ However, examination of the ${ }^{1} J(\mathrm{C}-\mathrm{H})$ coupling constants within the $\mathrm{C}_{4} \mathrm{H}_{6}$ ligands in $\left[\mathrm{M}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}(\mathrm{M}=\mathrm{Rh}$ or Ir) $[\mathrm{M}=$ Rh, ${ }^{6} J 158$ (butadiene CH_{2} groups), $\left.170 \mathrm{~Hz}(\mathrm{CH})\right]$ suggests that these species do not exhibit the analogous configurations $\left[\mathrm{M}^{\text {III }}\left([9] \mathrm{aneS}_{3}\right)\left(\sigma, \eta^{2}, \sigma-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$, but are probably best considered as metal(I) π complexes $\left[\mathrm{M}^{1}\left([9] \mathrm{aneS}_{3}\right)\left(\eta^{4}-\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$ with unusually electrophilic metal centres. ${ }^{22}$

Other methods of analyzing the bonding of diene fragments are based upon the distribution of bond lengths and dihedral angles θ in the diene fragment. ${ }^{34}$ This approach defines two parameters Δd and Δl for a diene ligand labelled $\mathrm{C}(1), \mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(4)$ (Fig. 4), equations (1) and (2). Using these guidelines,

$$
\begin{align*}
& \Delta d= \frac{1}{2}\{d[\mathrm{M}-\mathrm{C}(1)]+d[\mathrm{M}-\mathrm{C}(4)]\}- \\
& \frac{1}{2}\{d[\mathrm{M}-\mathrm{C}(2)]+d[\mathrm{M}-\mathrm{C}(3)]\} \tag{1}\\
& \Delta l=\frac{1}{2}\{d[\mathrm{C}(1)-\mathrm{C}(2)]+d[\mathrm{C}(3)-\mathrm{C}(4)]\}-d[\mathrm{C}(2)-\mathrm{C}(3)] \tag{2}
\end{align*}
$$

it has been observed that for σ^{2}, η^{2}-metallacyclopent-3-ene species, Δd lies in the region -0.4 to $0 \AA$ with $\Delta l 0-0.2 \AA$. This compares with values of $\Delta d=-0.1$ to $0.1 \AA$ and $\Delta l-0.1$ to $0 \AA$ for η^{4}-butadiene complexes. In addition, the dihedral angle θ between the two planes defined by $\mathrm{M}-\mathrm{C}(1)-\mathrm{C}(4)$ and $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ is observed to fall in the region $75-90^{\circ}$ for

Fig. 4 Labelling of co-ordinated butadiene for bond length and angle analysis
a η^{4}-butadiene complex and is $>90^{\circ}$ for the corresponding σ^{2}, η^{2}-metallacyclopent-3-ene species. ${ }^{34}$ Based on the singlecrystal structure analysis the complex $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$ has $\Delta d=0.00 \AA, \Delta l=0.038 \AA$, and $\theta=86.7^{\circ}$. Interestingly, Fryzuk et al. ${ }^{35}$ have reported rather similar parameters for $\left[\operatorname{Ir}\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\left\{\mathrm{N}\left(\mathrm{SiMe}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}\right\}\right](\Delta d=-0.01 \AA, \Delta l=0.017$ \AA, and $\theta=92.9^{\circ}$). Based upon the above criteria, the complex $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$appears to be approaching the crossover between η^{4}-butadiene and $\sigma^{2}-\eta^{2}$-metallacyclopent-3-ene assignments. We therefore propose the structure of [$\mathrm{Rh}([9]-$ ane $\left.\left.\mathrm{S}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$as involving predominantly η^{4}-butadiene co-ordination but with significant σ^{2}, η^{2}-metallacyclopent-3ene contribution. The highly distorted intra- $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{C}-\mathrm{C}$ bond lengths observed in $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$probably arise from strong $\mathrm{C}_{4} \mathrm{H}_{6} \rightarrow \mathrm{M} \sigma$ donation, as in $\left[\operatorname{Ir}\left([9]\right.\right.$ aneS $\left._{3}\right)$ $\left.\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$.

Treatment of $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4} \mathrm{Cl}_{2}\right]$ with 1 molar equivalent of PPh_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 293 K , followed by addition of 2 molar equivalents of [9]aneS 3_{3} in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$, affords a brick-red solid of stoichiometry $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}$ (Found: C, 43.5; H, 4.3. Calc. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{P}_{2}-$ RhS_{3} : C, $43.5 ; \mathrm{H}, 4.4 \%$). However, mass spectrometry of this product shows, in addition to fragmentation products, peaks at $m / z=807,573$ and 339 , assigned to the molecular ions $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}, \quad\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right]^{+}$and $\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$. In addition, ${ }^{1} \mathrm{H}$ NMR spectroscopy clearly shows the presence of $[\mathrm{Rh}([9]-$ aneS $\left.\left.\mathrm{S}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$with the ${ }^{31} \mathrm{P}$ NMR spectrum exhibiting two separate doublet resonances of equal intensity at $\delta 46.17$ $\left[{ }^{1} J(\mathrm{Rh}-\mathrm{P})=134\right]$ and $43.15 \quad\left[{ }^{1} J(\mathrm{Rh}-\mathrm{P})=169 \mathrm{~Hz}\right]$ in $\mathrm{CD}_{3} \mathrm{CN}$. Hence, this product was formulated as a statistical mixture of $\left[\mathrm{Rh}\left([9]\right.\right.$ aneS $\left.\left._{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6},\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}$ and $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$. We were unable to separate these three complexes fully.

In order to avoid the formation of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{PR}_{3}\right)_{2}\right]^{+}$, the reaction was repeated using phosphines with Tolman angles (θ) greater than that of $\mathrm{PPh}_{3}\left(\theta=145^{\circ}{ }^{\circ 36}\right)$. Reaction as above using 1 molar equivalent of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\left(\theta=170^{\circ}\right)$ or $\operatorname{PPr}^{\mathrm{i}}{ }_{3}\left(\theta=160^{\circ}\right)$ yields air- and thermally-sensitive pale yellow solids that analyse as $\left[\mathrm{Rh}\left([9]\right.\right.$ aneS $\left.\left._{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right] \mathrm{PF}_{6}$. In this case, however, parent molecular ions corresponding to $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]^{+}$only are observed by mass spectroscopy ($m / z=591$ for $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{11}, 471$ for $\mathrm{R}=\operatorname{Pr}^{\mathrm{i}}$), implying the presence of the desired species $[\mathrm{Rh}([9]$ ane$\left.\left.\mathrm{S}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right] \mathrm{PF}_{6}$ only in these products. Interestingly, the ${ }^{1} \mathrm{H}$ NMR spectrum at 293 K of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}-\right.\right.\right.$ $\left.\left.\left.{ }_{11}\right)_{3}\right\}\right] \mathrm{PF}_{6}$ shows, in addition to multiplets from the [9] aneS $_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligands, two multiplets arising from a static $\mathrm{C}_{2} \mathrm{H}_{4}$ ligand at $\delta 2.52(2 \mathrm{H})$ and $2.18(2 \mathrm{H})$, in contrast to the behaviour of $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$. The non-fluxionality of the ethene ligand in $\left[\operatorname{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]^{+}$ probably arises from the steric demands of the [9]aneS ${ }_{3}$ $\left(\theta \approx 220^{\circ}{ }^{37}\right)$ and $P\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$ ligands, rather than any differences in electronic character between this complex and its bis(ethene) congener, although an X-ray structural determination would be needed to confirm this. An NMR investigation of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{\mathrm{i}}{ }_{3}\right)\right]^{+}$and a high-temperature ${ }^{1} \mathrm{H}$ NMR study of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]^{+}$were not possible because of the low thermal stabilities of these complexes in solution. Attempts to prepare $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PMe}_{3}\right)\right]^{+}$by the above methodology at 233 K gave only red oils and decomposition products which were not characterised further.

Reaction of $\left[\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ with 1 molar equivalent of [9]aneS ${ }_{3}$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ affords a yellow microcrystalline solid in moderate yield. Infrared ($v_{\mathrm{co}} 1960 \mathrm{~cm}^{-1}$ in MeNO_{2}) and mass spectrometric and microanalytical data on this product were consistent with the formulation $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{CO})\right.$ $\left.\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}$: this was confirmed by a structure determination, which showed a trigonal-bipyramidal cation containing equatorial CO and axial PPh_{3} ligands. The details of this structural analysis have been reported separately. ${ }^{38}$
Treatment of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$ with $\mathrm{CO}, \mathrm{PPh}_{3}$ or cod in acetone or thf at 293 K for 30 min yields only the unreacted bis(ethene) starting material, with no incorporation of the attacking nucleophile; reaction at higher temperatures results in decomposition of the complex, with no peaks due to co-ordinated $\mathrm{CO}, \mathrm{PPh}_{3}$ or cod being observed in the resultant product mixture by IR spectroscopy. This inertness to thermal ligand substitution implies that the solid-state 18 -electron configuration of $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$is maintained in solution, and that formation of a transient co-ordinatively unsaturated rhodium centre via loss of an ethene ligand or Sdonor $\left\{c f . \eta^{5} \rightarrow \eta^{3}\right.$ slippage of the $\mathrm{C}_{5} \mathrm{R}_{5}$ ligand in $\left[\mathrm{M}\left(\mathrm{C}_{5} \mathrm{R}_{5}\right) \mathrm{L}_{2}\right]$ ($\mathrm{M}=\mathrm{Rh}$ or $\mathrm{Ir}, \mathrm{R}=\mathrm{H}$ or Me, $\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}$ or CO) $\left.)^{6}\right\}$ is not a favourable process. ${ }^{5}$ Likewise, no reaction was observed between $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$ and the electrophiles $\mathrm{C}_{2} \mathrm{~F}_{4}, \mathrm{CS}_{2}, \mathrm{H}^{+}$and tene at 293 K ; in the latter case, green charge-transfer salts of composition $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6} \cdot x$ tene $(x<1)$ were obtained. In contrast, reaction of $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right) \text { (cod) }\right]^{+}$with tene in refluxing MeCN afforded a pale yellow soluble product which is assigned as $\left[\operatorname{Rh}\left([9] \mathrm{aneS}_{3}\right)(\right.$ tcne $\left.)(\mathrm{MeCN})\right] \mathrm{X}\left(\mathrm{X}=\mathrm{BF}_{4}\right.$ or $\left.\mathrm{PF}_{6}\right)$. The IR spectrum of this product showed v_{CN} stretching vibrations at $2320 \mathrm{~m}, 2295 \mathrm{~m}, 2245 \mathrm{w}, 2220 \mathrm{~s}$ and $2150 \mathrm{w} \mathrm{cm}^{-1}$, consistent with an N-bound tene ligand, ${ }^{39}$ in addition to absorptions for [9]aneS ${ }_{3}$. The FAB mass spectrum exhibited peaks at $m / z=$ 452, 411,385 and 323 corresponding to the molecular ions $\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)(\text { tcne })(\mathrm{MeCN})\right]^{+},{ }^{103} \mathrm{Rh}\left([9]\right.$ aneS $\left._{3}\right)($ tcne $\left.)\right]^{+}$, $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\text { tcne }-\mathrm{CN})\right]^{+}$and $\left[{ }^{103} \mathrm{Rh}\left([9]\right.\right.$ aneS $\left._{3}-\mathrm{H}\right)$ $(\mathrm{MeCN})]^{+}$respectively. The NMR characterisation was hampered by the insolubility of the complex in solvents other than $\mathrm{CD}_{3} \mathrm{CN}$, although a ${ }^{1} \mathrm{H}$ NMR spectrum in that solvent showed [9]aneS 3_{3} multiplets at $\delta 3.64(6 \mathrm{H})$ and $1.79(6 \mathrm{H})$. A definitive structural assignment for $\left[{ }^{103} \mathrm{Rh}\left([9]\right.\right.$ aneS $\left._{3}\right)$ (tcne)$(\mathrm{MeCN})]^{+}$could not therefore be made, although a di- or polymeric structure in the solid state with bridging tene ligands is most likely. Treatment of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\operatorname{cod})\right]^{+}$with tene in refluxing acetone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or thf yielded charge-transfer salts as above.
Reaction of $\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right]$ with 2 molar equivalents of [9] aneS ${ }_{3}$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in acetone at 293 K affords initially a yellow solution, which becomes dark green on further stirring for 15 min . Both yellow and green products can be isolated as microcrystalline solids. However, all samples of the yellow complex were shown by IR spectroscopy to be contaminated by the green species, and solid-state samples of the yellow product convert quantitatively into the green complex on standing at 293 K in vacuo for 2 d . In addition to absorbances due to the [9] aneS ${ }_{3}$ ligand and $\mathrm{PF}_{6}{ }^{-}$counter ion, the initial yellow product exhibits two intense $v_{\text {co }}$ stretching vibrations at 2080 and $2012 \mathrm{~cm}^{-1}$ in MeNO_{2}. The FAB mass spectrum shows peaks at $m / z=339,311$ and 283 assigned to the molecular ions $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{CO})_{2}\right]^{+},\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)(\mathrm{CO})\right]^{+}$and $\left[{ }^{103} \mathrm{Rh}\left([9]\right.\right.$ aneS $\left.\left._{3}\right)\right]+$ respectively. In contrast, the IR spectrum of the final green complex in MeNO_{2} shows a single v_{co} stretching vibration at $1855 \mathrm{~cm}^{-1}$, while FAB mass spectroscopy shows additional peaks at $m / z=795,650,622$ and 593 attributable to the molecular ions $\left[{ }^{103} \mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}(\mathrm{CO})_{3}-\right.$ $\left.\left(\mathrm{PF}_{6}\right)\right]^{+}, \quad\left[{ }^{103} \mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}(\mathrm{CO})_{3}\right]^{+}, \quad\left[{ }^{103} \mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}-\right.$ $\left.(\mathrm{CO})_{2}\right]^{+}$and $\left[{ }^{103} \mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)\left([9] \mathrm{aneS}_{3}-\mathrm{H}\right)(\mathrm{CO})\right]^{+}$. The ${ }^{13} \mathrm{C}$ NMR spectrum of the final product in $\mathrm{CD}_{3} \mathrm{NO}_{2}$ exhibits a triplet resonance at $\delta 202.51$ [${ }^{1} J(\mathrm{Rh}-\mathrm{C})=26.9 \mathrm{~Hz}$] consistent with a bridging μ-CO species, and a singlet at $\delta 32.71$ from the
SCH_{2} groups of [9]aneS S_{3}. The ${ }^{1} \mathrm{H}$ NMR spectrum shows only a multiplet for [9] aneS_{3} at $\delta 3.22$.

On the basis of these data, the yellow and green complexes are tentatively formulated as $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{CO})_{2}\right]^{+}$and $\left[\mathrm{Rh}_{2^{-}}\right.$ $\left.\left([9] \text { aneS }_{3}\right)_{2}(\mu-\mathrm{CO})_{3}\right]^{2+}$ respectively, although further work is required to confirm these assignments. It is noteworthy that heating $\left[\mathrm{Rh}_{2}\left([9] \text { aneS }_{3}\right)_{2}(\mu-\mathrm{CO})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ in refluxing acetone under N_{2} for 30 min results in its quantitative further transformation to a dark blue mixture of [9]aneS 3_{3}, CO and $\mathrm{PF}_{6}{ }^{-}$-containing species (by IR spectroscopy), suggesting that further loss of CO from this complex may be a facile process under thermal conditions. The analogous compounds $\left[\mathrm{RhL}(\mathrm{CO})_{2}\right]$ and $\left[\mathrm{Rh}_{2} \mathrm{~L}_{2}(\mu-\mathrm{CO})_{3}\right][\mathrm{L}=\operatorname{tris}($ pyrazolyl $)-$ borate or -gallate] have been well characterised, ${ }^{40}$ and exhibit in the IR spectra very similar CO stretching frequencies to those above, e.g. for $\left[\mathrm{Rh}_{2}\left\{\mathrm{HB}(\mathrm{pz})_{3}\right\}_{2}(\mu-\mathrm{CO})_{3}\right] v_{\mathrm{co}} 1845 \mathrm{~cm}^{-1}$. In contrast, the doubly carbonyl-bridged complex $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}\right.$ -$(\mu-\mathrm{CO})_{2}$] shows a v_{co} stretching vibration at $1732 \mathrm{~cm}^{-1} .^{41}$

Treatment of $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(\mathrm{CO})_{2} \mathrm{Cl}_{2}\right]^{42}$ with [9]aneS ${ }_{3}$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ also gives $\left[\mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}(\mu-\mathrm{CO})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ as the only isolable product, albeit in lower yield (30%). Reaction of $\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right]$ with 2 molar equivalents of [9]aneS ${ }_{3}$ in the absence of a chloride-abstracting agent rapidly leads to an insoluble blue solid, which exhibits five v_{co} stretching vibrations at $2055 \mathrm{~s}, 1995 \mathrm{~s}, 1835 \mathrm{~s}, 1778 \mathrm{~s}$ and $1750 \mathrm{~m} \mathrm{~cm}^{-1}$, in addition to bands due to co-ordinated [9]ane ${ }_{3}$. Further characterisation of this product was hampered by its insolubility; the formation of polymeric products on reaction of $\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right]$ with 2,5 dithiahexane has been noted. ${ }^{16}$

Treatment of $\left[\mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]^{+} \quad\left[\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}\right.$ or $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$ with stoichiometric amounts of MeCOCl , $\mathrm{SiMe}_{3} \mathrm{Cl}, \mathrm{I}_{2}$ or MeI in acetone or thf at 293 K , or by stirring in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or CHCl_{3} at 293 K , affords insoluble yellow (for Clcontaining substrates) or orange (for I_{2} or MeI) precipitates as the only isolable products. On the basis of IR spectroscopic and microanalytical data these products are formulated as $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{X}_{3}\right](\mathrm{X}=\mathrm{Cl}$ or I$)$. The IR spectrum of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{Cl}_{3}\right]$ contains bands at 340 and $295 \mathrm{~cm}^{-1}$ which might be assigned to $\mathrm{Rh}-\mathrm{Cl}$ stretching vibrations; the insolubility of $\left[\operatorname{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{X}_{3}\right]$ prevented further characterisation.

No reaction was observed between $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{cod})\right]^{+}$ and MeI, MeCOCl or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ either at 293 K or under reflux. The complex $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+}$did not react with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux, but rapidly formed $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{I}_{3}\right]$ with MeI in refluxing thf. No reaction was observed between $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$and benzene or $\mathrm{SiEt}_{3} \mathrm{H}$ at 293 K , the bis(ethene) complex being recovered from the solution. When heated under reflux, deep red solutions were formed from which rust-red solids could be isolated. The products exhibited IR and FAB mass spectra similar to those obtained by the thermal decomposition of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$(see below). No evidence for the incorporation of benzene or $\mathrm{SiEt}_{3} \mathrm{H}$ into the metal-based products was obtained.

Refluxing solutions of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$in acetone or thf under N_{2} for 30 min gave a red solution from which redbrown solids can be isolated. The same product could be obtained by the thermal decomposition of solid $[\mathrm{Rh}([9]-$ aneS $\left.\left.\mathrm{S}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ at 298 K in vacuo for 2 weeks. Interestingly, the FAB mass spectra of these materials give a clue to a potential decomposition route for $[\mathrm{Rh}([9]$ ane$\left.\mathrm{S}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$. The spectrum shows major peaks at $m / z=477$, $449,421,393,365$ and 337 which correspond to the molecular ions $\quad\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{n}-2 \mathrm{H}\right]^{+} \quad(n=2-7)$. The thermal decomposition of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$was also followed by NMR spectroscopy. After 30 min in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction solution exhibited new resonances at $\delta 5.64,5.38$ and 1.62 in addition to resonances assigned to co-ordinated [9$]$ ane $_{3}\left(\delta 3.1\right.$) and π-bound $\mathrm{C}_{2} \mathrm{H}_{4}$ ($\delta 2.76$). After a further 30 min , the resonances at $\delta 5.64,5.38$, 3.10 and 2.76 are still present whilst additional resonances
between $\delta 4.5$ and 1.5 are observable. No resonances assignable to RhH species were observed. A ${ }^{13} \mathrm{C}$ DEPT NMR spectrum obtained on a sample that had reacted for 2 h showed an intense peak at $\delta 34.62$ assigned to co-ordinated [9]aneS ${ }_{3}$, together with weaker resonances at $\delta 52.3,46.4,41.4,37.1$ and 32.0 . These preliminary results suggest that $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2^{-}}\right.\right.$ $\left.\left.\mathrm{H}_{4}\right)_{2}\right]^{+}$may decompose via the coupling of ethene ligands to give a mixture of products. Further experiments are required to determine the mechanism of this reaction and to characterise fully the products formed.

Cyclic voltammetry of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{L}\left(\mathrm{L}^{\prime}\right)\right] \mathrm{PF}_{6}\left(\mathrm{~L}, \mathrm{~L}^{\prime}=\right.$ $\mathrm{C}_{2} \mathrm{H}_{4}, \frac{1}{2} \operatorname{cod}, \frac{1}{2} \mathrm{nbd}$, or $\frac{1}{2} \mathrm{C}_{4} \mathrm{H}_{6}: \mathrm{L}=\mathrm{CO}, \mathrm{L}^{\prime}=\mathrm{PPh}$) in $\mathrm{MeCN}-0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NBu}^{\mathrm{n}}{ }_{4} \mathrm{PF}_{6}$ at 293 K shows in each case a broad single irreversible oxidation at $E_{\mathrm{pa}}=+0.29\left(\mathrm{~L}=\frac{1}{2} \mathrm{cod}\right)$ to $+1.10 \mathrm{~V}\left(\mathrm{~L}=\frac{1}{2} \mathrm{C}_{4} \mathrm{H}_{6}\right)$ vs. ferrocene-ferrocenium at 400 mV s^{-1}, with no well defined return waves. These processes remain irreversible at scan rates of $100-1000 \mathrm{mV} \mathrm{s}^{-1}$ at 293 and 253 K . Coulometric determinations of these oxidative processes in $\mathrm{MeCN}-0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NBu}^{\mathrm{n}}{ }_{4} \mathrm{PF}_{6}$ at 293 K at a platinum-basket electrode give variable results between 1.5 and 2 electrons, while controlled-potential electrolysis of bulk samples of these compounds yields pale yellow ESR-silent solutions. These results show that any rhodium(II) species formed from $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{L}\left(\mathrm{L}^{\prime}\right)\right]^{+}$precursors decompose rapidly, possibly by disproportionation or dimerisation to form diamagnetic dirhodium(II) products $\left\{c f .\left[\operatorname{Rh}\left([9] \text { aneS }_{3}\right)_{2}\right]^{2+10}\right\}$.

Experimental

Infrared spectra were run as KBr discs unless otherwise stated, on a Perkin-Elmer 598 spectrometer over the range 200-4000 cm^{-1}, electronic spectra of solutions in 1 cm quartz cells using a Perkin-Elmer Lambda 9 spectrophotometer and fast atom bombardment mass spectra on a Kratos MS 50TC spectrometer using a 3-nitrobenzyl alcohol matrix. Microanalyses were carried out by the University of Edinburgh Chemistry Department microanalytical service. Proton and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using Bruker WP80, WP200 and WH360 spectrometers, ${ }^{31}$ P NMR spectra on JEOL FX90Q or Bruker WP200 spectrometers. Electrochemical measurements were performed using a Bruker E310 Universal Modular Polarograph; for all readings a three-electrode system in acetonitrile containing $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NBu}^{n}{ }_{4} \mathrm{PF}_{6}$ as supporting electrolyte was employed. Cyclic voltammetric measurements were obtained with a double platinum electrode and a $\mathrm{Ag}-\mathrm{AgCl}$ reference electrode. Potentials are quoted versus ferroceneferrocenium, at a scan rate of $400 \mathrm{mV} \mathrm{s}^{-1}$. All operations were performed under N_{2} using standard Schlenk techniques. The complexes $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4} \mathrm{Cl}_{2}\right],\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{4} \mathrm{Cl}_{2}\right],\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2}\right.$ $\left.\mathrm{Cl}_{2}\right], \quad\left[\mathrm{Rh}_{2}(\mathrm{nbd})_{2} \mathrm{Cl}_{2}\right], \quad\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4} \mathrm{Cl}_{2}\right]$ and $[\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$] were synthesised according to literature methods. ${ }^{43}$

Syntheses- $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{BF}_{4} .\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4} \mathrm{Cl}_{2}\right]$ $\left(0.032 \mathrm{~g}, 0.8 \times 10^{-4} \mathrm{~mol}\right)$ was stirred with $[9] \mathrm{aneS}_{3}(0.030 \mathrm{~g}$, $\left.1.6 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NaBF}_{4}\left(0.018 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ in acetone $\left(6 \mathrm{~cm}^{3}\right)$ at 293 K for 15 min . The resultant yellow solution was filtered and the crude solid crystallised by addition of $\mathrm{Et}_{2} \mathrm{O}$. Recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at 243 K yielded a bright yellow solid. Yield $0.025 \mathrm{~g}, 35 \%$ (Found: C, 27.3; H, 4.6. Calc. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{BF}_{4} \mathrm{RhS}_{3}: \mathrm{C}, 28.1 ; \mathrm{H}, 4.7 \%$). FAB mass spectrum: $m / z 339,\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$(calc. 339); 311, $\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{+}$(calc. 311); and 283, [${ }^{103} \mathrm{Rh}([9]-$ aneS $\left.\left.{ }_{3}\right)\right]^{+}$(calc. 283), with correct isotopic distributions. NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 233 \mathrm{~K}\right]:{ }^{1} \mathrm{H}(360.13 \mathrm{MHz}), \delta 3.22-3.02(\mathrm{~m}, 12 \mathrm{H}$, [9]aneS ${ }_{3}$) and 2.76 (d, $8 \mathrm{H}, J=1.6, \mathrm{C}_{2} \mathrm{H}_{4}$); ${ }^{13} \mathrm{C}$ DEPT (50.32 $\mathrm{MHz}), \delta 51.41\left(\mathrm{~d}, J=9.6 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}_{4}\right)$ and 33.78 (s , [9]aneS ${ }_{3}$). Electronic spectrum (MeCN): $\lambda_{\text {max }}=380\left(\varepsilon_{\max } 590\right)$, $298(2360)$, and $234 \mathrm{~nm}\left(9295 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. IR: $3040 \mathrm{w}, 2940 \mathrm{~m}, 2900 \mathrm{~m}$, $1515 \mathrm{w}, 1440 \mathrm{~s}, 1410 \mathrm{~s}, 1380 \mathrm{w}, 1300 \mathrm{~m}, 1255 \mathrm{w}, 1165 \mathrm{~m}, 1060 \mathrm{vs}$, $1030 \mathrm{~m}, 990 \mathrm{w}, 970 \mathrm{w}, 940 \mathrm{w}, 905 \mathrm{~m}, 815 \mathrm{~s}, 770 \mathrm{w}, 660 \mathrm{w}, 620 \mathrm{w}, 570 \mathrm{w}$, $525 \mathrm{~s}, 480 \mathrm{~m}, 450 \mathrm{w}$ and $410 \mathrm{w} \mathrm{cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right] \mathrm{PF}_{6}$. The complex $\left[\mathrm{Rh}_{2}-\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4} \mathrm{Cl}_{2}\right]\left(0.032 \mathrm{~g}, 0.8 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}(0.046 \mathrm{~g}$, $1.6 \times 10^{-4} \mathrm{~mol}$) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$ at 293 K until all the solid had dissolved. To the resultant yellow-orange solution was added [9]aneS $\mathrm{S}_{3}\left(0.030 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(0.027 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ and the mixture stirred for 10 min . The pale yellow solution was filtered, reduced in volume to ca. $1 \mathrm{~cm}^{3}$ and the pale yellow solid product crystallised by addition of hexane. Yield $0.073 \mathrm{~g}, 59 \%$ (Found: C, 42.2; H, 6.8. Calc. for $\mathrm{C}_{28} \mathrm{H}_{49} \mathrm{BF}_{4} \mathrm{PRhS}_{3}$: C, 42.4; $\mathrm{H}, 6.7 \%$). FAB mass spectrum: $m / z 591,\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right]^{+}$ (calc. 591); and 562, $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}-\mathrm{H}\right)\left\{\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}}\right]^{+}\right.$ (calc. 562). NMR [($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 293 \mathrm{~K}\right]:{ }^{1} \mathrm{H}(200.13 \mathrm{MHz})$, $\delta 3.08-2.95\left(\mathrm{~m}, 12 \mathrm{H},[9] \mathrm{aneS}_{3}\right), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{2} \mathrm{H}_{4}$) and 2.04-1.28 [m, $\left.33 \mathrm{H}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right] .{ }^{13} \mathrm{C}$ DEPT $(50.32$ $\mathrm{MHz}), \delta 35.02$ [d, $J=19.2, \mathrm{CH}$ of $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right], 34.43$ (s, [9]aneS ${ }_{3}$), $29.15\left[\mathrm{~d},{ }^{1} J(\mathrm{Rh}-\mathrm{C})=12 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{H}_{4}\right.$], 28.85, 26.66, and 25.28 [s, CH_{2} of $\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right] ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(81.02 \mathrm{MHz})$, $\delta 36.75\left[\mathrm{~d},{ }^{1} J(\mathrm{Rh}-\mathrm{P})=130.4 \mathrm{~Hz}\right.$. Electronic spectrum $(\mathrm{MeCN}): \lambda_{\text {max }}=365(\mathrm{sh}), 260(\mathrm{sh})$, and $239 \mathrm{~nm}\left(\varepsilon_{\text {max }}=14860\right.$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$). IR: $3070 \mathrm{w}, 3020 \mathrm{w}, 2920 \mathrm{~s}, 2840 \mathrm{~s}, 2650 \mathrm{w}$, $1490 \mathrm{w}, 1445 \mathrm{~s}, 1410 \mathrm{~s}, 1380 \mathrm{w}, 1345 \mathrm{w}, 1330 \mathrm{w}, 1295 \mathrm{~m}, 1270 \mathrm{~m}$, $1225 \mathrm{w}, 1200 \mathrm{~m}, 1160 \mathrm{~m}, 1115 \mathrm{~m}, 1070 \mathrm{w}, 1045 \mathrm{w}, 1020 \mathrm{w}, 1000 \mathrm{~m}$, $940 \mathrm{~m}, 915 \mathrm{w}, 895 \mathrm{w}, 875 \mathrm{w}, 840 \mathrm{vs}, 780 \mathrm{w}, 730 \mathrm{~m}, 700 \mathrm{w}, 665 \mathrm{w}, 560 \mathrm{~s}$, $515 \mathrm{~m}, 495 \mathrm{w}, 450 \mathrm{w}, 435 \mathrm{w}, 420 \mathrm{w}$ and $400 \mathrm{w} \mathrm{cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{\mathrm{i}}\right)\right] \mathrm{PF}_{6}$. Method as above, using $\operatorname{PPr}^{\mathrm{i}}{ }_{3}\left(1.6 \mathrm{~cm}^{3}\right.$ of a $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in thf). Yield 0.030 g , 29% (Found: C, 33.4; H, 6.1. Calc. for $\mathrm{C}_{17} \mathrm{H}_{37} \mathrm{BF}_{4} \mathrm{PRhS}_{3}$: C, 33.1; H, 6.1%). FAB mass spectrum: $m / z 471,{ }^{103} \mathrm{Rh}([9]-$ aneS $\left.\left._{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{\mathrm{i}}{ }_{3}\right)\right]^{+}$(calc. 471); and 443, [${ }^{103} \mathrm{Rh}([9]$ ane$\left.\left.\mathrm{S}_{3}\right)\left(\mathrm{PPr}^{\mathrm{i}}{ }_{3}\right)\right]^{+}$(calc. 443). IR: 2970s, $2930 \mathrm{~m}, 2880 \mathrm{w}, 2720 \mathrm{w}, 1450 \mathrm{~s}$, $1410 \mathrm{~s}, 1390 \mathrm{~m}, 1370 \mathrm{w}, 1290 \mathrm{w}, 1250 \mathrm{~m}, 1175 \mathrm{w}, 1145 \mathrm{~m}, 1090 \mathrm{~s}$, $1055 \mathrm{w}, 1035 \mathrm{~m}, 950 \mathrm{~s}, 840 \mathrm{vs}, 740 \mathrm{~m}, 720 \mathrm{w}, 655 \mathrm{~m}, 640 \mathrm{w}, 605 \mathrm{w}$, $560 \mathrm{~s}, 530 \mathrm{~m}, 490 \mathrm{w}, 470 \mathrm{w}$ and $405 \mathrm{w} \mathrm{cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{cod})\right] \mathrm{PF}_{6}$. The complex $\left[\mathrm{Rh}_{2}(\operatorname{cod})_{2} \mathrm{Cl}_{2}\right]$ $\left(0.041 \mathrm{~g}, 0.8 \times 10^{-4} \mathrm{~mol}\right)$, [9$] \mathrm{aneS}_{3}\left(0.03 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(0.027 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6$ cm^{3}) at 293 K for 15 min . After filtration and reduction of the solution volume to $c a .1 \mathrm{~cm}^{3}$ the yellow product was crystallised by addition of hexane. Yield $0.062 \mathrm{~g}, 70 \%$ (Found: $\mathrm{C}, 31.4 ; \mathrm{H}$, 4.5. Calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{PRhS}_{3}: \mathrm{C}, 31.4 ; \mathrm{H}, 4.5 \%$). FAB mass spectrum: $m / z=391,\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\text { cod })\right]^{+}$(calc. 391); and 282 , [$\left.{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}-\mathrm{H}\right)\right]^{+}$(calc. 282). NMR ($\mathrm{CD}_{3}{ }^{-}$ $\left.\mathrm{NO}_{2}, 293 \mathrm{~K}\right):{ }^{1} \mathrm{H}(360.13 \mathrm{MHz}), \delta 4.10(\mathrm{br}, 4 \mathrm{H}, \operatorname{cod} \mathrm{CH})$, $3.01-2.79\left(\mathrm{~m}, 12 \mathrm{H},[9] \mathrm{aneS}_{3}\right), 2.52(\mathrm{~m}, 4 \mathrm{H})$, and $2.20(\mathrm{~m}, 4 \mathrm{H}$, $\left.\operatorname{cod} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ DEPT $(50.32 \mathrm{MHz}), \delta 78.33\left[\mathrm{~d},{ }^{1} J(\mathrm{Rh}-\mathrm{C})=11\right.$ $\mathrm{Hz}, \operatorname{cod} \mathrm{CH}], 33.84\left(\mathrm{~s},[9] \mathrm{aneS}_{3}\right)$, and $30.80\left(\mathrm{~s}, \operatorname{cod} \mathrm{CH}_{2}\right)$. Electronic spectrum (MeCN): $\lambda_{\max }=390(\mathrm{sh}), 304\left(\varepsilon_{\max }=\right.$ 2460), 245 (14780), and $220 \mathrm{~nm}\left(25870 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$). IR: $2980 \mathrm{w}, 2920 \mathrm{~m}, 2860 \mathrm{~m}, 2810 \mathrm{~m}, 1470 \mathrm{w}, 1440 \mathrm{~s}, 1410 \mathrm{~s}$, $1380 \mathrm{w}, 1325 \mathrm{~m}, 1300 \mathrm{~m}, 1285 \mathrm{w}, 1260 \mathrm{w}, 1245 \mathrm{~m}, 1215 \mathrm{~m}, 1170 \mathrm{~s}$, $1120 \mathrm{w}, 1090 \mathrm{w}, 1010 \mathrm{w}, 980 \mathrm{w}, 935 \mathrm{w}, 900 \mathrm{~m}, 890 \mathrm{w}, 875 \mathrm{~m}, 840 \mathrm{vs}$, $780 \mathrm{w}, 685 \mathrm{w}, 660 \mathrm{w}, 620 \mathrm{w}, 560 \mathrm{~s}, 505 \mathrm{w}, 480 \mathrm{~m}, 445 \mathrm{w}$ and $385 \mathrm{w} \mathrm{cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{nbd})\right] \mathrm{PF}_{6}$. The complex $\quad\left[\mathrm{Rh}_{2}(\mathrm{nbd})_{2} \mathrm{Cl}_{2}\right]$ $\left(0.037 \mathrm{~g}, 0.8 \times 10^{-4} \mathrm{~mol}\right)$ was stirred with [9]aneS ${ }_{3}(0.030 \mathrm{~g}$, $\left.1.6 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(0.027 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$ at 293 K for 30 min , giving a bright yellow solution, which was then filtered and reduced in volume to $c a$. $1 \mathrm{~cm}^{3}$. Addition of an excess of hexane afforded a yellow microcrystalline product. Yield $0.045 \mathrm{~g}, 52 \%$ (Found: C, $30.1 ; \mathrm{H}$, 3.9. Calc. for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{PRhS}_{3}: \mathrm{C}, 30.0 ; \mathrm{H}, 3.9 \%$). FAB mass spectrum: $m / z=375, \quad\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)\right]^{+}$(calc. 375); and 282, $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}-\mathrm{H}\right)\right]^{+}$(calc. 282). NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 293 \mathrm{~K}\right]:{ }^{1} \mathrm{H}(200.13 \mathrm{MHz}), \delta 3.58(\mathrm{dd}, 4 \mathrm{H}, J=2.1$, 4.7 , nbd $\mathrm{sp}^{2}-\mathrm{CH}$), 3.49 ($\mathrm{tt}, 2 \mathrm{H}, J=1.6,4.7$, nbd $\mathrm{sp}^{3}-\mathrm{CH}$), $2.87-2.66\left(\mathrm{~m}, 12 \mathrm{H},[9] \mathrm{aneS}_{3}\right)$, and $1.17(\mathrm{t}, 2 \mathrm{H}, J=1.6$, nbd CH_{2}); ${ }^{13} \mathrm{C}$ DEPT (50.32 MHz), $\delta 59.32$ (d, $J=4.8, \mathrm{nbd} \mathrm{CH}_{2}$), 46.10 ($\mathrm{s}, \mathrm{nbd} \mathrm{sp}{ }^{3}-\mathrm{CH}$), 41.45 (d, $\left.J=8.4 \mathrm{~Hz}, \mathrm{nbd} \mathrm{sp}^{2}-\mathrm{CH}\right){ }^{44}$ and 33.71 (s, [9]aneS ${ }_{3}$). Electronic spectrum (MeCN): $\lambda_{\text {max }}=$ 388 (sh), $309\left(\varepsilon_{\max }=2360\right)$, and $222 \mathrm{~nm}\left(20600 \mathrm{dm}^{3} \mathrm{~mol}^{-1}\right.$
cm^{-1}). IR: $3060 \mathrm{w}, 2990 \mathrm{w}, 2960 \mathrm{~m}, 2910 \mathrm{~m}, 2840 \mathrm{w}, 1450 \mathrm{~m}, 1435 \mathrm{w}$, 1410s, $1385 \mathrm{w}, 1340 \mathrm{w}, 1305 \mathrm{~s}$, 1285w, 1260w, 1245w, 1225w, $1170 \mathrm{~m}, 1140 \mathrm{w}, 1110 \mathrm{w}, 1035 \mathrm{~m}, 995 \mathrm{w}, 940 \mathrm{w}, 920 \mathrm{w}, 905 \mathrm{~m}, 890 \mathrm{w}$, $840 \mathrm{vs}, 790 \mathrm{~m}, 770 \mathrm{w}, 740 \mathrm{w}, 685 \mathrm{w}, 660 \mathrm{w}, 560 \mathrm{~s}, 490 \mathrm{w}, 440 \mathrm{w}$ and $360 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6}$. Butadiene was bubbled through a solution of $\left[\mathrm{Rh}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{4} \mathrm{Cl}_{2}\right]\left(0.032 \mathrm{~g}, 0.8 \times 10^{-4} \mathrm{~mol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 293 K for 10 min , affording a yellow solution. The macrocycle [9]aneS $3_{3}\left(0.03 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ $\left(0.027 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ were then added, and the mixture was stirred for 30 min . The solution was filtered and the solvent removed under vacuum. The crude product was recrystallised from $\mathrm{MeCN}-\mathrm{Et}_{2} \mathrm{O}$, giving pale yellow microcrystals. Yield $0.038 \mathrm{~g}, 47 \%$ (Found: $\mathrm{C}, 25.2 ; \mathrm{H}, 3.8$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{PRhS}_{3}$: $\mathrm{C}, 24.9 ; \mathrm{H}, 3.8 \%)$. FAB mass spectrum: $m / z=337$, ${ }^{103} \mathrm{Rh}([9]$ aneS $\left.\left._{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right]^{+}$(calc. 337); and 282, $\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}-\mathrm{H}\right)\right]^{+}$ (calc. 282). NMR [(CD $\left.\left.3_{3}\right)_{2} \mathrm{CO}, 293 \mathrm{~K}\right]:{ }^{1} \mathrm{H}(360.13 \mathrm{MHz}), \delta 5.60$ (m, $2 \mathrm{H}, \mathrm{CH}$ of $\mathrm{C}_{4} \mathrm{H}_{6}$), $3.22-2.85\left(\mathrm{br}, 12 \mathrm{H}\right.$, [9]aneS ${ }_{3}$), $2.32(\mathrm{~m}$, 2 H), and $1.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of $\left.\mathrm{C}_{4} \mathrm{H}_{6}\right) ;{ }^{13} \mathrm{C}$ DEPT (90.56 MHz), $\delta 89.98\left[\mathrm{~d},{ }^{1} J(\mathrm{Rh}-\mathrm{C})=5.0, \mathrm{CH}^{2}\right.$ of $\left._{4} \mathrm{H}_{6}\right], 36.24\left(\mathrm{br},[9]\right.$ aneS $\left._{3}\right)$, $35.37\left[\mathrm{~d},{ }^{1} J(\mathrm{Rh}-\mathrm{C})=12.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$ of $\mathrm{C}_{4} \mathrm{H}_{6}$], and 34.69 (br, [9]aneS ${ }_{3}$). Electronic spectrum (MeCN): $\lambda_{\text {max }}=352$ (sh), 283 ($\varepsilon_{\text {max }}=3360$), and $229 \mathrm{~nm}\left(18900 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$). IR: 3040 w , $3000 \mathrm{~m}, 2960 \mathrm{~m}, 2920 \mathrm{w}, 2840 \mathrm{w}, 1470 \mathrm{~s}, 1445 \mathrm{~s}, 1430 \mathrm{~m}, 1410 \mathrm{~s}$, 1385w, 1370m, 1285m, 1265w, 1240m, 1195m, 1175w, 1130w, $1115 \mathrm{w}, 1050 \mathrm{~m}, 1005 \mathrm{~m}, 990 \mathrm{w}, 960 \mathrm{~m}, 935 \mathrm{~s}, 910 \mathrm{~s}, 870 \mathrm{~m}, 840 \mathrm{vs}$, $740 \mathrm{w}, 680 \mathrm{~m}, 655 \mathrm{~m}, 620 \mathrm{w}, 560 \mathrm{~s}, 495 \mathrm{~m}, 480 \mathrm{~m}, 450 \mathrm{w}, 415 \mathrm{w}$ and $400 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{PF}_{6}$. The complex $[\mathrm{Rh}(\mathrm{CO}) \mathrm{Cl}-$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(0.115 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$, [9]aneS ${ }_{3}(0.030 \mathrm{~g}$, $\left.1.6 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(0.027 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(6 \mathrm{~cm}^{3}\right)$ at 293 K for 15 min , yielding a yellow solution. The solution was filtered and reduced in volume to $c a$. $1 \mathrm{~cm}^{3}$. Addition of an excess of hexane gave a yellow crystalline product which was analysed without further purification. Yield $0.065 \mathrm{~g}, 55 \%$ (Found: C, 41.4 ; H, 3.7. Calc. for $\mathrm{C}_{25} \mathrm{H}_{27}$ $\mathrm{F}_{6} \mathrm{OP}_{2} \mathrm{RhS}_{3}: \mathrm{C}, 41.8 ; \mathrm{H}, 3.8 \%$). FAB mass spectrum: $m / z=573$, $\left[{ }^{103} \mathrm{Rh}^{6}\left([9] \mathrm{aneS}_{3}\right)(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right]^{+}$(calc. 573); 545, [${ }^{103} \mathrm{Rh}([9]-$ $\left.\left.\mathrm{aneS}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]^{+}$(calc. 545); and 468, ${ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)$ $\left.\left(\mathrm{PPh}_{2}\right)\right]^{+}$(calc. 468$)$. NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 293 \mathrm{~K}\right):{ }^{1} \mathrm{H}(200.13 \mathrm{MHz})$, $\delta 7.80-7.45\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{PPh}_{3}\right)$ and 2.57-2.40 (m, 12 H, [9]aneS ${ }_{3}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(50.32 \mathrm{MHz}), \delta 133.51(\mathrm{~d}, J=11.4), 131.75(\mathrm{~d}, J=$ $51.0), 131.06(\mathrm{~d}, J=2.5), 128.43\left(\mathrm{~d}, J=10.7, \mathrm{PPh}_{3}\right)$, and 33.44 (s, [9]aneS ${ }_{3}$); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}(81.02 \mathrm{MHz}), \delta 43.80(\mathrm{~d}, J=129 \mathrm{~Hz})$. Electronic spectrum (MeCN): $\lambda_{\text {max }}=370(\mathrm{sh}), 278(\mathrm{sh})$, and 251 $\mathrm{nm}\left(\varepsilon_{\text {max }}=21980 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right.$). IR (MeNO_{2} solution): 1960; (KBr disc) 3070w, 3040m, 3000w, 2950w, 2920w, 2840w, 1955vs, $1905 \mathrm{w}, 1580 \mathrm{w}, 1570 \mathrm{w}, 1480 \mathrm{~m}, 1450 \mathrm{~m}, 1435 \mathrm{~s}$, 1410s, $1335 \mathrm{w}, 1315 \mathrm{w}, 1300 \mathrm{~m}, 1270 \mathrm{w}, 1175 \mathrm{~m}, 1150 \mathrm{w}, 1115 \mathrm{w}, 1090 \mathrm{~s}$, $1075 \mathrm{w}, 1025 \mathrm{w}, 1000 \mathrm{~m}, 985 \mathrm{w}, 970 \mathrm{w}, 940 \mathrm{w}, 905 \mathrm{w}, 870 \mathrm{w}, 840 \mathrm{vs}$, $765 \mathrm{~s}, 755 \mathrm{~m}, 745 \mathrm{~m}, 710 \mathrm{~s}, 695 \mathrm{~s}, 660 \mathrm{w}, 620 \mathrm{w}, 560 \mathrm{~s}, 545 \mathrm{~s}, 535 \mathrm{~s}$, $510 \mathrm{~s}, 485 \mathrm{w}, 470 \mathrm{w}, 445 \mathrm{w}$ and $430 \mathrm{~m} \mathrm{~cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)(\right.$ tcne $\left.)(\mathrm{MeCN})\right] \mathrm{PF}_{6}$. The complex $[\mathrm{Rh}([9]$ ane$\left.\left.\mathrm{S}_{3}\right)(\mathrm{cod})\right] \mathrm{BF}_{4}\left(0.040 \mathrm{~g}, 8.4 \times 10^{-5} \mathrm{~mol}\right)$ and tene $(0.011 \mathrm{~g}$, $8.4 \times 10^{-5} \mathrm{~mol}$) were allowed to react in refluxing $\mathrm{MeCN}(6$ cm^{3}) at 293 K for 2 h . The resultant yellow solution was filtered, reduced in volume to $c a .1 \mathrm{~cm}^{3}$ and the pale yellow solid product crystallised from $\mathrm{Et}_{2} \mathrm{O}$. Yield $0.035 \mathrm{~g}, 78 \%$ (Found: $\mathrm{C}, 31.7 ; \mathrm{H}$, 2.9; N, 12.4. Calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BF}_{4} \mathrm{~N}_{5} \mathrm{RhS}_{3}$: C, 31.2; $\mathrm{H}, 2.8$; N , 13.0%). FAB mass spectrum: $m / z=452$, [${ }^{103} \mathrm{Rh}([9]$ ane$\left.\mathrm{S}_{3}\right)($ tcne $\left.)(\mathrm{MeCN})\right]^{+}$(calc. 452); 411, ${ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)($ (tcne $\left.)\right]^{+}$ (calc. 411); 385 , $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\right.$ (tcne -CN$\left.)\right]^{+}$(calc. 385); 323, $\left.{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}-\mathrm{H}\right)(\mathrm{MeCN})\right]^{+}$(calc. 323); and 283, $\left[{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\right]^{+}$(calc. 283). NMR ($\mathrm{CD}_{3} \mathrm{CN}, 293 \mathrm{~K}$): ${ }^{1} \mathrm{H}$ (200.13 MHz), $\delta 3.64$ ($\mathrm{m}, 6 \mathrm{H},[9] \mathrm{aneS}_{3}$), 1.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeCN}$), and $1.79\left(\mathrm{~m}, 6 \mathrm{H},[9] \mathrm{aneS}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}(50.32 \mathrm{MHz}), \delta 37.27(\mathrm{~s})$, 34.06 (s), 33.53 (s, $[9] \mathrm{aneS}_{3}$). Electronic spectrum (MeCN): $\lambda_{\text {max }}=330(\mathrm{sh}), 299\left(\varepsilon_{\text {max }}=14345\right)$, and $255 \mathrm{~nm}\left(26900 \mathrm{dm}^{3}\right.$ $\mathrm{mol}^{-1} \mathrm{~cm}^{-1}$). IR: $2980 \mathrm{~m}, 2930 \mathrm{~m}, 2860 \mathrm{w}, 2320 \mathrm{~m}, 2295 \mathrm{~m}, 2245 \mathrm{w}$, $2220 \mathrm{~s}, 2150 \mathrm{w}, 1440 \mathrm{~s}, 1410 \mathrm{~s}, 1380 \mathrm{w}, 1300 \mathrm{~m}, 1285 \mathrm{~m}, 1260 \mathrm{w}$, $1245 \mathrm{w}, 1210 \mathrm{~s}, 1190 \mathrm{w}, 1170 \mathrm{w}, 1140 \mathrm{~m}, 1125 \mathrm{~m}, 1060 \mathrm{vs}, 945 \mathrm{~m}$,

Table 4 Experimental data* for the single-crystal structure determinations of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{L}_{2}\right]^{+}$

L	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\frac{1}{2} \operatorname{cod}$	${ }_{2}^{1} \mathrm{C}_{4} \mathrm{H}_{6}$
Molecular formula	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{PRhS}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{BF}_{4} \mathrm{RhS}_{3}$	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~F}_{6} \mathrm{PRhS}_{3} \cdot 0.25 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
$M_{\text {r }}$	484.32	478.20	500.56
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	$P 2_{1} / n$	$P \overline{1}$	C2/c
a / \AA	11.487(3)	11.491(13)	18.612(6)
b / \AA	9.459(3)	12.803(6)	8.679(5)
c / \AA	15.745(6)	13.377(15)	23.756(5)
α		88.12(7)	
β	105.54(3)	70.30(8)	96.844(18)
γ		74.68(7)	
U / \AA^{3}	1648	1784	3810
Z	4	4	8
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.952	1.781	1.746
Crystal appearance	Orange lath	Orange plates	Pale yellow lath
Crystal dimensions/mm	$0.97 \times 0.35 \times 0.12$	$0.62 \times 0.62 \times 0.39$	$0.82 \times 0.43 \times 0.23$
$\mu(\mathrm{M}-\mathrm{K} \alpha) / \mathrm{mm}^{1}$	1.561 (Mo)	11.48 (Cu)	1.326 (Mo)
$F(000)$	968	968	2004
T/K	150	298	277
$h k l$ ranges	-12 to $11,-9$ to $10,0-16$	-9 to $10,-11$ to $11,0-12$	-20 to 19, 0-9, 0-25
Data measured	3353	2838	2684
Data used	$1964[F>4 \sigma(F)]$	$2608[F>6 \sigma(F)]$	$2329[F>4 \sigma(F)]$
Absorption corrections			
ψ scans	No	Yes	Yes
Maximum, minimum	-	0.0889, 0.0182	$0.1585,0.0954$
DIFABS ${ }^{45}$	No	Yes	No
Maximum, minimum	-	1.631, 0.994	\cdots
Weighting scheme, w^{-1}	$\sigma^{2}(F)+0.0020 F^{2}$	$\sigma^{2}(F)+0.007496 F^{2}$	$\sigma^{2}(F)+0.00050 F^{2}$
Final R, R^{\prime}	$0.0483,0.0849$	$0.0577,0.0843$	$0.0467,0.0671$
Final S	1.79	1.038	2.676
No. of parameters	216	452	281
Maximum, minimum residues in final ΔF synthesis/e \AA^{-3}	1.35, -0.82	$1.05,-0.55$	0.82, - 1.08

$910 \mathrm{~s}, 850 \mathrm{w}, 830 \mathrm{~s}, 770 \mathrm{w}, 660 \mathrm{w}, 625 \mathrm{w}, 560 \mathrm{w}, 525 \mathrm{~s}, 490 \mathrm{~m}$ and $330 \mathrm{~m} \mathrm{~cm}^{1}$.
$\left[\mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}(\mathrm{CO})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$. The complex $\left[\mathrm{Rh}_{2}(\mathrm{CO})_{4}-\right.$ $\left.\mathrm{Cl}_{2}\right]\left(0.032 \mathrm{~g}, 0.8 \times 10^{-4} \mathrm{~mol}\right)$ was stirred with [9] aneS $\mathrm{an}_{3}(0.03 \mathrm{~g}$, $\left.1.6 \times 10^{-4} \mathrm{~mol}\right)$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}\left(0.027 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ in acetone $\left(6 \mathrm{~cm}^{3}\right)$ at 293 K for 30 min , giving a dark green solution which was then filtered and reduced in volume to $c a .1 \mathrm{~cm}^{3}$. Addition of an excess of $\mathrm{Et}_{2} \mathrm{O}$ afforded a green microcrystalline product which was recrystallised from $\mathrm{MeNO}_{2}-\mathrm{Et}_{2} \mathrm{O}$. Yield $0.060 \mathrm{~g}, 79 \%$ (Found: $\mathrm{C}, 17.3 ; \mathrm{H}, 3.0$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{24}-$ $\mathrm{F}_{12} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Rh}_{2} \mathrm{~S}_{6}: \mathrm{C}, 19.2 ; \mathrm{H}, 2.6 \%$). FAB mass spectrum: $m / z=$ $795, \quad\left[{ }^{103} \mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}(\mathrm{CO})_{3}\left(\mathrm{PF}_{6}\right)\right]^{+} \quad$ (calc. 795); 650, $\left[{ }^{103} \mathrm{Rh}_{2}\left([9] \mathrm{aneS}_{3}\right)_{2}(\mathrm{CO})_{3}\right]^{+}$(calc. 650$) ; 622,\left[{ }^{103} \mathrm{Rh}_{2}([9]\right.$ ane$\left.\left.\mathrm{S}_{3}\right)_{2}(\mathrm{CO})_{2}\right]^{+}$(calc. 622); 593, ${ }^{103} \mathrm{Rh}_{2}\left([9]\right.$ aneS $\left._{3}\right)\left([9]\right.$ aneS $_{3}-$ $\mathrm{H})(\mathrm{CO})]^{+}$(calc. 593); 339, $\left[{ }^{103} \mathrm{Rh}\left([9] \text { aneS }_{3}\right)(\mathrm{CO})_{2}\right]^{+}$(calc. 339); and 283, $\left.{ }^{103} \mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\right]^{+}$(calc. 283). NMR $\left(\mathrm{CD}_{3} \mathrm{NO}_{2}, 293 \mathrm{~K}\right):{ }^{1} \mathrm{H}(80.13 \mathrm{MHz}), \delta 3.22\left(\mathrm{~m},[9]\right.$ aneS $\left.\mathrm{S}_{3}\right) ;{ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathrm{H}\right\}(50.32 \mathrm{MHz}), \delta 202.51\left[\mathrm{t},{ }^{1} J(\mathrm{Rh}-\mathrm{C})=26.9 \mathrm{~Hz}, \mathrm{CO}\right]$ and 32.71 (s, [9]aneS ${ }_{3}$). Electronic spectrum (MeCN): $\lambda_{\text {max }}=894$ $\left(\varepsilon_{\max }=75.1\right), 532(\mathrm{sh}), 388(\mathrm{sh}), 346(\mathrm{sh})$, and $310 \mathrm{~nm}(14390$ $\mathrm{dm}^{3} \mathrm{~mol}^{1} \mathrm{~cm}^{-1}$). IR: (MeNO_{2} solution) 1855 ; (KBr disc) $2990 \mathrm{~m}, 2960 \mathrm{~m}, 2920 \mathrm{~m}, 1915 \mathrm{w}, 1850 \mathrm{vs}, 1775 \mathrm{w}, 1445 \mathrm{~s}, 1410 \mathrm{~s}$, $1360 \mathrm{w}, 1295 \mathrm{~m}, 1270 \mathrm{w}, 1250 \mathrm{w}, 1180 \mathrm{~m}, 1135 \mathrm{w}, 1070 \mathrm{w}, 1040 \mathrm{w}$, $1015 \mathrm{w}, 990 \mathrm{w}, 935 \mathrm{~m}, 840 \mathrm{vs}, 740 \mathrm{~m}, 680 \mathrm{~s}, 625 \mathrm{~m}, 560 \mathrm{~s}, 540 \mathrm{~m}$, 480 w and $440 \mathrm{w} \mathrm{cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{Cl}_{3}\right]$. Reaction of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.044 \mathrm{~g}$, $\left.1.6 \times 10^{4} \mathrm{~mol}\right)$ with [9$] \mathrm{aneS}_{3}\left(0.030 \mathrm{~g}, 1.6 \times 10^{-4} \mathrm{~mol}\right)$ in refluxing ethanol ($15 \mathrm{~cm}^{3}$) for 3 h afforded a pale yellow precipitate, which was collected and washed with ethanol. Yield $0.042 \mathrm{~g}, 64 \%$ (Found: $\mathrm{C}, 18.6 ; \mathrm{H}, 3.2$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{RhS}_{3}: \mathrm{C}$, 18.5 ; H. 3.1%). IR: $2980 \mathrm{~m}, 2920 \mathrm{~m}, 2880 \mathrm{w}, 1440 \mathrm{~s}, 1400 \mathrm{~s}, 1365 \mathrm{w}$, $1295 \mathrm{w}, 1280 \mathrm{~m}, 1260 \mathrm{~m}, 1170 \mathrm{w}, 1120 \mathrm{~m}, 1010 \mathrm{w}, 940 \mathrm{~m}, 905 \mathrm{~s}, 830 \mathrm{~s}$, $675 \mathrm{w}, 660 \mathrm{~m}, 560 \mathrm{w}, 430 \mathrm{w}, 340 \mathrm{~s}$ and $295 \mathrm{~s} \mathrm{~cm}^{-1}$.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \mathrm{I}_{3}\right]$. The complex $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$ $\left(0.060 \mathrm{~g}, 1.2 \times 10^{-4} \mathrm{~mol}\right.$) was stirred with an excess of MeI (four drops) in acetone at 293 K for 15 min . The resultant orange precipitate was filtered off and washed with acetone and $\mathrm{Et}_{2} \mathrm{O}$. Yield $0.041 \mathrm{~g}, 51 \%$ (Found: C, $10.9 ; \mathrm{H}, 1.8$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{I}_{3} \mathrm{RhS}_{3}: \mathrm{C}, 10.9 ; \mathrm{H}, 1.8 \%$. IR: $2940 \mathrm{~m}, 2880 \mathrm{~m}, 2840 \mathrm{w}$, $1435 \mathrm{~s}, 1400 \mathrm{~s}, 1360 \mathrm{w}, 1290 \mathrm{w}, 1260 \mathrm{~m}, 1235 \mathrm{w}, 1160 \mathrm{~m}, 1120 \mathrm{~m}$, $1090 \mathrm{w}, 1020 \mathrm{w}, 930 \mathrm{~m}, 900 \mathrm{~s}, 820 \mathrm{~s}, 675 \mathrm{w}, 590 \mathrm{w}$ and $480 \mathrm{w} \mathrm{cm}{ }^{-1}$.

Crystal-structure Determinations.-Experimental data for single-crystal structure determinations are given in Table 4.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$. A sample of $\left[\mathrm{Rh}\left([9]\right.\right.$ aneS $\left._{3}\right)$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$ was prepared as above, using $\mathrm{NH}_{4} \mathrm{PF}_{6}$ as the counter ion metathesis agent. Crystals suitable for X-ray analysis was obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into an acetone solution of the complex. The chosen crystal was coated in oil, mounted on a glass fibre and cooled to 150 K in the cold stream of an Oxford Cryosystems low-temperature device. ${ }^{46}$ The structure were solved by direct methods and developed by iterative rounds of least-squares refinement and Fourierdifference synthesis. ${ }^{47}$ Anisotropic thermal parameters were refined for all non- H atoms, and macrocyclic H atoms were included in fixed, calculated positions. Ethene H atoms were located from a Fourier-difference map and allowed to refine freely with a common $U_{\text {iso }}$ of $0.047(5) \AA^{2}$. Bond lengths, angles and torsion angles are listed in Table 1, and atomic coordinates in Table 5.
$\left[\operatorname{Rh}\left([9]\right.\right.$ aneS $\left._{3}\right)($ cod $\left.)\right] \mathrm{BF}_{4}$. A sample of the $\mathrm{BF}_{4}{ }^{-}$salt of $\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right) \text { (cod) }\right]^{+}$was synthesised as above, using NaBF_{4} as chloride-abstracting agent. Crystals suitable for X-ray diffraction study were obtained by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapour into a solution of the complex in MeCN. The rhodium positions were deduced from a Patterson synthesis, ${ }^{48}$ while successive

Table 5 Atomic coordinates ($\times 10^{4}$)

Atom	x	y	z	Atom	x	y	z
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right] \mathrm{PF}_{6}$							
Rh	667.9(4)	2 513.4(4)	8 607.5(3)	C(2E)	2350 (8)	3 447(10)	9471 (5)
S(1)	426.2(15)	34.1(16)	8 968.8(11)	C(3E)	-549(7)	$3813(8)$	9061 (5)
C(2)	-1 099(6)	-274(7)	8 293(5)	C(4E)	-9(7)	4 641(7)	8 537(5)
C(3)	- $1368(6)$	325(7)	7360 (5)	P	$6042.7(15)$	1842.1 (17)	9 142.6(10)
S(4)	-902.5(15)	$2164.8(19)$	$7357.8(11)$	F(1)	6840 (8)	3 016(10)	9666 (5)
C(5)	- 144(6)	$2150(8)$	$6487(4)$	F(2)	$5044(7)$	2 957(9)	8 795(5)
C(6)	972(5)	$1226(6)$	6 693(4)	F(3)	5 494(5)	1 577(5)	9 953(3)
S(7)	1 994.6(12)	1 654.4(15)	$7767.4(10)$	F(4)	6 597(4)	2 138(5)	8323 (3)
C(8)	2384 (16)	-90(6)	8 233(4)	F(5)	7 006(7)	676(10)	$9489(4)$
C(9)	1326 (6)	-961(6)	8373 (5)	F(6)	5 201(8)	689(7)	$8600(4)$
C(1E)	1870 (10)	2 617(10)	9 956(7)				
[$\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)($ cod $\left.)\right] \mathrm{BF}_{4}$							
$\mathrm{Rh}(1)$	10 412(1)	$1936(1)$	3076 (1)	S(24)	6950(2)	$4863(2)$	$2185(2)$
S(1)	8749 (2)	$1650(2)$	2 604(2)	C(25)	8 274(7)	5 120(7)	1042 (6)
C(2)	8 405(7)	538(8)	3 436(10)	C(26)	7 890(7)	6 033(6)	389(6)
C(2')	8816 (10)	217(7)	$2805(10)$	S(27)	$6922(2)$	7 287(2)	$1187(2)$
C(3)	9 581(7)	-387(6)	3 291(8)	C(28)	5 609(7)	7 712(7)	670(6)
C(3')	9 280(9)	-141(9)	$3726(10)$	C(29)	4 789(7)	6 928(7)	819(5)
S(4)	10 869(2)	63(2)	3 475(2)	C(31)	4353 (8)	7916 (7)	4040 (7)
C(5)	12 296(8)	$-534(7)$	2 336(6)	C(32)	4 428(7)	$6882(7)$	4 435(6)
C(5)	11 753(12)	-661(7)	2 170(7)	C(33)	4947 (8)	6 497(7)	5 296(7)
C(6)	12 162(11)	-172(7)	1 295(6)	C(34)	6 328(10)	6 260(9)	4 973(8)
C(6)	12 591(9)	-70(7)	1410 (7)	C(35)	7041 (8)	6 449(7)	3 874(7)
S(7)	11 785(2)	1306 (2)	$1246(2)$	C(36)	6 980(8)	7436 (8)	3 549(7)
C(8)	10 585(7)	$1477(9)$	606(6)	C(37)	6 295(10)	8 444(10)	4 100(11)
$\mathrm{C}\left(8^{\prime}\right)$	10 677(7)	$1005(11)$	664(7)	C(38)	4 945(11)	8 699(8)	4 424(8)
C(9)	$9489(7)$	$1035(9)$	1244 (7)	B(1)	15756 (9)	948(8)	$1803(7)$
C(9^{\prime})	$9336(7)$	$1718(12)$	$1159(7)$	F(11)	16 936(8)	272(8)	$1491(8)$
C(11)	$9661(7)$	3610 (6)	$3150(7)$	F(12)	15 590(9)	$1309(10)$	$2809(8)$
C(12)	8 989(7)	3 211(7)	4 124(6)	F(13)	14970 (10)	536(10)	$1472(9)$
C(13)	9 184(8)	3 314(8)	$5172(7)$	F(14)	15 578(12)	$1947(9)$	1 484(11)
C(14)	10 571(7)	3 067(7)	$5062(7)$	F(15)	$14878(12)$	387(12)	2 037(11)
C(15)	11381 (7)	2 240(7)	4 179(6)	$\mathrm{F}(16)$	15 284(13)	$1582(13)$	1340 (12)
C(16)	$12071(7)$	2 444(7)	3 147(6)	F(17)	15 224(13)	844(12)	$2819(12)$
C(17)	$11975(9)$	3 542(8)	2 747(7)	F(18)	16 805(13)	806(12)	1 178(12)
C(18)	10 606(9)	4 243(7)	3042 (8)	B(2)	$1089(9)$	6 855(8)	1329 (7)
$\mathrm{Rh}(2)$	$5787(1)$	$6717(1)$	2 916(1)	F(21)	153(6)	6 529(6)	$1133(6)$
S(21)	4 263(2)	6 560(2)	2 208(2)	F(22)	2170 (6)	5 975(5)	$1071(5)$
C(22)	4 546(7)	$5114(7)$	$2060(7)$	F(23)	776(8)	$7115(6)$	2 404(5)
C(23)	$5959(8)$	4 472(7)	$1519(7)$	F(24)	$1353(8)$	7 685(6)	801(6)
[$\left.\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6} \cdot 0.25 \mathrm{OEt}_{2}$							
Rh	4056 (1)	$2319(1)$	746(1)	F(2)	3 928(6)	$1825(13)$	3 326(6)
S(1)	2 797(1)	$1877(1)$	653(1)	F(3)	3 060(6)	321(8)	3 071(3)
C(2)	2743 (8)	-32(5)	338(2)	F(4)	2 472(5)	774(10)	$3829(4)$
C(3)	3 325(3)	1163 (6)	573(3)	F(5)	$2822(8)$	2 686(10)	3 269(6)
S(4)	4 228(1)	-331(1)	650(1)	F(6)	3 744(5)	272(16)	3 983(6)
C(5)	4 557(3)	-855(7)	$1385(3)$	F(7)	3 397(5)	$2749(8)$	$4122(4)$
C(6)	4 157(3)	-120(7)	1819 (3)	F(8)	3 908(10)	2 058(17)	3 384(8)
S(7)	$4069(1)$	$1947(2)$	$1724(1)$	$\mathrm{F}(9)$	$3112(10)$	-18(13)	$3153(8)$
C(8)	$3116(4)$	2 254(7)	$1812(3)$	$\mathrm{F}(10)$	2 604(7)	845(18)	3 920(6)
C(9)	2 586(3)	1481 (7)	$1370(2)$	$\mathrm{F}(11)$	2 708(8)	2 499(14)	3 250(7)
C(11)	4 146(3)	4 738(6)	806(2)	$\mathrm{F}(12)$	3 592(9)	-37(13)	3 927(7)
C(12)	4843 (3)	4081 (6)	735(2)	$\mathrm{O}(1 \mathrm{~S})$	0	$1539(9)$	2500
C(13)	4879 (3)	$3126(6)$	271(2)	C(1S)	568(4)	567(10)	2349 (4)
C(14)	4 241(3)	2891 (6)	-99(2)	C(2S)	1257	1129	2416
P	$3229(1)$	$1351(2)$	$3611(1)$	C(1S')	568(4)	567(10)	2349 (4)
F(1)	3 323(7)	2169 (10)	$4130(5)$	C(3S)	1060	1365	2139

cycles of least-squares refinement and Fourier-difference synthesis ${ }^{49}$ located all other non-H atoms. During refinement the C atoms of one [9] aneS ${ }_{3}$ ring (molecule 1) were found to be disordered over two possible orientations; this was modelled using the fixed parameters S-C $1.83, \mathrm{C}-\mathrm{C} 1.52 \AA$, and $\mathrm{S}-\mathrm{C}-\mathrm{C}=109.5^{\circ}$. Inspection of the final thermal parameters and bond lengths suggested that the $\mathbf{C H}_{2}$ groups of one cod ligand (molecule 2) were also disordered, although this could not be successfully modelled. At isotropic convergence an
empirical absorption correction was applied ${ }^{45}$ (maximum 1.631, minimum 0.994). Anisotropic thermal parameters were refined for all Rh, S, F and wholly occupied C atoms, and H atoms were included in fixed, calculated positions. A secondary extinction parameter refined to $0.0161(8)$. Bond lengths, angles and torsion angles are listed in Table 2, and atomic coordinates in Table 5.
$\left[\mathrm{Rh}\left([9] \mathrm{aneS}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)\right] \mathrm{PF}_{6} \cdot 0.25 \mathrm{OEt}_{2}$. Suitable crystals were obtained by slow diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a solution of the
complex in acetone. The crystal was mounted on a glass fibre and cooled to 277 K in the cold stream of an Oxford Cryosystems low-temperature device. ${ }^{46}$ The Rh atom was located from a Patterson synthesis, ${ }^{48}$ and the structure developed by iterative cycles of least-squares refinement and Fourier-difference synthesis. ${ }^{49}$ During refinement the $\mathrm{PF}_{6}{ }^{-}$ counter ion was found to be disordered; this was modelled using twelve half-occupied F atoms. Anisotropic thermal parameters were refined for all Rh, S, P, F, O and non-solvent C atoms. Macrocyclic and solvent H atoms were included in fixed calculated positions; butadiene H -atom positions were refined with a fixed $\mathrm{C}-\mathrm{H}$ bond length of $1.08 \AA$ and constraints such that all $\mathrm{C}-\mathrm{C}-\mathrm{H}$, and both $\mathrm{H}-\mathrm{C}-\mathrm{H}$, angles were equal. Bond lengths, angles and torsion angles are listed in Table 3, and atomic coordinates in Table 5.

Structure-factor data were inlaid ${ }^{47,49}$ or taken from ref. 50. Illustrations were prepared using SHELXTL/PC ${ }^{47}$ and molecular geometry calculations performed using CALC. ${ }^{51}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank ICI Colours and Fine Chemicals (Blackley) for a CASE award (to M. A. H.), SERC for support, JohnsonMatthey plc for generous loans of $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and the Royal Society of Edinburgh and Scottish Education Department for a Support Research Fellowship (to M. S.).

References

1 C. K. Ghosh and W. A. G. Graham, J. Am. Chem. Soc., 1987, 109, 4726; 1989, 111, 375; C. K. Ghosh, D. P. S. Rodgers and W. A. G. Graham, J. Chem. Soc., Chem. Commun., 1988, 1511; C. K. Ghosh, J. K. Hoyano, R. Krentz and W. A. G. Graham, J. Am. Chem. Soc., 1989, 111, 5480; R. G. Ball, C. K. Ghosh, J. K. Hoyano, A. D. McMaster and W. A. G. Graham, J. Chem. Soc., Chem. Commun., 1989, 341.
2 R. S. Tanke and R. H. Crabtree, Inorg. Chem., 1989, 28, 3444; M. J. Fernandez, M. J. Rodriguez, L. A. Oro and F. J. Lahoz, J. Chem. Soc., Dalton Trans., 1989, 2073; P. J. Prez, M. L. Poveda and E. Carmona, J. Chem. Soc., Chem. Commun., 1992, 8, 558; O. Boutry, E. Gutirrez, A. Monge, M. C. Nicasio, P. J. Prez and E. Carmona, J. Am. Chem. Soc., 1992, 114, 7288.

3 C. J. Besecker, V. W. Day and W. G. Klemperer, Organometallics, 1985, 4, 564; V. W. Day, W. G. Klemperer, S. P. Lockledge and D. J. Main, J. Am. Chem. Soc., 1990, 112, 2031; R. S. Tanke and R. H. Crabtree, J. Am. Chem. Soc., 1990, 112, 7984.

4 See, for example, D. J. Rauscher, E. G. Thaler, J. C. Huffman and K. G. Caulton, Organometallics, 1991, 10, 2209; P. Barbaro, C. Bianchini, A. Meli, M. Peruzzini, A. Vacca and F. Vizza, Organometallics, 1991, 10, 2227 and refs therein; C. Bianchini, K. G. Caulton, K. Folting, A. Meli, M. Peruzzini, A. Polo and F. Vizza, J. Am. Chem. Soc., 1992, 114, 7290.

5 R. Cramer, J. Am. Chem. Soc., 1964, 86, 217; 1967, 89, 5377; R. Cramer, J. B. Kline and J. D. Roberts, J. Am. Chem. Soc., 1969, 91, 2519; K. Moseley, J. W. Kang and P. M. Maitlis, J. Chem. Soc. A, 1970, 2875.
6 A. J. Oliver and W. A. G. Graham, Inorg. Chem., 1970, 9, 243; 1971, 10, 1; J. K. Hoyano and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 3723; J. K. Hoyano, A. D. McMaster and W. A. G. Graham, J. Am. Chem. Soc., 1983, 105, 7190; A. J. Rest, I. Whitwell, W. A. G. Graham, J. K. Hoyano and A. D. McMaster, J. Chem. Soc., Dalton Trans., 1987, 1181; D. E. Marx and A. J. Lees, Inorg. Chem., 1988, 27, 1121; S. T. Belt, S. B. Duckett, D. M. Haddleton and R. N. Perutz, Organometallics, 1988, 7, 1526; 1989, 8, 748; D. M. Haddleton, A. McCamley and R. N. Perutz, J. Am. Chem. Soc., 1988, 110, 1810; T. W. Bell, D. M. Haddleton, A. McCamley, M. G. Partridge, R. N. Perutz and H. Willner, J. Am. Chem. Soc., 1990, 112, 9212.
7 A. H. Janowicz and R. G. Bergman, J. Am. Chem. Soc., 1982, 104, 352; 1983, 105, 3929; P. O. Stoutland and R. G. Bergman, J. Am. Chem. Soc., 1985, 107, 4581; 1988, 110, 5732; J. M. Buchanan, J. M. Stryker and R. G. Bergman, J. Am. Chem. Soc., 1986, 108,

1537; B. H. Weiller, E. P. Wasserman, R. G. Bergman, C. B. Moore and G. C. Pimentel, J. Am. Chem. Soc., 1989, 111, 8288.
8 W. D. Jones and F. J. Feher, Acc. Chem. Res., 1989, 22, 91 and refs. therein.
9 M. Schröder, Pure Appl. Chem., 1988, 60, 517; A. J. Blake and M. Schröder, Adv. Inorg. Chem., 1990, 35, 1 and refs. therein.

10 S. C. Rawle, R. Yagbasan, K. Prout and S. R. Cooper, J. Am. Chem. Soc., 1987, 109, 6181; A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Dalton Trans., 1988, 1861 ; S. R. Cooper, S. C. Rawle, R. Yagbasan and D. J. Watkin, J. Am. Chem. Soc., 1991, 113, 1600.

11 M. N. Bell, A. J. Blake, M. Schröder and T. A. Stephenson, J. Chem. Soc., Chem. Commun., 1986, 471; A. J. Blake, A. J. Holder, T. I. Hyde, H.-J. Küppers, M. Schröder, S. Stötzel and K. Wieghardt, J. Chem. Soc., Chem. Commun., 1989, 1600; A. J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1989, 1675; Polyhedron, 1990, 9, 2925.
12 A. J. Blake, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1987, 987.
13 K. Wieghardt, H.-J. Küppers, E. Raabe and C. Krüger, Angew. Chem., Int. Ed. Engl., 1986, 25, 1101; A. J. Blake, A. J. Holder, T. I. Hyde, Y. V. Roberts, A. J. Lavery and M. Schröder, J. Organomet. Chem., 1987, 323, 261.

14 A. J. Blake, R. O. Gould, J. A. Greig, A. J. Holder, T. I. Hyde and M. Schröder, J. Chem. Soc., Chem. Commun., 1989, 876; A. J. Blake, J. A. Greig, A. J. Holder, T. I. Hyde, A. Taylor and M. Schröder, Angew. Chem., Int. Ed. Engl., 1990, 29, 197.
15 A. J. Blake, R. O. Gould, A. J. Holder, T. I. Hyde, M. O. Odulate, A. J. Lavery and M. Schröder, J. Chem. Soc., Chem. Commun., 1987, 118.

16 J. Chatt, G. J. Leigh, A. P. Storace, D. A. Squire and B. J. Starkey, J. Chem. Soc. A, 1971, 899.

17 F. Farone, R. Pietropaolo and S. Sergi, J. Organomet. Chem., 1970, 24, 797.
18 W. D. Lemke, K. E. Travis, N. E. Takvoryan and D. H. Busch, Adv. Chem. Ser., 1976, 150, 358.
19 T. Yoshida, T. Ueda, T. Adachi, K. Yamamoto and T. Higuchi, J. Chem. Soc., Chem. Commun., 1985, 1137.

20 D. P. Riley and J. D. Oliver, Inorg. Chem., 1983, 22, 3361.
21 A. J. Blake, M. A. Halcrow and M. Schröder, J. Chem. Soc., Chem. Commun., 1991, 253.
22 A. J. Blake, M. A. Halcrow and M. Schröder, J. Chem. Soc., Dalton Trans., 1994, 1631.
23 S. M. Nelson, M. Sloan and M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1973, 2195.
24 R. Cramer and G. W. Parshall, J. Am. Chem. Soc., 1965, 87, 1392.
25 C. Bianchini, A. Meli, M. Perruzzini, F. Vizza, P. Frediana and J. Ramirez, Organometallics, 1990, 9, 226.

26 R. Cramer and J. J. Mrowca, Inorg. Chim. Acta, 1971, 5, 528.
27 F. Bachechi, J. Ott and L. M. Venanzi, Acta Crystallogr., Sect. C, 1989, 45, 724, 876.
28 L. Kruczynski and J. Takats, J. Am. Chem. Soc., 1974, 96, 932; Inorg. Chem., 1976, 15, 3140; M. A. Busch and R. J. Clark, Inorg. Chem., 1975, 14, 226; A. D. English, J. P. Jesson and C. A. Tolman, Inorg. Chem., 1976, 15, 1730.
29 O. S. Mills and G. Robinson, Acta Crystallogr., 1963, 16, 758; L. C. A. de Carvahlo, Y. Peres, M. Dartiguenave, Y. Dartiguenave and A. L. Beauchamp, Organometallics, 1985, 4, 2021.
30 T. A. Albright, P. Hofmann and R. Hoffmann, J. Am. Chem. Soc., 1977, 99, 7546.
31 A. Immirzi and G. Allegra, Acta Crystallogr., Sect. B, 1969, 25, 120.
32 F. A. Cotton, V. W. Day, B. A. Frenz, K. I. Hardcastle and J. M. Troup, J. Am. Chem. Soc., 1973, 95, 4522.

33 G. Erker, J. Wicher, K. Engel and C. Krüger, Chem. Ber., 1982, 115, 3300; G. Erker, K. Engel, C. Krüger and A.-P. Chiang, Chem. Ber., 1982, 115, 3311; G. Erker, K. Engel, C. Krüger and G. Müller, Organometallics, 1984, 3, 128; H. Yasuda, K. Tatsumi, T. Okamoto, K. Mashima, K. Lee, A. Nakamura, Y. Kai, N. Kaneshi and N. Kasai, J. Am. Chem. Soc., 1985, 107, 2410.

34 H. Yasuda and A. Nakamura, Angew. Chem., Int. Ed. Engl., 1987, 26, 723.
35 M. D. Fryzuk, K. Joshi and S. J. Rettig, Polyhedron, 1989, 8, 2291.
36 C. A. Tolman, Chem. Rev., 1977, 77, 313.
37 A. J. Blake and M. Schröder, unpublished work.
38 A. J. Blake, M. A. Halcrow and M. Schröder, Acta Crystallogr., Sect. C, 1993, 49, 85.
39 A. E. D. McQueen, A. J. Blake, T. A. Stephenson, M. Schröder and L. J. Yellowlees, J. Chem. Soc., Chem. Commun., 1988, 1533; see also W. Kaim and M. Moscherosch, Coord. Chem. Rev., 1994, 129, 157.

40 M. Cocivera, T. J. Desmond, G. Ferguson, B. Kaitner, F. J. Lalor and D. J. O'Sullivan, Organometallics, 1982, 1, 1125; B. M. Louie, S. J. Rettig, A. Storr and J. Trotter, Can. J. Chem., 1984, 62, 633; see also O. Krampe, C.-E. Song and W. Kläui, Organometallics, 1993, 12, 4949.
41 A. Nutton and P. M. Maitlis, J. Organomet. Chem., 1979, 166, C21; M. Green, D. R. Hankey, J. A. K. Howard, P. Louca and F. G. A. Stone, J. Chem. Soc., Chem. Commun., 1983, 757.

42 J. Powell and B. L. Shaw, J. Chem. Soc. A, 1968, 211.
43 J. A. McCleverty and G. Wilkinson, Inorg. Synth., 1966, 8, 211 ; K. Vrieze, J. P. Collman, C. T. Sears and H. Kubota, Inorg. Synth., 1968, 11, 101; A. Van der Endt and A. L. Onderlinden, Inorg. Synth., 1974, 14, 92; R. Cramer, Inorg. Synth., 1975, 15, 14; G. Giordano and R. H. Crabtree, Inorg. Synth., 1979, 19, 218.
44 C. J. Besecker, V. W. Day and W. G. Klemperer, Organometallics, 1985, 4, 564.

45 DIFABS, A program for empirical absorption correction, N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
46 J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105.
47 SHELXTL/PC, An integrated package for structure solution and refinement, G. M. Sheldrick, Siemens Analytical X-ray Instrumentation, Madison, WI, 1990.
48 SHELXS 86, A program for crystal structure solution, G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
49 SHELX 76, A program for crystal structure refinement, G. M. Sheldrick, University of Cambridge, 1976.
50 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
51 CALC, A program for molecular geometry calculations, R. O. Gould and P. Taylor, University of Edinburgh, 1985.

Received 26th January 1994; Paper 4/00491D

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

