Synthesis and Structure of $\mathrm{Cs}_{\mathbf{3}} \mathrm{Ti}_{3} \mathrm{As}_{\mathbf{5}} \mathrm{O}_{\mathbf{2 0}}{ }^{\text {* }}$

Kwang-Hwa Lii
Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China

Abstract

A new ternary titanium arsenate, $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$, has been synthesized and structurally characterized by single-crystal X-ray diffraction. It crystallizes in the orthorhombic space group Pbcm (no. 57) with $a=6.5084(9), b=19.167(1), c=15.377(1) \AA, Z=4$ and $R=0.0259$. The structure consists of tunnels where the caesium cations are located. The framework is formed by corner-sharing monomeric TiO_{6} octahedra, dimeric $\mathrm{Ti}_{2} \mathrm{O}_{11}$ units consisting of two corner-sharing TiO_{6} octahedra, AsO_{4} tetrahedra, and $\mathrm{As}_{2} \mathrm{O}_{7}$ groups. The structural formula is $\mathrm{Cs}_{3} \mathrm{Ti}\left(\mathrm{Ti}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)_{3}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$. The structure is compared with that of $\alpha-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$.

Recently α - and $\beta-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$ were synthesized and structurally characterized during the course of studying caesium-titanium-phosphate phases. ${ }^{1}$ These two polymorphs have different three-dimensional frameworks of vertex-sharing octahedra and tetrahedra. Both frameworks have tunnels where the caesium cations are located. These two polymorphs and $\mathrm{Cs}_{2} \mathrm{TiOP}_{2} \mathrm{O}_{7}{ }^{2}$ are the only structurally characterized compounds in this phase. Airapetyan et al. ${ }^{3}$ reported the crystallization of CsTiPO_{5} from melt solutions, but the compound was not characterized and its X-ray powder pattern could not be indexed based on the KTiOPO_{4} structure. This potassium titanium phosphate is a well known secondharmonic generation crystal for transforming infrared radiation from a Nd:YAG laser into the green part of the optical spectrum. Preliminary work indicates that $\mathrm{CsTiOPO}_{4}$ with the KTiOPO_{4} structure does not exist. In contrast, crystals of the arsenate analogue, $\mathrm{CsTiOAsO}_{4}$, an excellent non-linear optical material, have been grown and structurally characterized. ${ }^{4-6}$ It would be interesting to know whether the arsenate analogues of $\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$ exist. Therefore, the system $\mathrm{Cs}-\mathrm{Ti}-\mathrm{As}-\mathrm{O}$ was investigated. Cheng et al. ${ }^{6}$ reported the presence of $\mathrm{Cs}_{3} \mathrm{Ti}_{3}\left(\mathrm{AsO}_{4}\right)_{5}$ and a cubic $\mathrm{Cs}_{x} \mathrm{TiAsO}_{x}$ compound in the study of the $\mathrm{Cs}_{2} \mathrm{O}-\mathrm{TiO}_{2}-\mathrm{As}_{2} \mathrm{O}_{5}$ ternary system, but the structures of these two new arsenates were not reported. This paper deals with the synthesis and single-crystal structure of $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$, which has the structural formula $\mathrm{Cs}_{3} \mathrm{Ti}\left(\mathrm{Ti}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)_{3}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$. The structure is compared with that of $\alpha-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$.

Experimental

Synthesis.-A mixture of $\mathrm{Cs}\left(\mathrm{H}_{2} \mathrm{AsO}_{4}\right)(1.649 \mathrm{~g}), \mathrm{NH}_{4}\left(\mathrm{H}_{2}-\right.$ $\left.\mathrm{AsO}_{4}\right)(0.957 \mathrm{~g})$ and $\mathrm{TiO}_{2}(0.160 \mathrm{~g})(\mathrm{Cs}:$ As mole ratio $=1: 2)$ was placed in a $15 \mathrm{~cm}^{3}$ platinum crucible and heated from room temperature to $850^{\circ} \mathrm{C}$ for 8 h . It was then cooled to $650^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} \mathrm{h}^{-1}$, maintained at $650^{\circ} \mathrm{C}$ overnight, followed by quenching to room temperature on removal of the crucible from the furnace. The flux was dissolved with hot water and the solid product was obtained by suction filtration. The product contained colourless rod-like crystals of $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$, colourless crystalline chunks and a yellow polycrystalline solid. A structural study on the crystalline chunks is in progress. The yellow polycrystalline solid was not characterized. Energydispersive X-ray fluorescence analysis on a colourless rod

[^0]crystal showed that the $\mathrm{Cs}: \mathrm{Ti}$: As mole ratio was $3: 3.02: 4.99$, which is in good agreement with the results from the singlecrystal X-ray diffraction. Based on powder X-ray diffraction data a single phase of $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$ was prepared by heating a mixture containing a stoichiometric quantity of the starting materials at $700^{\circ} \mathrm{C}$ for one day with an intermediate grinding. Thermogravimetric and differential thermal analysis showed that the compound gave an endothermic peak with weight loss at $c a .850^{\circ} \mathrm{C}$. Below $850^{\circ} \mathrm{C}$, the sample did not show either exothermic or endothermic peaks. The decomposition product was not characterized.

Single-crystal X-Ray Diffraction.-A colourless crystal of dimensions $0.05 \times 0.05 \times 0.37 \mathrm{~mm}$ was selected for indexing and intensity data collection on an Enraf-Nonius CAD4 diffractometer using graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation. Axial oscillation photographs were taken to check the symmetry properties and unit-cell parameters. The intensity data were corrected for Lorentz polarization and absorption effects. The latter were based on ψ scans of several suitable reflections with the χ values close to 90° using the NRCVAX program package. ${ }^{7}$ On the basis of systematic absences, statistical analysis of the intensity distribution, and successful solution and refinement of the structure, the space group was determined to be Pbcm (no. 57). The structure was solved by the Patterson method and successive Fourier syntheses, and was refined by full-matrix least-squares refinement based on F values. First the bridging oxygen atom of the diarsenate group, O(12), was placed on a two-fold axis. This showed a large thermal parameter and a large nearby residual electron density of 2.8 e \AA^{-3}. A difference synthesis based on the atomic coordinates of all the atoms except $O(12)$ revealed two equally occupied oxygen sites which are related by a two-fold axis. Therefore, the structure was refined with $\mathrm{O}(12)$ at a general position having an occupancy factor of 0.5 . The final cycle of refinement, including atomic coordinates, isotropic thermal parameters for $\mathrm{O}(12)$ and $\mathrm{O}(3)$, anisotropic thermal parameters for all other atoms, and a secondary extinction coefficient, converged at $R=0.0259$ and $R^{\prime}=0.0294$. The largest residual electron density in the final difference map is $1.3 \mathrm{e} \AA^{-3}$, which is at a distance of $0.99 \AA$ away from $\mathrm{Cs}(2)$. Structure solution and least-squares refinement were performed by using programs from the SHELXTL PLUS program package. ${ }^{8}$ Neutral-atom scattering factors were used and correction for anomalous dispersion was applied. ${ }^{9}$ The crystallographic data are listed in Table 1.
Additional material available from the Cambridge Crystallographic Data Centre comprises thermal parameters and remaining bond lengths and angles.

Results and Discussion

Atomic coordinates and selected interatomic distances for $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$ are listed in Tables 2 and 3, respectively. As shown in Figs. 1 and 2, the structure consists of infinite tunnels where the caesium cations are located, and the framework is formed by $\mathrm{Ti}(2)_{2} \mathrm{O}_{11}$ units consisting of two corner-sharing $\mathrm{Ti}(2) \mathrm{O}_{6}$ octahedra, discrete $\mathrm{Ti}(1) \mathrm{O}_{6}$ octahedra, $\mathrm{As}(1) \mathrm{O}_{4}$ and $\mathrm{As}(3) \mathrm{O}_{4}$ tetrahedra, and $\mathrm{As}(2)_{2} \mathrm{O}_{7}$ groups. Atoms $\mathrm{Ti}(1), \mathrm{As}(1)$, $\mathrm{O}(1), \mathrm{O}(3)$, and the bridging oxygen, $\mathrm{O}(10)$, in the $\mathrm{Ti}_{2} \mathrm{O}_{11}$ unit sit on mirror planes. All other atoms are at general positions. Atom $\mathrm{O}(12)$ is disordered over two sites which are related by a two-fold axis. Each $\mathrm{Ti}(1) \mathrm{O}_{6}$ octahedron shares its six corners with two $\mathrm{As}(1) \mathrm{O}_{4}$, two $\mathrm{As}(3) \mathrm{O}_{4}$ and two $\mathrm{As}(2) \mathrm{O}_{2} \mathrm{O}_{7}$ groups. Each $\mathrm{Ti}_{2} \mathrm{O}_{11}$ dimer shares ten corners with one $\mathrm{As}(1) \mathrm{O}_{4}$, six $\mathrm{As}(3) \mathrm{O}_{4}$ and two $\mathrm{As}_{2} \mathrm{O}_{7}$ groups. The $\mathrm{As}(1) \mathrm{O}_{4}$ tetrahedron bridges over two Ti atoms within a $\mathrm{Ti}_{2} \mathrm{O}_{11}$ dimer and connects two $\mathrm{Ti}(1) \mathrm{O}_{6}$ monomers. Each $\mathrm{As}(3) \mathrm{O}_{4}$ co-ordinates to one monomer and

Table 1 Crystallographic data and intensity data collection parameters for $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$

Formula	$\mathrm{As}_{5} \mathrm{Cs}_{3} \mathrm{O}_{20} \mathrm{Ti}_{3}$
M	1237.03
Crystal system	Orthorhombic
Space group	Pbcm (no. 57$)$
a / \AA	$6.5084(9)$
b / \AA	$19.167(1)$
c / \AA	$15.377(1)$
U / \AA^{3}	$1918.2(2)$
Z	4
$D / \mathrm{g} \mathrm{cm}^{-3}$	4.284
$F(000)$	2224
$\lambda(\mathrm{Mo}-\mathrm{K} \alpha) / \AA$	0.70930
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	154.9
$T /{ }^{\circ} \mathrm{C}$	23
Scan rate $/{ }^{\circ} \mathrm{min}^{-1}$	16.48
Scan mode	$\theta-2 \theta$
Scan width $/{ }^{\circ}$	$0.56+0.44 \tan \theta$
2θ range $/{ }^{\circ}$	4.55
Unique reflections $[I>2.5 \sigma(I)]$	1862
Refined parameters	147
R^{a}	0.0259
$R^{\prime b}$	0.0294
Goodness of fit	0.8959
$(\Delta \rho)_{\text {max, min }} / \mathrm{e} \AA^{-3}$	$1.34,-1.21$

${ }^{a} R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| . \quad{ }^{b} R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{\frac{1}{2}}$. Weighting scheme, $w^{-1}=1 /\left[\sigma^{2}(F)+0.0012 F^{2}\right]$.

Table 2 Positional parameters for $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$

Atom	x	y	z
$\mathrm{Cs}(1)$	$0.13058(5)$	$0.15096(2)$	0.026 07(2)
$\mathrm{Cs}(2)$	0.144 70(7)	0.173 79(3)	0.75
$\mathrm{Ti}(1)$	0.239 6(2)	0.647 11(6)	0.25
$\mathrm{Ti}(2)$	0.2607 (1)	0.547 53(4)	0.663 76(5)
As(1)	0.268 62(9)	0.099 73(3)	0.25
As(2)	0.645 80(7)	0.274 85(2)	0.099 91(3)
As(3)	--0.246 02(7)	0.004 92(3)	$0.10138(3)$
$\mathrm{O}(1)$	-0.529 9(7)	0.345 6(2)	0.75
$\mathrm{O}(2)$	-0.242 6(6)	0.4213 (2)	0.6591 13)
$\mathrm{O}(3)$	0.0627 (7)	0.348 6(2)	0.75
$\mathrm{O}(4)$	--0.219 7(7)	0.278 5(2)	0.663 7(3)
$\mathrm{O}(5)$	$-0.2437(6)$	$0.1469(2)$	0.8920 (3)
O(6)	$-0.2709(5)$	-0.052 5(2)	0.841 8(2)
$\mathrm{O}(7)$	-0.556 5(5)	0.047 8(2)	0.873 4(2)
$\mathrm{O}(8)$	-0.246 6(6)	0.024 4(2)	$0.9964(2)$
$\mathrm{O}(9)$	0.0405 (5)	0.043 7(2)	$0.8715(2)$
$\mathrm{O}(10)$	-0.255 9(7)	0.0650 (3)	0.75
$\mathrm{O}(11)$	0.3958 (5)	0.271 5(2)	0.1023 (2)
$\mathrm{O}(12)^{*}$	$-0.2557(8)$	0.2623 (3)	$-0.0084(5)$

* Occupancy factor for $O(12)$ is 0.5 .
three dimers. The $\mathrm{As}_{2} \mathrm{O}_{7}$ group co-ordinates to two dimers and two monomers with the remaining two O atoms being coordinated to Cs atoms only. Accordingly, the structural formula is $\mathrm{Cs}_{3} \mathrm{Ti}\left(\mathrm{Ti}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)_{3}\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$. The framework has two different pentagonal tunnels along the a axis, both of which are filled with Cs atoms. One type of tunnel, which has pentagonal windows formed by the edges of two octahedra and three tetrahedra, is filled with $\mathrm{Cs}(1)$, and the other type of tunnel, formed by three octahedra and two tetrahedra, is filled with $\mathrm{Cs}(2)$. As shown in Fig. 3, similar tunnels are found in $\alpha-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$ which has the structural formula $\mathrm{CsTi}\left(\mathrm{Ti}_{2} \mathrm{O}\right)$ $\left(\mathrm{PO}_{4}\right)\left(\mathrm{P}_{2} \mathrm{O}_{7}\right)_{2}$. In this phosphate the tunnel formed by the edges of three TiO_{6} octahedra and two PO_{4} tetrahedra is filled with Cs atoms, but the other type of tunnel is empty. The larger size of AsO_{4} relative to PO_{4} allows the empty tunnels to accommodate the Cs^{+}cations. To balance the charge one of the $\mathrm{As}_{2} \mathrm{O}_{7}{ }^{4-}$ groups is replaced by two $\mathrm{AsO}_{4}{ }^{3-}$ groups, thus

Fig. 1 Polyhedral view of the $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$ structure along the [100] direction. In this representation the corners of the octahedra and tetrahedra are O atoms and the Ti and As atoms are at the centre of each octahedron and tetrahedron, respectively. Open circles are Cs atoms. The octahedra with darker and lighter shades are $\mathrm{Ti}(1) \mathrm{O}_{6}$ and $\mathrm{Ti}(2) \mathrm{O}_{6}$, respectively

Fig. 2 The co-ordination of the arsenate ligands around the dimeric $\mathrm{Ti}_{2} \mathrm{O}_{11}$ unit and monomeric TiO_{6} octahedron in $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$. For clarity the disordering of the bridging oxygen of the diarsenate group, $\mathrm{O}(12)$, is not shown

Table 3 Selected interatomic distances (\AA) for $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$

$\mathrm{Cs}(1)-\mathrm{O}(2)$	$3.464(4)$	$\mathrm{Cs}(1)-\mathrm{O}(3)$	$3.472(1)$
$\mathrm{Cs}(1)-\mathrm{O}(4)$	$3.392(5)$	$\mathrm{Cs}(1)-\mathrm{O}(5)$	$3.192(4)$
$\mathrm{Cs}(1)-\mathrm{O}(6)$	$2.919(3)$	$\mathrm{Cs}(1)-\mathrm{O}(7)$	$3.684(4)$
$\mathrm{Cs}(1)-\mathrm{O}(8)$	$3.481(4)$	$\mathrm{Cs}(1)-\mathrm{O}(8)$	$3.462(4)$
$\mathrm{Cs}(1)-\mathrm{O}(9)$	$3.197(4)$	$\mathrm{Cs}(1)-\mathrm{O}(11)$	$3.113(4)$
$\mathrm{Cs}(1)-\mathrm{O}(11)$	$3.014(4)$	$\mathrm{Cs}(1)-\mathrm{O}(12)$	$3.340(6)$
$\mathrm{Cs}(1)-\mathrm{O}(12)$	$3.026(6)$	$\mathrm{Cs}(2)-\mathrm{O}(3)$	$3.394(5)$
$\mathrm{Cs}(2)-\mathrm{O}(4)$	$3.379(5)(2 \times)$	$\mathrm{Cs}(2)-\mathrm{O}(5)$	$3.380(4)(2 \times)$
$\mathrm{Cs}(2)-\mathrm{O}(7)$	$3.634(4)(2 \times)$	$\mathrm{Cs}(2)-\mathrm{O}(9)$	$3.188(4)(2 \times)$
$\mathrm{Cs}(2)-\mathrm{O}(10)$	$3.339(5)$	$\mathrm{Cs}(2)-\mathrm{O}(11)$	$2.988(4)(2 \times)$
$\mathrm{Ti}(1)-\mathrm{O}(1)$	$1.894(5)$	$\mathrm{Ti}(1)-\mathrm{O}(2)$	$1.917(4)(2 \times)$
$\mathrm{Ti}(1)-\mathrm{O}(3)$	$1.969(5)$	$\mathrm{Ti}(1)-\mathrm{O}(4)$	$1.952(5)(2 \times)$
$\mathrm{Ti}(2)-\mathrm{O}(5)$	$1.948(4)$	$\mathrm{Ti}(2)-\mathrm{O}(6)$	$1.956(3)$
$\mathrm{Ti}(2)-\mathrm{O}(7)$	$1.928(3)$	$\mathrm{Ti}(2)-\mathrm{O}(8)$	$2.052(4)$
$\mathrm{Ti}(2)-\mathrm{O}(9)$	$1.964(4)$	$\mathrm{Ti}(2)-\mathrm{O}(10)$	$1.819(1)$
$\mathrm{As}(1)-\mathrm{O}(1)$	$1.679(5)$	$\mathrm{As}(1)-\mathrm{O}(3)$	$1.666(5)$
$\mathrm{As}(1)-\mathrm{O}(6)$	$1.676(3)(2 \times)$	$\mathrm{As}(2)-\mathrm{O}(4)$	$1.666(5)$
$\mathrm{As}(2)-\mathrm{O}(5)$	$1.668(4)$	$\mathrm{As}(2)-\mathrm{O}(11)$	$1.629(4)$
$\mathrm{As}(2)-\mathrm{O}(12) *$	$1.800(7)$	$\mathrm{As}(2)-\mathrm{O}\left(12^{\prime}\right)$	$1.703(7)$
$\mathrm{O}(12) \cdots \mathrm{O}\left(12^{\prime}\right)$	$0.54(1)$	$\mathrm{As}(3)-\mathrm{O}(2)$	$1.670(4)$
$\mathrm{As}(3)-\mathrm{O}(7)$	$1.681(4)$	$\mathrm{As}(3)-\mathrm{O}(8)$	$1.657(4)$
$\mathrm{As}(3)-\mathrm{O}(9)$	$1.683(4)$		

* $\mathrm{O}(12)$ is disordered over two sites.

Fig. 3 Polyhedral view of the $\alpha-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$ structure along the [001] direction
resulting in a different stoichiometry with a new structure as observed in $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$.

Each Ti atom in the dimeric $\mathrm{Ti}_{2} \mathrm{O}_{11}$ unit is in a distorted octahedral co-ordination of one bridging oxide ion, $\mathrm{O}(10)$, and five phosphate oxygens. The titanium-oxide (bridging) distance is considerably shorter than the other $\mathrm{Ti}-\mathrm{O}$ distances. The bond trans to the titanyl bridge is the longest. The titanyl bridge is symmetric and the two $\mathrm{Ti}(2) \mathrm{O}_{6}$ octahedra are in an eclipsed configuration. The $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ bond angle is 158.7° which is greater than the corresponding angle in $\alpha-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}\left(147.9^{\circ}\right)$.

The $\mathrm{Ti}(1) \mathrm{O}_{6}$ octahedron is significantly distorted compared to the monomeric TiO_{6} in $\alpha-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$. Both the $\mathrm{As}(1) \mathrm{O}_{4}$ and $\mathrm{As}(3) \mathrm{O}_{4}$ tetrahedra are quite regular. The AsO_{4} tetrahedra of the $\mathrm{As}_{2} \mathrm{O}_{7}$ group are in a nearly eclipsed configuration. The As atoms are displaced away from the bridging oxygen so that one longer and three shorter As-O bonds are formed. The As-O-As bond angle is 133.3°. The $\mathrm{Cs}(1)$ and $\mathrm{Cs}(2)$ ions are co-ordinated by 13 and 12 oxygen atoms, respectively. The Cs co-ordination number is determined by the maximum cation-anion distance suggested by Donnay and Allmann. ${ }^{10}$ Bond valence sums for $\mathrm{Cs}(1)$ and $\mathrm{Cs}(2)$ are 1.43 and 1.13, respectively. The value for $\mathrm{Cs}(1)$ indicates that the atom is tightly bound in $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5} \mathrm{O}_{20}$ and explains why the tunnel formed by the edges of two octahedra and three tetrahedra in $\alpha-\mathrm{CsTi}_{3} \mathrm{P}_{5} \mathrm{O}_{19}$ is empty.

Few ternary compounds in the $\mathrm{A}_{2} \mathrm{O}-\mathrm{TiO}_{2}-\mathrm{As}_{2} \mathrm{O}_{5}(\mathrm{~A}=$ akali metal) ternary system have been reported. To our knowledge, prior to this work $\mathrm{ATiOAsO}_{4}(\mathrm{~A}=\mathrm{K}, \mathrm{Rb}$ or $\mathrm{Cs})^{4,11}$ and $\mathrm{LiTiAsO} \mathrm{O}_{5}{ }^{12}$ were the only examples of structurally characterized compounds in the system. The former compounds have the KTiOPO_{4} structure and the latter is essentially isostructural with $\alpha-\mathrm{Fe}_{2} \mathrm{PO}_{5}$. The phosphate $\mathrm{LiTiOPO}_{4}$ is isostructural with β-LiVOPO ${ }_{4}{ }^{13,14}$ The arsenates $\mathrm{Cs}_{3} \mathrm{Ti}_{3} \mathrm{As}_{5}$ O_{20} and cubic $\mathrm{CsTi}_{2} \mathrm{As}_{3} \mathrm{O}_{12}{ }^{15}$ were isolated and characterized in an attempt to synthesize the arsenate analogue of $\mathrm{CsTi}_{3}-$ $\mathrm{P}_{5} \mathrm{O}_{19}$. In contrast, the existence of $\mathrm{CsTi}_{2} \mathrm{P}_{3} \mathrm{O}_{12}$ has not been reported. This study signals a rich crystal chemistry in the alkali-metal titanium arsenate system, indicating that many new structures will be forthcoming.

Acknowledgements

Financial support of this investigation by the National Science Council and the Institute of Chemistry, Academia Sinica, is gratefully acknowledged.

References

1 K.-H. Lii, T. E. Gier and G. D. Stucky, J. Solid State Chem., in the press.
2 P. J. Protas, B. Menaert, G. Marnier and B. Boulanger, Acta Crystallogr., Sect. C, 1991, 47, 698.
3 A. G. Airapetyan, G. S. Damazyan, A. L. Manukyan and A. S. Vagansaryan, Zh. Neorg. Khim., 1987, 32, 1798.

4 P. J. Protas, G. Marnier, B. Boulanger and B. Menaert, Acta Crystallogr., Sect. C, 1989, 45, 1123.
5 L. K. Cheng, L. T. Cheng, F. C. Zumsteg. J. D. Bierlein and J. Galperin, J. Cryst. Growth, 1993, 132, 289.

6 L. K. Cheng, E. M. McCarron III, J. Calabrese, J. D. Bierlein and A. A. Ballman, J. Cryst. Growth, 1993, 132, 280.

7 E. J. Gabe, Y. Le Page, J. P. Charland and F. L. Lee, J. Appl. Crystallogr., 1989, 22, 384.
8 G. M. Sheldrick, SHELXTL PLUS Crystallographic System, Release 4.11, Siemens Analytical X-Ray Instruments, Madison, WI, 1990.
9 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
10 G. Donnay and R. Allmann, Am. Mineral., 1970, 55, 1003.
11 M. El Brahimi and J. Durand, Rev. Chim. Miner., 1986, 23, 146.
12 A. Robertson, J. G. Fletcher, J. M. S. Skakle and A. R. West, J. Solid State Chem., 1994, 109, 53.
13 P. G. Nagornyi, A. A. Kapshuk, N. V. Stus, N. S. Slobodyanik and A. N. Chernega, Zh. Neorg. Khim., 1991, 36, 2766.

14 K.-H. Lii, C.-H. Li, C.-Y. Cheng and S.-L. Wang, J. Solid State Chem., 1991, 95, 352.
15 K.-H. Lii, unpublished work.

[^0]: * Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

