Synthesis and Structural Study of $\left[\left\{\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)-\right.$ (μ-X)] Complexes ($R=$ Me or $\mathrm{CF}_{3} ; \mathbf{X}=$ Hydroxide, Amide or Thiolate) \dagger

José Ruiz, ${ }^{a}$ Natalia Cutillas, ${ }^{a}$ Josefina Torregrosa, ${ }^{a}$ Gabriel García, ${ }^{a}$ Gregorio López, ${ }^{*, a}$ Penny A. Chaloner, ${ }^{\text {b }}$ Peter B. Hitchcock ${ }^{b}$ and Robin M. Harrison ${ }^{\text {b }}$
${ }^{a}$ Departamento de Química Inorgánica, Universidad de Murcia, 30071 Murcia, Spain
${ }^{b}$ School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

Abstract

The di- μ-carboxylato complexes $\left[\left\{\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)\right\}_{2}\right]\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}=\right.$ 8-quinolylmethyl, $\mathrm{R}=\mathrm{Me}$ or CF_{3}) react in methanol with $\mathrm{NaOH}(\mathrm{aq})(1: 1$ molar ratio) to give the corresponding mixed hydroxo-carboxylato-bridged complexes $\left[\left\{\mathrm{Pd}_{\left.\left.\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}(\mu-\mathrm{OH})\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)\right]\left(\mathrm{R}=\mathrm{Me} 1 \text { or } \mathrm{CF}_{3} 2\right) \text {. The }}\right.\right.$ reactions of 1 or 2 with arylamines or thiols (1:1 molar ratio) yielded the corresponding amido- or thiolato-carboxylato complexes $\left[\left\{\mathrm{Pd}_{(}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)(\mu-\mathrm{NHR})\right]\left(\mathrm{R}=\mathrm{Ph} 3, p-\mathrm{MeC}_{6} \mathrm{H}_{4} 4\right.$ or $\left.p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} 5\right)$ or $\left[\left\{\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)\left(\mu-\mathrm{SR}^{\prime}\right)\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Et} 6\right.$, But 7, Ph 8 or $p-\mathrm{MeC}_{6} \mathrm{H}_{4} 9$; $R=C F_{3}, R^{\prime}=\mathrm{Bu}^{t} 10$). The ${ }^{1} \mathrm{H} N M R$ data indicate a cis arrangement of the $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ ligands. The crystal structure of complex 10 has been determined. It confirms the cis relationship of the $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ ligands. The co-ordination at each palladium atom is approximately square planar and the oxygen atoms of the trifluoroacetate ligands are trans to carbon. The $\mathrm{Pd}_{2}\left(\mu-\mathrm{OCOCF}_{3}\right)\left(\mu-\mathrm{SBu}^{\mathrm{t}}\right)$ core is quite bent with an angle of 55° between the two palladium co-ordination planes.

Organometallic binuclear nickel, palladium and platinum complexes of the types $\left[\left\{\mathrm{MR}_{2}(\mu-\mathrm{OH})\right\}_{2}\right]^{2-} \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{~F}_{5}\right.$, $\mathrm{M}=\mathrm{Ni},{ }^{1} \mathrm{Pd}^{2}$ or $\mathrm{Pt} ;{ }^{3} \mathrm{R}=\mathrm{C}_{6} \mathrm{Cl}_{5}, \mathrm{M}=\mathrm{Pd}^{4}$ or $\mathrm{Pt} ;^{3} \mathrm{R}=$ $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~F}_{3}-2,4,6, \mathrm{M}=\mathrm{Pd}^{5}\right)$ and $\left[\{\mathrm{MR}(\mathrm{L})(\mu-\mathrm{OH})\}_{2}\right](\mathrm{M}=\mathrm{Ni}$, $\mathrm{L}=\mathrm{PMe}_{3}, \mathrm{R}=\mathrm{Me},{ }^{6} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{Me}-o,{ }^{7} \mathrm{CH}_{2} \mathrm{SiMe}_{3}, \mathrm{CH}_{2} \mathrm{C}-$ $\mathrm{Me}_{2} \mathrm{Ph}$ or $\mathrm{CH}_{2} \mathrm{Ph} ;{ }^{8} \quad \mathrm{~L}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{CClCCl}_{2} ;{ }^{9} \mathbf{M}=\mathrm{Pd}$, $\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{Ph},{ }^{10} \mathrm{C}_{6} \mathrm{~F}_{5}$ or $\mathrm{C}_{6} \mathrm{Cl}_{5}{ }^{11}$) have been described. The basic character of these hydroxo complexes allows the preparation of new binuclear complexes $\left[\left(\mathrm{MR}_{2}\right)_{2}(\mu-\mathrm{OH})(\mu-\right.$ $\mathrm{X})]^{2-}$ and $\left[\left\{\mathrm{MR}_{2}(\mu-\mathrm{X})\right\}_{2}\right]^{2-}$ by reaction with the corresponding protic electrophile (HX = azoles, ${ }^{1,2,4,12} \beta$-diketones, ${ }^{2,3,5,13}$ maleononitrile, ${ }^{14}$ methanol ${ }^{12}$ or heterocyclic thiones ${ }^{13}$).

Very recently ${ }^{15}$ the reaction of $\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right\}_{2}\right]$ with acetic acid was tried in order to obtain the corresponding binuclear μ-hydroxo- μ-carboxylato and di- μ-carboxylato complexes. While the di- μ-acetato complex was formed by adding 2 molar equivalents of acetic acid, attempts to prepare the μ -hydroxo- μ-acetato complexes were unsuccessful, and unresolvable mixtures of hydroxo and acetato complexes were obtained. Since the chemistry of these late transition-metal hydroxides and acetates merits study in its own right, we have now examined the metathesis reaction of the μ-carboxylates $\left[\left\{\operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)_{2}\right]\left(\mathrm{R}=\mathrm{Me}\right.$ or $\mathrm{CF}_{3} ; \mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6}-$ $\mathrm{N}=8$-quinolylmethyl) in order to prepare the heterobridged complexes $\left[\left\{\operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)(\mu-\mathrm{OH})\right]$. These show the expected chemical reactivity towards arylamines and thiols to yield the corresponding binuclear μ-carboxylato- μ-amido and μ-carboxylato- μ-thiolato palladium complexes.

Results and Discussion

Addition of 1 equivalent of NaOH to $\left[\left\{\mathrm{Pd}_{\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)(\mu-}\right.\right.$ $\left.\mathrm{O}_{2} \mathrm{CR}\right)_{2}$] ($\mathrm{R}=\mathrm{Me}$ or CF_{3}), in methanol-water solution, results in the formation of complexes 1 and 2 (Scheme 1). The analytical data (Table 1) are in agreement with the proposed formulae and the presence of the μ-OH ligand is demonstrated by an IR band at $3590 \mathrm{~cm}^{-1}$ and a high-field ${ }^{1} \mathrm{H}$ resonance

[^0]

Scheme 1 (i) OH^{-}; (ii) $\mathrm{NH}_{2} \mathrm{R}^{\prime}$; (iii) $\mathrm{R}^{\prime} \mathrm{SH}$
($\delta-1.84$ and -1.73 respectively). The IR spectrum of complex 1 displays the two characteristic bands (Table 1) assignable to

Table 1 Analytical data, yields and physical properties for the palladium complexes

Complex	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	$\begin{aligned} & \text { M.p. } .^{a} \\ & \left(\theta /{ }^{\circ} \mathrm{C}\right) \end{aligned}$	Analysis (\%) ${ }^{\text {b }}$				Selected IR bands ${ }^{\text {c }}$ (cm^{-1})		
			C	H	N	S	$\mathrm{vasym}\left(\mathrm{CO}_{2}{ }^{-}\right)$	$v_{\text {sym }}\left(\mathrm{CO}_{2}{ }^{-}\right)$	Others
1	94	177	$\begin{gathered} 45.9 \\ (46.1) \end{gathered}$	$\begin{gathered} 3.3 \\ (3.5) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.9) \end{gathered}$		1560	1405	
2	70	237	$\begin{gathered} 42.2 \\ (42.1) \end{gathered}$	$\begin{gathered} 3.0 \\ (2.7) \end{gathered}$	$\begin{gathered} 4.8 \\ (4.5) \end{gathered}$		1660		3590 v(OH)
3	71	228	$\begin{gathered} 51.7 \\ (51.9) \end{gathered}$	$\begin{gathered} 3.9 \\ (3.9) \end{gathered}$	$\begin{gathered} 6.4 \\ (6.5) \end{gathered}$		1555	1410	
4	68	226	$\begin{gathered} 52.5 \\ (52.6) \end{gathered}$	$\begin{gathered} 4.3 \\ (4.1) \end{gathered}$	$\begin{gathered} 6.3 \\ (6.3) \end{gathered}$		1555	1410	3310 v(NH)
5	77	223	$\begin{gathered} 48.3 \\ (48.5) \end{gathered}$	$\begin{gathered} 3.5 \\ (3.5) \end{gathered}$	$\begin{gathered} 8.4 \\ (8.1) \end{gathered}$		1570	1415	$3300 \mathrm{v}(\mathrm{NH})$
6	63	194	$\begin{array}{r} 46.4 \\ (46.7) \end{array}$	$\begin{gathered} 3.8 \\ (3.9) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.5) \end{gathered}$	$\begin{gathered} 5.0 \\ (5.2) \end{gathered}$	1560	1405	
7	67	204	$\begin{array}{r} 48.6 \\ (48.4) \end{array}$	$\begin{gathered} 4.3 \\ (4.4) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.3) \end{gathered}$	$\begin{gathered} 4.8 \\ (5.0) \end{gathered}$	1565	1410	
8	77	195	$\begin{gathered} 50.4 \\ (50.5) \end{gathered}$	$\begin{gathered} 3.7 \\ (3.6) \end{gathered}$	$\begin{gathered} 4.4 \\ (4.2) \end{gathered}$	$\begin{gathered} 4.7 \\ (4.8) \end{gathered}$	1560	1415	
9	76	199	$\begin{gathered} 51.6 \\ (51.3) \end{gathered}$	$\begin{gathered} 4.1 \\ (3.9) \end{gathered}$	$\begin{gathered} 4.4 \\ (4.1) \end{gathered}$	$\begin{gathered} 4.5 \\ (4.8) \end{gathered}$	1550	1415	
10	75	197	$\begin{aligned} & 44.5 \\ & (44.7) \end{aligned}$	$\begin{gathered} 3.6 \\ (3.6) \end{gathered}$	$\begin{gathered} 4.0 \\ (4.0) \end{gathered}$	$\begin{gathered} 4.3 \\ (4.6) \end{gathered}$	1670		

${ }^{a}$ Decomposition temperatures. ${ }^{b}$ Calculated values in parentheses. ${ }^{c}$ In Nujol mulls.
the antisymmetric ($v_{\text {asym }}$) and symmetric ($v_{\text {sym }}$) stretching modes of the carboxylate group, and the $v_{\text {asym }}\left(\mathrm{CO}_{2}{ }^{-}\right)-$ $v_{\mathrm{sym}}\left(\mathrm{CO}_{2}^{-}\right)$value of $155 \mathrm{~cm}^{-1}$ is consistent with the presence of bridging bidentate acetate. ${ }^{16}$ The $v_{\text {asym }}\left(\mathrm{CO}_{2}{ }^{-}\right)$mode for complex 2 is observed at $1660 \mathrm{~cm}^{-1}$ but the corresponding $v_{\text {sym }}\left(\mathrm{CO}_{2}{ }^{-}\right)$band, expected at $c a .1450 \mathrm{~cm}^{-1},{ }^{16}$ should be masked by the strong absorption from Nujol in this infrared region. The ancillary ligand on each palladium centre is the non-symmetric C, N chelate 8 -quinolylmethyl bonded to the metal through a hard-donor nitrogen and a softer σ-bonded carbon atom. Previous studies ${ }^{17}$ have demonstrated that complexes of the type $[(\mathrm{L}-\mathrm{L}) \operatorname{Pd}(\mu-\mathrm{X})(\mu-\mathrm{Y}) \operatorname{Pd}(\mathrm{L}-\mathrm{L})](\mathrm{X}=$ halide, $\mathrm{Y}=\mathrm{a}$ functional carbanion ${ }^{18}$ or a carbonylmetalate anion, ${ }^{19} \mathrm{~L}-\mathrm{L}=\mathrm{C}, \mathrm{N}$ chelate) are characterized by a cis structure for the chelate and by a trans position for the halide X with respect to the σ-bonded carbon atoms. The observation of only one set of ${ }^{1} \mathrm{H}$ NMR resonances for the $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ ligands in complexes $\mathbf{1}$ and $\mathbf{2}$ (Table 2) indicates a cis arrangement for these groups.

The high-field proton resonance of the μ - OH groups suggests that complexes 1 and 2 should be prone to attack by protic electrophiles $\left[>\mathrm{Pd}(\mu-\mathrm{OH})\left(\mu-\mathrm{O}_{2} \mathrm{CCX}_{3}\right) \mathrm{Pd}<+\mathrm{HY} \longrightarrow\right.$ $\left.>\mathrm{Pd}(\mu-\mathrm{Y})\left(\mu-\mathrm{O}_{2} \mathrm{CCX} 3\right) \mathrm{Pd}<+\mathrm{H}_{2} \mathrm{O}\right]$. In fact arylamines are readily deprotonated by complex 1 yielding the mixed μ-amide-μ-acetate complexes $\left[\left\{\operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)(\mu-\mathrm{NH}\right.$ $\mathrm{R})]\left(\mathrm{R}=\mathrm{Ph} 3, p-\mathrm{MeC}_{6} \mathrm{H}_{4} 4\right.$ or $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ 5) with the concomitant release of water (Scheme 1). Metal amide complexes of the late transition-metal ions are still relatively uncommon ${ }^{20-22}$ and the behaviour of complexes 1 and 2 towards arylamines is similar to that recently observed for $\left[\left\{\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)(\mu-\mathrm{OH})\right\}_{2}\right]$, from which $\left[\left\{\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right.\right.$ -$\left.\left.\left(\mathrm{PPh}_{3}\right)(\mathrm{NHR})(\mu-\mathrm{OH})\right\}_{2}\right] \quad(\mathrm{R}=$ aryl) type complexes were obtained as the anti isomers. ${ }^{23}$ The IR spectra of compounds $3-5$ exhibit a very weak band at $c a .3300 \mathrm{~cm}^{-1}$ due to $\mathrm{v}(\mathrm{NH})$ as well as the $v_{\text {asym }}$ and $v_{\text {sym }}$ absorptions corresponding to bridging acetate, but no NH resonance could be observed in the ${ }^{1} \mathrm{H}$ NMR spectra. The ${ }^{1} \mathrm{H}$ NMR data again indicate a cis arrangement for the $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ ligands and that the aryl group is freely rotating about the $\mathrm{C}-\mathrm{N}$ bond.

Thiols are similarly deprotonated by complexes 1 and 2 to give the μ-thiolato- μ-carboxylato compounds $\left[\left\{\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9}\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}\left(\mu-\mathrm{SR}^{\prime}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)\right]\left(\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Et} \mathbf{6}\right.$, $\mathrm{Bu}^{1} 7$, Ph 8 or $p-\mathrm{MeC}_{6} \mathrm{H}_{4} 9 ; \mathrm{R}=\mathrm{CF}_{3}, \mathrm{R}^{\prime}=\mathrm{Bu}^{\mathbf{1}} \mathbf{1 0}$) (Scheme 1). Some
μ-azolato- μ-thiolato and di- μ-thiolato binuclear nickel complexes have been previously obtained by the reaction between $\left[\left\{\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mu-\mathrm{OH})\right\}_{2}\right]^{2-}$ and a thiol. ${ }^{24}$ Binuclear palladium and platinum complexes containing the central M (μ-azolate)(μ-SR)M core are also known, ${ }^{25,26}$ and some complexes cis-$\left[\{\operatorname{Pd}(\mathrm{L}-\mathrm{L})\}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCHClMe}\right)(\mu-\mathrm{SR})\right] \quad$ ($\mathrm{L}-\mathrm{L}=$ ortho-palladated imine ligand) have been obtained by treating trans-$\left[\left\{\mathrm{Pd}(\mathrm{L}-\mathrm{L})\left(\mu-\mathrm{O}_{2} \mathrm{CCHClMe}\right)\right\}_{2}\right]$ with HSR. ${ }^{27}$ The analytical and spectroscopic data for complexes $\mathbf{6 - 1 0}$ are collected in Tables 1 and 2. The ${ }^{19} \mathrm{~F}$ NMR spectrum of 10 shows a singlet signal at $\delta-75.4$ and the ${ }^{1} \mathrm{H}$ NMR data for complexes 6,8 and 9 are those expected for the presence of the respective R' groups. The cis arrangement of the $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ groups is also inferred from the NMR data.

The NMR data for the complexes described give clear evidence for the cis arrangement of the $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ ligands. For these types of complexes a trans position for the σ-bonded carbon atoms with respect to the oxygen atoms of the bridging carboxylate is expected as well as a folded structure of the dimer. Both have been confirmed for complex $\mathbf{1 0}$ by a single-crystal X-ray diffraction study. However, an AB NMR pattern is expected for the CH_{2} protons of bonded $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ but complexes 1-6, 8 and 9 all show a sharp singlet signal for both CH_{2} protons, indicating that they are isochronous. Such behaviour suggests that in solution at room temperature a rapid dynamic process occurs on the NMR time-scale which creates an average plane of symmetry for these CH_{2} groups. A plausible mechanism ${ }^{28}$ involves opening of the carboxylate bridge, rotation about $\mathrm{Pd}-\mathrm{O}$ (1 and 2), $\mathrm{Pd}-\mathrm{N}(\mathbf{3 - 5})$ or $\mathrm{Pd}-\mathrm{S}(6,8$ and 9$)$ bonds in the remaining bridge and remaking of the double bridge. The CH_{2} resonances are a broad singlet or a broad doublet for complexes 7 and 10, respectively, which is in agreement with a slower rotation caused by the bulkier Bu^{t} group.

The structure of complex 10 (Fig. 1, Tables 3-5) confirms the cisoid arrangement of the cyclometallated ligands, and the arrangement of the bridges so that the oxygen atoms of the trifluoroacetate ligand are trans to carbon. The co-ordination at each palladium atom is approximately square planar with a distinct tetrahedral distortion, largely originating in the small bite angle of the quinolylmethyl ligand ($\approx 83.5^{\circ}$). Overall the molecule adopts a folded conformation, with an angle between

Table 2 Proton NMR data for the palladium complexes (solvent CDCl_{3})
Chemical shifts (δ, J in Hz)

Complex						
	H^{2}	H^{4}	$\mathrm{H}^{3,5,6,7}$	CH_{2}	MeCO_{2}	Others
1	8.78 (dd)	8.14 (dd)	7.5-7.3 (m)	3.42 (s)	2.21 (s)	$-1.84(\mathrm{~s})(\mathrm{OH})$
2	8.74 (dd)	8.19 (dd)	7.6-7.3 (m)	3.57 (s)		-1.73 (s) (OH)
3	8.96 (dd)	8.14 (dd)	7.6-7.3 (m)	3.28 (s)	2.33 (s)	$\begin{aligned} & 7.09\left(\mathrm{t}, 2 \mathrm{H}_{o}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}, J 7.4\right) \\ & 6.82\left(\mathrm{~m}, 3 \mathrm{H}_{m+p}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}\right) \end{aligned}$
4	8.96 (dd)	8.15 (dd)	7.6-7.3 (m)	3.28 (s)	2.32 (s)	$7.45\left(\mathrm{~d}, 2 \mathrm{H}_{o}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}, J 8.1\right)$ $6.89\left(\mathrm{~d}, 2 \mathrm{H}_{m}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}, J 8.1\right)$ 2.17 (s, $3 \mathrm{H}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}$)
5	8.96 (dd)	8.19 (dd)	7.6-7.3 (m)	3.29 (s)	2.35 (s)	$\begin{aligned} & 7.99\left(\mathrm{~d}, 2 \mathrm{H}_{o}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, J 8.0\right) \\ & 7.45\left(\mathrm{~d}, 2 \mathrm{H}_{m}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}, J 8.0\right) \end{aligned}$
6	8.87 (dd)	8.16 (dd)	7.6-7.3 (m)	3.28 (s)	2.20 (s)	$\begin{aligned} & 2.38\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}, J 7.2\right) \\ & 1.39\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}, J 7.2\right) \end{aligned}$
7	9.01 (dd)	8.19 (dd)	7.6-7.3 (m)	3.38 (br)	2.23 (s)	1.60 (s, $9 \mathrm{H}, \mathrm{Bu}^{\text {'S }}$)
8	8.88 (dd)	8.24 (dd)	7.6-7.3 (m)	3.46 (s)	1.81 (s)	$\begin{aligned} & 8.07\left(\mathrm{dd}, 2 \mathrm{H}_{o}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}, J_{\mathrm{H}_{o} \mathbf{H}_{p}} 2.2, J_{\mathrm{H}_{0} \mathrm{H}_{m}} 7.7\right) \\ & 7.13\left(\mathrm{~m}, 3 \mathrm{H}_{m+p}\right) \end{aligned}$
9	8.88 (dd)	8.19 (dd)	7.6-7.3 (m)	3.44 (s)	2.23 (s)	$7.91\left(\mathrm{~d}, 2 \mathrm{H}_{0}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}, J\right.$ 8.1) $6.94\left(\mathrm{~d}, 2 \mathrm{H}_{m}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}, J 8.1\right)$ $1.85\left(\mathrm{~s}, 3 \mathrm{H}, p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}\right)$
10	8.90 (dd)	8.19 (dd)	7.6-7.4 (m)	$\begin{aligned} & 3.56 \text { (br) } \\ & 3.36 \text { (br) } \end{aligned}$		1.56 (s, $9 \mathrm{H}, \mathrm{Bu}^{\mathbf{1}} \mathrm{S}$)

Table 3 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for complex 10

Atom	x	y	z
$\mathrm{Pd}(1)$	$2100.1(3)$	$1989.1(1)$	$1196.0(2)$
$\mathrm{Pd}(2)$	$23.1(3)$	$3681.6(2)$	$1533.4(2)$
S	$-88(1)$	$2331(1)$	$1537(1)$
$\mathrm{F}(1)$	$5169(3)$	$3933(2)$	$2381(2)$
$\mathrm{F}(2)$	$4504(4)$	$3340(2)$	$3470(2)$
$\mathrm{F}(3)$	$3845(3)$	$4456(2)$	$3233(2)$
$\mathrm{O}(1)$	$3205(3)$	$2781(2)$	$2050(2)$
$\mathrm{O}(2)$	$1916(2)$	$3858(1)$	$2264(2)$
$\mathrm{N}(1)$	$-106(3)$	$4895(2)$	$1377(2)$
$\mathrm{N}(2)$	$3958(3)$	$1653(2)$	$708(2)$
$\mathrm{C}(1)$	$711(4)$	$5445(2)$	$1680(3)$
$\mathrm{C}(2)$	$535(5)$	$6247(2)$	$1481(3)$
$\mathrm{C}(3)$	$-480(4)$	$6469(2)$	$940(3)$
$\mathrm{C}(4)$	$-1380(4)$	$5899(2)$	$593(2)$
$\mathrm{C}(5)$	$-1179(3)$	$5110(2)$	$842(2)$
$\mathrm{C}(6)$	$-2034(4)$	$4502(2)$	$553(2)$
$\mathrm{C}(7)$	$-3068(4)$	$4691(3)$	$-14(3)$
$\mathrm{C}(8)$	$-3269(4)$	$5488(3)$	$-285(3)$

Atom	x	y	z
$\mathrm{C}(9)$	$-2467(4)$	$6065(3)$	$19(3)$
$\mathrm{C}(10)$	$-1757(4)$	$3686(2)$	$881(2)$
$\mathrm{C}(11)$	$2945(3)$	$3448(2)$	$2329(2)$
$\mathrm{C}(12)$	$4127(4)$	$3802(2)$	$2843(3)$
$\mathrm{C}(13)$	$-487(4)$	$2000(2)$	$2649(2)$
$\mathrm{C}(14)$	$626(5)$	$2221(3)$	$3294(3)$
$\mathrm{C}(15)$	$-1798(5)$	$2413(3)$	$2903(3)$
$\mathrm{C}(16)$	$-649(7)$	$1116(3)$	$2615(3)$
$\mathrm{C}(17)$	$5190(4)$	$1885(2)$	$949(3)$
$\mathrm{C}(18)$	$6369(4)$	$1662(3)$	$511(3)$
$\mathrm{C}(19)$	$6256(4)$	$1181(2)$	$-193(3)$
$\mathrm{C}(20)$	$4981(4)$	$919(2)$	$-472(2)$
$\mathrm{C}(21)$	$3835(4)$	$1161(2)$	$10(2)$
$\mathrm{C}(22)$	$2491(4)$	$919(2)$	$-206(2)$
$\mathrm{C}(23)$	$2342(4)$	$461(2)$	$-931(2)$
$\mathrm{C}(24)$	$3456(5)$	$236(2)$	$-1430(2)$
$\mathrm{C}(25)$	$4740(4)$	$451(2)$	$-1208(2)$
$\mathrm{C}(26)$	$1365(4)$	$1176(2)$	$376(3)$

Fig. 1 Structure of complex 10
the palladium co-ordination planes of 55°. There is some widening of the $\mathrm{O}-\mathrm{C}-\mathrm{O}$ angle of the bridging trifluoroacetate to 131° to accommodate this. The quinolylmethyl ligands are approximately planar and are tilted to a small extent ($8-10^{\circ}$)
out of the co-ordination planes of the palladium atoms. Whilst the two palladium atoms are crystallographically distinct, the bond lengths and angles in the two halves of the molecule are not, in general, significantly different. The palladium-carbon bond lengths are similar to those noted for $\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right.$ $\left.\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{CO}_{2} \mathrm{Et}\right)\left(\mathrm{CO}_{2} \mathrm{H}\right)\right\}\right][2.05(2) \quad \AA],{ }^{18} \quad\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)-\right.$ $\left.\left\{\mathrm{C}_{10} \mathrm{H}_{6}(\mathrm{OMe})-1\right\}\right][1.986(4) \AA]^{32}$ and $\left[\left\{\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{3}\left(\mu_{3}-\right.\right.$ $\left.\mathrm{OH})\left(\mu_{3}-\mathrm{Ph}_{2} \mathrm{PCHCO}_{2} \mathrm{Et}\right)\right]\left[\mathrm{PF}_{6}\right][2.01(1)-2.06(1) \AA]^{17}$ in which the carbon is trans to an oxygen ligand. To the best of our knowledge this is the first report of the structure of a complex in which the nitrogen of the $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$ ligand is trans to sulfur. The $\mathrm{Pd}-\mathrm{N}$ bond [average $2.066(3) \AA$] is shorter than in $\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\left\{\mathrm{C}_{10} \mathrm{H}_{6}(\mathrm{OMe})-1\right\}\right][2.127(6) \AA]$ in which nitrogen is trans to carbon ${ }^{32}$ or $\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)\right.$ -$\left.\left\{\mathrm{Mo}(\mathrm{CO})_{3}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right\}\right][2.150(7) \AA]$ in which it is trans to phosphorus, ${ }^{33}$ but in $\left[\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\left\{\mathrm{Ph}_{2} \mathrm{PC}\left(\mathrm{CO}_{2} \mathrm{Et}\right)\right.\right.$ $\left.\left.\left(\mathrm{CO}_{2} \mathrm{H}\right)\right\}\right]$ the $\mathrm{Pd}-\mathrm{N}$ bond trans to phosphorus is only $2.07(2) \AA$ long. This suggests that any attempt to correlate bond length with trans influence would require many more examples before useful conclusions could be drawn.

Experimental

The C, H, N and S analyses were performed with a Carlo Erba model EA 1108 microanalyzer. Decomposition temperatures

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 10

$\mathrm{Pd}(1)-\mathrm{S}$	$2.285(1)$	$\mathrm{Pd}(2)-\mathrm{S}$	$2.293(1)$
$\mathrm{Pd}(1)-\mathrm{N}(2)$	$2.056(3)$	$\mathrm{Pd}(2)-\mathrm{N}(1)$	$2.076(3)$
$\mathrm{Pd}(1)-\mathrm{O}(1)$	$2.166(3)$	$\mathrm{Pd}(2)-\mathrm{O}(2)$	$2.183(2)$
$\mathrm{Pd}(1)-\mathrm{C}(26)$	$2.003(4)$	$\mathrm{Pd}(2)-\mathrm{C}(10)$	$2.006(4)$
$\mathrm{S}-\mathrm{Pd}(1)-\mathrm{O}(1)$	$99.56(7)$	$\mathrm{S}-\mathrm{Pd}(2)-\mathrm{O}(2)$	$100.12(7)$
$\mathrm{S}-\mathrm{Pd}(1)-\mathrm{C}(26)$	$89.3(1)$	$\mathrm{S}-\mathrm{Pd}(2)-\mathrm{C}(10)$	$87.9(1)$
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{C}(26)$	$170.9(1)$	$\mathrm{O}(2)-\mathrm{Pd}(2)-\mathrm{C}(10)$	$171.8(1)$
$\mathrm{S}-\mathrm{Pd}(1)-\mathrm{N}(2)$	$17.52(8)$	$\mathrm{S}-\mathrm{Pd}(2)-\mathrm{N}(1)$	$171.02(8)$
$\mathrm{O}(1)-\mathrm{Pd}(1)-\mathrm{N}(2)$	$87.5(1)$	$\mathrm{O}(2)-\mathrm{Pd}(2)-\mathrm{N}(1)$	$88.6(1)$
$\mathrm{N}(2)-\mathrm{Pd}(1)-\mathrm{C}(26)$	$83.7(1)$	$\mathrm{N}(1)-\mathrm{Pd}(2)-\mathrm{C}(10)$	$83.5(1)$
$\mathrm{Pd}(1)-\mathrm{S}-\mathrm{Pd}(2)$	$102.03(3)$	$\mathrm{Pd}(2)-\mathrm{O}(2)-\mathrm{C}(11)$	$131.1(2)$
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{O}(2)$	$131.3(3)$	$\mathrm{Pd}(1)-\mathrm{O}(1)-\mathrm{C}(11)$	$132.5(2)$

Table 5 Crystal structure determination details for complex 10

Formula
M
Symmetry
Space group
a / \AA
b / \AA
c / \AA
$\beta /{ }^{\circ}$
$U / \AA^{3}, Z$
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}, F(000)$
T / K
Monochromated Mo-K α
radiation
λ / \AA
μ / cm^{-1}
Crystal size/mm
Diffractometer
Reflections for calculating cell: number, $\theta_{\text {min }}, \theta_{\text {max }} 1^{\circ}$
Scan mode for data collection
Data reflection ranges; θ range
Total reflections measured
Unique reflections
$R_{\text {int }}$
Significant reflections,
$\left|F^{2}\right|>2 \sigma\left(F^{2}\right)$
Maximum change in standard reflections (\%)
Decay correction
Absorption correction:
maximum, minimum
Non-H atoms:
Refinement:

Hydrogen atoms

R
 R^{\prime} S

No. variables
$(\Delta / \sigma)_{\text {max }}$
$(\Delta \rho)_{\text {max }, \text { min }} / \mathrm{e} \AA^{-3}$
$\sigma\left(F^{2}\right)=\left[\sigma^{2}(I)+(0.04 I)^{2}\right]^{\frac{1}{2}} / L_{\rho}, w=\sigma^{-2}(F)$, minimizing $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$.
were determined with a Mettler TG-50 thermobalance. The NMR spectra were recorded on a Bruker AC 200E (${ }^{1} \mathrm{H}$) or Varian Unity $300\left({ }^{19} \mathrm{~F}\right)$ spectrometer, using SiMe_{4} and CFCl_{3} as standards respectively, infrared spectra on a Perkin-Elmer 1430 spectrophotometer using Nujol mulls between polyethylene sheets.

The starting complex $\left[\left\{\mathrm{Pd}_{(}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CMe}\right)\right\}_{2}\right]$ was prepared as described elsewhere. ${ }^{28}$ Its ${ }^{1} \mathrm{H}$ NMR data are in agreement with those reported but the relative intensities indicated that in CDCl_{3} solution there is a $2.5: 1$ mixture of trans and cis isomers, respectively. A 4:1 mixture is reported in ref. 28 but this discrepancy may be attributed to both the different concentrations and temperatures used to record the spectra.

The bis-(μ-trifluoroacetate) analogue was prepared in 70% yield by reaction of the orange di- μ-acetate complex (0.24 mmol) with trifluoroacetic acid (0.48 mmol) in methanol $\left(5 \mathrm{~cm}^{3}\right)$. The red crystals formed gave satisfactory C, H and N analysis, an IR band at $1650 \mathrm{~cm}^{-1}$ for the antisymmetric stretching mode of the CO_{2} group and the ${ }^{19} \mathrm{~F}$ NMR spectrum (solvent CDCl_{3}) displayed a signal at $\delta-74.5$, assigned to the trans isomer, and two additional 1:1 signals at $\delta-73.8$ and -75.0 , assigned to the cis isomer (the relative intensities indicated that it was a $3: 1$ mixture of trans and cis isomers respectively). The ${ }^{1} \mathrm{H}$ NMR spectrum (solvent CDCl_{3}) showed two broad signals at $\delta 3.7$ (trans isomer) and 2.8 (cis isomer) owing to the CH_{2} protons of $\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}$.

Preparations.-Complexes 1 and 2. To a solution of $\left[\left\{\operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)\right\}_{2}\right] \quad\left(\mathrm{R}=\mathrm{Me}\right.$ or $\left.\mathrm{CF}_{3}\right) \quad(0.135$ mmol) in methanol ($3 \mathrm{~cm}^{3}$) was added NaOH (aq) (0.135 mmol). The resulting solution was stirred for 10 min , during which time the yellow complexes 1 and 2 precipitated spontaneously. They were filtered off and air-dried.

Complexes 3-5. The appropriate amine $\mathrm{NH}_{2} \mathrm{R}^{\prime}(0.122 \mathrm{mmol})$ was added to a solution of $\left[\left\{\mathrm{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}(\mu-\mathrm{OH})(\mu-\right.$ $\left.\left.\mathrm{O}_{2} \mathrm{CMe}\right)\right](0.122 \mathrm{mmol})$ in dichloromethane $\left(3 \mathrm{~cm}^{3}\right)$. The solution was stirred at room temperature for 10 min . On addition of hexane the yellow or orange complexes 3-5 precipitated and were filtered off and air-dried.

Complexes 6-10. The appropriate thiol R'SH $(0.174 \mathrm{mmol})$ was added to a solution of $\left[\left\{\operatorname{Pd}\left(\mathrm{CH}_{2} \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{~N}\right)\right\}_{2}(\mu-\mathrm{OH})(\mu-\right.$ $\left.\left.\mathrm{O}_{2} \mathrm{CR}\right)\right]\left(\mathrm{R}=\mathrm{Me}\right.$ or $\left.\mathrm{CF}_{3}\right)(0.174 \mathrm{mmol})$ in dichloromethane $\left(4 \mathrm{~cm}^{3}\right)$ and the solution was stirred at room temperature for 10 min . On addition of diethyl ether-hexane the yellow or orange complexes $6-10$ precipitated and were filtered off and air-dried.

Crystal Structure Determination of Complex 10.--Details of the crystal structure determination are given in Table 5.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

This work is based on research sponsored by the Dirección General de Investigación Científica y Técnica, Spain, under project PB91-0574. We thank the SERC for a grant (to R. M. H.).

References

1 G. López, G. García, G. Sánchez, J. Garcia, J. Ruiz, J. A. Hermoso, A. Vegas and M. Martínez-Ripoll, Inorg. Chem., 1992, 31, 1518.

2 G. López, J. Ruiz, G. García, C. Vicente, J. Casabó, E. Molins and C. Miravitlles, Inorg. Chem., 1991, 30, 2605.

3 G. López, J. Ruiz, G. Garcia, C. Vicente, J. M. Martí, J. A. Hermoso, A. Vegas and M. Martínez-Ripoll, J. Chem. Soc., Dalton Trans., 1992, 53.

4 G. López, J. Ruiz, G. García, J. M. Martí, G. Sánchez and J. Garcia, J. Organomet. Chem., 1991, 412, 435.

5 G. López, G. García, G. Sánchez, M. D. Santana, J. Ruiz and J. García, Inorg. Chim. Acta, 1991, 188, 195.

6 H. F. Klein and H. H. Karsch, Chem. Ber., 1973, 1433.
7 E. Carmona, J. M. Marín, M. Paneque and M. L. Poveda, Organometallics, 1987, 6, 1757.
8 E. Carmona, J. M. Marín, P. Palma, M. Paneque and M. L. Poveda, Inorg. Chem., 1989, 28, 1985.

9 T. Yoshida, T. Okano and S. Otsuka, J. Chem. Soc., Dalton Trans., 1976, 993.
10 V. V. Grushin and H. Alper, Organometallics, 1993, 12, 1890.
11 J. Ruiz, C. Vicente, J. M. Martí, N. Cutillas, G. García and G. López, J. Organomet. Chem., 1993, 460, 241.

12 G. López, J. Ruiz, G. García, C. Vicente, V. Rodríguez, G. Sánchez, J. A. Hermoso and M. Martínez-Ripoll, J. Chem. Soc., Dalton Trans., 1992, 1681.
13 G. López, G. Sánchez, G. García, J. García, A. Martínez, J. A. Hermoso and M. Martínez-Ripoll, J. Organomet. Chem., 1992, 435, 193.

14 G. López, G. Sánchez, G. García, J. Ruiz, J. García, M. MartínezRipoll, A. Vegas and J. A. Hermoso, Angew. Chem., Int. Ed. Engl., 1991, 30, 716.
15 J. Ruiz, C. Vicente, J. M. Martí, N. Cutillas, G. García and G. López, J. Organomet. Chem., 1993, 460, 241.

16 G. B. Deacon and R. J. Phillips, Coord. Chem. Rev., 1980, 33, 227.
17 P. Braunstein, J. Fischer, D. Matt and M. Pfeffer, J. Am. Chem. Soc., 1984, 106, 410.
18 P. Braunstein, D. Matt, Y. Dusausoy, J. Fischer, A. Mitschler and L. Ricard, J. Am. Chem. Soc., 1981, 103, 5115.

19 M. Pfeffer, J. Fischer, A. Mitschler and L. Ricard, J. Am. Chem. Soc., 1980, 102, 6339.
20 R. E. Blake, jun., R. H. Hein and T. D. Tilley, Polyhedron, 1992, 11, 709.

21 N. W. Alcock, P. Bergamini, T. J. Kemp, P. G. Pringle, S. Sostero and O. Traverso, Inorg. Chem., 1991, 30, 1594.

22 S. Park, A. L. Rheingold and D. M. Roundhill, Organometallics, 1991, 10, 615.
23 J. Ruiz, M. T. Martínez, C. Vicente, G. García, G. López, P. A. Chaloner and P. B. Hitchcock, Organometallics, 1993, 12, 4321.
24 G. Sánchez, F. Ruiz, M. D. Santana, G. García, G. López, J. A. Hermoso and M. Martínez-Ripoll, J. Chem. Soc., Dalton Trans., 1994, 19.
25 V. K. Jain and S. Kannan, J. Chem. Res., 1992, (S) 278.
26 V. K. Jain and S. Kannan, Polyhedron, 1992, 11, 27.
27 M. J. Baena, P. Espinet, M. B. Ros, J. L. Serrano and A. Ezcurra, Angew. Chem., Int. Ed. Engl., 1993, 32, 1201.
28 A. J. Deeming and I. P. Rothwell, J. Organomet. Chem., 1981, 205, 117.

29 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
30 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, 1986.
31 B. A. Frenz, Structure Determination Package, Enraf--Nonius, Delft, and College Station, TX, 1984.
32 J. Dehand, A. Mauro, H. Ossor, M. Pfeffer, R. H. De A. Santos and J. R. Lechat, J. Organomet. Chem., 1983, 250, 537.

33 M. Pfeffer, D. Grandjean and G. Le Borgne, Inorg. Chem., 1981, 20, 4426.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

