Mesitylgold Complexes: Synthesis and Reactivity; Crystal Structure of [\{($\left.\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu$-mes $\left.\left.) \mathrm{Ag}(\mathrm{tht})\right\}_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ $\boldsymbol{(m e s}=\boldsymbol{m e s i t y l}$, tht $=$ tetrahydrothiophene $) ~ \dagger$

María Contel, ${ }^{a}$ Josefina Jiménez, ${ }^{b}$ Peter G. Jones, ${ }^{c}$ Antonio Laguna ${ }^{*, b}$ and Mariano Laguna ${ }^{b}$
${ }^{a}$ Departamento de Química, Universidad Pública de Navarra, E-31006 Pamplona, Spain
${ }^{\text {b }}$ Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza CSIC, E-50009 Zaragoza, Spain
c Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, D-38023 Braunschweig, Germany

The complex $\left[\mathrm{AuCl}\left(\mathrm{AsPh}_{3}\right)\right]$ reacted with MgBr (mes) (mes = mesityl) to give the corresponding gold (1) derivative $\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right]$, which undergoes substitution reactions with neutral ligands to give the neutral complexes [$\mathrm{Au}($ mes $) \mathrm{L}$] ($\mathrm{L}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}, \mathrm{PPh}_{3}$ or $\mathrm{PPh}_{2} \mathrm{Me}$) or with QX to afford anionic complexes $\mathrm{Q}[\mathrm{Au}($ mes $) \mathrm{X}]\left[\mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3} ; \mathrm{X}=\mathrm{Br}, \mathrm{Q}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The latter reacted with $\mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ or Br$)$ to give gold(III) complexes, $\mathrm{O}\left[\mathrm{Au}(\right.$ mes $\left.) \mathrm{X}_{3}\right] \quad\left[\mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3} ; \mathrm{X}=\mathrm{Br}\right.$, $\left.\mathrm{Q}^{2}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. The reaction of $\left[\mathrm{Au}(\right.$ mes $\left.)\left(\mathrm{PPh}_{3}\right)\right]$ with $\left[\mathrm{Ag}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right) \mathrm{L}\right] \quad\left[\mathrm{L}=\mathrm{PPh}_{3}\right.$ or tetrahydrothiophene (tht)] afforded $\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu \text {-mes }) \mathrm{AgL}\right\}_{n}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{n}\left(\mathrm{~L}=\mathrm{PPh}_{3}, n=1 ; \mathrm{L}=\right.$ tht, $\left.n=2\right)$. The structure of $\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu-\mathrm{mes}) \mathrm{Ag}(\mathrm{tht})\right\}_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ has been determined by a single-crystal X-ray diffraction study, which shows an $\mathrm{Au}-\mathrm{Ag}$ distance of $2.8245(6) \AA$.

Heteroleptic gold(I) compounds containing the mesityl group (2,4,6-Me $\mathrm{C}_{3} \mathrm{H}_{2}$, mes) as a simple (terminal) ligand have been obtained by addition of neutral or anionic ligands to solutions of $\left[\{\mathrm{Au}(\mathrm{mes})\}_{5}\right]^{1,2}$ or by metathetical reactions between the chlorogold(I) precursor and $\left[\{\mathrm{Ag}(\mathrm{mes})\}_{5}\right] .{ }^{2}$ The first reaction type does not occur for N -, As-or S-donors, such as pyridine, AsPh_{3} or tetrahydrothiophene (tht), under similar conditions. ${ }^{2}$ In the chemistry of gold(iii) only the complexes $\left[\mathrm{Au}(\mathrm{mes})_{2}(\mathrm{~L}-\mathrm{L})\right] \mathrm{ClO}_{4}\left(\mathrm{~L}-\mathrm{L}=2,2^{\prime}\right.$-bipyridine, phenanthroline or 4,7-diphenylphenanthroline) have been described. ${ }^{3}$

It is also known that mesityl can act as a bridge between two metal centres, affording a three-centre two-electron bond. ${ }^{4}$ In the chemistry of Group 11 metals this bridging mode has often been observed for homoleptic (MR) $)_{n}(\mathrm{R}=$ aryl) compounds. ${ }^{1,5-9}$

Mesityl is also found to function as a bridge in various heteroleptic copper compounds, for example $\left[\mathrm{Cu}_{4}(\mathrm{mes})_{4}-\right.$ (tht) $\left.)_{2}\right]{ }^{1,8} \quad\left[\mathrm{Cu}_{3}\right.$ (mes) $\left.\left(\mu-\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{X}-2\right)_{2}\right] \quad(\mathrm{X}=\mathrm{H}, \quad \mathrm{Cl} \quad$ or $\mathrm{Br}),{ }^{10,11}\left[\mathrm{Cu}_{10} \mathrm{O}_{2}(\mathrm{mes})_{6}\right]^{12}$ and $\left[\{\mathrm{Cu}(\mathrm{mes})\}_{4}\left\{\mu-\mathrm{SC} \mathrm{C}_{6} \mathrm{H}_{4}[\mathrm{CH}-\right.\right.$ (Me)NMe $\left.\left.{ }_{2}-2\right\}_{2}\left\{\mathrm{MgSC}_{6} \mathrm{H}_{4}\left[\mathrm{CH}(\mathrm{Me}) \mathrm{NMe}_{2}\right]-2\right\}_{2}\right] .{ }^{13}$ However, no silver derivatives of this kind have been reported and only one of gold, ${ }^{2}\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu\right.$-mes $\left.) \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{ClO}_{4}$, which was characterised solely by spectroscopic methods.

In this paper we describe the synthesis of neutral and anionic mononuclear gold complexes containing one simple (terminal) mesityl ligand, $[\mathrm{Au}(\mathrm{mes}) \mathrm{L}] \quad\left[\mathrm{L}=\mathrm{AsPh}_{3} 1, \quad \mathrm{dppm}\right.$ $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}\right)$ 2, $\mathrm{PPh}_{3} 3$ or $\left.\mathrm{PPh}_{2} \mathrm{Me} 4\right]$, $\mathrm{Q}[\mathrm{Au}($ mes $) \mathrm{X}]$ $\left[\mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}^{2}\right) \mathrm{Ph}_{3}\right.$ 5; $\left.\mathrm{X}=\mathrm{Br}, \mathrm{Q}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} \mathbf{6}\right]$ and $\mathrm{Q}\left[\mathrm{Au}(\mathrm{mes}) \mathrm{X}_{3}\right]\left[\mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3} 7 ; \mathrm{X}=\mathrm{Br}\right.$, $\left.\mathrm{Q}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} 8\right]$, and heterobinuclear gold(I)-silver(I) complexes containing one mesityl acting as a bridge between the two

[^0]metal centres, $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu\right.$-mes $\left.) \mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right] 9$ and $\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu \text {-mes }) \mathrm{Ag}(\text { tht })\right\}_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$ 10. The structure of 10 has been established by X-ray studies.

Results and Discussion

Mononuclear Derivatives.-The reaction in diethyl ether of $\left[\mathrm{AuCl}\left(\mathrm{AsPh}_{3}\right)\right]$ with $\mathrm{MgBr}($ mes $)$ in molar ratio $1: 1.5$ at $0^{\circ} \mathrm{C}$ leads to the formation of $\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right] 1$ [equation (1)]. In

$$
\begin{array}{r}
{\left[\mathrm{AuCl}\left(\mathrm{AsPh}_{3}\right)\right]+\underset{\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right]}{\mathrm{MgBr}(\mathrm{mes})} \longrightarrow \mathrm{MgBrCl}}
\end{array}
$$

the chemistry of $\operatorname{gold}(\mathrm{I})$ the compound AsPh_{3} is weakly co-ordinating and can therefore be readily displaced by neutral and anionic ligands. ${ }^{14}$ The complex $\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right] 1$ behaves similarly and reacts with dppm, PPh_{3} or $\mathrm{PPh}_{2} \mathrm{Me}$, in $1: 1$ ratio, to give the neutral complexes [Au(mes)L] $(\mathrm{L}=$ dppm 2, $\mathrm{PPh}_{3} 3$ or $\mathrm{PPh}_{2} \mathrm{Me} 4$) or with salts QX to give anionic complexes $\mathrm{Q}[\mathrm{Au}(\mathrm{mes}) \mathrm{X}]\left[\mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}^{2}\right) \mathrm{Ph}_{3} 5\right.$; $\mathrm{X}=\mathrm{Br}, \mathrm{Q}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$ 6] [see equations (2) and (3)].

$$
\begin{equation*}
\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right]+\mathrm{L} \longrightarrow[\mathrm{Au}(\mathrm{mes}) \mathrm{L}]+\mathrm{AsPh}_{3} \tag{2}
\end{equation*}
$$

$\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right]+\mathrm{QX} \longrightarrow \mathrm{Q}[\mathrm{Au}(\mathrm{mes}) \mathrm{X}]+\mathrm{AsPh}_{3}$
However, the reaction of 1 with dppe $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$, even in molar ratio $1: 1.5$, leads to a mixture that contains dinuclear [(mes)Au(dppe)Au(mes)]. ${ }^{1}$ Complexes 3-5 have previously been prepared by other synthetic procedures.

The addition of Cl_{2} or Br_{2} to solutions of $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right.$ $\left.\mathrm{Ph}_{3}\right][\mathrm{AuCl}($ mes $)] 5$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{AuBr}($ mes $)] 6$, in $1: 1$ ratio, gives the anionic gold(iii) complexes $\mathrm{Q}\left[\mathrm{Au}(\mathrm{mes}) \mathrm{X}_{3}\right][\mathrm{X}=\mathrm{Cl}$, $\left.\mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}^{2}\right) \mathrm{Ph}_{3} 7 ; \mathrm{X}=\mathrm{Br}, \mathrm{Q}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} 8\right]$.

All complexes are air- and moisture-stable solids at room temperature and are white (1-6), yellow (7) or red (8). Acetone solutions of 1-4 are non-conducting and those of 5-8 display conductivities typical of $1: 1$ electrolytes ${ }^{15}$ (Table 1). The IR spectra show absorptions corresponding to the mesityl ligand at

Table 1 Analytical and spectroscopic data for products

Complex	$\begin{aligned} & \text { Yield } \\ & (\%) \end{aligned}$	Analysis (\%) ${ }^{a}$			$\begin{aligned} & \Lambda_{\mathrm{M}}{ }^{b} / \Omega^{-1} \\ & \mathrm{~cm}^{2} \mathrm{~mol}^{-1} \end{aligned}$	${ }^{1} \mathrm{H}$ NMR, ${ }^{\text {c }}$, δ (mes)		
		C	H	N		$o-\mathrm{CH}_{3}$	$p-\mathrm{CH}_{3}$	$m-\mathrm{H}$
$1\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right.$]	87	51.9	4.05	-	1	2.59 (s)	2.25 (s)	6.91 (s)
		(52.1)	(4.2)	-				
$2[\mathrm{Au}(\mathrm{mes})(\mathrm{dppm})]$	91	58.35	4.8	-	1	2.53 (s)	2.27 (s)	6.90 (s)
		(58.3)	(4.75)	-				
$3\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{PPh}_{3}\right)\right]$	80	55.70	4.6	-	7	2.59 (s)	2.26 (s)	6.92 (s)
		(56.05)	(4.55)	-				
$4\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right]$	51	51.15	4.5	-	1	2.60 (s)	2.28 (s)	6.94 (s) ${ }^{\text {d }}$
		(51.2)	(4.7)	-				
$5\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3}\right][\mathrm{AuCl}(\mathrm{mes})]$	76	58.3	4.8	-	118	2.31 (s)	2.16 (s)	$6.69(\mathrm{~s})^{e}$
		(57.9)	(4.7)	-				
$6\left[\mathrm{~N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{AuBr}(\mathrm{mes})]$	80	57.65	4.4	1.55	90	2.48 (s)	2.14 (s)	6.71 (s)
		(57.8)	(4.4)	(1.5)				
$7\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3}\right]\left[\mathrm{AuCl}_{3}(\mathrm{mes})\right]$	70	52.3	4.0	-	124	2.44 (s)	2.19 (s)	6.57 (s) ${ }^{e}$
		(52.65)	(4.3)	-				
$\mathbf{8}\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{AuBr}_{3}(\mathrm{mes})\right]$	85	49.1	3.6	1.4	127	2.48 (s)	2.19 (s)	6.58 (s)
		(49.4)	(3.8)	(1.3)				
$9\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu\right.$-mes $\left.) \mathrm{Ag}\left(\mathrm{PPh}_{3}\right)\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]$	70	49.9	3.6	(1.3)	116	2.45 (s)	2.26 (s)	6.95 (s)
		(50.3)	(3.7)	-				
$\left.10\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu-\mathrm{mes}) \mathrm{Ag} \text { (tht }\right)\right\}_{2}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{2}$	72	41.3	3.75	-	103	2.54 (s)	2.28 (s)	6.99 (s)
		(41.6)	(3.7)	-				
Calculated values are given in parentheses. ${ }^{b}$ $8 \mathrm{~Hz}] .{ }^{e} \delta\left[\mathrm{CH}_{2}\right.$ of $\left.\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}^{2}\right) \mathrm{Ph}_{3}{ }^{+}\right]: 5.07(\mathrm{~d}$,	$\begin{aligned} & \text { one (5 } \\ & \text { 5) }(5) \end{aligned}$	$\begin{aligned} & 0^{-4} \mathrm{~mol} \\ & \left(\mathrm{~d},{ }^{2} J_{\mathrm{PH}}\right. \end{aligned}$	$\begin{aligned} & -3) .^{c} \text { In } \\ & .9 \mathrm{~Hz})\left(\begin{array}{l} \end{array}\right. \end{aligned}$	$\mathrm{Cl}_{3}, \mathrm{va}$	n ppm. ${ }^{d} \delta($	CH_{3} of PP	$\left.\mathrm{t}_{2} \mathrm{Me}\right) 2$	d) $\left[{ }^{2} J_{\mathrm{PH}}\right.$

1582, 840 (1), 1585,849 (2), 1587, 840 (3), 1578, 851 (4), 1589, 852 (5), $1589,845(6), 1589,852,837(7)$ or at $1590,879,849 \mathrm{~cm}^{-1}(8)$. Furthermore, complexes 5 and 7 show bands at 300 m (5) and at 332 m and $362 \mathrm{~m} \mathrm{~cm}^{-1}(7)$, assigned to $v(\mathrm{Au}-\mathrm{Cl}) .{ }^{16} \mathrm{For}$ complexes 6 and 8 the $v(\mathrm{Au}-\mathrm{Br})$ vibrations have not been observed, probably because they lie below $200 \mathrm{~cm}^{-1}$, which is the limit of our spectrophotometer.

Their ${ }^{1} \mathrm{H}$ NMR spectra are as expected (Table 1) showing three singlets for the mesityl ligand. A multiplet at $\delta 3.24$ is observed for the methylene protons of dppm in 2 . The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra show two doublets at $\delta 35.2$ and -23.4 for dppm in $2\left({ }^{2} J_{\mathrm{PP}}=116 \mathrm{~Hz}\right.$) and a singlet for PR_{3} in $\mathbf{3}$ and $4(\delta 44.9$ and 30.9). For the anionic complexes, singlets assignable to the $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3}\right]^{+}[\delta 23.5(5$ and 7$)]$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}[\delta 21.7$ (6 and 8)] cations are also observed.

The mass spectra (positive-ion FAB for neutral complexes or negative ion FAB for anionic derivatives) show the parent ion for complexes $1[m / z=622(11)], 3[578(28)], 5[351(25)], 6$ [396(7)], 7 [423(100)] and $8[556(70 \%)]$.

Heteropolynuclear Derivatives of Gold and Silver.-The treatment of $\left[\mathrm{Au}(\right.$ mes $\left.)\left(\mathrm{PPh}_{3}\right)\right]$ with $\left[\mathrm{Ag}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right) \mathrm{L}\right](\mathrm{L}=$ PPh_{3} or tht), in molar ratio $1: 1$, in dichloromethane leads to the formation of complexes $\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu-\mathrm{mes}) \mathrm{AgL}\right\}_{n}\right]\left[\mathrm{SO}_{3}-\right.$ $\left.\mathrm{CF}_{3}\right]_{n}\left(\mathrm{~L}=\mathrm{PPh}_{3}, n=19 ; \mathrm{L}=\right.$ tht, $n=2$ 10) [equation (4)].

$$
\begin{align*}
{\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{PPh}_{3}\right)\right]+\left[\mathrm{Ag}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right) \mathrm{L}\right] \longrightarrow } \\
1 / n\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mathrm{mes}) \mathrm{AgL}\right\}_{n}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{n} \tag{4}
\end{align*}
$$

These complexes are white solids, air- and moisture-stable at room temperature and their solutions in acetone show conductivities of $c a .100 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ (Table 1), corresponding to $1: 1$ electrolytes. ${ }^{15}$ Their IR spectra show absorptions at $1265 \mathrm{vs}, 1240 \mathrm{~s}, 1222 \mathrm{~m}$ and $1140 \mathrm{~m}(9)$ and 1260 vs (br), 1223 s and $1160 \mathrm{~s} \mathrm{~cm}^{-1}(\mathbf{1 0})$ assignable to the triflate anion, ${ }^{17}$ and absorptions corresponding to the mesityl ligand at 1597 m , 846 w (9) or at $1597 \mathrm{~m}, 856 \mathrm{w} \mathrm{cm}^{-1}$ (10). These latter bands are shifted to higher energy than in the starting product, as was observed for the complex $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu\right.$-mes $\left.) \mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right] \mathrm{ClO}_{4} .{ }^{2}$

Solutions of these complexes in chloroform show a singlet
resonance in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra at $\delta 43.9$ (9), 43.5 (10) corresponding to the phosphorus atoms bonded to gold. In complex 9 the phosphorus atom bonded to silver appears at $\delta 10$ as a broad band at room temperature. This signal splits at $-55^{\circ} \mathrm{C}$ into a doublet of doublets centred at $\delta 11.2$ $\left[J\left({ }^{107} \mathrm{Ag}-\mathrm{P}\right)=416, J\left({ }^{109} \mathrm{Ag}-\mathrm{P}\right)=473 \mathrm{~Hz}\right]$. The ${ }^{1} \mathrm{H}$ NMR spectra show signals from the mesityl group (Table 1) and, for complex 10, two multiplets at $\delta 2.95$ and 1.91 assignable to the tetrahydrothiophene ligand are also observed. The mass spectra $\left(\mathrm{FAB}^{+}\right)$show the parent ion only in the case of $9, m / z=949$ (23%).

The structure of complex 10 has been determined by singlecrystal X-ray diffraction, which shows a dimer, with the tetrahydrothiophene ligand acting as bridge between the two silver atoms. The structure of the cation is shown in Fig. 1; it possesses a crystallographic centre of inversion that relates the two $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu \text {-mes }) \mathrm{Ag}(\text { tht })\right]^{+}$units.
As observed in other complexes with bridging mesityl ligands, ${ }^{1,7-9}$ the planar mesitylene groups are nearly perpendicular to the plane through the atoms $\mathrm{Au}-\mathrm{Ag}-\mathrm{C}(11)$, the dihedral angles being 88°. The gold atoms are two-coordinate, with $\mathrm{P}-\mathrm{Au}-\mathrm{C}$ angles of $177.34(9)^{\circ}$, close to the linear stereochemistry preferred by Au^{I}. This contrasts with the angles observed in $\left[\{\mathrm{Au}(\mathrm{mes})\}_{5}\right]\left[148.3(7)-152.9(8)^{\circ}\right]^{1,9}$ which show a deviation from linear stereochemistry attributable to $\mathrm{Au}^{1}-\mathrm{Au}^{1}$ bonding interactions. The midpoint of the mesityl ring is approximately collinear with the $i p s o$-carbon and the gold atom $\left(170^{\circ}\right)$, whereas the angle to the silver atom is 111°. The $\mathrm{Au}-\mathrm{C}$ distances, $2.086(3) \AA$, are similar to those found in $\left[\{\mathrm{Au}(\mathrm{mes})\}_{5}\right][2.13(2)-2.20(2) \AA]^{1,9}$ and other compounds where two gold(I) atoms are bridged by an aromatic carbon such as $\left[\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{2}\left(\mu-\mathrm{C}_{6} \mathrm{~F}_{3} \mathrm{H}_{2}\right)\right] \mathrm{ClO}_{4} \quad[2.162(8), 2.160(9)$ $\AA] .{ }^{18}$ The $\mathrm{Au}-\mathrm{C}$ bond distances seem to be substantially independent of the bonding mode displayed by the C -donor ligands. ${ }^{1,9}$ The $\mathrm{Au}-\mathrm{P}$ bond distances are $2.2886(9) \AA$, which are similar to those observed in $\left[\mathrm{Au}\left\{2,6-(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ $(2.284 \AA)^{19}$ and $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2} \mathrm{CHPPh}_{2} \mathrm{Me}\right)\right][2.287(2) \AA]{ }^{20}$
The silver atom is bonded to a mesityl ligand and two sulfur atoms from tht molecules in a distorted-trigonal environment. The $\mathrm{Ag}-\mathrm{C}$ bond distances $[2.326(3) \AA]$ are slightly longer than in $\left[\{\mathrm{Ag}(\mathrm{mes})\}_{4}\right]$ [average $\left.2.20 \AA\right]^{1,7}$ The $\mathrm{Ag}-\mathrm{S}$ bond

Table 2 Atomic coordinates $\left(\times 10^{4}\right)$ for compound 10

Atom	x	y	z
Au	$7208.1(1)$	$2682.0(1)$	$6743.2(1)$
Ag	$5995.7(3)$	$1124.4(3)$	$8784.1(2)$
P	$7216.8(8)$	$2787.2(8)$	$5035.0(7)$
$\mathrm{C}(11)$	$7258(3)$	$2648(3)$	$8266(3)$
$\mathrm{C}(12)$	$8276(3)$	$1999(3)$	$8778(3)$
$\mathrm{C}(13)$	$8417(3)$	$2125(3)$	$9700(3)$
$\mathrm{C}(14)$	$7603(4)$	$2930(3)$	$10110(3)$
$\mathrm{C}(15)$	$6609(4)$	$3565(3)$	$9608(3)$
$\mathrm{C}(16)$	$6415(3)$	$3437(3)$	$8707(3)$
$\mathrm{C}(17)$	$9258(4)$	$1181(4)$	$8320(4)$
$\mathrm{C}(18)$	$7806(5)$	$3090(5)$	$11090(4)$
$\mathrm{C}(19)$	$5312(4)$	$4169(4)$	$8198(3)$
$\mathrm{C}(21)$	$8036(3)$	$4003(3)$	$3947(3)$
$\mathrm{C}(22)$	$9179(4)$	$4231(4)$	$4064(4)$
$\mathrm{C}(23)$	$9840(4)$	$5131(4)$	$3246(4)$
$\mathrm{C}(24)$	$9374(5)$	$5818(4)$	$2317(4)$
$\mathrm{C}(25)$	$8251(5)$	$5600(4)$	$2214(4)$
$\mathrm{C}(26)$	$7580(4)$	$4693(3)$	$3020(3)$
$\mathrm{C}(31)$	$5628(3)$	$2960(3)$	$4779(3)$
$\mathrm{C}(32)$	$5399(4)$	$2529(4)$	$4060(3)$
$\mathrm{C}(33)$	$4192(4)$	$2639(4)$	$3889(4)$
$\mathrm{C}(34)$	$3186(4)$	$3195(4)$	$4432(4)$

Atom	x	y	z
C(35)	$3393(4)$	$3624(4)$	$5155(4)$
$\mathrm{C}(36)$	$4605(4)$	$3511(4)$	$5330(3)$
$\mathrm{C}(41)$	$7988(3)$	$1480(3)$	$4752(3)$
$\mathrm{C}(42)$	$7822(4)$	$389(3)$	$5584(3)$
$\mathrm{C}(43)$	$8355(4)$	$-630(3)$	$5379(4)$
$\mathrm{C}(44)$	$9057(4)$	$-557(4)$	$4356(4)$
$\mathrm{C}(45)$	$9236(4)$	$525(4)$	$3534(3)$
$\mathrm{C}(46)$	$8705(3)$	$1557(3)$	$3723(3)$
$\mathrm{S}(1)$	$4207.1(8)$	$76.2(8)$	$8934.3(7)$
$\mathrm{C}(51)$	$2962(4)$	$1112(4)$	$8284(4)$
$\mathrm{C}(52)$	$2761(4)$	$645(4)$	$7484(4)$
$\mathrm{C}(53)$	$4028(4)$	$126(4)$	$7016(4)$
$\mathrm{C}(54)$	$4620(4)$	$-690(4)$	$7977(3)$
$\mathrm{S}(2)$	$7662.7(9)$	$-1853.3(8)$	$9215.2(8)$
$\mathrm{O}(1)$	$8788(3)$	$-2003(3)$	$9617(3)$
$\mathrm{O}(2)$	$6496(3)$	$-2048(3)$	$10031(3)$
$\mathrm{O}(3)$	$7553(3)$	$-829(3)$	$8243(2)$
$\mathrm{C}(1)$	$7884(5)$	$-3085(4)$	$8754(4)$
$\mathrm{F}(1)$	$8908(4)$	$-3017(3)$	$7965(3)$
$\mathrm{F}(2)$	$6889(4)$	$-3097(3)$	$8385(3)$
$\mathrm{F}(3)$	$8003(4)$	$-4100(2)$	$9557(3)$

Fig. 1 The cation $\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu \text {-mes }) \mathrm{Ag}(\text { tht })\right\}_{2}\right]^{2+}$ of complex 10 in the crystal. Hydrogen atoms are omitted for clarity
lengths are 2.4775(10) and 2.8392(11) \AA; the former is similar to that found in $\left[\left\{\mathrm{AuAg}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { tht })\right\}_{n}\right][2.454(4) \AA]^{21}$ in which the tht ligand is monodentate and the latter is longer than in $\left[\{\mathrm{Ag}(\mu-\mathrm{tht})(\mathrm{tht})\}_{n}\right]\left[\mathrm{BF}_{4}\right]_{n}(2.554,2.520 \AA)^{22}$ and $\left[\mathrm{NBu}_{4}\right]$ $\left[\mathrm{Pt}_{2} \mathrm{Ag}(\mu-\mathrm{tht})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]\left[2.778(2), 2.547(2) \AA{ }^{23}\right.$
The $\mathrm{Au}-\mathrm{Ag}$ distance, 2.8245 (6) \AA, indicates appreciable metal-metal bonding ${ }^{24,25}$ (sum of covalent radii for gold and silver $2.89 \AA$) and is shorter than in $\left[\left(\mathrm{AuPPh}_{3}\right)_{2}\{\mu\right.$ $\left.\left.\mathrm{C}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right\}\left\{\mu-\mathrm{Ag}\left(\mathrm{O}_{2} \mathrm{NO}\right)\left(\mathrm{OClO}_{3}\right)\right\}\right]^{26,27} \quad[2.926(1)$, $3.006(1) \AA]$, similar to those found in clusters such as $\left[\mathrm{Au}_{13} \mathrm{Ag}_{12} \mathrm{Cl}_{8}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{3}\right\}_{10}\right] \mathrm{PF}_{6}$ (average $2.883 \AA$), ${ }^{28}$ $\left[\mathrm{Pt}(\mathrm{CO})\left(\mathrm{AgNO}_{3}\right)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{8}\right]\left[\mathrm{NO}_{3}\right]_{2}$ (average $\left.2.8807 \AA\right)^{29}$ and slightly longer than those in $\left[\left\{\operatorname{AuAg}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { tht })\right\}_{n}\right]$ $[2.726(2), 2.718(2) \AA],\left[\left\{\mathrm{AuAg}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right\}_{n}\right][2.702(2)$, $\left.2.792(2) \AA]{ }^{21} \quad\left[\mathrm{Pt}(\mathrm{AgNO})_{3}\right)\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{8}\right]\left[\mathrm{NO}_{3}\right]_{2} \quad[2.786(5)$, $2.783(5), 2.714(5) \AA]^{29}$ or $\left[\mathrm{Au}_{2} \mathrm{Ag}_{2}\left(\mathrm{CH}_{2} \mathrm{PPh}_{3}\right)_{2}\left(\mathrm{OClO}_{3}\right)_{4}\right]$ $[2.783(1), 2.760(1) \AA] .^{30}$ The transannular Ag... Ag distance of $3.826 \AA$ is too long to allow appreciable bonding interactions.

Experimental

Instrumentation and general experimental techniques were as described earlier. ${ }^{31}$ The yields, C, H and N analyses, proton NMR and conductivity data are listed in Table 1. All the reactions were carried out at room temperature except that of [$\left.\mathrm{AuCl}\left(\mathrm{AsPh}_{3}\right)\right]$ with MgBr (mes).

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for compound 10

$\mathrm{Au}-\mathrm{C}(11)$	$2.086(3)$	$\mathrm{Au}-\mathrm{P}$	$2.2886(9)$
$\mathrm{Au}-\mathrm{Ag}$	$2.8245(6)$	$\mathrm{Ag}-\mathrm{C}(11)$	$2.326(3)$
$\mathrm{Ag}-\mathrm{S}(1)$	$2.4775(10)$	$\mathrm{Ag}-\mathrm{S}\left(1^{1}\right)$	$2.8392(11)$
$\mathrm{P}-\mathrm{C}(41)$	$1.815(4)$	$\mathrm{P}-\mathrm{C}(21)$	$1.819(4)$
$\mathrm{P}-\mathrm{C}(31)$	$1.822(4)$	$\mathrm{S}(1)-\mathrm{C}(54)$	$1.828(4)$
$\mathrm{S}(1)-\mathrm{C}(51)$	$1.834(4)$		
$\mathrm{C}(11)-\mathrm{Au}-\mathrm{P}$	$177.34(9)$	$\mathrm{C}(11)-\mathrm{Au}-\mathrm{Ag}$	$54.06(9)$
$\mathrm{P}-\mathrm{Au}-\mathrm{Ag}$	$128.60(3)$	$\mathrm{C}(11)-\mathrm{Ag}-\mathrm{S}(1)$	$159.95(8)$
$\mathrm{C}(11)-\mathrm{Ag}-\mathrm{Au}$	$46.54(8)$	$\mathrm{S}(1)-\mathrm{Ag}-\mathrm{Au}$	$120.91(3)$
$\mathrm{C}(11)-\mathrm{Ag}-\mathrm{S}\left(1^{1}\right)$	$106.02(9)$	$\mathrm{S}(1)-\mathrm{Ag-S}\left(1^{1}\right)$	$88.21(3)$
$\mathrm{Au}-\mathrm{Ag}-\mathrm{S}\left(1^{\mathrm{I}}\right)$	$150.83(2)$	$\mathrm{C}(41)-\mathrm{P}-\mathrm{C}(21)$	$105.1(2)$
$\mathrm{C}(41)-\mathrm{P}-\mathrm{C}(31)$	$103.9(2)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	$105.9(2)$
$\mathrm{C}(41)-\mathrm{P}-\mathrm{Au}$	$113.97(12)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{Au}$	$113.37(12)$
$\mathrm{C}(31)-\mathrm{P}-\mathrm{Au}$	$113.66(12)$	$\mathrm{C}(54)-\mathrm{S}(1)-\mathrm{C}(51)$	$94.6(2)$
$\mathrm{C}(54)-\mathrm{S}(1)-\mathrm{Ag}$	$111.58(13)$	$\mathrm{C}(51)-\mathrm{S}(1)-\mathrm{Ag}$	$111.0(2)$
$\mathrm{C}(54)-\mathrm{S}(1)-\mathrm{Ag}^{\mathrm{I}}$	$122.81(14)$	$\mathrm{C}(51)-\mathrm{S}(1)-\mathrm{Ag}$	$125.4(2)$
$\mathrm{Ag}-\mathrm{S}(1)-\mathrm{Ag}$	$91.79(3)$		
Symmetry	transformation		
$\mathrm{I}-x+1,-y,-z+2$.	to	generate equivalent	atoms:

Preparations.- $\left[\mathrm{Au}(\mathrm{mes})\left(\mathrm{AsPh}_{3}\right)\right]$ 1. To a solution of $\left[\mathrm{AuCl}\left(\mathrm{AsPh}_{3}\right)\right]^{32}(0.538 \mathrm{~g}, 1 \mathrm{mmol})$ in diethyl ether $\left(30 \mathrm{~cm}^{3}\right)$ was added a solution of $\mathrm{MgBr}(\mathrm{mes})(1.5 \mathrm{mmol})$ in tetrahydrofuran $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. The mixture was stirred for 2 h at this temperature and then a drop of water was added. The solution was evaporated to dryness and complex 1 was recrystallised from dichloromethane-hexane.
[Au (mes) L$]\left(\mathrm{L}=\mathrm{dppm} 2, \mathrm{PPh}_{3} 3\right.$ or $\left.\mathrm{PPh}_{2} \mathrm{Me} 4\right)$. To a solution of complex $1(0.094 \mathrm{~g}, 0.15 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was added dppm ($0.069 \mathrm{~g}, 0.18 \mathrm{mmol}$), $\mathrm{PPh}_{3}(0.039 \mathrm{~g}$, 0.15 mmol) or $\mathrm{PPh}_{2} \mathrm{Me}\left(0.029 \mathrm{~cm}^{3}, 0.15 \mathrm{mmol}\right)$. After stirring for 20 min the solvent was evaporated to $c a .5 \mathrm{~cm}^{3}$. Addition of hexane ($20 \mathrm{~cm}^{3}$) led to the precipitation of complexes $2-4$ as white solids.
$\mathrm{Q}[\mathrm{Au}($ mes $) \mathrm{X}] \quad\left[\mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}^{2}\right) \mathrm{Ph}_{3} 5 ; \mathrm{X}=\mathrm{Br}\right.$, $\left.\mathrm{Q}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} 6\right]$. To a dichloromethane solution ($25 \mathrm{~cm}^{3}$) of complex $1(0.187 \mathrm{~g}, 0.3 \mathrm{mmol})$ was added $\left[\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3}\right] \mathrm{Cl}$ $(0.117 \mathrm{~g}, 0.3 \mathrm{mmol})$ or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Br}(0.186 \mathrm{~g}, 0.3 \mathrm{mmol})$ and the mixture was stirred for 20 min . Partial concentration of the solution to $c a .5 \mathrm{~cm}^{3}$ and addition of diethyl ether gave complexes 5 and 6 as white solids.
$\mathrm{Q}\left[\mathrm{Au}(\right.$ mes $\left.) \mathrm{X}_{3}\right] \quad \mathrm{X}=\mathrm{Cl}, \mathrm{Q}=\mathrm{P}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Ph}_{3} 7 ; \mathrm{X}=\mathrm{Br}$, $\left.\mathrm{Q}=\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} 8\right]$. To a dichloromethane solution $\left(20 \mathrm{~cm}^{3}\right)$ of
complex 5 or $\mathbf{6}(0.106 \mathrm{~g}, 0.15 \mathrm{mmol}$ of $\mathbf{5} ; \mathbf{0 . 1 4 0} \mathrm{g}, 0.15 \mathrm{mmol}$ of $\mathbf{6})$ was added $\mathrm{Cl}_{2}\left(0.6 \mathrm{~cm}^{3}\right.$ of a solution $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ in $\left.\mathrm{CCl}_{4}\right)$ or $\mathrm{Br}_{2}\left(0.5 \mathrm{~cm}^{3}\right.$ of a solution $0.3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in $\left.\mathrm{CCl}_{4}\right)$, respectively. After stirring for 20 min the solution was evaporated to $c a .5$ cm^{3} and hexane ($20 \mathrm{~cm}^{3}$) added to precipitate complexes 7 and 8 as yellow and red solids, respectively.
$\left[\left\{\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mu \text {-mes }) \mathrm{AgL}\right\}_{n}\right]\left[\mathrm{SO}_{3} \mathrm{CF}_{3}\right]_{n}\left(\mathrm{~L}=\mathrm{PPh}_{3}, n=19\right.$; $\mathrm{L}=\mathrm{tht}, n=2 \mathbf{1 0})$. To a solution of complex $3(0.087 \mathrm{~g}, 0.15$ mmol) in dichloromethane ($20 \mathrm{~cm}^{3}$) was added 0.15 mmol of $\left[\mathrm{Ag}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right) \mathrm{L}\right]\left[\mathrm{L}=\mathrm{PPh}_{3}(0.078 \mathrm{~g})\right.$ or tht $\left.(0.052 \mathrm{~g})\right]$, prepared in a similar way to $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right) \mathrm{L}\right] .{ }^{33}$ The solution was stirred for 20 min in the dark and the solvent was evaporated to ca. $5 \mathrm{~cm}^{3}$. Addition of diethyl ether ($20 \mathrm{~cm}^{3}$) precipitated complexes $\mathbf{9}$ and $\mathbf{1 0}$ as white solids.

Crystal Structure Determination of Compound 10.-Crystal data. $\mathrm{C}_{64} \mathrm{H}_{68} \mathrm{Ag}_{2} \mathrm{Au}_{2} \mathrm{~F}_{6} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{4}, M=1847.04$, triclinic, space group $P \mathrm{~T}, a=10.946(2), b=12.435(2), c=13.701(2) \AA, \alpha=$ 66.37(1), $\beta=74.23(1), \gamma=78.73(1)^{\circ}, U=1636.3(5) \AA^{3}, Z=$ $1, D_{\mathrm{c}}=1.874 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA, \mu=5.3$ $\mathrm{mm}^{-1}, F(000)=900, T=-100^{\circ} \mathrm{C}$.

Data collection and reduction. A colourless prism ca. $0.75 \times 0.45 \times 0.4 \mathrm{~mm}$ was mounted in inert oil (type RS3000, donated by Fa. Riedel de Haën). 8818 Intensities were measured on a Siemens R 3 diffractometer to $2 \theta_{\text {max }} 55^{\circ}$, of which after absorption corrections (ψ scans) 6401 were unique ($R_{\text {int }} 0.020$).
Structure solution and refinement. The structure was solved by the heavy-atom method and refined anisotropically on F^{2} (program SHELXL 93). ${ }^{34}$ Hydrogen atoms were included using a riding model. The final $w R\left(F^{2}\right)$ was 0.061 , with conventional $R(F) 0.024$ for 392 parameters and 317 restraints; weighting scheme of the form $w^{-1}=\sigma^{2}\left(F^{2}\right)+(a P)^{2}+b P$, where $P=$ $\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$ and a and b are constants adjusted by the program; ${ }_{S} 1.02$, maximum $\Delta / \sigma 0.03$, maximum $\Delta \rho 0.96$ e \AA^{-3}. Final atomic coordinates are given in Table 2, with derived bond lengths and angles in Table 3.
Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Fonds der Chemischen Industrie and the Dirección General de Investigación Científica y Técnica (no. PB91-0122) for financial support, Mr. A. Weinkauf for technical assistance, and the Universidad Pública de Navarra for a grant (to M. C.)

References

1 E. M. Meyer, S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, Organometallics, 1989, 8, 1067

2 R. Usón, A. Laguna, E. J. Fernández, M. E. Ruiz, P. G. Jones and J. Lautner, J. Chem. Soc., Dalton Trans., 1989, 2127.

3 V. Wing-Wah Yam, S. Wing-Kin Choi, T. F. Lai and W. K. Lee, J. Chem. Soc., Dalton Trans., 1993, 1001.

4 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1128; P. Berno, S. Stella, C. Floriani,
A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Dalton Trans., 1990, 2669.

5 G. Van Koten and J. G. Noltes, in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1981, ch. 14, p. 709 and refs. therein.
6 T. Tsuda, T. Yazawa, K. Watanabe, T. Fujii and T. Saegusa, J. Organomet. Chem., 1981, 46, 192.

7 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1087.
8 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1156.
9 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1304.
10 H. L. Aalten, G. Van Koten, K. Goubitz and C. H. Stam, J. Chem. Soc., Chem. Commun., 1985, 1252.
11 H. L. Aalten, G. Van Koten, K. Goubitz and C. H. Stam, Organometallics, 1989, 8, 2293.
12 M. Hakansson, M. Örtendahl, S. Jagner, M. P. Sigalas and O. Eisenstein, Inorg. Chem., 1993, 32, 2018.

13 D. M. Knotter, W. J. J. Smeets, A. L. Spek and G. Van Koten, J. Am. Chem. Soc., 1990, 112, 5895.
14 J. E. Casas, Tesis de Licenciatura, Zaragoza, 1993.
15 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
16 H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G. Huttner, Chem. Ber., 1977, 110, 2751, 2758; H. Schmidbaur, F. E. Wagner and A. Wohlleben-Hammer, Chem. Ber., 1979, 112, 496; H. Schmidbaur and P. Jandik, Inorg. Chim. Acta, 1983, 74, 97; R. Usón, A. Laguna and J. Vicente, Rev. Acad. Cienc. Exactas, Fis-Quim. Nat. Zaragoza, 1976, 31, 211
17 D. H. Johnston and D. F. Shriver, Inorg. Chem., 1993, 32, 1045.
18 R. Usón, A. Laguna, E. J. Fernández, A. Mendia and P. G. Jones, J. Organomet. Chem., 1988, 350, 129.

19 P. E. Riley and R. E. Davis, J. Organomet. Chem., 1980, 192, 283.
20 R. Usón, A. Laguna, M. Laguna, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1986, 669.

21 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 285.

22 B. Norenand and Å. Oskarsson, Acta Chem. Scand., Ser. A, 1984, 38, 478.

23 R. Usón, J. Forniés, L. Falvello, M. Tomás, J. M. Casas and A. Martín, Inorg. Chem., 1993, 32, 5212.

24 O. M. Abu-Salah and C. B. Knobler, J. Organomet. Chem., 1986, 302, C10.
25 B. K. Teo and K. Keating, J. Am. Chem. Soc., 1984, 106, 2224.
26 J. Vicente, M. T. Chicote, M. C. Lagunas and P. G. Jones, J. Chem. Soc., Chem. Commun., 1991, 1730.
27 J. Vicente, M. T. Chicote and M. C. Lagunas, Inorg. Chem., 1993, 32, 3748.

28 B. K. Teo and H. Zhang, Angew. Chem., Int. Ed. Engl., 1992, 31, 445.
29 R. P. F. Kanters, P. P. J. Schlebos, J. J. Bour, W. P. Bosman, J. M. M. Smits, P. T. Beurskens and J. J. Steggerda, Inorg. Chem., 1990, 29, 324.
30 R. Usón, A. Laguna, M. Laguna, A. Uson, P. G. Jones and C. F. Erdbrügger, Organometallics, 1987, 6, 1778.

31 A. Laguna, M. Laguna, J. Jiménez, F. Lahoz and E. Olmos, J. Organomet. Chem., 1992, 435, 235.

32 A. D. Westland, Can. J. Chem., 1969, 47, 4135.
33 R. Usón, A. Laguna, M. Laguna, J. Jiménez and P. G. Jones, J. Chem. Soc., Dalton Trans., 1991, 1361.

34 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.

[^0]: \dagger Supplementary data available: Further details of the structure determination may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH , D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the reference number CSD 400956, the names of the authors and the journal citation.

