Mesitylgold Complexes: Synthesis and Reactivity; Crystal Structure of $[\{(Ph_3P)Au(\mu-mes)Ag(tht)\}_2][SO_3CF_3]_2$ (mes = mesityl, tht = tetrahydrothiophene) †

María Contel,^a Josefina Jiménez,^b Peter G. Jones,^c Antonio Laguna *,^b and Mariano Laguna ^b

a Departamento de Química, Universidad Pública de Navarra, E-31006 Pamplona, Spain

The complex [AuCI(AsPh₃)] reacted with MgBr(mes) (mes = mesityl) to give the corresponding gold(I) derivative [Au(mes)(AsPh₃)], which undergoes substitution reactions with neutral ligands to give the neutral complexes [Au(mes)L] (L = Ph₂PCH₂PPh₂, PPh₃ or PPh₂Me) or with QX to afford anionic complexes Q[Au(mes)X] [X = Cl, Q = P(CH₂Ph)Ph₃; X = Br, Q = N(PPh₃)₂]. The latter reacted with X_2 (X = Cl or Br) to give gold(III) complexes, Q[Au(mes)X₃] [X = Cl, Q = P(CH₂Ph)Ph₃; X = Br, Q = N(PPh₃)₂]. The reaction of [Au(mes)(PPh₃)] with [Ag(OSO₂CF₃)L] [L = PPh₃ or tetrahydrothiophene (tht)] afforded [{(Ph₃P)Au(μ -mes)AgL}_n][SO₃CF₃]_n (L = PPh₃, n = 1; L = tht, n = 2). The structure of [{(Ph₃P)Au(μ -mes)Ag(tht)}₂][SO₃CF₃]₂ has been determined by a single-crystal X-ray diffraction study, which shows an Au–Ag distance of 2.8245(6) Å.

Heteroleptic gold(1) compounds containing the mesityl group $(2,4,6\text{-Me}_3C_6H_2, \text{ mes})$ as a simple (terminal) ligand have been obtained by addition of neutral or anionic ligands to solutions of $[\{Au(mes)\}_5]^{1,2}$ or by metathetical reactions between the chlorogold(1) precursor and $[\{Ag(mes)\}_5]^{.2}$ The first reaction type does not occur for N-, As- or S-donors, such as pyridine, AsPh₃ or tetrahydrothiophene (tht), under similar conditions.² In the chemistry of gold(III) only the complexes $[Au(mes)_2(L-L)]ClO_4(L-L=2,2'-bipyridine, phenanthroline or 4,7-diphenylphenanthroline) have been described.³$

It is also known that mesityl can act as a bridge between two metal centres, affording a three-centre two-electron bond.⁴ In the chemistry of Group 11 metals this bridging mode has often been observed for homoleptic $(MR)_n$ (R = aryl) compounds.^{1,5-9}

Mesityl is also found to function as a bridge in various heteroleptic copper compounds, for example $[Cu_4(mes)_4-(tht)_2]^{1.8}$ $[Cu_3(mes)(\mu\text{-}O_2CC_6H_4X\text{-}2)_2]$ $(X=H,\ Cl\ or\ Br),^{10,11}$ $[Cu_{10}O_2(mes)_6]^{12}$ and $[\{Cu(mes)\}_4\{\mu\text{-}SC_6H_4[CH-(Me)NMe_2]-2\}_2\{MgSC_6H_4[CH(Me)NMe_2]-2\}_2]^{13}$ However, no silver derivatives of this kind have been reported and only one of gold, 2 $[(Ph_3P)Au(\mu\text{-}mes)Au(PPh_3)]ClO_4$, which was characterised solely by spectroscopic methods.

In this paper we describe the synthesis of neutral and anionic mononuclear gold complexes containing one simple (terminal) mesityl ligand, [Au(mes)L] [L = AsPh₃ 1, dppm (Ph₂PCH₂PPh₂) 2, PPh₃ 3 or PPh₂Me 4], Q[Au(mes)X] [X = Cl, Q = P(CH₂Ph)Ph₃ 5; X = Br, Q = N(PPh₃)₂ 6] and Q[Au(mes)X₃] [X = Cl, Q = P(CH₂Ph)Ph₃ 7; X = Br, Q = N(PPh₃)₂ 8], and heterobinuclear gold(i)-silver(i) complexes containing one mesityl acting as a bridge between the two

Results and Discussion

Mononuclear Derivatives.—The reaction in diethyl ether of [AuCl(AsPh₃)] with MgBr(mes) in molar ratio 1:1.5 at 0 °C leads to the formation of [Au(mes)(AsPh₃)] 1 [equation (1)]. In

$$[AuCl(AsPh3)] + MgBr(mes) \longrightarrow [Au(mes)(AsPh3)] + MgBrCl (1)$$

the chemistry of gold(i) the compound $AsPh_3$ is weakly co-ordinating and can therefore be readily displaced by neutral and anionic ligands. The complex $[Au(mes)(AsPh_3)]$ 1 behaves similarly and reacts with dppm, PPh_3 or PPh_2Me , in 1:1 ratio, to give the neutral complexes [Au(mes)L] (L = dppm 2, PPh_3 3 or PPh_2Me 4) or with salts QX to give anionic complexes Q[Au(mes)X] $[X = Cl, Q = P(CH_2Ph)Ph_3$ 5; $X = Br, Q = N(PPh_3)_2$ 6] [see equations (2) and (3)].

$$[Au(mes)(AsPh_3)] + L \longrightarrow [Au(mes)L] + AsPh_3$$
 (2)

$$[Au(mes)(AsPh_3)] + QX \longrightarrow Q[Au(mes)X] + AsPh_3 (3)$$

However, the reaction of 1 with dppe (Ph₂PCH₂CH₂PPh₂), even in molar ratio 1:1.5, leads to a mixture that contains dinuclear [(mes)Au(dppe)Au(mes)].¹ Complexes 3–5 have previously been prepared by other synthetic procedures.

The addition of Cl_2 or Br_2 to solutions of $[P(CH_2Ph)-Ph_3][AuCl(mes)]$ 5 or $[N(PPh_3)_2][AuBr(mes)]$ 6, in 1:1 ratio, gives the anionic gold(III) complexes $Q[Au(mes)X_3][X = Cl, Q = P(CH_2Ph)Ph_3 7; X = Br, Q = N(PPh_3)_2 8].$

All complexes are air- and moisture-stable solids at room temperature and are white (1-6), yellow (7) or red (8). Acetone solutions of 1-4 are non-conducting and those of 5-8 display conductivities typical of 1:1 electrolytes 15 (Table 1). The IR spectra show absorptions corresponding to the mesityl ligand at

^b Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza CSIC, E-50009 Zaragoza, Spain

^c Institut für Anorganische und Analytische Chemie der Technischen Universität, Postfach 3329, D-38023 Braunschweig, Germany

metal centres, $[(Ph_3P)Au(\mu\text{-mes})Ag(PPh_3)][SO_3CF_3]$ 9 and $[\{(Ph_3P)Au(\mu\text{-mes})Ag(tht)\}_2][SO_3CF_3]_2$ 10. The structure of 10 has been established by X-ray studies.

[†] Supplementary data available: Further details of the structure determination may be obtained from the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, Germany, on quoting the reference number CSD 400956, the names of the authors and the journal citation.

Table 1 Analytical and spectroscopic data for products

	371.14	Analysis (%) a		, ha i	1 H NMR, c δ (mes)			
Complex	Yield (%)	C	H	N	$\Lambda_{\mathbf{M}}^{}b}/\Omega^{-1}$ cm ² mol ⁻¹	o-CH ₃	p-CH ₃	m-H
1 [Au(mes)(AsPh ₃)]	87	51.9 (52.1)	4.05 (4.2)	_	1	2.59 (s)	2.25 (s)	6.91 (s)
2 [Au(mes)(dppm)]	91	58.35	4.8	_	1	2.53 (s)	2.27 (s)	6.90 (s)
3 [Au(mes)(PPh ₃)]	80	(58.3) 55.70	(4.75) 4.6		7	2.59 (s)	2.26 (s)	6.92 (s)
4 [Au(mes)(PPh ₂ Me)]	51	(56.05) 51.15	(4.55) 4.5	_	1	2.60 (s)	2.28 (s)	$6.94 (s)^d$
5 [P(CH ₂ Ph)Ph ₃][AuCl(mes)]	76	(51.2) 58.3	(4.7) 4.8		118	2.31 (s)	2.16 (s)	6.69 (s) ^e
6 [N(PPh ₃),][AuBr(mes)]	80	(57.9) 57.65	(4.7) 4.4	 1.55	90	2.48 (s)	2.14 (s)	6.71 (s)
7 [P(CH ₂ Ph)Ph ₃][AuCl ₃ (mes)]	70	(57.8) 52.3	(4.4) 4.0	(1.5)	124	2.44 (s)	2.19 (s)	6.57 (s) e
8 [N(PPh ₃) ₂][AuBr ₃ (mes)]		(52.65)	(4.3)			, ,		` '
2 (0/222	85	49.1 (49.4)	3.6 (3.8)	1.4 (1.3)	127	2.48 (s)	2.19 (s)	6.58 (s)
9 [(Ph ₃ P)Au(μ -mes)Ag(PPh ₃)][SO ₃ CF ₃]	70	49.9 (50.3)	3.6 (3.7)	_	116	2.45 (s)	2.26 (s)	6.95 (s)
10 [{(Ph ₃ P)Au(μ -mes)Ag(tht)} ₂][SO ₃ CF ₃] ₂	72	41.3 (41.6)	3.75 (3.7)	_	103	2.54 (s)	2.28 (s)	6.99 (s)

^a Calculated values are given in parentheses. ^b In acetone (5 × 10⁻⁴ mol dm⁻³). ^c In CDCl₃, values in ppm. ^d δ(CH₃ of PPh₂Me) 2.12 (d) [$^2J_{PH} = 6.8 \text{ Hz}$]. ^e δ[CH₂ of P(CH₂Ph)Ph₃ +]: 5.07 (d, $^2J_{PH}$ 14.5) (5); 5.01 (d, $^2J_{PH}$ 13.9 Hz) (7).

1582, 840 (1), 1585, 849 (2), 1587, 840 (3), 1578, 851 (4), 1589, 852 (5), 1589, 845 (6), 1589, 852, 837 (7) or at 1590, 879, 849 cm⁻¹ (8). Furthermore, complexes 5 and 7 show bands at 300m (5) and at 332m and 362m cm⁻¹ (7), assigned to $\nu(Au-Cl)$. For complexes 6 and 8 the $\nu(Au-Br)$ vibrations have not been observed, probably because they lie below 200 cm⁻¹, which is the limit of our spectrophotometer.

Their ¹H NMR spectra are as expected (Table 1) showing three singlets for the mesityl ligand. A multiplet at δ 3.24 is observed for the methylene protons of dppm in 2. The ³¹P-{¹H} NMR spectra show two doublets at δ 35.2 and -23.4 for dppm in 2 (² $J_{PP} = 116$ Hz) and a singlet for PR₃ in 3 and 4 (δ 44.9 and 30.9). For the anionic complexes, singlets assignable to the [P(CH₂Ph)Ph₃] ⁺ [δ 23.5 (5 and 7)] and [N(PPh₃)₂] ⁺ [δ 21.7 (6 and 8)] cations are also observed.

The mass spectra (positive-ion FAB for neutral complexes or negative ion FAB for anionic derivatives) show the parent ion for complexes 1 [m/z = 622 (11)], 3 [578 (28)], 5 [351 (25)], 6 [396 (7)], 7 [423 (100)] and 8 [556 (70%)].

Heteropolynuclear Derivatives of Gold and Silver.—The treatment of [Au(mes)(PPh₃)] with [Ag(OSO₂CF₃)L] (L = PPh₃ or tht), in molar ratio 1:1, in dichloromethane leads to the formation of complexes [$\{(Ph_3P)Au(\mu-mes)AgL\}_n\}$ [SO₃-CF₃]_n (L = PPh₃, n = 1 9; L = tht, n = 2 10) [equation (4)].

$$[Au(mes)(PPh_3)] + [Ag(OSO_2CF_3)L] \longrightarrow 1/n[\{(Ph_3P)Au(mes)AgL\}_n][SO_3CF_3]_n \quad (4)$$

These complexes are white solids, air- and moisture-stable at room temperature and their solutions in acetone show conductivities of ca. 100 ohm⁻¹ cm² mol⁻¹ (Table 1), corresponding to 1:1 electrolytes.¹⁵ Their IR spectra show absorptions at 1265vs, 1240s, 1222m and 1140m (9) and 1260vs (br), 1223s and 1160s cm⁻¹ (10) assignable to the triflate anion, ¹⁷ and absorptions corresponding to the mesityl ligand at 1597m, 846w (9) or at 1597m, 856w cm⁻¹ (10). These latter bands are shifted to higher energy than in the starting product, as was observed for the complex [(Ph₃P)Au(μ-mes)Au(PPh₃)]ClO₄.²

Solutions of these complexes in chloroform show a singlet

resonance in the $^{31}P-\{^{1}H\}$ NMR spectra at δ 43.9 (9), 43.5 (10) corresponding to the phosphorus atoms bonded to gold. In complex 9 the phosphorus atom bonded to silver appears at δ 10 as a broad band at room temperature. This signal splits at -55 °C into a doublet of doublets centred at δ 11.2 $[J(^{107}Ag-P)=416,\ J(^{109}Ag-P)=473\ Hz]$. The ^{1}H NMR spectra show signals from the mesityl group (Table 1) and, for complex 10, two multiplets at δ 2.95 and 1.91 assignable to the tetrahydrothiophene ligand are also observed. The mass spectra (FAB+) show the parent ion only in the case of 9, m/z=949 (23%).

The structure of complex 10 has been determined by single-crystal X-ray diffraction, which shows a dimer, with the tetrahydrothiophene ligand acting as bridge between the two silver atoms. The structure of the cation is shown in Fig. 1; it possesses a crystallographic centre of inversion that relates the two $[(Ph_3P)Au(\mu-mes)Ag(tht)]^+$ units.

As observed in other complexes with bridging mesityl ligands, 1,7-9 the planar mesitylene groups are nearly perpendicular to the plane through the atoms Au-Ag-C(11), the dihedral angles being 88°. The gold atoms are two-coordinate, with P-Au-C angles of 177.34(9)°, close to the linear stereochemistry preferred by Au^I. This contrasts with the angles observed in $[{Au(mes)}_5][148.3(7)-152.9(8)^o]^{1,9}$ which show a deviation from linear stereochemistry attributable to Au^I-Au^I bonding interactions. The midpoint of the mesityl ring is approximately collinear with the ipso-carbon and the gold atom (170°), whereas the angle to the silver atom is 111°. The Au-C distances, 2.086(3) Å, are similar to those found in $[\{Au(mes)\}_5]$ [2.13(2)–2.20(2) Å] ^{1,9} and other compounds where two gold(I) atoms are bridged by an aromatic carbon such as $[\{Au(PPh_3)\}_2(\mu-C_6F_3H_2)]ClO_4$ [2.162(8), 2.160(9) Å]. 18 The Au-C bond distances seem to be substantially independent of the bonding mode displayed by the C-donor ligands. 1,9 The Au-P bond distances are 2.2886(9) Å, which are similar to those observed in [Au{2,6-(MeO)₂C₆H₃}(PPh₃)] $(2.284 \,\text{Å})^{19}$ and $[\text{Au}(\text{C}_6\text{F}_5)(\text{PPh}_2\text{CHPPh}_2\text{Me})][2.287(2) \,\text{Å}]$.

The silver atom is bonded to a mesityl ligand and two sulfur atoms from tht molecules in a distorted-trigonal environment. The Ag-C bond distances [2.326(3) Å] are slightly longer than in [{Ag(mes)}₄] [average 2.20 Å].^{1,7} The Ag-S bond

Table 2	Atomic coordinates	$\times 10^{4}$) for compound 10
---------	--------------------	-----------------	-------------------

Atom	x	y	z	Atom	x	y	z
Au	7 208.1(1)	2 682.0(1)	6 743.2(1)	C(35)	3 393(4)	3 624(4)	5 155(4)
Ag	5 995.7(3)	1 124.4(3)	8 784.1(2)	C(36)	4 605(4)	3 511(4)	5 330(3)
P	7 216.8(8)	2 787.2(8)	5 035.0(7)	C(41)	7 988(3)	1 480(3)	4 752(3)
C(11)	7 258(3)	2 648(3)	8 266(3)	C(42)	7 822(4)	389(3)	5 584(3)
C(12)	8 276(3)	1 999(3)	8 778(3)	C(43)	8 355(4)	-630(3)	5 379(4)
C(13)	8 417(3)	2 125(3)	9 700(3)	C(44)	9 057(4)	-557(4)	4 356(4)
C(14)	7 603(4)	2 930(3)	10 110(3)	C(45)	9 236(4)	525(4)	3 534(3)
C(15)	6 609(4)	3 565(3)	9 608(3)	C(46)	8 705(3)	1 557(3)	3 723(3)
C(16)	6 415(3)	3 437(3)	8 707(3)	S(1)	4 207.1(8)	76.2(8)	8 934.3(7)
C(17)	9 258(4)	1 181(4)	8 320(4)	C(51)	2 962(4)	1 112(4)	8 284(4)
C(18)	7 806(5)	3 090(5)	11 090(4)	C(52)	2 761(4)	645(4)	7 484(4)
C(19)	5 312(4)	4 169(4)	8 198(3)	C(53)	4 028(4)	126(4)	7 016(4)
C(21)	8 036(3)	4 003(3)	3 947(3)	C(54)	4 620(4)	-690(4)	7 977(3)
C(22)	9 179(4)	4 231(4)	4 064(4)	S(2)	7 662.7(9)	-1853.3(8)	9 215.2(8)
C(23)	9 840(4)	5 131(4)	3 246(4)	O(1)	8 788(3)	-2003(3)	9 617(3)
C(24)	9 374(5)	5 818(4)	2 317(4)	O(2)	6 496(3)	-2048(3)	10 031(3)
C(25)	8 251(5)	5 600(4)	2 214(4)	O(3)	7 553(3)	-829(3)	8 243(2)
C(26)	7 580(4)	4 693(3)	3 020(3)	C(1)	7 884(5)	-3085(4)	8 754(4)
C(31)	5 628(3)	2 960(3)	4 779(3)	F (1)	8 908(4)	-3017(3)	7 965(3)
C(32)	5 399(4)	2 529(4)	4 060(3)	F(2)	6 889(4)	-3097(3)	8 385(3)
C(33)	4 192(4)	2 639(4)	3 889(4)	F(3)	8 003(4)	$-4\ 100(2)$	9 557(3)
C(34)	3 186(4)	3 195(4)	4 432(4)				

Fig. 1 The cation $[\{(Ph_3P)Au(\mu\text{-mes})Ag(tht)\}_2]^{2^+}$ of complex 10 in the crystal. Hydrogen atoms are omitted for clarity

lengths are 2.4775(10) and 2.8392(11) Å; the former is similar to that found in $[\{AuAg(C_6F_5)_2(tht)\}_n]$ [2.454(4) Å] 21 in which the tht ligand is monodentate and the latter is longer than in $[\{Ag(\mu\text{-tht})(tht)\}_n][BF_4]_n$ (2.554, 2.520 Å) 22 and [NBu₄]-[Pt₂Ag($\mu\text{-tht})_2(C_6F_5)_6$] [2.778(2), 2.547(2) Å]. 23

The Au-Ag distance, 2.8245(6) Å, indicates appreciable metal-metal bonding 24,25 (sum of covalent radii for gold and silver 2.89 Å) and is shorter than in $[(AuPPh_3)_2\{\mu-C(PPh_3)(C_5H_4N)\}\{\mu-Ag(O_2NO)(OClO_3)\}]^{26,27}$ [2.926(1), 3.006(1) Å], similar to those found in clusters such as $[Au_1Ag_12Cl_8\{P(C_6H_4Me-p)_3\}_{10}]PF_6$ (average 2.883 Å), $^{28}[Pt(CO)(AgNO_3)\{Au(PPh_3)\}_8][NO_3]_2$ (average 2.8807 Å) 29 and slightly longer than those in $[\{AuAg(C_6F_5)_2(tht)\}_n]$ [2.726(2), 2.718(2) Å], $[\{AuAg(C_6F_5)_2(C_6H_6)\}_n]$ [2.702(2), 2.792(2) Å], $^{21}[Pt(AgNO_3)\{Au(PPh_3)\}_8][NO_3]_2$ [2.786(5), 2.783(5), 2.714(5) Å] 29 or $[Au_2Ag_2(CH_2PPh_3)_2(OClO_3)_4]$ [2.783(1), 2.760(1) Å]. 30 The transannular $Ag \cdot \cdot \cdot Ag$ distance of 3.826 Å is too long to allow appreciable bonding interactions.

Experimental

Instrumentation and general experimental techniques were as described earlier.³¹ The yields, C, H and N analyses, proton NMR and conductivity data are listed in Table 1. All the reactions were carried out at room temperature except that of [AuCl(AsPh₃)] with MgBr(mes).

Table 3 Selected bond lengths (Å) and angles (°) for compound 10

Au-C(11)	2.086(3)	Au-P	2.2886(9)
Au-Ag	2.8245(6)	Ag-C(11)	2.326(3)
Ag-S(1)	2.4775(10)	$Ag-S(1^{1})$	2.8392(11)
P-C(41)	1.815(4)	P-C(21)	1.819(4)
P-C(31)	1.822(4)	S(1)-C(54)	1.828(4)
S(1)-C(51)	1.834(4)		
C(11)-Au-P	177.34(9)	C(11)-Au-Ag	54.06(9)
P-Au-Ag	128.60(3)	C(11)-Ag- $S(1)$	159.95(8)
C(11)-Ag-Au	46.54(8)	S(1)-Ag-Au	120.91(3)
$C(11)$ -Ag- $S(1^{1})$	106.02(9)	$S(1)$ -Ag- $S(1^{I})$	88.21(3)
$Au-Ag-S(1^{I})$	150.83(2)	C(41)-P-C(21)	105.1(2)
C(41)-P-C(31)	103.9(2)	C(21)-P-C(31)	105.9(2)
C(41)-P-Au	113.97(12)	C(21)-P-Au	113.37(12)
C(31)-P-Au	113.66(12)	C(54)-S(1)-C(51)	94.6(2)
C(54)-S(1)-Ag	111.58(13)	C(51)-S(1)-Ag	111.0(2)
$C(54)-S(1)-Ag^{I}$	122.81(14)	$C(51)-S(1)-Ag^{1}$	125.4(2)
$Ag-S(1)-Ag^{I}$	91.79(3)		

Symmetry transformation used to generate equivalent atoms: I-x+1, -y, -z+2.

Preparations.—[Au(mes)(AsPh₃)] 1. To a solution of [AuCl(AsPh₃)] ³² (0.538 g, 1 mmol) in diethyl ether (30 cm³) was added a solution of MgBr(mes) (1.5 mmol) in tetrahydrofuran (2 cm³) at 0 °C under nitrogen. The mixture was stirred for 2 h at this temperature and then a drop of water was added. The solution was evaporated to dryness and complex 1 was recrystallised from dichloromethane—hexane.

[Au(mes)L] (L = dppm 2, PPh₃ 3 or PPh₂Me 4). To a solution of complex 1 (0.094 g, 0.15 mmol) in dichloromethane (20 cm³) was added dppm (0.069 g, 0.18 mmol), PPh₃ (0.039 g, 0.15 mmol) or PPh₂Me (0.029 cm³, 0.15 mmol). After stirring for 20 min the solvent was evaporated to ca. 5 cm³. Addition of hexane (20 cm³) led to the precipitation of complexes 2-4 as white solids.

Q[Au(mes)X] [X = Cl, Q = P(CH₂Ph)Ph₃ 5; X = Br, Q = N(PPh₃)₂ 6]. To a dichloromethane solution (25 cm³) of complex 1 (0.187 g, 0.3 mmol) was added [P(CH₂Ph)Ph₃]Cl (0.117 g, 0.3 mmol) or [N(PPh₃)₂]Br (0.186 g, 0.3 mmol) and the mixture was stirred for 20 min. Partial concentration of the solution to ca. 5 cm³ and addition of diethyl ether gave complexes 5 and 6 as white solids.

 $Q[Au(mes)X_3]$ [X = Cl, Q = P(CH₂Ph)Ph₃ 7; X = Br, Q = N(PPh₃)₂ 8]. To a dichloromethane solution (20 cm³) of

complex 5 or 6 (0.106 g, 0.15 mmol of 5; 0.140 g, 0.15 mmol of 6) was added Cl_2 (0.6 cm³ of a solution 0.25 mol dm⁻³ in CCl_4) or Br_2 (0.5 cm³ of a solution 0.3 mol dm⁻³ in CCl_4), respectively. After stirring for 20 min the solution was evaporated to ca. 5 cm³ and hexane (20 cm³) added to precipitate complexes 7 and 8 as yellow and red solids, respectively.

[{(Ph₃P)Au(μ -mes)AgL}_n][SO₃CF₃]_n (L = PPh₃, n = 1 9; L = tht, n = 2 10). To a solution of complex 3 (0.087 g, 0.15 mmol) in dichloromethane (20 cm³) was added 0.15 mmol of [Ag(OSO₂CF₃)L] [L = PPh₃ (0.078 g) or tht (0.052 g)], prepared in a similar way to [Ag(OClO₃)L].³³ The solution was stirred for 20 min in the dark and the solvent was evaporated to ca. 5 cm³. Addition of diethyl ether (20 cm³) precipitated complexes 9 and 10 as white solids.

Crystal Structure Determination of Compound 10.—Crystal data. $C_{64}H_{68}Ag_2Au_2F_6O_6P_2S_4$, M=1847.04, triclinic, space group PI, a=10.946(2), b=12.435(2), c=13.701(2) Å, $\alpha=66.37(1)$, $\beta=74.23(1)$, $\gamma=78.73(1)^\circ$, U=1636.3(5) Å³, Z=1, $D_c=1.874$ Mg m⁻³, $\lambda(\text{Mo-K}\alpha)=0.710\,73$ Å, $\mu=5.3$ mm⁻¹, F(000)=900, $T=-100\,^\circ\text{C}$.

Data collection and reduction. A colourless prism ca. $0.75 \times 0.45 \times 0.4$ mm was mounted in inert oil (type RS3000, donated by Fa. Riedel de Haën). 8818 Intensities were measured on a Siemens R3 diffractometer to $2\theta_{\text{max}}$ 55°, of which after absorption corrections (ψ scans) 6401 were unique (R_{int} 0.020).

Structure solution and refinement. The structure was solved by the heavy-atom method and refined anisotropically on F^2 (program SHELXL 93). ³⁴ Hydrogen atoms were included using a riding model. The final $wR(F^2)$ was 0.061, with conventional R(F) 0.024 for 392 parameters and 317 restraints; weighting scheme of the form $w^{-1} = \sigma^2(F^2) + (aP)^2 + bP$, where $P = (F_o^2 + 2F_c^2)/3$ and a and b are constants adjusted by the program; S 1.02, maximum Δ/σ 0.03, maximum $\Delta\rho$ 0.96 e Å⁻³. Final atomic coordinates are given in Table 2, with derived bond lengths and angles in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Fonds der Chemischen Industrie and the Dirección General de Investigación Científica y Técnica (no. PB91-0122) for financial support, Mr. A. Weinkauf for technical assistance, and the Universidad Pública de Navarra for a grant (to M. C.).

References

- 1 E. M. Meyer, S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, *Organometallics*, 1989, **8**, 1067.
- 2 R. Usón, A. Laguna, E. J. Fernández, M. E. Ruiz, P. G. Jones and J. Lautner, *J. Chem. Soc.*, *Dalton Trans.*, 1989, 2127.
- 3 V. Wing-Wah Yam, S. Wing-Kin Choi, T. F. Lai and W. K. Lee, J. Chem. Soc., Dalton Trans., 1993, 1001.
- 4 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1128; P. Berno, S. Stella, C. Floriani,

- A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Dalton Trans., 1990, 2669.
- 5 G. Van Koten and J. G. Noltes, in *Comprehensive Organometallic Chemistry*, eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford, 1981, ch. 14, p. 709 and refs. therein.
- 6 T. Tsuda, T. Yazawa, K. Watanabe, T. Fujii and T. Saegusa, J. Organomet. Chem., 1981, 46, 192.
- 7 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, *J. Chem. Soc.*, *Chem. Commun.*, 1983, 1087.
- 8 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1156.
- 9 S. Gambarotta, C. Floriani, A. Chiesi-Villa and C. Guastini, J. Chem. Soc., Chem. Commun., 1983, 1304.
- 10 H. L. Aalten, G. Van Koten, K. Goubitz and C. H. Stam, J. Chem. Soc., Chem. Commun., 1985, 1252.
- 11 H. L. Aalten, G. Van Koten, K. Goubitz and C. H. Stam, Organometallics, 1989, 8, 2293.
- 12 M. Hakansson, M. Örtendahl, S. Jagner, M. P. Sigalas and O. Eisenstein, *Inorg. Chem.*, 1993, 32, 2018.
- 13 D. M. Knotter, W. J. J. Smeets, A. L. Spek and G. Van Koten, J. Am. Chem. Soc., 1990, 112, 5895.
- 14 J. E. Casas, Tesis de Licenciatura, Zaragoza, 1993.
- 15 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 16 H. Schmidbaur, A. Wohlleben, U. Schubert, A. Frank and G. Huttner, Chem. Ber., 1977, 110, 2751, 2758; H. Schmidbaur, F. E. Wagner and A. Wohlleben-Hammer, Chem. Ber., 1979, 112, 496; H. Schmidbaur and P. Jandik, Inorg. Chim. Acta, 1983, 74, 97; R. Usón, A. Laguna and J. Vicente, Rev. Acad. Cienc. Exactas, Fis-Quim. Nat. Zaragoza, 1976, 31, 211.
- 17 D. H. Johnston and D. F. Shriver, Inorg. Chem., 1993, 32, 1045.
- 18 R. Usón, A. Laguna, E. J. Fernández, A. Mendía and P. G. Jones, J. Organomet. Chem., 1988, 350, 129.
- 19 P. E. Riley and R. E. Davis, J. Organomet. Chem., 1980, 192, 283.
- 20 R. Usón, A. Laguna, M. Laguna, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Chem. Commun., 1986, 669.
- 21 R. Usón, A. Laguna, M. Laguna, B. R. Manzano, P. G. Jones and G. M. Sheldrick, J. Chem. Soc., Dalton Trans., 1984, 285.
- 22 B. Norenand and Å. Oskarsson, Acta Chem. Scand., Ser. A, 1984, 38,
- 23 R. Usón, J. Forniés, L. Falvello, M. Tomás, J. M. Casas and A. Martín, *Inorg. Chem.*, 1993, 32, 5212.
- 24 O. M. Abu-Salah and C. B. Knobler, J. Organomet. Chem., 1986, 302,
- 25 B. K. Teo and K. Keating, J. Am. Chem. Soc., 1984, 106, 2224.
- 26 J. Vicente, M. T. Chicote, M. C. Lagunas and P. G. Jones, J. Chem. Soc., Chem. Commun., 1991, 1730.
- 27 J. Vicente, M. T. Chicote and M. C. Lagunas, *Inorg. Chem.*, 1993, 32, 3748.
- 28 B. K. Teo and H. Zhang, Angew. Chem., Int. Ed. Engl., 1992, 31, 445.
- 29 R. P. F. Kanters, P. P. J. Schlebos, J. J. Bour, W. P. Bosman, J. M. M. Smits, P. T. Beurskens and J. J. Steggerda, *Inorg. Chem.*, 1990, 29, 324.
- 30 R. Uson, A. Laguna, M. Laguna, A. Uson, P. G. Jones and C. F. Erdbrügger, *Organometallics*, 1987, 6, 1778.
- 31 A. Laguna, M. Laguna, J. Jiménez, F. Lahoz and E. Olmos, J. Organomet. Chem., 1992, 435, 235.
- 32 A. D. Westland, Can. J. Chem., 1969, 47, 4135.
- 33 R. Usón, A. Laguna, M. Laguna, J. Jiménez and P. G. Jones, J. Chem. Soc., Dalton Trans., 1991, 1361.
- 34 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.

Received 23rd March 1994; Paper 4/01736F