Synthesis and Spectroscopic Studies of Palladium and Platinum Complexes of Methylene-backboned Dithio-, Diseleno- and Ditelluro-ether Ligands, RECH₂ER (R = Me or Ph; E = S, Se or Te)*

Andrew F. Chiffey, John Evans, William Levason and Michael Webster Department of Chemistry, University of Southampton, Southampton SO17 1BJ, UK

The complexes $[ML_2Cl_2]$ (M = Pd or Pt; L = PhSCH_2SPh, MeSCH_2SMe, PhSeCH_2SePh or MeSeCH_2SeMe), which are square planar with monodentate sulfur or selenium ligands, have been prepared. In the solid state, on the basis of IR and Raman data, the palladium complexes are *trans* and the platinum *cis*, whilst in solution multinuclear NMR spectroscopy (¹H, ¹⁹⁶Pt-{¹H}, and ⁷⁷Se-{¹H}) reveal that both *cis* and *trans* isomers and *meso* and DL enantiomers are present, the isomer populations varying with L and M in a systematic way. The complexes $[ML_2Cl_2]$ are stable in solution for L = PhSCH_2SPh, but the other complexes lose L to precipitate polymeric $[(MLCl_2)_n]$ complexes. The ditelluroethers, MeTeCH_TeMe and PhTeCH_TePh, form only the latter type of complex. The crystal structure of *trans*-[Pd(PhSCH_2SPh)_2Cl_2] has been determined and contains a *trans* square-planar palladium atom with one co-ordinated and one free sulfur atom associated with each dithioether ligand [Pd-Cl 2.292(1) and Pd-S 2.329(1) Å].

Bidentate ligands in which the interdonor linkage is a single carbon atom including Ph₂PCH₂PPh₂, Ph₂AsCH₂AsPh₂, 2-Ph₂PC₅H₄N and PPh(CH₂PPh₂)₂, have been widely used to prepare both homo- and hetero-bimetallic complexes.¹⁻³ The short interdonor linkage disfavours chelation to a single metal centre due to the ring strain, and hence promotes monodentate or bridging bonding modes. Much less effort has been devoted to the corresponding ligands containing Group 16 donor atoms, and only a limited number of complexes are known for PhSCH₂SPh, MeSCH₂SMe, MeSCH₂SeMe and PhTeCH₂-TePh.⁴⁻⁷ We are currently investigating the synthesis of various heterobimetallic complexes as catalyst precursors, and during these studies investigated palladium and platinum complexes of $RECH_2ER$ (R = Ph or Me; E = S, Se or Te), as new building blocks for such complexes. Although the complexes ultimately proved too labile for our purposes, several interesting trends were observed and these are described here.

Results

The reaction of the dithio- or diseleno-ether ligands with $Na_2[PdCl_4], K_2[PtCl_4], [Pd(MeCN)_2Cl_2] \text{ or } [Pt(MeCN)_2-$ Cl₂] in a 2:1 mol ratio in ethanol-CH₂Cl₂, usually yielded $[ML_2Cl_2]$ complexes, which in some cases lost ligand to form $[(MLCl_2)_n]$ materials. With the ditelluroethers PhTeCH₂TePh and MeTeCH₂TeMe, the insoluble [(MLCl₂)_n] complexes precipitated rapidly from CH₂Cl₂ solutions of $[M(MeCN)_2Cl_2]$ (M = Pd or Pt) on reaction even with a large excess of ligand, and unlike the dithio- or diseleno-ether complexes, the reaction was not reversed by warming with excess ligand. The complexes were characterised in the solid state by elemental analysis and IR and Raman spectroscopies, and the forms present in solution identified by variabletemperature multinuclear NMR spectroscopy. Due to the variation in behaviour it is convenient to discuss the ligands separately.

PhSCH₂SPh.—As described previously^{5,6} [ML₂Cl₂] complexes are readily obtained for both metals, and are stable in solution. The presence of single IR and Raman active v(Pd-Cl) vibrations (Table 1) at similar frequencies to those⁸ of trans- $[Pd(Me_2S)_2Cl_2]$ identified the palladium complex as the *trans* isomer, which was confirmed by X-ray crystallography (see later). However [Pt(PhSCH₂SPh)₂Cl₂] has two coincident vibrations in the IR and Raman spectra consistent with a cis geometry.⁸ Neither complex appeared to lose ligand in solution, although [{ $Pd(PhSCH_2SPh)Cl_2$ }_n] is formed using a Pd:Lratio of 1:0.8.5 The ¹H NMR spectra of solutions of [ML₂Cl₂] in the presence of added PhSCH₂SPh showed separate CH₂ resonances for free and co-ordinated ligands, demonstrating that intermolecular exchange was slow on the NMR time-scale. The ¹H NMR spectrum of *trans*-[Pd(PhSCH₂SPh)₂Cl₂] in CD₂Cl₂ contained a single CH₂ resonance at 300 K, but on cooling to 213 K this resolved into a broad four line pattern. Two AB quartets are expected due to the presence of the meso and DL forms (Fig. 1) of the co-ordinated dithioether which interconvert by pyramidal inversion at sulfur, as described in detail for $[ML_2Cl_2]$ complexes of RCH₂SR' by Abel *et al.*⁹ We did not resolve the separate patterns, presumably due to the near coincidence of the resonances. The solution NMR data for $\label{eq:linear} \begin{array}{l} [Pt(PhSCH_2SPh)_2Cl_2] \mbox{ are considerably more complex (Tables 2 and 3). At 300 K the $^{195}Pt-\{^1H\}$ NMR spectrum contains four } \end{array}$ lines of approximately equal intensity, which are assignable from their characteristic shifts ¹⁰ to the presence of *trans* (δ *ca*. -3320) and cis (δ ca. -3440) isomers, each appearing as a doublet due to the presence of meso and DL enantiomers. Pyramidal inversion is a higher energy process in platinum compared to palladium complexes,⁴ and hence the resonances of the separate invertomers are resolved at ambient temperatures. Cooling the samples to 203 K caused the platinum resonance to sharpen and shift to more negative values but had no other effect. The ¹H NMR spectra at 300 K show two broad resonances in the CH₂ region probably due to cis and trans isomers, which sharpen on cooling, but even at 200 K the patterns are not clearly resolved. This is almost certainly due to the large number of lines expected from the resonances of the cis-trans, meso-DL forms with accompanying ¹⁹⁵Pt satellites.⁹

^{*} Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

 Table 1
 Analytical and vibrational spectroscopic data

	Analysis" (%)			
Complex	C	Н	IR ^b /cm ⁻¹ v(MCl)	$\frac{\text{Raman}^{c}/\text{cm}^{-1}}{\nu(\text{M}-\text{Cl})}$
$[Pd(MeSCH_2SMe)_2Cl_2]$	17.1 (18.3)	3.2 (4.1)	354	305
[Pt(MeSCH ₂ SMe) ₂ Cl ₂]	14.9 (14.9)	2.7 (3.3)	316, 307	327, 304
[Pd(PhSCH ₂ SPh) ₂ Cl ₂]	48.2 (48.6)	3.3 (3.7)	355	305
[Pt(PhSCH ₂ SPh) ₂ Cl ₂]	43.2 (42.7)	3.3 (3.3)	319, 315	330 (vbr)
$[Pd(PhSeCH_2SePh)_2Cl_2]$	33.9 (37.6)	$2.3(2.9)^{d}$	354	303
[Pt(PhSeCH ₂ SePh) ₂ Cl ₂]	32.8 (34.0)	2.4 (2.6) ^d	318, 312	326, 306
$[Pd(MeSeCH_2SeMe)_2Cl_2]$	12.7 (12.4)	3.0 (2.8)	353	305
[Pt(MeSeCH ₂ SeMe) ₂ Cl ₂]	11.0 (10.7)	2.3 (2.4)	321, 312	323, 311
$[{Pd(MeSCH_2SMe)Cl_2}_n]$	12.5 (12.6)	2.4 (2.8)	361	310
$[{Pt(MeSCH_2SMe)Cl_2}_n]$	9.6 (9.6)	2.0 (2.1)	334, 321	334, 323 (sh)
$[{Pd(PhSCH_2SPh)Cl_2}_n]$	38.9 (38.2)	3.1 (2.9)	355 e	_
$[{Pd(PhSeCH_2SePh)Cl_2}_n]$	30.4 (31.0)	2.5 (2.4)	354	314
$[{Pt(PhSeCH_2SePh)Cl_2}_n]$	27.8 (26.4)	1.9 (2.0)	326, 317 (sh)	327, 316
$[{Pd(MeSeCH_2SeMe)Cl_2}_n]$	9.4 (9.5)	1.5 (2.1)	349	298
[{Pt(MeSeCH ₂ SeMe)Cl ₂ },]	7.7 (7.7)	1.6 (1.7)	321 (sh), 314	322, 310
$[{Pd(MeTeCH_2TeMe)Cl_2}_n]$	7.9 (7.6)	1.6 (1.7)	362	f
[{Pt(MeTeCH ₂ TeMe)Cl ₂ },]	5.9 (6.4)	1.1 (1.4)	324, 316	f
$[{Pd(PhTeCH_2TePh)Cl_2}_n]$	25.6 (26.0)	1.4 (2.0)	349	305
[{Pt(PhTeCH ₂ TePh)Cl ₂ },]	22.9 (22.5)	2.0 (1.7)	327, 317	328, 311

^a Calculated value in parentheses. ^b Nujol mull. ^c Powdered sample. ^d Due to the instability of these complexes in solution, repeated attempts to obtain samples with good analytical data have failed. ^e Data from ref. 5. ^f Decomposed in laser beam.

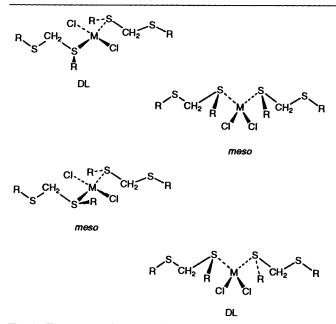


Fig. 1 The meso and DL enantiomers of cis- and trans- $[ML_2Cl_2]$ (L = RSCH₂SR)

MeSCH₂SMe.—This ligand was reported only to form insoluble 1:1 complexes with both metals,⁵ but a reinvestigation reveals that 2:1 complexes are formed with excess ligand. These lose one equivalent of ligand on standing in solution, depositing the $[(MLCl_2)_n]$ compounds, and the solid $[ML_2Cl_2]$ complexes lose ligand on pumping in high vacuum. The ligand loss is reversible in that addition of MeSCH₂SMe to suspensions of $[(MLCl_2)_n]$ in CH₂Cl₂ reform $[ML_2Cl_2]$ in solution. Ligand loss is facile and obtaining analytically pure [ML₂Cl₂] compounds is difficult. The vibrational spectra (Table 1) show that [Pd(MeSCH₂SMe)₂Cl₂] is trans and [Pt(MeSCH₂SMe)₂-Cl₂] cis in the solid state. The ¹H NMR spectrum of the palladium complex has a singlet CH₂ resonance at room temperature, but this resolves into an AB pattern at 233 K, showing pyramidal inversion is a higher energy process than in the corresponding complex of PhSCH₂SPh, the usual effect of replacing Me by Ph.⁴ Separate resonances are seen even

Table 2 Selected ¹H NMR data

Complex	<i>T</i> /K	δ(¹ H) ^a
[Pd(PhSCH ₂ SPh) ₂ Cl ₂]	300	4.58
	213	4.6 (q)
[Pt(PhSCH ₂ SPh) ₂ Cl ₂]	300	4.5, 4.7
	203	4.3-4.8 (m)
$[Pd(MeSCH_2SMe)_2Cl_2]$	300	4.1 (br), 2.35, 2.25
	233	4.01 (q), 2.42, 2.25
$[Pt(MeSCH_2SMe)_2Cl_2]$	300	4.1 (m), 2.64 $[^{3}J(^{195}Pt-^{1}H) 40]$,
		$2.37, 2.50 [^{3}J(^{195}Pt-^{1}H) 32], 2.31$
	233	4.1 (q), ^b 2.63 [${}^{3}J({}^{195}Pt-{}^{1}H)$ 40],
		$2.33, 2.48 [^{3}J(^{195}Pt-^{1}H) 32], 2.28$
$[Pd(PhSeCH_2SePh)_2Cl_2]$	300	4.55
	213	4.48 (m), 4.22 (m)
$[Pt(PhSeCH_2SePh)_2Cl_2]$	300	4.4 (m), 4.0 (m)
	223	4.9 (m), 4.55 (m), 4.25 (m)
$[Pd(MeSeCH_2SeMe)_2Cl_2]$	300	4.03, 2.30
	233	4.0 (q), 2.38, 2.20
$[Pt(MeSeCH_2SeMe)_2Cl_2]$	300	3.9 (q), 2.32 [${}^{3}J({}^{195}Pt-{}^{1}H)$ 35],
		2.15
	213	3.9 (q), 2.35, 2.17

^a At 360 MHz in CD_2Cl_2 relative to SiMe₄ at the temperature stated, signals are singlets unless indicated otherwise; *J* values in Hz. ^b Quartet overlaying another pattern.

at room temperature for the co-ordinated and free (S)Me groups showing that 1,3 ligand switching⁴ is slow on the NMR time-scale.

The ¹⁹⁵Pt-{¹H} NMR spectrum of [Pt(MeSCH₂SMe)₂Cl₂] at 300 K shows only two signals at δ – 3366 and – 3525 assignable to *trans* and *cis* isomers respectively. This was surprising since by comparison with the complex of PhSCH₂SPh, four lines due to the *meso* and DL forms of each isomer were expected. On cooling to 185 K, the ¹⁹⁵Pt resonances sharpened, and very small splittings are resolved, from which we conclude that the expected splittings were lost in the line-width at room temperature (Fig. 2), showing a broad unresolved signal in the CH₂ region, and four Me signals, two with ¹⁹⁵Pt satellites due to the free MeS groups. Some free MeSCH₂SMe ligand was also present in most spectra, due to partial decomposition to the 1:1 complex. On cooling, the Table 3 Selected ¹⁹⁵Pt and ⁷⁷Se NMR data

Complex	T/\mathbf{K}	δ(¹⁹⁵ Pt-{ ¹ H})#	$\delta(^{77}$ Se-{ ¹ H}) ^b
[Pt(PhSCH ₂ SPh) ₂ Cl ₂]	300	-3319, -3331, -3437, -3450	
	203	-3330, -3346, -3465, -3488	
$[Pt(MeSCH_2SMe)_2Cl_2]$	300	-3366, -3525	
	233	-3395, -3563	
[Pd(PhSeCH ₂ SePh) ₂ Cl ₂]	300		<i>ca.</i> 385 (vbr), <i>ca.</i> 337 (vbr), <i>ca.</i> 330 (br)
	243		388.8, 387.7, 334.6, 333.9
$[Pt(PhSeCH_2SePh)_2Cl_2]$	300	-3395, -3405, -3588, -3598	395.7, 394.8, 392.7, 391.8, 331.4, 331.0, 330.6 (sh)
_	243	-3408, -3420, -3593, -3615	396.0, 394.7, 389.2, 387.4, ^c 332.6 (br)
$[Pd(MeSeCH_2SeMe)_2Cl_2]$	300		ca. 243 (br), ca. 127 (br)
	233		238, 123
	193		234.7, 234.5, 120
[Pt(MeSeCH ₂ SeMe) ₂ Cl ₂]	300	- 3424	235.5, 235.3 [¹ J(¹⁹⁵ Pt- ⁷⁷ Se) 342, 335], 118.5
2 . 2 . 2 . 2	243	-3442, -3441.5	231.6, 231.3 $[^{1}J(^{195}\text{Pt}-^{77}\text{Se})$ 342, 335], 113.4

clearly resolved.

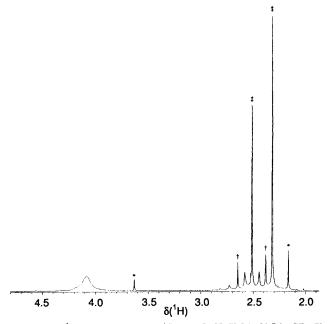


Fig. 2 The ¹H NMR spectrum of [Pt(MeSCH₂SMe)₂Cl₂] in CD₂Cl₂ at 300 K: *, free ligand; \uparrow , *cis* isomer; \ddagger *trans* isomer

expected ⁹ AB patterns of the CH₂ resonances were partially resolved. From a comparison with the ¹H NMR spectra ⁸ of *cis*and *trans*-[Pt(Me₂S)₂Cl₂] we assign the higher frequency MeS resonance with the larger ³J(¹H-¹⁹⁵Pt) coupling to the *cis* isomer. The *trans* isomer is the more abundant form.

PhSeCH₂SePh.—The vibrational spectra show that the palladium complex is *trans* and the platinum *cis* in the solid state. In contrast to the dithioether analogues, solutions of these diselencether complexes slowly deposit insoluble materials with a 1:1 M:L stoichiometry. The ¹H NMR spectrum of [Pd(PhSeCH₂SePh)₂Cl₂] in CD₂Cl₂ at room temperature contained a single broad CH₂ resonance, which on cooling separated into two multiplets (Table 2). The ⁷⁷Se-{¹H} NMR spectrum at room temperature contained three very broad signals at δ *ca.* 385, *ca.* 337 and *ca.* 330, which on cooling resolved into five signals, two at high frequency (δ 388.8 and 387.7) assignable to the co-ordinated PhSe groups of the *meso* and DL forms of the *trans* isomer, and two at lower frequency (δ 334.6 and 333.9) due to the corresponding 'free' PhSe groups. The fifth resonance at δ 336.6 corresponds to some free ligand resulting from sample decomposition.

The ¹H NMR spectrum of the CH₂ region of [Pt(PhSeCH₂-

SePh)₂Cl₂] at room temperature showed three broad resonances with ill defined structure, and even at 223 K the splitting remained ill defined. The ¹⁹⁵Pt data were much more useful for isomer identification. At 300 K four resonances were present, two ($\delta - 3395$, -3405) due to the meso and DL forms of the trans isomer, with two weaker features ($\delta - 3588, -3598$) due to the corresponding cis isomers. The trans: cis ratio was estimated as ca. 5:1. On cooling, the resonances shifted to low frequency and broadened (Table 3). The 77 Se-{ 1 H} NMR spectrum was difficult to obtain since considerable decomposition occurred during the long accumulation required, and in addition to a precipitate of the 1:1 complex, the spectra showed various weak features in the range δ 380-340 due to decomposition products, as well as resonances assigned to the original complex. At 300 K weak resonances at 8 395.7 and 394.8 are assigned to the meso and DL forms of the minor cis isomer, and stronger features at δ 392.7 and 391.8 to the corresponding enantiomers of the trans form. Several overlapping resonances at δ ca. 330 were due to the uncoordinated PhSe groups and to free ligand formed in the decomposition. The ${}^{1}J({}^{77}\text{Se}{}^{-195}\text{Pt})$ couplings were not clearly resolved. The spectrum was not appreciably different at 243 K.

MeSeCH₂SeMe.—The ¹H NMR spectra of trans-[Pd(MeSe- $CH_2SeMe_2Cl_2$ exhibited a similar behaviour with temperature to those of the sulfur analogue. At 300 K the ⁷⁷Se-{¹H} NMR spectrum in CH₂Cl₂ contains broad resonances at δ ca. 243 and 127 assignable to the co-ordinated and free SeMe groups in the monodentate diselenoether, together with a sharper resonance at δ 115 due to free ligand. On cooling, the resonances sharpened but even at 193 K only the highest frequency resonance showed any further splitting with partial resolution of two signals at δ 234.7 and 234.5. In comparison with related complexes (see above and ref. 11), one would have expected four lines from the monodentate ligand due to the slowing of pyramidal inversion and resolution of separate resonances for the meso and DL forms. We conclude that the isomers have very small chemical shift differences, which cannot be clearly resolved even at low temperatures.

The platinum complex [Pt(MeSeCH₂SeMe)₂Cl₂] again appears to be the *cis* isomer in the solid state from the vibrational spectral data. However in solution in CD₂Cl₂ at 300 K the ¹H NMR spectra show that only one geometric isomer is present and that pyramidal inversion is slow (Table 2). From the single broad signal in the ¹⁹⁵Pt NMR spectrum at $\delta - 3424$ (300 K) we identify this as the *trans* isomer. On cooling, the platinum resonance sharpens and at 243 K the line has narrowed sufficiently to show two closely spaced signals for the *meso* and DL invertomers. There was no evidence in the ¹⁹⁵Pt NMR spectrum for any lower frequency signal due to the *cis* isomer. Obtaining a ⁷⁷Se-{¹H} NMR spectrum of this complex

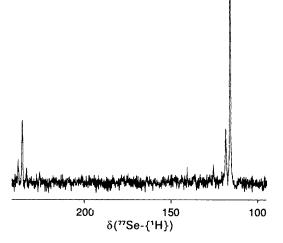


Fig. 3 The 77 Se-{ 1 H} NMR spectrum of [Pt(MeSeCH₂SeMe)₂Cl₂] in CH₂Cl₂ at 300 K

again proved to be difficult, since considerable decomposition to $[\{Pt(MeSeCH_2SeMe)Cl_2\}_n]$ and free ligand occurred during the long accumulations, and the 1:1 complex precipitate degraded the spectral quality. The 300 K spectrum showed two very closely spaced lines with ¹⁹⁵Pt satellites at δ ca. 235 due to co-ordinated MeSe groups in the *meso* and DL forms of the *trans* isomer, a singlet at δ 118.5 due to the unco-ordinated SeMe groups, and a large resonance at δ 115.5 due to free ligand (Fig. 3). Cooling caused small shifts in the resonances but did not improve the resolution.

McTeCH₂TeMe and PhTeCH₂TePh.—In contrast to the analogues with sulfur or selenium donor groups the two ditelluroether ligands reacted with either [Pd(MeCN)₂Cl₂] or [Pt(MeCN)₂Cl₂] in CH₂Cl₂, irrespective of the M:L ratio, to precipitate [(MLCl₂)_n] complexes. The ¹²⁵Te-{¹H} NMR spectrum of a mixture of [Pt(MeCN)₂Cl₂] and three equivalents of MeTeCH₂TeMe in CH₂Cl₂ recorded immediately after mixing, showed the resonance of the free ligand (δ 219) as the only significant feature, and we were unable to find any convincing ¹⁹⁵Pt resonance from this solution in the range δ -3000 to -4500 where a PtTe₂Cl₂ species would be expected.¹² Similar attempts to identify [Pt(PhTeCH₂TePh)₂-Cl₂] in solution were also unsuccessful. In contrast to the results with the lighter donor ligands, the isolated [{M(RTeCH₂TeR)-Cl₂}_n] did not redissolve on treatment of their suspensions in chlorocarbons with excess ligand.

Crystal Structure of $[Pd(PhSCH_2SPh)_2Cl_2]$.—The structure consists of discrete molecules with the palladium atom positioned on a centre of symmetry. Square-planar coordinated palladium(II) is established with *trans* monodentate co-ordinated PhSCH_2SPh. Selected bond lengths and angles are given in Table 4 and the molecule is shown in Fig. 4. The Pd–Cl [2.292(1) Å] and Pd–S(1) [2.329(1) Å] bond lengths may be compared with those in *trans*-[PdL_2Cl_2] (L = 2,3-dihydrobenzo[b]thiophene)¹³ [Pd–S_{trans-S} 2.320(1), Pd–Cl_{trans-Cl} 2.299(2) and 2.284(1) Å] and *trans*-[PdL_2Cl_2] (L = SPBui_3)¹⁴ [Pd–S_{trans-S} 2.334(1) and Pd–Cl_{trans-Cl} 2.297(1) Å]. The complex in the crystal is the *meso* enantiomer (*RS/SR*) and there are no weak contacts between the free sulfur and neighbouring molecules.

 $[(MLCl_2)_n]$ Complexes.—Palladium complexes of this stoichiometry were obtained with all six ligands, those of MeSCH₂SMe, MeSeCH₂SeMe and PhSeCH₂SePh being formed by decomposition of the 2:1 complexes, whilst for

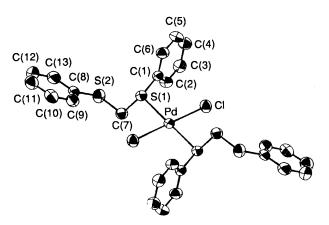


Fig. 4 Structure of $[Pd(PhSCH_2SPh)_2Cl_2]$ showing the atom labelling scheme and with thermal ellipsoids drawn at the 50% level

Table 4 Selected bond lengths (Å) and angles (°) for [Pd-(PhSCH₂SPh)₂Cl₂]

Pd-Cl	2.292(1)	Pd-S(1)	2.329(1)
S(1)-C(1)	1.778(3)	S(2)-C(7)	1.783(4)
S(1)-C(7)	1.831(4)	S(2)-C(8)	1.769(4)
C(1)-C(2)	1.374(5)	C(8)-C(9)	1.378(6)
C(2) - C(3)	1.381(5)	C(9)-C(10)	1.385(6)
C(3)–C(4)	1.383(5)	C(10)-C(11)	1.367(6)
C(4)–C(5)	1.369(6)	C(11)-C(12)	1.379(7)
C(5)-C(6)	1.386(5)	C(12)-C(13)	1.379(6)
C(6)-C(1)	1.395(4)	C(13)-C(8)	1.389(5)
S(1)-Pd-Cl	95.3(1)	S(1)-C(7)-S(2)	113.2(2)
Pd-S(1)-C(1)	110.8(1)	Pd-S(1)-C(7)	104.5(1)
C(1)-S(1)-C(7)	102.8(2)	C(7)-S(2)-C(8)	104.4(2)
S(1)-C(1)-C(2)	123.5(3)	S(2)-C(8)-C(9)	125.9(3)
S(1)-C(1)-C(6)	116.2(3)	S(2)-C(8)-C(13)	115.1(3)
C(1)-C(2)-C(3)	120.3(3)	C(8)-C(9)-C(10)	119.7(4)
C(2)-C(3)-C(4)	119.8(4)	C(9)-C(10)-C(11)	121.2(4)
C(3)-C(4)-C(5)	119.9(4)	C(10)-C(11)-C(12)	119.4(4)
C(4)-C(5)-C(6)	121.2(4)	C(11)-C(12)-C(13)	120.0(4)
C(5)-C(6)-C(1)	118.5(4)	C(12)-C(13)-C(8)	120.7(4)
C(6)-C(1)-C(2)	120.3(3)	C(13)-C(8)-C(9)	119.0(4)

MeTeCH₂TeMe and PhTeCH₂TePh they were the only complexes isolated. The [Pd(PhSCH₂SPh)₂Cl₂] complex did not appear to decompose spontaneously in solution, but the 1:1 complex has been made using a deficit of ligand.^{5,6} The 1:1 complexes were insoluble in all solvents in which they did not decompose, which limits their characterisation. From the vibrational spectra (Table 1) the presence of single IR and Raman active Pd-Cl vibrations characteristic of terminal chlorines with a trans disposition, and the diffuse reflectance spectra which are consistent with planar Pd^{II}, suggest that they are trans planar ligand-bridged polymers. Platinum also formed 1:1 complexes with all the ligands except PhSCH₂SPh. The vibrational spectra fail to show v(Pt-Cl) modes at frequencies similar to those of trans-[Pt(Me₂S)₂Cl₂], but exhibit bands in both the IR and Raman spectra at lower frequencies, similar to those of the cis isomer.⁸ The spectra are consistent either with a cis-ligand bridged polymer or the dimer structure [Cl₂Pt- $(\mu$ -L)₂PtCl₂] found with some Group 15 ligands.^{1,2} The complexes are completely insoluble in chlorocarbons which suggests the polymer structure is more likely.

Discussion

Comparison of the data above reveals several trends along the series of complexes. Thus the 2:1 palladium complexes are exclusively *trans* isomers both in the solid state and in solution. The solid $[PtL_2Cl_2]$ complexes appear to be *cis* isomers from the vibrational spectra {unfortunately good crystals have not so

far been obtained for [Pt(PhSCH₂SPh)₂Cl₂], and the solution instability of the other complexes precluded crystal growth}, but in solution the *trans* isomers become increasingly abundant along the series PhSCH₂SPh \longrightarrow MeSCH₂SMe \longrightarrow PhSe-CH₂SePh \longrightarrow MeSeCH₂SeMe, changing from approximately equimolar amounts of *cis*- and *trans*-forms in the first, to exclusively *trans* in the last.

The presence of chiral monodentate co-ordinated RECH₂ER ligands results in *meso* and DL enantiomers for each geometric isomer (Fig. 1), and when pyramidal inversion is slow these are readily identified in the NMR spectra. The solution instability of most of the complexes, and sometimes the very small differences in the chemical shifts of the enantiomers, complicated identification of the different forms. Nonetheless the variabletemperature studies reveal the expected ⁴ trends in pyramidal inversion barriers namely Pd < Pt, S < Se and PhE < MeE.

The extra complexity in these systems compared with those of $\operatorname{RECH}_2 \mathbb{R}^{4,9,11}$ results from their decomposition to 1:1 complexes in solution. The tendency to form $[(\operatorname{MLCl}_2)_n]$ complexes increases in the order $S \longrightarrow Se \longrightarrow Te$ and is greater for the methyl-substituted ligands for a fixed donor atom. This suggests that the major driving force is increased σ -donor power of the 'free' ER group in the monodentate ligand.^{15,16} The insolubility of the 1:1 complexes will clearly shift any equilibrium in their favour, but the fact that $[{M(MeECH_2EMe)Cl_2}_n]$ (E = S or Se) are formed by prolonged pumping on the solid 2:1 complexes in high vacuo reveals the same trend in the absence of a solvent. It is this instability that makes the 2:1 complexes generally unsuitable starting materials for the preparation of bimetallic species.

Experimental

Proton NMR were recorded on either a Bruker AC-300 or AM-360 spectrometer and chemical shifts are reported relative to internal SiMe₄. The ⁷⁷Se NMR spectra were recorded with a Bruker AM-360 spectrometer (at 68.7 MHz) using neat SeMe₂ as the external reference. The ¹⁹⁵Pt NMR spectra were also recorded with a Bruker AM-360 spectrometer (at 77.8 MHz) relative to [PtCl₆]²⁻ external reference. The IR spectra were recorded using a Perkin-Elmer 983 spectrometer, scanning from 4000 to 200 cm⁻¹ as Nujol mulls between caesium iodide windows. Raman spectra were collected using a Perkin-Elmer 1720 Fourier-transform Raman spectrometer with Nd YAG laser at 1064 nm. Elemental analyses were obtained from the Microanalytical Laboratories, Imperial College, London.

Preparations.—[PdCl₂(PhSCH₂SPh)₂]. A solution of PhSCH₂SPh (0.92 g, 4.0 mmol) in ethanol (40 cm³) was treated dropwise with Na₂[PdCl₄] (0.60 g, 2.0 mmol) in ethanol (15 cm³). The mixture was stirred at room temperature for 3 h. The solution was evaporated to dryness, extracted with dichloromethane (10 cm³), filtered and concentrated (2 cm³) then precipitated with pentane (10 cm³). The yellow solid was filtered off and dried *in vacuo*. Yield 1.03 g (81%).

[PdCl₂(MeSCH₂SMe)₂]. The salt Na₂[PdCl₄] (0.29 g, 1.0 mmol) in ethanol (20 cm³) was treated with MeSCH₂SMe (0.2 cm³, 2.0 mmol) and the mixture stirred at room temperature for 3 h. The solvent was removed and the residue extracted with dichloromethane (10 cm³), filtered and concentrated in volume (2 cm³). Pentane (10 cm³) was added to afford an orange precipitate. The liquid was decanted off and the solid was briefly dried *in vacuo*. Yield 0.17 g (44%).

 $[PdCl_2(MeSeCH_2SeMe)_2]$. The salt Na₂ $[PdCl_4]$ (0.14 g, 0.46 mmol) in ethanol (10 cm³) was treated with a slight excess of MeSeCH₂SeMe (0.21 g, 1.03 mmol). The orange mixture was stirred for 2 h at room temperature. The solvent was removed at reduced pressure and the residue extracted with dichloromethane (5 cm³). Two drops of ligand in dichloromethane (4 cm³) were added to the insoluble material. This was stirred briefly and filtered. The filtrate was combined with the

Table 5 Atomic coordinates for [Pd(PhSCH₂SPh)₂Cl₂]

Atom	x	у	Z
Pd	0.250 0	0.250 0	0.000 0
Cl	0.345 97(4)	0.388 3(2)	0.048 60(5)
S(1)	0.206 87(4)	0.402 9(1)	0.082 82(4)
S(2)	0.109 90(4)	0.733 7(2)	0.084 49(6)
$\hat{\mathbf{C}(1)}$	0.259 8(1)	0.578 6(6)	0.140 4(2)
C(2)	0.274 2(2)	0.780 8(6)	0.121 2(2)
C(3)	0.317 1(2)	0.905 9(6)	0.168 0(2)
C(4)	0.345 6(2)	0.827 4(8)	0.234 7(2)
C(5)	0.331 4(2)	0.625 6(8)	0.253 7(2)
C(6)	0.288 0(2)	0.498 6(7)	0.207 6(2)
C(7)	0.148 8(1)	0.589 2(6)	0.031 8(2)
C(8)	0.055 9(1)	0.547 2(6)	0.099 4(2)
C(9)	0.046 3(2)	0.340 6(7)	0.072 7(2)
C(10)	0.001 0(2)	0.213 9(7)	0.087 0(2)
C(11)	-0.0340(2)	0.288 8(8)	0.128 2(2)
C(12)	-0.0243(2)	0.494 8(9)	0.155 5(2)
C(13)	0.020 6(2)	0.622 7(8)	0.141 5(2)

dichloromethane solution and concentrated. Pentane (10 cm^3) was added to precipitate the product. The liquid was decanted off and the yellow-orange solid was dried briefly *in vacuo*. Yield 0.10 g (38%).

 $[PdCl_2(PhSeCH_2SePh)_2]$. The salt Na₂ $[PdCl_4]$ (0.25 g, 0.85 mmol) in ethanol (25 cm³) was treated dropwise with PhSeCH₂SePh (0.57 g, 1.7 mmol) in ethanol (10 cm³) and the mixture stirred for 2 h at room temperature. The solvent was removed at reduced pressure and the residue extracted into dichloromethane (10 cm³). This was concentrated (2 cm³) and precipitated with pentane (10 cm³). The orange solid was filtered off and dried *in vacuo*. Yield 0.39 g (55%).

The platinum(11) complexes were prepared analogously using $K_2[PtCl_4]$ or $[PtCl_2(MeCN)_2]$ in aqueous ethanol- CH_2Cl_2 .

The 1:1 complexes $[(MLCl_2)_n]$ typically form as precipitates in the preparation of the 2:1 $[ML_2Cl_2]$ complexes with all but PhSCH₂SPh. These can be separated due to their insolubility in common solvents. After extracting the 2:1 complexes into dichloromethane, the residues containing the 1:1 species are further washed with dichloromethane (10 cm³) and dried *in vacuo*. The methyl ligand complexes can also be prepared by forcing the decomposition of the 2:1 complexes by extensive storage under vacuum. The 1:1 complexes of the tellurium ligands precipitate immediately on mixing solutions of $[M(MeCN)_2Cl_2]$ and ligand, irrespective of the ratio used.

Crystal-structure Determination of trans- $[Pd(PhSCH_2SPh)_2-Cl_2]$.—Air-stable orange needle crystals were obtained by vapour diffusion from $CH_2Cl_2-Et_2O$. The first batch gave streaky photographic X-ray diffraction patterns but a later batch yielded one crystal of suitable quality. The density was measured by flotation (CCl_4 -hexane).

Crystal data. $C_{26}H_{24}Cl_2PdS_4$, M = 642.07, monoclinic, space group C2/c, a = 22.741(4), b = 6.195(1), c = 19.739(3)Å, $\beta = 106.15(1)^{\circ}$, U = 2671.1 Å³, Z = 4, $D_c = 1.596$ g cm⁻³, $D_m = 1.55(2)$ g cm⁻³, λ (Mo-K α) = 0.710 73 Å, μ (Mo-K α) = 11.6 cm⁻¹, F(000) = 1296, T = 295 K.

Data collection, structure solution and refinement. Using a Stoe Stadi-4B diffractometer fitted with Mo-K α radiation, cell dimensions were obtained from 36 centred reflections (28 < 2θ < 32°) using a crystal (0.70 × 0.15 × 0.10 mm) mounted in a thin-walled glass capillary. 2929 Reflections were recorded (5 < 2θ < 49°: h - 26 to 25; k - 1 to 7; l0 to 23) and subsequent examination of the data indicated the space group C2/c or Cc with the analysis being completed in the former centrosymmetric space group. The three standards showed no decay with time and an empirical ψ -scan absorption correction was applied. After averaging and removing systematically absent reflections there remained 2072 unique reflections ($R_{int} = 0.036$). The structure was solved using the Patterson function to locate the heavy atoms and subsequent structure factor and electrondensity syntheses readily found the C atoms. The Pd atom is on a centre of symmetry. At a later stage in the refinement the H atoms were located in the difference electron-density map and were included in the model in fixed positions. Full-matrix leastsquares refinement ¹⁷ converged to R = 0.028 [1838 reflections with $F > 3\sigma(F)$, 152 parameters, anisotropic (Pd, Cl, S, C) and isotropic (H) atoms, $w^{-1} = \sigma^2(F) + 0.0001F^2$, maximum shift/ error = 0.09, R' = 0.034]. The residual electron density was in the range +0.35 to -0.48 e Å⁻³. Neutral-atom complex scattering factors were taken from SHELX 76¹⁷ and ref. 18 (Pd) and the calculations carried out using SHELX 76¹⁶ and ORTEP¹⁹ on a PC. Atomic coordinates are listed in Table 5.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC and BP Chemicals Ltd. for a CASE award (to A. F. C.) and Dr. A. J. Blake of the University of Edinburgh for the X-ray data collection.

References

- 1 R. J. Puddephatt, Chem. Soc. Rev., 1983, 99.
- 2 B. Chaudret, B. Delavaux and R. Poilblanc, Coord. Chem. Rev., 1988, 86, 191.
- 3 W. Levason, in *The Chemistry of Organophosphorus Compounds*, ed. F. R. Hartley, Wiley, New York, 1990, vol. 1, pp. 568-641.

- 4 E. W. Abel, S. K. Bhargava and K. G. Orrell, Prog. Inorg. Chem., 1984, 32, 1; K. G. Orrell, Coord. Chem. Rev., 1989, 96, 1.
- 5 S. G. Murray, W. Levason and H. E. Tuttlebee, Inorg. Chim. Acta, 1981, 51, 185.
- 6 A. R. Sanger and J. E. Weiner-Fedorak, Inorg. Chim. Acta, 1980, 42, 101.
- 7 H. B. Singh, A. Regini, J. P. Jasinski, E. S. Paight and R. J. Butcher, J. Organomet. Chem., 1994, 466, 283.
- 8 P. L. Goggin, R. J. Goodfellow, S. R. Haddock, F. J. S. Read, J. G. Smith and K. M. Thomas, J. Chem. Soc., Dalton Trans., 1972, 1904.
- 9 E. W. Abel, G. W. Farrow, K. G. Orrell and V. Sik, J. Chem. Soc., Dalton Trans., 1977, 42; E. W. Abel, A. K. S. Ahmed, G. W. Farrow, K. G. Orrell and V. Sik, J. Chem. Soc., Dalton Trans., 1977, 47.
- 10 P. S. Pregosin, Coord. Chem. Rev., 1982, 44, 802.
- 11 R. K. Chadha, J. M. Chehayber and J. E. Drake, *Inorg. Chem.*, 1986, 25, 611.
- 12 T. Kemmitt and W. Levason, Inorg. Chem., 1990, 29, 731.
- 13 P. D. Clark, J. F. Fait, C. G. Jones and M. J. Kirk, Can. J. Chem., 1991, 69, 590.
- 14 M. F. Richardson, Acta Crystallogr., Sect. C, 1985, 41, 27.
- 15 H. Schumann, A. A. Arif, A. L. Rheingold, C. Janiak, R. Hoffmann and N. Kuhn, *Inorg. Chem.*, 1991, 30, 1618.
- 16 E. G. Hope and W. Levason, *Coord. Chem. Rev.*, 1993, **122**, 109. 17 G. M. Sheldrick, SHELX 76, Program for crystal structure
- 17 G. M. Sheldrick, SHELX 76, Program for crystal structure determination, University of Cambridge, 1976.
- 18 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99, 149.
- 19 C. K. Johnson, ORTEP-II, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.

Received 10th May 1994; Paper 4/02778G