Equilibrium Studies of α-Diimine Displacement in Cationic Allylpalladium(II) Complexes by Monodentate N-Donors and the Mechanism of Allyl Amination by Triethylamine and Pyridine

Luciano Canovese,^a Fabiano Visentin,^a Paolo Uguagliati,^{*,a} Francesca Di Bianca,^b Simonetta Antonaroli^c and Bruno Crociani^{*,c}

^a Dipartimento di Chimica, Università di Venezia, Italy

^b Dipartimento di Chimica Inorganica, Università di Palermo, Italy

^c Dipartimento di Scienze e Tecnologie Chimiche, II Università di Roma, Italy

In the cationic complexes $[Pd(\eta^3-allyl)(L-L)]ClO_4$ [L-L = 1,2-bis(imino)ethanes or 2-(iminomethyl)pyridines] the chelated α -diimine was rapidly and reversibly displaced by secondary amines (*N*-methylaniline, morpholine or piperidine), triethylamine and 4-substituted pyridines. The observed equilibrium constants K_{\bullet} increased with increasing basicity and decreasing steric requirements of the entering N-donor. They strongly depend on the α -diimine and decrease in the order RN=CHCH=NR \gg RN=C(Me)C(Me)=NR \approx NC₅H₄(CH=NR)-2 (R = C₆H₄OMe-4). The cationic complex [Pd(η^3 -C₃H₅){NC₅H₄(CH=NC₆H₄OMe-4)-2}]⁺ underwent a slow allyl amination by triethylamine or pyridine (L') in the presence of fumaronitrile (fn), yielding [Pd(η^2 -fn){NC₅H₄(CH=NC₆H₄OMe-4)-2}] and Et₃^NCH₂CH=CH₂ or C₅H₅^NCH₂CH=CH₂. Kinetic studies showed that the pseudo-first-order rate constants for amination (k_{obs}) are given by $k_{obs} = k_2[L']$, suggesting a direct bimolecular attack of L' on the η^3 -allyl ligand. Amination hardly proceeds in the presence of the less-activated olefin dimethyl fumarate (dmf). The π -accepting properties of the olefinic ligands play an important role also in the reaction of Et₃^NCH₂CH=CH₂ or C₅H₅^NCH₂CH=CH₂ with [Pd(η^2 -olefin){NC₅H₄(CH=NC₆H₄OMe-4)-2}] (olefin = fn or dmf), *i.e.* the reverse of the amination reaction.

In the cationic complexes $[Pd(\eta^3-C_3H_5)(L-L)]ClO_4$ 1 $[L-L = NC_5H_4(CH=NCMc_3)-2$ or $NC_5H_4(CH=NC_6H_4OMe-4)-2]$ the chelated α -diimine ligand L–L appears to be weakly bound to the metal centre and can be displaced even by acetonitrile.¹ Consistently, the reaction of 1 with an excess of diethylamine involves a rapid and reversible displacement of L–L followed by slow nucleophilic attack of NHEt₂ at the allyl moiety, which yields the palladium(0) derivative $[Pd(\eta^2-dmf)(L-L)]$ and allyldiethylamine, in the presence of dimethyl fumarate (dmf) (Scheme 1).²

A mechanistic investigation has shown that when the α -diimine concentration is held constant (by using an excess) the overall reaction rate takes the form $-d[1]/dt = k_{obs}[1]$, with $k_{obs} = k/(1 + K_e[NHEt_2]^2/[L-L])$ and $k = k_2[NHEt_2] + k_2'[NHEt_2]^{2.2}$ It thus appears that the equilibrium constant K_e affects the reaction rates to such an extent that an independent assessment of its value is of prime importance for a better understanding of the amination mechanism. To this purpose, we have measured K_e for a variety of cationic substrates 1 with a series of 4-substituted pyridines and also with secondary and tertiary amines. A kinetic study of the amination of the allyl group in 1 [L-L = NC_5H_4(CH=NC_6H_4OMe-4)-2] by triethylamine or pyridine in the presence of fumaronitrile was also carried out.

Results and Discussion

Equilibria of α -Diimine Displacement.—When the cationic complex 1 is treated with secondary amines, triethylamine and pyridines (L') in chloroform, rapid reversible substitution of the chelated α -diimine ligand takes place according to equation (1)

$$\begin{pmatrix} L \\ L \end{pmatrix}^{+} pd(\eta^{3} - allyl) + 2L' \xrightarrow{K_{0}} L' \xrightarrow{pd} (\eta^{3} - allyl) + L - L \quad (1)$$

$$1 \qquad \qquad 2$$

[L-L = RN=C(R¹)C(R¹)=NR (R = $C_6H_4OMe^4$, R¹ = H or Me), NC₅H₄(CH=NR²)-2 (R² = $C_6H_4OMe^4$); allyl = C_3H_5 or 2-MeC₃H₄; L' = N-methylaniline, morpholine, piperidine, triethylamine, or 4-R³C₅H₄N (R³ = MeCO, Cl, H, Et or NMe₂)]. Equilibrium (1) was studied by both ¹H NMR and UV/VIS spectrophotometry. In each case, spectral data for the systems 1 (allyl = C_3H_5)-secondary amine were recorded immediately after mixing the reactants to avoid changes caused by the subsequent slow amination reaction.² Abstract factor analysis of the observed UV/VIS spectral changes indicated that only two independently absorbing species were present in the

$$\begin{bmatrix} Pd(\eta^{3}-C_{3}H_{5})(L-L) \end{bmatrix}^{+} + 2 \text{ NHEt}_{2} \xrightarrow{K_{\epsilon}} \begin{bmatrix} Pd(\eta^{3}-C_{3}H_{5})(\text{NHEt}_{2})_{2} \end{bmatrix}^{+} + L-L$$

$$[Pd(\eta^2-dmf)(L-L)] + Et_2NCH_2CH=CH_2 + NH_2Et_2$$

Scheme 1 CHCl₃, 25 °C; L-L = NC₅H₄(CH=NCMe₃)-2 or NC₅H₄(CH=NC₆H₄OMe-4)-2. (*i*) dmf, excess of NHEt₂

Complex $[Pd(\eta^3-allyl)(L-L)]ClO_4$ $L-L = RN=C(R^1)C(R^1)=NR$			Pyridines, $4 - R^3 C_5 H_4 N (pK_a)^*$					
			$R^{3} = MeCO$ (3.51)	Cl (3.84)	H (5.25)	Et (5.87)	NMe ₂ (9.72)	
R	R¹	allyl						
C ₆ H₄OMe-4 C ₆ H₄OMe-4	H Me	2-MeC ₃ H ₄ 2-MeC ₃ H ₄	0.81 ± 0.07	0.79 ± 0.07	$\begin{array}{c} 12.2 \pm 0.5 \\ (4.05 \pm 0.09) \times 10^{-2} \end{array}$	101 ± 4	94 900 ± 3000	
$L-L = NC_5H_4$	(CH=NR	²)-2						
R ²		allyl						
C ₆ H ₄ OMe-4 C ₆ H ₄ OMe-4		C ₃ H ₅ 2-MeC ₃ H ₄			$(2.29 \pm 0.06) \times 10^{-2}$ $(1.51 \pm 0.05) \times 10^{-2}$			
$\mathbf{p}K_{a}$ data from	ref. 6.							

Table 1 Equilibrium constants (K_e /dm³ mol⁻¹) for reaction (1) with 4-substituted pyridines at 25 °C in chloroform

Table 2 Equilibrium constants (K_e /dm³ mol⁻¹) for reaction (1) with secondary amines at 25 °C in chloroform

L)]ClO₄		Amine $(pK_a)^a$				
$L-L = RN=C(R^{1})C(R^{1})=NR$			Morpholine (8.50)	NHEt ₂ ^b (11.04)	Piperidine (11.12)	
R ¹	allyl					
Н	C ₃ H ₅ ^c			1390 ± 145		
Н	$2 - MeC_3H_4$	$(1.20 \pm 0.07) \times 10^{-4}$	99 ± 3	1079 ± 33	3790 ± 450	
Me	$2-MeC_3H_4$		0.36 ± 0.01	1.9 ± 0.1	14.3 ± 0.4	
CH=NR ²	²)-2					
	allyl					
	C ₃ H ₅ °		0.16 ± 0.02	4.1 ± 0.3	7.2 ± 0.9	
	2-MeC ₃ H ₄		0.112 ± 0.009	1.33 ± 0.15	6.0 ± 0.2	
	C ₃ H ₅ °			0.19 ± 0.01		
	2-MeC ₃ H ₄			0.038 ± 0.005		
	L)]ClO₄ ¹)C(R ¹) R ¹ H H Me CH=NR ³	L)]ClO ₄ 1)C(R ¹)=NR R ¹ allyl H C ₃ H ₅ ^c H 2-MeC ₃ H ₄ Me 2-MeC ₃ H ₄ CH=NR ²)-2 allyl C ₃ H ₅ ^c 2-MeC ₃ H ₄ C ₃ H ₅ ^c 2-MeC ₃ H ₄	L)]ClO ₄ 1)C(R ¹)=NR R ¹ allyl H C ₃ H ₅ ^c H 2-MeC ₃ H ₄ Me 2-MeC ₃ H ₄ CH=NR ²)-2 allyl C ₃ H ₅ ^c 2-MeC ₃ H ₄ C ₃ H ₅ ^c 2-MeC ₃ H ₄ C ₃ H ₅ ^c 2-MeC ₃ H ₄	$\begin{array}{c} \text{Amine } (pK_a)^a \\ \xrightarrow{(1)} C(R^1) = NR \\ \xrightarrow{(1)} R^1 \\ \text{allyl} \\ H \\ C_3H_5^c \\ H \\ 2^-MeC_3H_4 \\ Me \\ 2^-MeC_3H_4 \\ C_3H_5^c \\ 2^-MeC_3H_5^c \\ 2^-MeC$	L)]ClO ₄ $^{(1)}C(R^{1})=NR$ R^{1} allyl H $C_{3}H_{5}^{c}$ H $2-MeC_{3}H_{4}$ Me $2-MeC_{3}H_{4}$ CH=NR ²)-2 R^{1} allyl $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{4}$ $C_{3}H_{5}^{c}$ $C_{3}H_{4}$ $C_{3}H_{5}^{c}$ $C_{3}H_{4}^{c}$ $C_{3}H_{5}^{c}$ $C_{3}H_{4}^{c}$ $C_{3}C_{3}H_{4}^{c}$ $C_{3}C_{3}H_{4}^{c}$ $C_{3}C_{3}H_{4}^{c}$ $C_{3}C_{3}C_{3}C_{3}C_{3}C_{3}C_{3}C_{3}$	

^a pK_a data from ref. 6. ^b Data from ref. 2. ^c From spectral data recorded immediately after mixing.

Fig. 1 Fit of absorbance at 400 nm to [NEt₃] according to equation (1) for allyl = C_3H_5 and L-L = NC_5H_4 (CH= NC_6H_4 OMe-4)-2 in CHCl₃ at 25 °C

range 250–600 nm, *i.e.* complex 1 and the free α -diimine L–L.³ No five-co-ordinated intermediates with one amine and a *N*,*N*'chelated α -diimine⁴ nor four-co-ordinated species bearing one amine and a dangling *N*-monodentate α -diimine⁵ were detected. This is also true according to ¹H NMR spectra (CD₂Cl₂) in the temperature range -80 to 25 °C.

Non-linear regression analysis of absorbance vs. [L'] data according to the model described in the Experimental section gave the K_e values listed in Tables 1 and 2. For the reaction of L' = NEt₃ with [Pd(η^3 -C₃H₅){NC₅H₄(CH=NC₆H₄OMe-4)-2}]ClO₄, K_e was (1.0 ± 0.2) × 10⁻³ dm³ mol⁻¹. A typical representation of spectral changes along with the least-squares fit is shown in Fig. 1.

The displacement of the chelated a-diimine appears to be markedly affected by the steric and electronic properties of the entering amine L', by the structure and substituents of the L-L ligand, and to a lesser extent by the nature of the allyl group. As can be seen in Table 1, the K_e values for the substrate $[Pd(\eta^{3}-2-MeC_{3}H_{4})(RN=CHCH=NR)]ClO_{4}(R = C_{6}H_{4}OMe-$ 4) increase with increasing basicity of the 4-substituted pyridine, as measured by the pK_a value in water. A linear free-energy relationship of log K_e to pK_a^{6} is apparent in Fig. 2. In this series of pyridines, which have comparable steric requirements, the value of K_e is essentially governed by the electron density at the pyridine nitrogen. Similar trends are observed for the equilibria involving $[Pd(\eta^3-2-MeC_3H_4)\{RN=C(R^1)C(R^1)=NR\}]ClO_4$ $(R = C_6H_4OMe-4, R^1 = H \text{ or } Me)$ and $[Pd(\eta^3-2-MeC_3 H_4$ $\{NC_5H_4(CH=NC_6H_4OMe-4)-2\}$ ClO_4 and secondary amines (Table 2, Fig. 3). Here, however, the different steric requirements of the amines also play an important role. Thus, the lower basicity of N-methylaniline, compounded with the greater bulkiness at the co-ordinating nitrogen, results in the lowest K_e value. The adverse role of steric effects stands out in the equilibria between $[Pd(\eta^3-C_3H_5){NC_5H_4(CH=NC_6 H_4OMe-4$)-2}]ClO₄ and NEt₃ vs. NHEt₂: since the amines have comparable pK_a values,⁶ the much lower ability of NEt₃ to displace the α -diimine is essentially related to the increased steric demand of the three N-bound ethyl groups.

A comparison of the equilibrium constants for L' = NHEt₂² with those involving L' = morpholine, piperidine and pyridine relating to complexes with various α -diimines (Table 2) shows that they are strongly dependent on the substrate α -diimine ligand and decrease in the order: RN=CHCH=NR \gg RN=C-(Me)C(Me)=NR \approx NC₅H₄(CH=NR²)-2 > NC₅H₄(CH=NC-Me₃)-2² where R = R² = C₆H₄OMe-4, in agreement with

Fig. 2 Correlation of log K_e to pK_a of 4-substituted pyridines for reaction (1) (allyl = 2-MeC₃H₄, L-L = RN=CHCH=NR, R = C₆H₄-OMe-4)

Fig.3 Correlation of log K_e to pK_a of secondary amines for reaction (1) (allyl = 2-MeC₃H₄, L-L = RN=CHCH=NR, R = C₆H₄OMe-4): 1, *N*-methylaniline; 2, morpholine; 3, NHEt₂; 4, piperidine

the order of increasing stability of the five-membered metallacycle in the cationic complexes 1 towards α -diimine dissociation in acetonitrile.¹ In particular, the large K_e values for the 4-MeOC₆H₄N=CHCH=NC₆H₄OMe-4 complexes are outstanding and indicate a high substitution lability for this ligand. The ease of displacement of L-L decreases markedly on replacing the hydrogen by a methyl group on the iminocarbons [4-MeOC₆H₄N=C(Me)C(Me)=NC₆H₄OMe-4], on introducing a 2-pyridyl group into the α -diimine skeleton $[NC_5H_4(CH=NC_6H_4OMe-4)-2]$, and on replacing the aryl C_6H_4OMe-4 by the better electron-donor group CMe₃ $[NC_5H_4(CH=NCMe_3)-2]$. The equilibrium constants also decrease appreciably on going from $allyl = C_3H_5$ to 2-MeC₃H₄, other things being equal, probably owing to an interplay of steric and inductive effects of the 2-Me substituent, resulting in a better stabilization of the substrate 1.

The UV/VIS equilibrium results are in line with the findings of ¹H NMR experiments carried out on reaction (1) in CDCl₃ at 25 °C. The initial ¹H NMR spectra of the equilibrium mixtures [Pd(η^3 -2-MeC₃H₄){NC₅H₄(CH=NR²)-2}]ClO₄-NHEt₂ (R² = C₆H₄OMe-4 or CMe₃), 1:NHEt₂ molar ratio 1:2, provide the following pieces of information: (*i*) the free α -diimine NC₅H₄(CH=NR²)-2 exchanges rapidly with the chelated one for R² = C₆H₄OMe-4 and slowly for R² = CMe₃; on cooling to -40 °C the rate of exchange is drastically reduced and the typical sharp signals of the free and co-

ordinated imine are observed [e.g. δ (N=CH) as a singlet at 8.59 and 8.73 for free and co-ordinated NC₅H₄(CH=NC₆-H₄OMe-4)-2 respectively]; (*ii*) for the system [Pd(η^3 -2-Me- $C_{3}H_{4}$ (NC₅H₄(CH=NC₆H₄OMe-4)-2] ClO₄-NHEt₂ (1:2), a fast syn-syn, anti-anti exchange of the allyl protons occurs both at 25 and $-40 \,^{\circ}\text{C}$,¹ whereas for $[Pd(\eta^3-2-MeC_3H_4)-$ {NC₅H₄(CH=NCMe₃)-2}]ClO₄-NHEt₂ (1:2) the exchange is fast at 25 °C but slows down at -40 °C (on the NMR time-scale), as shown by the observation of separate synand *anti*-proton resonances $[\delta(H)_{syn} 4.15 (s) \text{ and } \delta(H)_{anti} 3.35 (s,$ br) at 25 °C, 4.08 (s) and 4.03 (s) and 3.38 (s) and 3.09 (s) at -40 °C]; (iii) the interaction of the cationic substrate [Pd(η^3 allyl)(L-L)]⁺ with L' and/or L-L brings about a fast synsyn.anti-anti exchange of the allyl protons at 25 °C; under the same experimental conditions, however, no fast $\eta^3 \rightleftharpoons \sigma$ dynamic process is observed.

The cationic complexes 2 are easily identified by comparing the ¹H NMR spectra of the equilibrium mixtures with those of authentic samples, independently prepared as their BF4⁻ salts (see Experimental section). At variance with the behaviour of $[Pd(\eta^3-allyl)(NHEt_2)_2]^+$,² for the complexes $[Pd(\eta^3-allyl)(NHEt_2)_2]^+$ allyl) L'_2]⁺ 2 (L' = morpholine, piperidine, or pyridine) a fast exchange between free and co-ordinated L' is observed at 25 °C. For instance, in the system $[Pd(\eta^3-2-MeC_3H_4)\{NC_5H_4-$ (CH=NC₆H₄OMe-4)-2}]ClO₄-morpholine (1:5 molar ratio), the initial ¹H NMR spectra in CDCl₃ show only two broad singlets centred at δ 3.7 and 2.9 for the methylene protons of the amine, whereas the allyl proton signals of species 1 and 2 appear as sharp and distinct singlets at δ 3.95 and 3.53 (H_{syn}), 3.38 and 2.84 (Hanti), 2.22 and 2.15 (2-Me), respectively. Furthermore, in system $[Pd(\eta^3-2-MeC_3H_4){NC_5H_4(CH=NC_6H_4OMe$ the 4)-2}]ClO₄-pyridine (1:40 molar ratio) in CDCl₃ a rapid exchange between the co-ordinated pyridine of 2 and the free α diimine L-L of equilibrium (1) also takes place, as inferred from the detection of time-averaged broad resonances for the allyl protons of species 1 and 2 at δ 3.9 (H_{syn}), 3.3 (H_{anti}) and 2.2 (2-Me) at 25 °C. However, on cooling to -30 °C this exchange is frozen out and two sets of sharp allyl signals are observed for 1 and **2**, respectively $[1, \delta 3.95(s, H_{syn}), 3.38(s, H_{anti})$ and 2.21(s, 2-Me); 2, δ 3.85 (H_{syn}, partially overlapping with the OMe signal), 3.22 (s, H_{anti}) and 2.25 (s, 2-Me)].

Kinetics of Allyl Amination by Triethylamine and Pyridine.— As in the case of NHEt₂,² the secondary amines piperidine and morpholine react further with the cationic complex $[Pd(\eta^3-C_3H_5){NC_5H_4(CH=NC_6H_4OMe-4)-2}]^+$ 1a via nucleophilic attack at the terminal carbon of the η^3 -bound allyl group, in the presence of activated olefins such as dimethyl fumarate (dmf) and fumaronitrile (fn), according to Scheme 1.* An analogous allyl amination of 1a also occurs with triethylamine or pyridine (L') but only in the presence of the more π -accepting fumaronitrile [equation (2)]

$$\begin{bmatrix} Pd(\eta^{3}-C_{3}H_{5})(L-L) \end{bmatrix}^{+} + L' \xrightarrow{fn} \\ 1a & ^{+}L'CH_{2}CH = CH_{2} + \begin{bmatrix} Pd(\eta^{2}-fn)(L-L) \end{bmatrix} (2) \\ 3a & 3a \end{bmatrix}$$

 $[L-L = NC_5H_4(CH=NC_6H_4OMe-4)-2;$ ⁺L'CH₂CH=CH₂ = Et₃NCH₂CH=CH₂ or C₅H₅NCH₂CH=CH₂]. The progress of reaction (2) was monitored by ¹H NMR spectroscopy in CDCl₃ at 25 °C by using molar ratios 1a:NEt₃:fn of 1:7:1.2 and 1a:pyridine:fn of 1:40:1.2, with $[1a]_0 = 2.5 \times 10^{-2}$ mol dm⁻³. After 24 h the yields of the allyl cation ⁺L'CH₂CH=CH₂ were in the range 90–95 (L' = NEt₃) and 65–70% (L' = pyridine), based on dichloromethane or toluene as internal

^{*} The kinetic data relating to piperidine and morpholine will be discussed in a forthcoming paper devoted to equilibrium thermodynamic parameters, activation parameters, and solvent effects in this class of reactions.

Table 3 Rate data for the reaction of $[Pd(\eta^3-C_3H_5)\{NC_5H_4(CH=N-C_6H_4OMe-4)-2\}]ClO_4$ with triethylamine or pyridine at 25 °C in chloroform. [Pd]_{tot} = 1 \times 10⁻⁴ mol dm⁻³

10 ² [L']/mol dm ⁻³	10^{4} [fn]/mol dm ⁻³	$10^4 k^{a}/{ m s}^{-1}$
$L' = NEt_3^{b}$		
3.82	10	9.61
7.65	10	18.1
9.56	10	22.5
11.50	10	28.2
$L' = C_5 H_5 N^c$		
12.12	1.23	0.294
16.27	1.23	0.364
20.06	1.23	0.454
30.16	1.23	0.664
35.65	1.23	0.780
12.12	5.0	0.290
12.12	20.0	0.297

^{*a*} Values calculated from equation (4). ^{*b*} [NC₅H₄(CH=NC₆H₄OMe-4)-2], added in excess 1×10^{-3} mol dm⁻³. ^{*c*} [NC₅H₄(CH=N-C₆H₄OMe-4)-2] 1.03×10^{-3} mol dm⁻³

standards. When dmf was used under the same experimental conditions the yield was as low as 2-5%, even after longer reaction times (24–48 h). The palladium(0) complex **3a** has been isolated and characterized from its IR and ¹H NMR spectra,⁷ whereas the products ⁺L'CH₂CH=CH₂ were identified in the reaction mixtures by their typical ¹H NMR signals (see Experimental section).

In order to elucidate the observed role of the activated olefin in reaction (2), we have studied the reverse reaction between the quaternary allyl cations ⁺L'CH₂CH=CH₂ and [Pd(η^2 olefin)(L-L)] in a 1:1 molar ratio. The ¹H NMR data for the mixtures in CDCl₃ show that for olefin = dmf the reaction proceeds rapidly and almost quantitatively to **1a** and L', whereas for olefin = fn such a reaction has proceeded to *ca*. 20% with Et₃⁺NCH₂CH=CH₂ and to *ca*. 40% with C₅H₅-⁺NCH₂CH=CH₂, after 4 h (see Experimental section).

Very recently,⁸ the reaction of 1-allylpyridinium tetrafluoroborates with palladium(0) substrates was exploited for the preparation of the cationic complexes $[Pd(\eta^3-allyl)L'_2]BF_4$ (L' = tertiary phosphine).

The kinetics of reaction (2) were also studied by UV/VIS spectrophotometry using an excess of amine L' over the substrate 1a to ensure the constancy of its concentration in the presence of fn. A 10-fold excess of L-L was employed to govern the position of the displacement equilibrium (1). The kinetic Scheme 2 was assumed. The rapid-exchange equilibrium (K_e)

Fig. 4 Fit of k_{obs} to [NEt₃] for the reaction of [Pd(η^3 -C₃H₅){NC₅H₄(CH=NC₆H₄OMe-4)-2}]ClO₄ in CHCl₃ at 25 °C (conditions as in Table 3)

was assumed to hold throughout the kinetics. Under these conditions the experimental rate law takes on the pseudo-first-order form (3) where k_{obs} is given by expression (4). The term

$$-d[\mathbf{1a}]/dt = k_{obs}[\mathbf{1a}]$$
(3)

$$k_{\rm obs} = k / \{1 + (K_{\rm e}[L']^2 / [L-L])\}$$
(4)

 $1/\{1 + (K_{e}[L']^{2}/[L-L])\}$ simply represents the fraction of unreacted palladium that is present as the substrate 1a. Equation (3) can be integrated to the monoexponential expression $D_{t} = D_{\infty} + (D_{o} - D_{\infty})\exp(-k_{obs}t)$, in terms of absorbance D vs. time t data.

With L' = NEt₃ the equilibrium (K_e) is shifted almost completely to the left under the prevailing conditions: therefore $1 \ge K_e[L']^2/[L-L]$ and thus $k_{obs} = k$. A plot of $k_{obs} vs$. [NEt₃] gives a straight line with statistically insignificant intercept and a slope $k_2 = (2.4 \pm 0.1) \times 10^{-2}$ dm³ mol⁻¹ s⁻¹ (Table 3 and Fig. 4), according to the rate equation $k_{obs} = k_2[NEt_3]$.

With L' = pyridine the equilibrium was not driven completely to the left due to the larger K_e value, so that the bis(pyridine) complex **2a** was also present in appreciable concentration throughout. In this case, k values were calculated by equation (4) from the experimental k_{obs} data, the appropriate $[NC_5H_5]$ and [L-L] values, and the K_e value of Table 1. The resulting k was again found to depend linearly on the amine concentration, according to the rate law $k = k_2[NC_5H_5]$, with $k_2 = (2.17 \pm 0.04) \times 10^{-4} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ (Table 3).

The reaction rates appear to be independent of the fn concentration in the range $1.23 \times 10^{-4}-2 \times 10^{-3} \mod \text{dm}^{-3}$, in agreement with the kinetic Scheme 2. In a separate experiment the cationic species **2a** (isolated as its BF₄⁻ salt in the same way as its 2-methylallyl analogue, see Experimental section) proved to be unreactive towards nucleophilic attack at the allyl group by a large excess of pyridine (Pd:NC₅H₅1:40).

The rate-determining step involves a second-order k_2 path which can be related to a direct bimolecular attack of L' on the allyl group of complex 1a. The higher k_2 value of NEt₃ compared to pyridine is clearly a consequence of the much higher nucleophilic power of the former, as related to its greater basicity, despite the larger steric hindrance at the attacking nitrogen. For the corresponding reaction of la with diethylamine a higher k_2 value of $(4.43 \pm 0.01) \times 10^{-2} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ was obtained,² in line with the lower steric requirements of NHEt₂ relative to NEt₃, these amines having comparable basicity.⁶ With diethylamine a two-term rate equation of the type $k = k_2[\text{NHEt}_2] + k_2'[\text{NHEt}_2]^2$ was observed. The absence of a corresponding third-order quadratic k_2' contribution in the kinetics with NEt₃ and pyridine lends support to the mechanism proposed for the k_2' term, which was interpreted as a parallel nucleophilic attack by a hydrogen-bonded

$$\begin{aligned} \mathbf{la} + 2\mathbf{L}' \underbrace{\overset{K_{*}}{\overbrace{\text{fast}}} \mathbf{2a} + \mathbf{L} - \mathbf{L}}_{\text{fast}} \\ (i), k_{2} \\ \| k_{2} \\ \mathbf{la} \underbrace{\overset{(ii), k_{2}''}{\overbrace{k_{2}''}} * \mathbf{L}' CH_{2} CH = CH_{2} + [Pd(\eta^{2} \text{-olefin})(\mathbf{L} - \mathbf{L})]}_{\mathbf{3}} \end{aligned}$$

Scheme 3 (i) L'; (ii) olefin

 $Et_2N-H \cdots NHEt_2$ dimer in rapid associative equilibrium with the monomer.²

The above kinetic results combined with the previously discussed reactivity trends, involving reaction (2) and its reverse, suggest that the mechanism in Scheme 2 is a particular case of a more general pattern in which the slow amination step $1a \longrightarrow Ia$ and the subsequent η^2 -olefin substitution step Ia \longrightarrow ⁺L'CH₂CH=CH₂ + 3a can be made reversible under appropriate conditions (Scheme 3). The observed reactivity can be rationalized in terms of $k_{-2} \gg k_2$ and rapid k_2'' and k_{-2}'' substitution steps, depending on the different π -accepting abilities of the olefins involved (olefin and $^+L'CH_2CH=CH_2$). Thus, with the better π -acceptor fumaronitrile, the olefindisplacement equilibrium is shifted well over to the right and Scheme 2 becomes operative. On the contrary, the η^2 -bound quaternary allyl cation in Ia can hardly be displaced by the lessactivated dimethyl fumarate, so that the amination reaction (2) proceeds only to a small extent in the presence of dmf. The postulated intermediate Ia is probably a transient in the stepwise mechanism, since it escaped detection by spectroscopic techniques. In line with this mechanistic picture, the almost quantitative reaction of $^+L'CH_2CH=CH_2$ with $[Pd(\eta^2$ olefin(L-L) [*i.e.* the reverse of reaction (2)] for olefin = dmf is related to the easier displacement of dimethyl fumarate by the quaternary allyl cation. The reversibility of allyl amination was described previously for the reaction of η^3 -geranyl-, η^3 -neryl-, and η^3 -1,1-dimethylallyl-palladium(II)¹⁰ complexes.

On the other hand, prior co-ordination of the C=C double bond of the allyl substrate to the metal appears to be a prerequisite of oxidative addition of allylic electrophiles to lowvalent metal complexes.¹¹ The fact that the amination of **1a** with NHEt₂ occurs in the presence of either fn or dmf may be ascribed to a rapid deprotonation of the η^2 -co-ordinated Et₂HNCH₂CH=CH₂ moiety in a labile intermediate of type **Ia** by the excess of diethylamime, yielding a *neutral* [Pd(η^2 -CH₂=CH-CH₂NEt₂)(L-L)] species, from which the lessactivated diethylaminopropene is easily displaced even by dmf. Such a species would also be the direct product of the proposed² allyl amination by the hydrogen-bonded diethylamine dimer.

Experimental

The complexes $[Pd(\eta^3-allyl)(L-L)]ClO_4$ (allyl = C_3H_5 or 2-MeC₃H₄) and $[Pd(\eta^2-olefn)(L-L)]$ (olefin = fn or dmf) were prepared by published procedures.^{1,7} Morpholine and piperidine were distilled over anhydrous K_2CO_3 under nitrogen, while the liquid pyridines, $4 \cdot R^3C_5H_4N$ ($R^3 = MeCO$, H or Et), were distilled over KOH pellets under nitrogen. 4-Chloropyridine hydrochloride was dissolved in water and treated dropwise with a slight excess of aqueous NaOH. The free pyridine was extracted with dichloromethane. The CH_2Cl_2 solution was taken to dryness on a rotary evaporator and the resulting oily product distilled over KOH pellets under reduced pressure. All other chemicals were reagent grade used without further purification. The solvents were evaporated to small volume or to dryness at reduced pressure on a rotary evaporator.

Preparation of Complexes. $[Pd(\eta^{3}-2-MeC_{3}H_{4})L'_{2}]BF_{4} 2.-$ The complexes 2 (L' = morpholine or pyridine) were prepared from the reaction of $[{PdCl(\eta^{3}-2-MeC_{3}H_{4})}_{2}]$ with the appropriate ligand and AgBF₄ in the molar ratio 0.5:3:1, as described for the analogue $[Pd(\eta^{3}-2-MeC_{3}H_{4})(NHEt_{2})_{2}]BF_{4}$.² The compounds must be stored at -20 °C to prevent rapid decomposition. The morpholine complex was obtained in 68.6% yield (based on the theoretical amount) and was characterized by molar conductivity (96.1 S cm² mol⁻¹ for a 10⁻³ mol dm⁻³ MeOH solution at 25 °C), elemental analysis (Found: C, 34.3; H, 6.0; N, 6.5. C₁₂H₂₅BF₄N₂O₂Pd requires C, 34.10; H, 5.95; N, 6.65%), and the ¹H NMR spectrum in CDCl₃ [allyl protons, δ 3.53 (2 H, s, H_{syn}), 2.84 (2 H, s, H_{anti}), and 2.15 (3 H, s, CH₃); morpholine protons, δ 4.15 (2 H, br s, NH), 4.0–3.6 (8 H, m, OCH₂) and 3.4–3.0 (8 H, m, NCH₂)]. The pyridine complex was isolated in 73.0% yield and identified similarly: $\Lambda_{\rm M}$ 103.4 S cm² mol⁻¹ (Found: C, 41.1; H, 4.1; N, 6.8. C₁₄H₁₇BF₄N₂Pd requires C, 41.35; H, 4.20; N, 6.90%); ¹H NMR spectrum [allyl protons, δ 3.83 (2 H, s, H_{syn}), 3.26 (2 H, s, H_{anti}) and 2.26 (3 H, s, CH₃); pyridine protons, δ 8.60–8.55 (4 H, m, H² and H⁶), 7.90–7.80 (2 H, m, H⁴) and 7.50–7.40 (4 H, m, H³ and H⁵)].

In an attempt to prepare the analogous complex with piperidine (pip) an oily product was obtained the ¹H NMR spectrum (CDCl₃) of which suggests the presence of the cationic species $[Pd(\eta^{3}-2-MeC_{3}H_{4})(pip)_{2}]^{+}$, which undergoes a rapid ligand exchange with trace amounts of un-co-ordinated piperidine [allyl protons, δ 3.55 (2 H, s, H_{syn}), 2.71 (2 H, s, H_{anti}), and 2.07 (3 H, s, CH₃); piperidine protons, δ 3.0 (8 H, br s, NCH₂) and 1.6 (12 H lbr s, CH₂)].

Reactions of $[Pd(\eta^3-C_3H_5){NC_5H_4(CH=NC_6H_4OMe-$ 4)-2}]ClO₄ with NEt₃ or Pyridine.—Fumaronitrile (0.06 mmol) and triethylamine (0.35 mmol) or pyridine (2.0 mmol) were added to a stirred suspension of the cationic complex (0.05 mmol) in CDCl₃ (2 cm³), containing known amounts of dichloromethane or toluene as internal standards. In the course of the reaction the allyl substrate dissolved progressively while some $[Pd(\eta^2-fn){NC_5H_4(CH=NC_6H_4OMe-4)-2}]$ 3a precipitated. The ¹H NMR measurements were carried out on clear portions of the supernatant solution. When the reaction was complete (24 h for triethylamine, 48 h for pyridine), the solid product 3a was filtered off, purified, and identified by spectral data as previously reported for an independently prepared sample.7 In the reaction mixtures the amination products [triethyl(prop-2-enyl)ammonium or I-(prop-2-enyl)pyridinium cations] were identified by comparison of their ¹H NMR spectra with those of authentic samples (see below).

The corresponding reactions in the presence of dimethyl fumarate were carried out under the same experimental conditions and monitored by ¹H NMR measurements of the changes in concentration of ⁺L'CH₂CH=CH₂ with time.

Preparation of Et₃^TNCH₂CH=CH₂ and C₅H₅^TNCH₂CH=CH₂ as Perchlorate Salts.—A two-fold excess of allyl bromide (3.63 g, 30.0 mmol) was added to a methanol solution of NEt₃ (1.52 g, 15.0 mmol in 50 cm³). After 24 h at ambient temperature NaClO₄·H₂O (4.21 g, 30.0 mmol) was added. The solvent was evaporated to dryness and the solid residue taken up in CH₂Cl₂ (*ca.* 100 cm³). After filtration of the insoluble salts the solution was concentrated to *ca.* 10 cm³ and diluted by slow addition of diethyl ether to precipitate the white product [Et₃NCH₂-CH=CH₂]ClO₄ (3.48 g, 96.0%). It was characterized by molar conductivity (106.3 S cm² mol⁻¹ for a 10⁻³ mol dm⁻³ MeOH solution at 25 °C), by the Nujol mull IR spectrum [v(Cl–O) 1094, δ(Cl–O) 623 cm⁻¹], and by the ¹H NMR spectrum in CDCl₃ [allyl protons, δ 6.0–5.85 (1 H, m, CH₂=CH), 5.8–5.7 (2 H, m, CH₂=CH) and 3.87 (2 H, d, J 7.6, CHCH₂); ethyl protons, δ 3.33 (6 H, q, J 7.3 Hz, CH₂) and 1.36 (9 H, t, CH₃)].

1-(Prop-2-enyl)pyridinium bromide was prepared according to the literature¹² and was converted into the perchlorate by treatment with an excess of NaClO₄·H₂O, as described above: $[\Lambda_{\rm M} = 111.5 \,{\rm S}\,{\rm cm}^2\,{\rm mol}^{-1}$ for a 10⁻³ mol dm⁻³ MeOH solution at 25 °C; IR spectrum (Nujol mull), v(Cl-O) 1087, δ (Cl-O) 627 cm⁻¹; ¹H NMR spectrum in CDCl₃, allyl protons, δ 6.2–6.05 (1 H, m, CH₂=CH), 5.65–5.55 (2 H, m, CH₂=CH), 5.32 (2 H, d, *J* 7.0 Hz, CHCH₂); pyridinium protons, δ 8.9–8.8 (2 H, m, H² and H⁶), 8.5–8.4 (1 H, m, H⁴) and 8.1–8.0 (2 H, m, H³ and H⁵)]. Reactions of Et₃^NCH₂CH=CH₂ and C₅H₅^NCH₂CH=CH₂ with [Pd(η^2 -olefin){NC₅H₄(CH=NC₆H₄OMe-4)-2}] (olefin = dmf or fn).—The compound [Et₃NCH₂CH=CH₂]ClO₄ (60.4 mg, 0.25 mmol) was added to a stirred solution of [Pd(η^2 -dmf)-{NC₅H₄(CH=NC₆H₄OMe-4)-2}] (0.116 mg, 0.25 mmol) in CHCl₃ (5 cm³). The sparingly soluble product [Pd(η^3 -C₃H₅){NC₅H₄(CH=NC₆H₄OMe-4)-2}]ClO₄ immediately precipitated. Upon stirring for 6 h at ambient temperature the solution changed from red-orange to yellow. Addition of Et₂O (5 cm³) completed the precipitation of the product (0.101 g, 89.0%), which was identified by comparison of its IR and ¹H NMR spectra with those of an independently prepared sample¹ [¹H NMR in (CD₃)₂SO:allyl protons, δ 6.03 (1 H, m, CH₂CHCH₂), 4.29 (2 H, d, J 6.3, H_{syn}) and 3.62 (2 H, d, J 12.2 Hz, H_{anti}); pyridine protons, δ 9.00 (1 H, m, H⁶), 8.39 (1 H, m, H⁴), 8.25 (1 H, m, H³) and 7.91 (1 H, m, H⁵); imino protons, δ 9.07 (1 H, s); methoxy protons, δ 3.85 (3 H, s)].

The reaction of $[C_5H_5NCH_2CH=CH_2]ClO_4$ (55.0 mg, 0.25 mmol) with $[Pd(\eta^2-dmf)\{NC_5H_4(CH=NC_6H_4OMe-4)-2\}]$ (0.116 mg, 0.25 mmol) was carried out in the same way to yield the complex $[Pd(\eta^3-C_3H_5)\{NC_5H_4(CH=NC_6H_4OMe-4)-2\}]$ -ClO₄ (0.105 g, 91.5%).

The progress of the reaction was also monitored by ¹H NMR spectroscopy at 25 °C. The allyl cation ⁺L'CH₂CH=CH₂ (0.04 mmol) was added to a solution or suspension of [Pd(η^2 olefin){NC₅H₄(CH=NC₆H₄OMe-4)-2}] (0.04 mmol) in CDCl₃ (4 cm³), containing known amounts of dichloromethane or toluene as internal standards. In the course of the reaction some [Pd(η^3 -C₃H₅){NC₅H₄(CH=NC₆H₄OMe-4)-2}]ClO₄ precipitated. The ¹H NMR spectra were recorded at different times on clear portions of the supernatant solution. For olefin = dmf the reaction was almost complete (90–95%) in *ca.* 4 h; for fn, the reaction with [Et₃NCH₂CH=CH₂]ClO₄ had proceeded to *ca.* 20% after 4 h from mixing of the reactants and that with [C₅H₅NCH₂CH=CH₂]ClO₄ to *ca.* 40%.

Physical Measurements and Instrumentation.—The conductivity was measured with a CDM83 conductivity meter. The ¹H NMR spectra were run on Bruker AM400 and WP80SY spectrometers at 25 °C using tetramethylsilane as internal standard. Equilibrium and kinetic measurements were carried out on a Perkin-Elmer Lambda 5 spectrophotometer using 1 cm quartz cells. The IR spectra were recorded on a Perkin-Elmer 983G instrument, using CsI windows, in the range 4000–200 cm⁻¹.

Determination of Equilibrium Constants.—Equilibrium constants in equation (2) were determined spectrophotometrically by adding known amounts of CHCl₃ solutions of L' of known concentration to a solution of complex 1 in the thermostatted cell compartment of the spectrophotometer and by recording the absorption spectra of the reaction solution in the wavelength range 300–600 nm. The analytical concentrations of the palladium substrate and L' were in the range 5×10^{-5} – 2×10^{-4} and 9×10^{-6} –1.5 mol dm⁻³, respectively.

The absorbance data were fitted by non-linear least squares 13 using the mathematical model in equations (1) and (5)–(9)

$$\mathbf{1} + 2\mathbf{L}' \stackrel{\mathbf{n}_{\epsilon}}{\Longrightarrow} \mathbf{2} + \mathbf{L} - \mathbf{L} \tag{1}$$

$$K_{\rm e} = [2][L-L]/[1][L']^2$$
 (5)

$$[1]_0 = [1] + [2] \tag{6}$$

$$[\mathbf{2}] = [L-L] \tag{7}$$

 $[L']_0 = [L'] + 2[2]$ (8)

$$D_{\lambda} = \varepsilon_1[\mathbf{1}] + (\varepsilon_2 + \varepsilon_{L-L})[\mathbf{2}]$$
(9)

 $(D_{\lambda} = \text{absorbance at wavelength } \lambda)$. The function minimized was $\varphi = \Sigma (D_{\text{obs}} - D_{\text{calc}})^2$. The optimized parameters were K_e and the absorption coefficients. During each iterative cycle of

the refining process the concentrations of all species involved were determined by solving the equilibrium and mass-balance equation system at the current parameter values by means of a Newton system solver based on an LU (lower-upper) decomposition/back substitution scheme.¹⁴ The uncertainties quoted in Tables 1 and 2 are one standard error of estimate.

Spectrophotometric Kinetic Measurements.—The kinetics of reaction (2) was studied by adding known aliquots of solutions of L' to freshly prepared solutions of complex 1a in the presence of fumaronitrile and recording the absorbance readings at 470 nm. An excess of L' over the palladium substrate was used throughout all runs to ensure the constancy of [L']. Since the α -diimine concentration was held constant by adding an excess, the kinetic model was as in equations (10)–(13).

$$[1a]_{tot} = [1a] + [2a] + [3a]$$
(10)

$$K_{\rm e} = [2a][L-L]/[1a][L']^2$$
(11)

$$[L'] = constant$$
(12)

$$[L-L] = constant$$
(13)

Thus, d[3a]/dt = k[1a] = $-\{1 + (K_e[L']^2/[L-L])\}d[1a]/dt$, whence $-d[1a]/dt = k[1a]/\{1 + (K_e[L']^2/[L-L])\} = k_{obs} \times$ [1a], cf. equations (3) and (4). The model corresponds therefore to the customary first-order monoexponential rate expression $D_t = D_{\infty} + (D_0 - D_{\infty})\exp(-k_{obs}t)$, from which k_{obs} can be obtained by non-linear regression ¹³ of $D_t vs$. time data.

Data Reduction and Analysis.—Mathematical and statistical analyses of equilibrium and kinetic data were carried out on a personal computer equipped with an INTEL 486 66 MHz central processing unit by the use of a locally adapted version of Marquardt's non-linear regression algorithm¹³ written in TURBOBASICTM (Borland). The plots were obtained with the SIGMAPLOTTM (Jandel) graphic package.

Acknowledgements

Financial support by the Italian Ministero per l'Università e la Ricerca Scientifica e Tecnologica (Research Funds 40 and 60%) is gratefully acknowledged.

References

- B. Crociani, T. Boschi and P. Uguagliati, *Inorg. Chim. Acta*, 1981, 48, 9; B. Crociani, F. Di Bianca, A. Giovenco and T. Boschi, *Inorg. Chim. Acta*, 1987, 127, 169.
- 2 B. Crociani, S. Antonaroli, F. Di Bianca, L. Canovese, F. Visentin and P. Uguagliati, J. Chem. Soc., Dalton Trans., 1994, 1145.
- 3 P. Uguagliati, A. Benedetti, S. Enzo and L. Schiffini, *Comput. Chem.*, 1984, **8**, 161.
- 4 A. De Renzi, G. Morelli, A. Panunzi and A. Vitagliano, *Gazz. Chim. Ital.*, 1987, **117**, 445.
- 5 J. Keijsper, H. van der Poel, G. van Koten, K. Vrieze, P. F. A. Seignette, R. Varenhorst and C. Stam, *Polyhedron*, 1983, **2**, 1111.
- 6 A. Albert and E. P. Serjeant, in *The Determination of Ionization* Constants, 3rd edu., Chapman and Hall, London, 1984.
- 7 B. Crociani, F. Di Bianca, P. Uguagliati, L. Canovese and A. Berton, J. Chem. Soc., Dalton Trans., 1991, 71.
- 8 R. Malet, M. Moreno-Mañas and R. Pleixats, Organometallics, 1994, 13, 397.
- 9 B. Åkermark and A. Vitagliano, Organometallics, 1985, 4, 1275.
- 10 A. Vitagliano and B. Åkermark, J. Organomet. Chem., 1988, 349, C22.
- 11 H. Kurosawa, H. Kajimaru, S. Ogoshi, H. Yoneda, K. Miki, N. Kasai, S. Murai and I. Ikeda, J. Am. Chem. Soc., 1992, 114, 8417 and refs. therein.
- 12 U. Chan Yoon, S. L. Quillen, P. S. Mariano, R. Swanson, J. L. Stavinoha and E. Bay, J. Am. Chem. Soc., 1983, 105, 1204.
- 13 D. W. Marquardt, SIAM J. Appl. Math., 1963, 11, 431.
- 14 P. Valkò and S. Vajda, in *Advanced Scientific Computing in BASIC*, Elsevier, Amsterdam, 1989, chs. 1 and 2.

Received 11th May 1994; Paper 4/02804J