Synthesis and Redox Studies on Ruthenium and Osmium Complexes with Primary and Secondary Phosphines. Single-crystal Structures of trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ and trans $-\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \dagger$

Alexander J. Blake, ${ }^{\boldsymbol{a}}$ Neil R. Champness, ${ }^{b}$ Robin J. Forder, ${ }^{b}$ Christopher S. Frampton, ${ }^{c}$ Carole A. Frost, ${ }^{b}$ Gillian Reid ${ }^{*, b}$ and Rachel H. Simpson ${ }^{b}$
${ }^{a}$ Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
${ }^{b}$ Department of Chemistry, The University of Southampton, Highfield, Southampton SO9 5NH, UK
${ }^{c}$ Roche Research Centre, Welwyn Garden City AL7 3AY, UK

Abstract

Reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ or $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{OsCl}_{6}\right]$ with $5-7$ molar equivalents of $\mathrm{PR}_{2} \mathrm{H}\left(\mathrm{R}=\mathrm{Ph}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)$ or PPhH_{2} in degassed refluxing EtOH solution (or EtOH -water for Os) gave $\left[\mathrm{MCl}_{2}\left(\mathrm{PR}_{2} \mathrm{H}\right)_{4}\right]$ and $\left[\mathrm{MCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ in high yield as yellow solids. Ultraviolet-visible and ${ }^{31} \mathrm{P}$ NMR spectroscopic studies confirm that these species exist as trans isomers in solution and the integrity of the PH functions. Prolonged standing of trans[$\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}$] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution led to partial isomerisation to the cis isomer as confirmed by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The crystal structure of trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ has been determined. It confirms a trans arrangement of the Cl^{-}ligands with the $R u^{\prime \prime}$ occupying a crystallographic inversion centre with four precisely coplanar equatorial $\mathrm{PPhH} \mathrm{H}_{2}$ ligands, $\mathrm{Ru}-\mathrm{Cl} 2.422(3), \mathrm{Ru}-\mathrm{P}(1) 2.319(3)$ and $\mathrm{Ru}-\mathrm{P}(2) 2.318$ (3) \AA. The lower steric demands of the PPhH_{2} ligands compared to $\mathrm{PPh}_{2} \mathrm{H}$ are reflected in the more regular octahedral arrangement seen in trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ compared to trans $-\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot 0.5 \mathrm{CHCl}_{3}$. The crystal-structure determination of trans $-\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two independent half molecules in the asymmetric unit with each Os" occupying an inversion centre and co-ordinated to a trans arrangement of two Cl^{-}and four $\mathrm{PPh}_{2} \mathrm{H}$ ligands, $\mathrm{Os}(1)-\mathrm{Cl} 2.448(2)$. $\mathrm{Os}(2)-\mathrm{Cl} 2.443(2)$. $\mathrm{Os}(1)-\mathrm{P}$ 2.357 (2), $2.349(2), \mathrm{Os}(2)-\mathrm{P} 2.355(2), 2.333(2) \AA$. With the exception of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right.$] (irreversible), cyclic voltammetric studies on the complexes trans $-\left[\mathrm{MCl}_{2}\left(\mathrm{PR}_{2} \mathrm{H}\right)_{4}\right]$ and trans- $\left[\mathrm{MCl}_{2}(\mathrm{PPhH})_{4}\right]$ show a reversible oxidation in each case, which is assigned to a $M^{\prime \prime \prime}-M^{\prime \prime \prime}$ redox couple.

We have been investigating the co-ordination chemistry of primary and secondary phosphines (PRH_{2} and $\mathrm{PR}_{2} \mathrm{H}$) with transition-metal ions. Our interest arises from the fact that they offer the possibility of further functionalisation following coordination, as shown for example by Stelzer and co-workers ${ }^{1}$ in their template syntheses of tetraphosphine macrocycles. In order for these primary and secondary phosphine complexes to be useful for further functionalisation, such as alkylation, at the PH groups, it is essential that they can be synthesised in good yields initially with the PH groups intact, thereby allowing controlled deprotonation and further reaction. Despite the vast literature describing tertiary phosphine $\left(\mathrm{PR}_{3}\right)$ co-ordination, PRH_{2} and $\mathrm{PR}_{2} \mathrm{H}$ ligation have been relatively poorly studied, ${ }^{2-8}$ and early studies indicated that upon coordination the $\mathrm{P}-\mathrm{H}$ bonds become unstable to deprotonation yielding phosphido-species. ${ }^{3}$ Pregosin and co-workers ${ }^{4}$ have recently reported the first example of an agostic Pd $\cdots \mathrm{H}-\mathrm{P}$ interaction in the complex cation $\left[\mathrm{Pd}_{2}\left(\mu-\mathrm{PBu}_{2}{ }_{2}\right)(\mu-\right.$ $\left.\left.\mathrm{PBu}^{\mathrm{t}}{ }_{2} \mathrm{H}\right)\left(\mathrm{PBu}^{\mathrm{t}}{ }_{2} \mathrm{H}\right)_{2}\right]^{+}$.
We have recently reported the complex cations $\left[\mathrm{MCl}\left\{\mathrm{P}\left(\mathrm{C}_{6}-\right.\right.\right.$ $\left.\left.\left.\mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{3}\right]^{+}(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ which were shown by multinuclear NMR spectroscopy to be stable with respect to deprotonation in solution over very long periods. ${ }^{5}$ In contrast, $\mathrm{PPh}_{2} \mathrm{H}$ complexes of $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{II}}$ undergo spontaneous deprotonation to give the phosphido dimers $\left[\mathrm{M}_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{PPh}_{2}\right)_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{2}\right] .{ }^{3}$ As part of our studies were intended to establish the susceptibility of $\mathrm{PR}_{2} \mathrm{H}$ and PRH_{2} complexes to spontaneous deprotonation we have extended this work to ruthenium and osmium complexes. We

[^0]now report the synthesis and redox studies of $\left[\mathrm{MCl}_{2}\left(\mathrm{PR}_{2} \mathrm{H}\right)_{4}\right]$ and $\left[\mathrm{MCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right],\left(\mathrm{M}=\mathrm{Ru}\right.$ or $\mathrm{Os}, \mathrm{R}=\mathrm{Ph}$ or $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)$. Single-crystal structure determinations on trans- $\left[\mathrm{RuCl}_{2}(\mathrm{PPh}-\right.$ $\left.\left.\mathrm{H}_{2}\right)_{4}\right]$ and trans- $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ are also described. The syntheses of trans- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ and related complexes have been reported previously by Sanders, ${ }^{6}$ and the crystal structure of trans-[$\left.\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot 0.5 \mathrm{CHCl}_{3}$ by Stephenson and co-workers. ${ }^{7}$

Results and Discussion

Reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with an excess ($5-7$ molar equivalents) of $\mathrm{PPh}_{2} \mathrm{H}$ or PPhH_{2} in degassed, refluxing EtOH under N_{2} for $c a .2 \mathrm{~h}$ yielded the tetrakis(phosphine) complex $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ or $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ in high yield. Similarly, reaction of $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{OsCl}_{6}\right]$ with $5-7$ molar equivalents of primary or secondary phosphine in refluxing aqueous EtOH solution under N_{2} afforded $\left[\mathrm{OsCl}_{2}\left(\mathrm{PR}_{2} \mathrm{H}\right)_{4}\right](\mathrm{R}=\mathrm{Ph}$ or $\mathrm{C}_{6} \mathrm{H}_{11}$) and $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$. Following recrystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ these complexes were characterised by IR , UV/VIS, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopies, FAB mass spectrometry and microanalyses. In each case the IR spectrum shows, in addition to peaks due to phenyl or cyclohexyl groups as appropriate, a weak feature at $c a .2340 \mathrm{~cm}^{-1}$ assigned to a coordinated PH function.
The FAB mass spectra of the products show peaks with the correct isotopic pattern for $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}-\mathrm{H}\right]^{+}(\mathrm{m} / \mathrm{z}$ 915), $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}-\mathrm{H}\right]^{+}(611),\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}+2 \mathrm{H}\right]^{+}$ (1008), $\left[\mathrm{OsCl}_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{4}+\mathrm{H}\right]^{+} \text {(1055) and }\left[\mathrm{OsCl}_{2}-1 . ~\right.}^{\text {- }}\right.\right.$ $\left.\left(\mathrm{PPhH}_{2}\right)_{4}\right]^{+}(702)$. In each case a very distinctive fragmentation pattern involving successive loss of chloride and phosphine ligands is also apparent, with no evidence for higher-molecular-

Table 1 Selected spectroscopic and electrochemical data

Complex	$\delta\left({ }^{31} \mathrm{P}\right)^{\text {a }}$	$v_{\text {max }}\left(\varepsilon_{\text {mol }}\right)^{b}$	$E_{\frac{1}{2}}\left(\mathrm{M}^{\text {II }}-\mathrm{M}^{\text {III }}\right)^{\text {c }}$
trans-[$\left.\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$	18.0	32900 (3430), 28250 (sh) (1100), 22300 (310)	+0.30
cis- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$	$26.6{ }^{\text {d }}$	-	-
	$36.7{ }^{\text {d }}$		
trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$	-25.0	30300 (sh) (1 140), 23300 (190)	$+0.55^{\circ}$
trans-[$\left.\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$	-17.7	26180 (sh) (580), 22320 (120)	+0.03
trans $-\left[\mathrm{OsCl}_{2}\left\{{\left.\left.\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{4}\right]}\right.\right.$	-31.0	31300 (975), 23 900(sh) (350), 18200 (195)	-0.37
trans-[$\left.\mathrm{OsCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$	-61.4	33900 (sh) (720), 30670 (610)	+0.07

${ }^{a}$ In ppm relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CDCl}_{3}$ at 300 K . ${ }^{b} \mathrm{In} \mathrm{cm}^{-1}\left(\varepsilon_{\text {mol }}\right.$ in $\left.\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$, measured as fresh solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; sh $=$ shoulder. ${ }^{c}$ In Volts vs. ferrocene-ferrocenium (0 V), measured at $200 \mathrm{mV} \mathrm{s}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{d}$ Triplet, ${ }^{3} J_{\mathrm{PP}} 30 \mathrm{~Hz}$. ${ }^{e}$ Irreversible, E_{pa} quoted.

Fig. 1 The ${ }^{31} \mathrm{P}$ NMR spectrum of trans- $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ (145.8 $\mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CDCl}_{3}, 300 \mathrm{~K}$)
weight species such as dimers. Previous work on tertiary phosphine complexes of ruthenium and osmium has indicated a strong tendency for formation of dimeric halide-bridged species. ${ }^{9}$ This does not appear to be the case for the primary and secondary phosphine complexes in this study, except for the reaction between $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}$ (see below). We have also seen some evidence from FAB mass spectrometry for the formation of the pentakis complex $\left[\mathrm{OsCl}\left(\mathrm{PPhH}_{2}\right)_{5}\right]^{+}$ (m / z 777). This species may be formed in the 3 -nitrobenzyl alcohol matrix \{it is not seen in the ${ }^{31} \mathrm{P}$ NMR spectrum of $\left.\left[\mathrm{OsCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]\right\}$, but work is underway to investigate these higher $\mathrm{P}: \mathrm{M}$ ratio species.
The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathbf{H}\right\}$ NMR spectroscopic studies (Table 1) confirm that the complexes exist as trans isomers in the fresh samples studied, each of which exhibits a singlet shifted significantly downfield relative to the free primary or secondary phosphine. The proton-coupled ${ }^{31} \mathrm{P}$ NMR spectra each reveal secondorder patterns (Fig. 1) arising from a large one-bond $\mathrm{P}-\mathrm{H}$ coupling together with cis and trans three-bond $\mathrm{P}-\mathrm{H}$ couplings and coupling to the phenyl or cyclohexyl protons. These data also confirm retention of the PH functions in all of the $\mathrm{PR}_{2} \mathrm{H}$ and PRH_{2} complexes. Upon standing in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution for several days some trans to cis isomerisation occurs for $\left[\mathrm{RuCl}_{2}{ }^{-}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$, with the appearance of two triplets in the ${ }^{31} \mathrm{P}-\left\{{ }^{2} \mathrm{H}\right\}$ NMR spectrum, at $\delta 26.6$ (P trans P) and 36.7 (P trans Cl), with ${ }^{2} J_{\mathrm{PP}} 30 \mathrm{~Hz}$.

Table 2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for trans$\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$

$\mathrm{Ru}-\mathrm{Cl}$	$2.422(3)$	$\mathrm{P}(1)-\mathrm{C}(1 \mathrm{P})$	$1.823(5)$
$\mathrm{Ru}-\mathrm{P}(1)$	$2.319(3)$	$\mathrm{P}(2)-\mathrm{C}(7 \mathrm{P})$	$1.811(7)$
$\mathrm{Ru}-\mathrm{P}(2)$	$2.318(3)$		
$\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2)$	$89.99(10)$	$\mathrm{Ru}-\mathrm{P}(1)-\mathrm{C}(1 \mathrm{P})$	$121.5(3)$
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{P}(2)$	$89.12(10)$	$\mathrm{Ru}-\mathrm{P}(2)-\mathrm{C}(7 \mathrm{P})$	$120.1(2)$
$\mathrm{Cl}-\mathrm{Ru}-\mathrm{P}(1)$	$91.83(9)$		

Fig. 2 View of the structure of trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ with the numbering scheme adopted; H atoms are omitted for clarity

In view of the lack of characterised examples of metal complexes incorporating primary and secondary phosphines, and to establish the bond-length and -angle distributions, singlecrystal structure analyses on trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ and trans$\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were undertaken. Suitable crystals of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ were obtained by slow diffusion of diethyl ether into a cooled solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The structure of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ (Fig. 2) is centrosymmetric with the ruthenium(II) ion on a crystallographic inversion centre with trans-dichloride and four equatorial PPhH_{2} ligands, $\mathrm{Ru}-\mathrm{Cl}$ 2.422(3), $\mathrm{Ru}-\mathrm{P}(1) 2.319(3)$ and $\mathrm{Ru}-\mathrm{P}(2)$ 2.318(3) \AA (Table 2). The phenyl groups adopt a propeller-like arrangement, with the four PPhH_{2} ligands lying in a precisely planar arrangement around the Ru^{11} with no significant distortions of the $\mathrm{Cl}-\mathrm{Ru}-\mathrm{P}$ or $\mathbf{P}-\mathrm{Ru}-\mathrm{P}$ angles from 90°. The structure of trans- $\left[\mathrm{RuCl}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot 0.5 \mathrm{CHCl}_{3}$ shows $\mathrm{Ru}-\mathrm{Cl} 2.4317(8)$, Ru- $2.3505(8)$, $2.3665(8) \AA \AA^{7}$ The steric requirements in trans- $\left[\mathrm{RuCl}_{2}{ }^{-}\right.$ $\left.\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ are considerably less than for $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ [the Tolman cone angle $\left.\theta\left(\mathrm{PPh}_{2} \mathrm{H}\right)=128, \theta\left(\mathrm{PPhH}_{2}\right)=110^{\circ}\right]$, and this is seen in the bond-angle distributions around the Ru^{n}. The complex $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ shows rather distorted $\mathrm{Cl}-\mathrm{Ru}-$ P angles of $87.13(3)$ and $82.00(3)^{\circ}$ and a cis $-\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ angle of $90.34(3)^{\circ}$. Thus, the chloride ligands are tilted away from the
apical site, probably due to the presence of two Ph groups on each P atom in this complex. ${ }^{7}$ To our knowledge, trans$\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ is the first structurally characterised example of a tetrakis(primary phosphine) complex. Cotton et al. ${ }^{8}$ reported the structure of the secondary phosphine complex $\left[\mathrm{RuCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{H}\right)_{4}\right]$, which also exhibits a trans-dichloro arrangement, with $\mathrm{Ru}-\mathrm{Cl} 2.440(1), \mathrm{Ru}-\mathrm{P} 2.323(1), 2.331(1) \AA$.

Comparison of the related ruthenium(iI) species $\left[\mathrm{RuCl}_{2}\right.$ $\left.\left(\mathrm{PPhH}_{2}\right)_{4}\right],\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ and the five-co-ordinate complex $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right][\mathrm{Ru}-\mathrm{P}$ trans to $\mathrm{P} 2.374(6), 2.412(6) \AA],{ }^{10}$ shows that the metal-phosphorus bond lengths increase by approximately $0.03 \AA$ upon replacement of the P -bound H atoms by phenyl groups in the series $\mathrm{PPhH}_{2}, \mathrm{PPh}_{2} \mathrm{H}, \mathrm{PPh}_{3}$.

Small single crystals of trans- $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained by slow evaporation from a solution of the complex in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The single-crystal structure shows two independent half molecules of $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ and a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule in the asymmetric unit, with each $\mathrm{Os}^{\mathrm{II}}$ occupying a crystallographic inversion centre. The stereochemistry at Os ${ }^{\text {II }}$ (Fig. 3) is distorted octahedral with trans-dichoro ligands, $\mathrm{Os}(1)-\mathrm{Cl}(1) 2.448(2)$, $\mathrm{Os}(1)-\mathrm{P}(1) 2.357(2), \mathrm{Os}(1)-\mathrm{P}(2) 2.349(2)$,

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for trans-[OsCl ${ }_{2}-$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$

$\mathrm{Os}(1)-\mathrm{Cl}(1)$	$2.448(2)$	$\mathrm{Os}(2)-\mathrm{Cl}(2)$	$2.443(2)$
$\mathrm{Os}(1)-\mathrm{P}(1)$	$2.357(2)$	$\mathrm{Os}(2)-\mathrm{P}(3)$	$2.355(2)$
$\mathrm{Os}(1)-\mathrm{P}(2)$	$2.349(2)$	$\mathrm{Os}(2)-\mathrm{P}(4)$	$2.333(2)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.822(9)$	$\mathrm{P}(1)-\mathrm{C}(12)$	$1.838(9)$
$\mathrm{P}(2)-\mathrm{C}(18)$	$1.825(9)$	$\mathrm{P}(2)-\mathrm{C}(24)$	$1.835(8)$
$\mathrm{P}(3)-\mathrm{C}(30)$	$1.844(8)$	$\mathrm{P}(3)-\mathrm{C}(36)$	$1.814(8)$
$\mathrm{P}(4)-\mathrm{C}(42)$	$1.827(8)$	$\mathrm{P}(4)-\mathrm{C}(48)$	$1.824(8)$
$\mathrm{P}(1)-\mathrm{H}(1)$	1.28	$\mathrm{P}(2)-\mathrm{H}(2)$	1.28
$\mathrm{P}(3)-\mathrm{H}(23)$	1.42	$\mathrm{P}(4)-\mathrm{H}(24)$	1.38
$\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{P}(1)$	$82.86(8)$	$\mathrm{Cl}(2)-\mathrm{Os}(2)-\mathrm{P}(3)$	$99.00(7)$
$\mathrm{Cl}(1)-\mathrm{Os}(1)-\mathrm{P}(2)$	$88.58(8)$	$\mathrm{Cl}(2)-\mathrm{Os}(2)-\mathrm{P}(4)$	$87.25(8)$
$\mathrm{P}(1)-\mathrm{Os}(1)-\mathrm{P}(2)$	$90.37(8)$	$\mathrm{P}(3)-\mathrm{Os}(2)-\mathrm{P}(4)$	$90.78(8)$
$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	$123.4(3)$	$\mathrm{Os}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	$121.7(3)$
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(12)$	$102.0(4)$	$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(18)$	$121.5(3)$
$\mathrm{Os}(1)-\mathrm{P}(2)-\mathrm{C}(24)$	$121.3(3)$	$\mathrm{C}(18)-\mathrm{P}(2)-\mathrm{C}(24)$	$99.3(4)$
$\mathrm{Os}(2)-\mathrm{P}(3)-\mathrm{C}(30)$	$120.1(3)$	$\mathrm{Os}(2)-\mathrm{P}(3)-\mathrm{C}(36)$	$125.4(3)$
$\mathrm{C}(30)-\mathrm{P}(3)-\mathrm{C}(36)$	$100.9(4)$	$\mathrm{Os}(2)-\mathrm{P}(4)-\mathrm{C}(42)$	$119.2(3)$
$\mathrm{Os}(2)-\mathrm{P}(4)-\mathrm{C}(48)$	$122.9(3)$	$\mathrm{C}(42)-\mathrm{P}(4)-\mathrm{C}(48)$	$101.5(4)$

Fig. 3 View of the structure of one of the molecules of trans$\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ in the asymmetric unit with the numbering scheme adopted (the other molecule is essentially indistinguishable); H atoms are omitted for clarity
$\mathrm{Os}(2)-\mathrm{Cl}(2) \quad 2.443(2), \mathrm{Os}(2)-\mathrm{P}(3) \quad 2.355(2)$ and $\mathrm{Os}(2)-\mathrm{P}(4)$ $2.333(2) \AA$ (Table 3). These bond lengths are slightly shorter than in the corresponding trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot 0.5 \mathrm{CHCl}_{3}$, in keeping with the smaller ionic radius of $\mathrm{Os}^{2 \mathrm{II}}$.

Electronic spectroscopic studies were also performed on the complexes trans- $\left[\mathrm{MCl}_{2}\left(\mathrm{PR}_{2} \mathrm{H}\right)_{4}\right](\mathrm{M}=\mathrm{Ru}, \mathrm{R}=\mathrm{Ph} ; \mathrm{M}=\mathrm{Os}$, $\mathrm{R}=\mathrm{Ph}$ or $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)$ and $\left[\mathrm{MCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right](\mathrm{M}=\mathrm{Ru}$ or Os$)$. These species all exhibit approximate $D_{4 h}$ symmetry at M^{II}, and therefore should show two d-d transitions corresponding to ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \longrightarrow{ }^{1} \mathrm{E}_{\mathrm{g}}$ at low frequency and ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \longrightarrow{ }^{1} \mathrm{~A}_{2 \mathrm{~g}}$ at higher frequency. All spectra were recorded in freshly prepared $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions and the results are given in Table 1.

The redox responses of the complexes of $\mathrm{Ru}^{\mathrm{II}}$ and Os^{I} measured by cyclic voltammetry in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution $(0.1 \mathrm{~mol}$ $\mathrm{dm}^{-3} \mathrm{NBu}_{4} \mathrm{BF}_{4}$ supporting electrolyte) are presented in Table 1. With the exception of trans- $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ which shows an irreversible oxidation $\left(E_{\mathrm{pa}}=+0.55 \mathrm{~V}\right.$ vs. ferrocene-ferrocenium), a reversible oxidation assigned to a $\mathbf{M}^{\mathrm{II}}-\mathrm{M}^{\mathrm{III}}$ couple is observed for each complex, indicating that the metal(III) complexes are also stable with respect to decomposition and deprotonation on the cyclic voltammetry time-scale. We might expect that deprotonation of one or more of the PH functions would occur more readily for the metal(iiI) complexes since the higher oxidation state would favour phosphide co-ordination. This is consistent with the irreversibility of the $R u^{I I}-\mathrm{Ru}^{\text {III }}$ couple observed for $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$. As expected, the oxidation potentials for the osmium(II) complexes are significantly less anodic than those of their ruthenium(II) analogues. The ease of oxidation of the former is consistent with the observation that exposure of solutions of these to air leads to the appearance of a red colouration due to the corresponding osmium(iII) complexes. Comparison of the oxidation potentials for trans$\left[\mathrm{MCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ and trans- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ shows that replacing a proton on each phosphine ligand with a phenyl group has a rather small effect, with the $\mathbf{M}^{\mathrm{II}}-\mathbf{M}^{\mathrm{III}}$ couple shifting to a slightly more cathodic potential. This contrasts with the anodic shift usually observed upon replacement of a P-bound alkyl substituent with a phenyl group. Thus, for example, the $\mathrm{Os}^{\mathrm{II}}-\mathrm{Os}^{\mathrm{III}}$ couple for trans- $\left[\mathrm{OsCl}_{2}(\mathrm{dmpe})_{2}\right] \quad$ (dmpe $=$ $\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}$) occurs at $E_{\frac{1}{2}}=+0.04 \mathrm{~V}$, while for trans$\left.\left[\mathrm{OsCl}_{2} \text { (dppe) }\right)_{2}\right]\left(\right.$ dppe $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right) E_{\frac{1}{2}}=+0.28 \mathrm{~V}$ $v s$. ferrocene-ferrocenium. ${ }^{11}$

We also attempted the synthesis of $\left[\mathrm{RuCl}_{2}\left\{\mathrm{P}_{\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{4}\right]}\right]\right.$ by reaction of $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with 5 molar equivalents of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}$ in degassed EtOH solution. This afforded a yellow solid initially which turned green during the reaction. The IR spectrum of this insoluble product showed the presence of cyclohexyl groups (v_{CH} 2920, 2850, $\delta_{\mathrm{CH}} 1450 \mathrm{~cm}^{-1}$), $\mathrm{P}-\mathrm{H}$ functions ($v_{\mathrm{PH}} 2300 \mathrm{~cm}^{-1}$) and possibly a $\mathrm{Ru}-\mathrm{Cl}$ stretch at 320 cm^{-1}. The FAB mass spectrum showed no peak for $\left[\mathrm{RuCl}_{2}-\right.$ $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{4}\right](m / z 964)$ and no fragmentation pattern similar to those seen for the other complexes described. It did however show several low-intensity peaks consistent with dinuclear ruthenium dicyclohexylphosphine species, e.g. m / z 1334 (calc. for $\left[{ }^{102} \mathrm{Ru}_{2}{ }^{35} \mathrm{Cl}_{4}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{5}\right]^{+}$1334). The poor solubility of the product hampered our attempts to record ${ }^{1} \mathrm{H}$ and ${ }^{31} P$ NMR spectra.

Experimental

Infrared spectra were measured as KBr or CsI discs using a Perkin-Elmer 983 spectrometer over the range $200-4000 \mathrm{~cm}^{-1}$, mass spectra by electron impact or fast-atom bombardment (FAB) using 3-nitrobenzyl alcohol as matrix on a VG Analytical 70-250 SE spectrometer, solution electronic spectra in quartz cells (path length 1 cm) using a Perkin-Elmer UV/VIS/NIR Lambda 19 spectrometer, ${ }^{1} \mathrm{H}$ NMR spectra using a JEOL FX90 or Bruker AM360 spectrometer operating at 90 or 360 MHz respectively and ${ }^{31} \mathrm{P}$ NMR spectra using a Bruker AM360 spectrometer operating at 145.8 MHz using 10 mm tubes with either a $5 \mathrm{~mm} \mathrm{D}_{2} \mathrm{O}$ insert or the addition of $10-15 \%$
deuteriated solvent as a lock and referenced to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (δ 0). Microanalyses were performed by the Imperial College microanalytical service. The compound $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}$ was obtained from Strem; $\mathrm{PPhH}_{2}{ }^{12}$ and $\mathrm{PPh}_{2} \mathrm{H}^{13}$ were prepared as described in the literature.

Cyclic voltammetry experiments were performed using a Model 362 EG \& G Princeton Applied Research scanning potentiostat, using a glassy carbon working electrode and platinum wire as auxiliary electrode, with a standard calomel reference electrode and $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ tetrabutylammonium tetrafluoroborate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution as supporting electrolyte. All potentials are quoted versus ferrocene-ferrocenium.
(a) Synthesis of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] .{ }^{6}$-This complex was prepared according to the literature method, using $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ ($40 \mathrm{mg}, 0.153 \mathrm{mmol}$) and $\mathrm{PPh}_{2} \mathrm{H}\left(0.2 \mathrm{~cm}^{3}, 1.075 \mathrm{mmol}\right)$ in EtOH $\left(10 \mathrm{~cm}^{3}\right.$), yield 75%. (Found: C, 62.2; H, 5.02%. Calc. for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Ru}$: C, $62.9 ; \mathrm{H}, 4.85 \%$). FAB mass spectrum: m / z $915,881,730,695,657,579,544,505,469,394,317$ and 285 ; calc. for $\left[{ }^{102} \mathrm{Ru}^{35} \mathrm{Cl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]^{+} 916$; the other peaks correspond to fragments formed by loss of $\mathrm{PPh}_{2} \mathrm{H}$ ligands and Cl atoms. ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.5-7.0(\mathrm{~m}, \mathrm{Ph}, 40 \mathrm{H})$ and 6.26 (m, PH, 4 H). IR (CsI disc): $3030 \mathrm{~m}, 2360 \mathrm{w}, 1590 \mathrm{w}, 1580 \mathrm{w}$, $1490 \mathrm{~m}, 1440 \mathrm{~m}, 1190 \mathrm{w}, 1090 \mathrm{~m}, 1065 \mathrm{w}, 1020 \mathrm{w}, 910 \mathrm{w}, 880 \mathrm{~m}$, $850 \mathrm{w}, 735 \mathrm{~s}, 690 \mathrm{~s}, 610 \mathrm{w}, 510 \mathrm{~s}, 480 \mathrm{~m}, 450 \mathrm{w}, 410 \mathrm{~m}$ and $310 \mathrm{w} \mathrm{cm}^{-1}$.
(b) Synthesis of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$.-Method as for (a) using $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(70 \mathrm{mg}, 0.267 \mathrm{mmol})$ and $\mathrm{PPhH}_{2}\left(0.2 \mathrm{~cm}^{3}, 1.818\right.$ mmol) in EtOH ($20 \mathrm{~cm}^{3}$), yield 64%. (Found: C, $46.1 ; \mathrm{H}, 4.35 \%$. Calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Ru}$: C, 47.1; $\mathrm{H}, 4.60 \%$). FAB mass spectrum: $m / z 611,576,501,467,427,392,357,318$ and 240 ; calc. for $\left[{ }^{102} \mathrm{Ru}^{35} \mathrm{Cl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]^{+} 612$; fragmentation by loss of PPhH_{2} and Cl accounts for all other peaks at lower $m / z .{ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.6-7.1$ (m, Ph, 20 H) and 5.31 (m, PH, 8 H). IR (CsI disc): 3060w, 2340w, $1500 \mathrm{w}, 1440 \mathrm{~m}$, $1100 \mathrm{w}, 1060 \mathrm{w}, 930 \mathrm{w}, 880 \mathrm{~m}, 750 \mathrm{~m}, 700 \mathrm{~m}, 480 \mathrm{w}, 420 \mathrm{~m}$ and 320 w cm^{-1}.
(c) Single-crystal Structure Determination of trans- $[\mathrm{Ru}-$ $\mathrm{Cl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}$]. -Crystal data. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{P}_{4} \mathrm{Ru}, M=612.34$, monoclinic, space group $C 2 / c, a=18.642(4), b=9.892(2)$, $c=16.177(3) \AA, \beta=117.03(3)^{\circ}, U=2657 \AA^{3}$ [from 2θ values of 27 reflections measured at $\pm \omega\left(2 \theta=24-28^{\circ}, \lambda=0.71073\right.$ $\AA)], Z=4, D_{\mathrm{c}}=1.531 \mathrm{~g} \mathrm{~cm}^{-3}, T=150 \mathrm{~K}$, pale yellow cube, $0.27 \times 0.23 \times 0.21 \mathrm{~mm}, \mu=10.30 \mathrm{~cm}^{-1}, F(000)=1240$.

Data collection and processing. Stoë Stadi-4 four-circle diffractometer equipped with Oxford Cryostreams low-temperature device, ${ }^{14}$ graphite-monochromated Mo-K α X-radiation, $T=150 \mathrm{~K}, \omega-2 \theta$ scans using the learnt-profile method, ${ }^{15}$ 1926 data collected $\left(2 \theta_{\max } 45^{\circ}, h-20\right.$ to $\left.15, k 0-10, l 0-19\right)$, semiempirical absorption correction applied (minimum and maximum transmission factors $0.890,1.000$ respectively), 1640 unique ($R_{\text {int }} 0.066$), giving 1407 reflections with $F \geqslant 6 \sigma(F)$ for use in all calculations. No significant crystal decay or movement was observed.

Structure solution and refinement. The positions of all non-H atoms in one half of the $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ molecule were located by direct methods, with the Ru occupying a crystallographic inversion centre at $(0,0,0))^{16}$ These non-H atoms were then refined (by least squares on F) ${ }^{17}$ with anisotropic thermal parameters, the phenyl groups being refined as rigid groups. Phenyl H atoms were included in fixed, calculated positions, while the P -bound H atoms were located in the difference map and subsequently constrained to have a $\mathbf{P}-\mathrm{H}$ bond length of $1.40 \AA$. At final convergence $R, R^{\prime}=0.0721,0.1046$ respectively, $S=1.179$ for 130 refined parameters and the final ΔF synthesis showed no $\Delta \rho$ above +1.59 or below -2.43 e \AA^{3}. Close inspection of the full electron-density map showed that the peak and trough were both within $1 \AA$ of the Ru atom, and there was no substantial residual electron density elsewhere. The weighting scheme $w^{-1}=\sigma^{2}(F)+0.002284 F^{2}$

Table 4 Fractional atomic coordinates ($\times 10^{4}$) for trans- $\left[\mathrm{RuCl}_{2}-\right.$ $\left.\left(\mathrm{PPhH}_{2}\right)_{4}\right]$ with estimated standard deviations (e.s.d.s) in parentheses

Atom	X / a	Y / b	Z / c
Ru	$0(0)$	$0(0)$	$0(0)$
Cl	$-386(1)$	$1864(3)$	$684(2)$
$\mathrm{P}(1)$	$-640(1)$	$964(3)$	$-1464(2)$
$\mathrm{C}(1 \mathrm{P})$	$-1514(3)$	$172(7)$	$-2401(4)$
$\mathrm{C}(2 \mathrm{P})$	$-2291(3)$	$600(7)$	$-2608(4)$
$\mathrm{C}(3 \mathrm{P})$	$-2955(3)$	$13(7)$	$-3344(4)$
$\mathrm{C}(4 \mathrm{P})$	$-2842(3)$	$-1000(7)$	$-3873(4)$
$\mathrm{C}(5 \mathrm{P})$	$-2065(3)$	$-1427(7)$	$-3666(4)$
$\mathrm{C}(6 \mathrm{P})$	$-1401(3)$	$-841(7)$	$-2930(4)$
P(2)	$1172(1)$	$1152(3)$	$282(2)$
C(7P)	$1142(4)$	$2546(5)$	$-459(4)$
$\mathrm{C}(8 \mathrm{P})$	$651(4)$	$3653(5)$	$-539(4)$
$\mathrm{C}(9 \mathrm{P})$	$605(4)$	$4732(5)$	$-1116(4)$
$\mathrm{C}(10 \mathrm{P})$	$1049(4)$	$4703(5)$	$-1615(4)$
$\mathrm{C}(11 \mathrm{P})$	$1550(4)$	$3596(5)$	$-1535(4)$
$\mathrm{C}(12 \mathrm{P})$	$1586(4)$	$2517(5)$	$-958(4)$

gave satisfactory agreement analyses and in the final cycle $(\Delta / \sigma)_{\text {max }}$ was 0.03 .

Fractional atomic coordinates are presented in Table 4. Atomic scattering factors were inlaid, ${ }^{17}$ or taken from ref. 18. Molecular geometry calculations utilised PARST ${ }^{19}$ and Fig. 2 and 3 were produced by ORTEP II. ${ }^{20}$
(d) Synthesis of $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$.-Method as for (a) above, using $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{OsCl}_{6}\right](95 \mathrm{mg}, 0.215 \mathrm{mmol})$ and $\mathrm{PPh}_{2} \mathrm{H}$ $\left(0.2 \mathrm{~cm}^{3}, 1.075 \mathrm{mmol}\right)$ in water-EtOH $\left(1: 3 \mathrm{v} / \mathrm{v}, 20 \mathrm{~cm}^{3}\right)$. (Found: $\mathrm{C}, 52.4 ; \mathrm{H}, 4.10 \%$. Calc. for $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{OsP}_{4} \cdot \mathrm{CHCl}_{3}$: C, $52.3 ; \mathrm{H}, 4.05 \%$). FAB mass spectrum: $m / z 1008,971,820$, $785,634,596,519,483,442,406$ and 365 ; calc. for $\left[{ }^{192} \mathrm{Os}^{35} \mathrm{Cl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]^{+} 1006$; loss of $\mathrm{PPh}_{2} \mathrm{H}$ and Cl ligands account for all other peaks. ${ }^{1} \mathrm{H}$ NMR ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ $\mathrm{K}): \delta 7.0-7.5(\mathrm{~m}, \mathrm{Ph}, 40 \mathrm{H})$ and $5.64(\mathrm{~m}, \mathrm{PH}, 4 \mathrm{H})$. IR (CsI disc): $3060 \mathrm{w}, 2320 \mathrm{w}, 1490 \mathrm{w}, 1440 \mathrm{~m}, 1100 \mathrm{~m}, 740 \mathrm{~m}, 700 \mathrm{~m}, 520 \mathrm{~m}$, $490 \mathrm{w}, 460 \mathrm{w}$ and $420 \mathrm{w} \mathrm{cm}^{-1}$.
(e) Single-crystal Structure Determination of trans- $\left[\mathrm{OsCl}_{2}-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$.-Crystal data. $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{OsP}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $M=1090.81$, monoclinic, space group $C 2 / c, a=38.426$ (3), $b=11.427(4), c=23.375(3) \AA, \beta=116.247(6)^{\circ}, U=9205$ \AA^{3} [from 2θ values of 20 reflections measured at $\pm \omega(2 \theta=$ $\left.\left.14-21^{\circ}, \lambda=0.71073 \AA\right)\right], Z=8, D_{\mathrm{c}}=1.574 \mathrm{~g} \mathrm{~cm}^{-3}, T=123$ K , orange plate, $0.20 \times 0.09 \times 0.04 \mathrm{~mm}, \mu=31.77 \mathrm{~cm}^{-1}$, $F(000)=4352$.

Data collection and processing. Rigaku AFC7R four-circle diffractometer, graphite-monochromated $\mathrm{Mo}_{0}-\mathrm{K} \alpha$ X-radiation, $T=123 \mathrm{~K}, \omega-2 \theta$ scans with ω scan width $=(0.79+0.35 \tan$ $\theta)^{\circ}, 6502$ data collected ($2 \theta_{\text {max }} 45^{\circ}, h 0-41, k 0-12, l-25$ to 25). Since there were no identifiable faces an empirical absorption correction was applied (ψ scans) (minimum and maximum transmission factors $0.8721,0.9973$ respectively), 6386 unique reflections ($R_{\text {int }} 0.052$), giving 4222 with $F \geqslant 4 \sigma(F)$ for use in all calculations. No significant crystal decay or movement was observed.

Structure solution and refinement. The positions of all non-H atoms in the two half molecules of $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right]$ were located by direct methods, with each Os atom occupying a crystallographic inversion centre. ${ }^{21}$ One $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent molecule was also identified during refinement. The Os, Cl and P atoms were then refined (by least squares on F) with anisotropic thermal parameters, with phenyl H atoms included in fixed, calculated positions; the P-bound H atoms were located in the difference map and their coordinates fixed. At final convergence $R, R^{\prime}=0.039,0.038$ respectively, $S=1.32$ for 281 refined parameters and the final ΔF synthesis showed no $\Delta \rho$ above +0.86 or below -0.80 e \AA^{-3}. The weighting scheme

Table 5 Atomic coordinates for trans- $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{H}\right)_{4}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ with e.s.d.s. in parentheses

Atom	x	y	z	Atom	x	y	z
Os(1)	0	0	0	$C(21)$	$0.0826(3)$	$0.0937(9)$	$-0.1690(4)$
Os(2)	0.25	0.25	0.5	$\mathrm{C}(22)$	$0.1041(3)$	$0.0198(9)$	$-0.1194(4)$
$\mathrm{Cl}(1)$	$-0.03856(6)$	$0.1647(2)$	$-0.0635(1)$	$\mathrm{C}(23)$	$0.0968(2)$	$0.0172(8)$	$-0.0654(4)$
$\mathrm{Cl}(2)$	$0.18264(6)$	$0.2063(2)$	$0.42648(10)$	$\mathrm{C}(24)$	$0.0675(2)$	$0.0865(8)$	$-0.0639(4)$
$\mathrm{Cl}(3)$	$0.3912(1)$	$0.1267(3)$	$0.2354(2)$	$\mathrm{C}(25)$	$0.2178(2)$	$0.5404(7)$	$0.6050(4)$
$\mathrm{Cl}(4)$	$0.4727(1)$	$0.0628(3)$	$0.3025(2)$	$\mathrm{C}(26)$	$0.2245(2)$	$0.6575(8)$	$0.6240(4)$
$\mathrm{P}(1)$	$0.01342(7)$	$0.0775(2)$	$0.1011(1)$	$\mathrm{C}(27)$	$0.2618(3)$	$0.7030(8)$	$0.6499(4)$
$\mathrm{P}(2)$	$0.05737(7)$	$0.0832(2)$	$0.0058(1)$	$\mathrm{C}(28)$	$0.2923(2)$	$0.6323(8)$	$0.6566(4)$
$\mathrm{P}(3)$	$0.24078(7)$	$0.3144(2)$	$0.5880(1)$	$\mathrm{C}(29)$	$0.2856(2)$	$0.5143(8)$	$0.6375(4)$
$\mathrm{P}(4)$	$0.25516(7)$	$0.0566(2)$	$0.5348(1)$	$\mathrm{C}(30)$	$0.2483(2)$	$0.4697(7)$	$0.6119(4)$
$\mathrm{C}(1)$	$-0.0313(3)$	$0.2810(9)$	$0.0774(5)$	$\mathrm{C}(31)$	$0.1630(2)$	$0.2546(8)$	$0.5543(4)$
$\mathrm{C}(2)$	$-0.0541(3)$	$0362(1)$	$0.0908(6)$	$\mathrm{C}(32)$	$0.1321(2)$	$0.2312(8)$	$0.5692(4)$
$\mathrm{C}(3)$	$-0.0636(3)$	$0.341(1)$	$0.1411(5)$	$\mathrm{C}(33)$	$0.1377(2)$	$0.2333(8)$	$0.6320(4)$
$\mathrm{C}(4)$	$-0.0501(3)$	$0.241(1)$	$0.1771(5)$	$\mathrm{C}(34)$	$0.1737(2)$	$0.2591(8)$	$0.6797(4)$
$\mathrm{C}(5)$	$-0.0272(3)$	$0.1635(9)$	$0.1647(5)$	$\mathrm{C}(35)$	$0.2048(2)$	$0.2800(7)$	$0.6665(4)$
$\mathrm{C}(6)$	$-0.0177(3)$	$0.1836(8)$	$0.1143(4)$	$\mathrm{C}(36)$	$0.1994(2)$	$0.2794(7)$	$0.6027(4)$
$\mathrm{C}(7)$	$0.0694(2)$	$0.2442(9)$	$0.1796(4)$	$\mathrm{C}(37)$	$0.2133(2)$	$-0.0044(9)$	$0.6015(4)$
$\mathrm{C}(8)$	$0.1065(3)$	$0.2758(8)$	$0.2233(4)$	$\mathrm{C}(38)$	$0.2074(3)$	$-0.0216(8)$	$0.6564(4)$
$\mathrm{C}(9)$	$0.1356(3)$	$0.1962(9)$	$0.2428(4)$	$\mathrm{C}(39)$	$0.2382(3)$	$-0.0049(9)$	$0.7150(4)$
$\mathrm{C}(10)$	$0.1297(3)$	$0.0830(8)$	$0.2192(4)$	$\mathrm{C}(40)$	$0.2741(3)$	$0.0241(8)$	$0.7217(4)$
$\mathrm{C}(11)$	$0.0926(3)$	$0.0495(8)$	$0.1769(4)$	$\mathrm{C}(41)$	$0.2803(2)$	$0.0397(7)$	$0.6663(4)$
$\mathrm{C}(12)$	$0.0621(2)$	$0.1292(8)$	$0.1561(4)$	$\mathrm{C}(42)$	$0.2492(2)$	$0.0238(7)$	$0.6064(4)$
$\mathrm{C}(13)$	$0.0451(3)$	$0.3235(9)$	$0.0162(4)$	$\mathrm{C}(43)$	$0.2913(3)$	$-0.1596(8)$	$0.5460(4)$
$\mathrm{C}(14)$	$0.0570(3)$	$0.4377(10)$	$0.0361(5)$	$\mathrm{C}(44)$	$0.3205(3)$	$-0.2339(8)$	$0.5508(4)$
$\mathrm{C}(15)$	$0.0956(3)$	$0.4597(9)$	$0.0766(5)$	$\mathrm{C}(45)$	$0.3544(3)$	$-0.1909(8)$	$0.5521(4)$
$\mathrm{C}(16)$	$0.1219(3)$	$0.3710(9)$	$0.0958(5)$	$\mathrm{C}(46)$	$0.3599(3)$	$-0.0699(9)$	$0.5533(4)$
$\mathrm{C}(17)$	$0.1108(3)$	$0.2571(9)$	$0.0756(4)$	$\mathrm{C}(47)$	$0.3309(2)$	$0.0049(8)$	$0.5499(4)$
$\mathrm{C}(18)$	$0.0718(3)$	$0.2323(8)$	$0.0347(4)$	$\mathrm{C}(48)$	$0.2960(2)$	$-0.0375(7)$	$0.5458(4)$
$\mathrm{C}(19)$	$0.0458(3)$	$0.1603(8)$	$-0.1159(4)$	$\mathrm{C}(49)$	$0.4329(4)$	$0.119(1)$	$0.3087(6)$
$\mathrm{C}(20)$	$0.0538(3)$	$0.1621(9)$	$-0.1680(4)$				

$w^{-1}=\sigma^{2}(F)$ gave satisfactory agreement analyses and in the final cycle $(\Delta / \sigma)_{\text {max }}$ was 0.00 .

Fractional atomic coordinates are presented in Table 5.
Additional material available for both structures from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.
 above, using $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{OsCl}_{6}\right](89 \mathrm{mg}, 0.203 \mathrm{mmol})$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\left(0.2 \mathrm{~cm}^{3}, 1.01 \mathrm{mmol}\right)$ in water-EtOH ($1: 3 \mathrm{v} / \mathrm{v}, 20$ cm^{3}) (Found: C, 53.9; $\mathrm{H}, 8.35$. Calc. for $\mathrm{C}_{48} \mathrm{H}_{92} \mathrm{Cl}_{2} \mathrm{OsP}_{4}$: C, $54.6 ; \mathrm{H}, 8.80 \%$). FAB mass spectrum: $m / z 1055,857$ and 654; calc. for $\left[{ }^{[192} \mathrm{Os}^{35} \mathrm{Cl}_{2}\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}\right\}_{4}\right]^{+}$1054; loss of $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{H}$ and Cl accounts for the other peaks. IR (KBr disc): $2960 \mathrm{~m}, 2880 \mathrm{~m}, 2330 \mathrm{w}, 1460 \mathrm{~m}, 1360 \mathrm{w}, 1280 \mathrm{w}, 1240 \mathrm{w}$, $1180 \mathrm{w}, 1135 \mathrm{w}, 1015 \mathrm{~m}, 935 \mathrm{w}, 900 \mathrm{w}, 880 \mathrm{w}, 855 \mathrm{w}, 820 \mathrm{w}, 525 \mathrm{w}$, $485 \mathrm{~m}, 410 \mathrm{w}, 390 \mathrm{w}$ and $300 \mathrm{w} \mathrm{cm}^{-1}$.
(g) Synthesis of $\left[\mathrm{OsCl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]$.-Method as for (a) above, using $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{OsCl}_{6}\right](121 \mathrm{mg}, 0.276 \mathrm{mmol})$ and $\mathrm{PPhH}{ }_{2}$ $\left(0.13 \mathrm{~cm}^{3}, 1.14 \mathrm{mmol}\right)$ in water-EtOH ($1: 10 \mathrm{v} / \mathrm{v}, 20 \mathrm{~cm}^{3}$) (Found: C, 37.3, H, 3.70. Calc. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{OsP}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $38.2 ; \mathrm{H}, 3.85 \%$). FAB mass spectrum: $m / z 777,702,667,590$, $555,480,444$ and 407 ; calc. for $\left[{ }^{192} \mathrm{Os}^{35} \mathrm{Cl}_{2}\left(\mathrm{PPhH}_{2}\right)_{4}\right]^{+} 702$; loss of PPhH_{2} and Cl accounts for all other peaks except for the peak at $m / z 777$ which is consistent with $\left[{ }^{192} \mathrm{Os}^{35} \mathrm{Cl}-\right.$ $\left.\left(\mathrm{PPhH}_{2}\right)_{5}\right]^{+}$. IR (CsI disc): $3050 \mathrm{w}, 2960 \mathrm{w}, 2330 \mathrm{~m}, 1260 \mathrm{~m}$, $1485 \mathrm{~m}, 1435 \mathrm{w}, 805 \mathrm{~m}, 740 \mathrm{~m}, 695 \mathrm{~s}$ and $300 \mathrm{w} \mathrm{cm}^{-1}$.

Acknowledgements

We thank the SERC, the Nuffield Foundation and the University of Southampton for support and Johnson Matthey ple for loans of platinum metal salts.

References

I R. Bartsch, S. Hietkamp, S. Morton, H. Peters and O. Stelzer, Inorg. Chem., 1983, 22, 3624; D. J. Brauer, F. Gol, S. Hietkamp, H. Peters, H. Sommer, O. Stelzer and W. S. Sheldrick, Chem. Ber., 1986, 119, 349; D. J. Brauer, F. Dorrenbach, T. Lebbe and O. Stelzer, Chem. Ber., 1992, 125, 1785.
2 For examples, see A. Bright, B. E. Mann, C. Masters, R. M. Slade and R. E. Srainbank, J. Chem. Soc. A, 1971, 1826; D. J. Brauer, P. C. Knuppel and O. Stelzer, Chem. Ber., 1987, 120, 81; C. W. Weston, G. W. Bailey, J. H. Nelson and H. B. Jonassen, J. Inorg. Nucl. Chem., 1972, 34, 1752; M. Baacke, O. Stelzer and V. Wray, Chem. Ber., 1980, 113, 1356; J. Vicente, M. T. Chicote and P. G. Jones, Inorg. Chem., 1993, 32, 4960; R. A. Palmer, H. F. Giles and D. R. Whitcomb, J. Chem. Soc., Dalton Trans., 1978, 1671; R. A. Palmer and D. R. Whitcombe, J. Magn. Reson., 1980, 39, 371; P. Leoni, Organometallics, 1993, 12, 2432.

3 R. G. Hayter, J. Am. Chem. Soc., 1962, 84, 3046; W. Levason, C. A. McAuliffe and B. Riley, Inorg. Nucl. Chem. Lett., 1973, 9, 1201 ; J. B. Brandon and K. R. Dixon, Can. J. Chem., 1981, 59, 1188; A. J. Carty, F. Hartstock and N. J. Taylor, Inorg. Chem., 1982, 21, 1349; T. Gebauer, G. Frenzen and K. Dehnicke, Z. Naturforsch, Teil B, 1992, 47, 1505 .
4 P. Leoni, M. Pasquali, M. Sommovigo, F. Laschi, P. Zanello, A. Albatini, F. Lianza, P. S. Pregosin and H. Rueegger, Organometallics, 1993, 12, 1702.
5 R. J. Forder, I. S. Mitchell, G. Reid and R. H. Simpson, Polyhedron, 1994, 13, 2139.
6 J. R. Sanders, J. Chem. Soc. A, 1971, 2991; J. Chem. Soc., Dalton Trans., 1973, 743.
7 E. B. McAslan, A. J. Blake and T. A. Stephenson, Acta Crystallogr., Sect. C, 1989, 45, 1811.
8 F. A. Cotton, B. A. Frenz and D. L. Hunter, Inorg. Chim. Acta, 1976, 16, 203.
9 For examples, see F. A. Cotton, M. Matusz and R. C. Torralba, Inorg. Chem., 1989, 28, 1516; F. A. Cotton and R. C. Torralba, Inorg. Chem., 1991, 30, 2196 and refs. therein.
10 S. J. La Placa and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
11 N. R. Champness, W. Levason, D. Pletcher, M. D. Spicer and M. Webster, J. Chem. Soc., Dalton Trans., 1992, 2201.

12 W. Kuchen and H. Buchwald, Chem. Ber., 1958, 91, 2296.

13 V. D. Bianco and S. Doronzo, Inorg. Synth., 1976, 16, 161.
14 J. Cosier and A. M. Glayer, J. Appl. Crystallogr., 1986, 19, 105. 15 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.
16 SHELXS 86, program for crystal structure solution, G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
17 SHELX 76, program for crystal structure refinement, G. M. Sheldrick, University of Cambridge, 1976.
18 D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.

19 PARST, M. Nardelli, Comput. Chem., 1983, 7, 95.
20 ORTEP II, C. K. Johnson, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
21 TEXSAN, Crystal Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1992.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1994, Issue 1, pp. xxiii-xxviii.

