Preparation and Crystal Structures of Cationic Dienehydrido and Dienyl Ruthenium Complexes containing *N*,*N'*,*N"*-Trimethyl-1,4,7-triazacyclononane[†]

San-Ming Yang, Wing-Chi Cheng, Kung-Kai Cheung, Chi-Ming Che^{*} and Shie-Ming Peng Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

The reaction between [{Ru(cod)Cl₂}_n] (cod = cycloocta-1,5-diene) and *N,N',N"*-trimethyl-1,4,7-triazacyclononane (tacn) in ethanol-water gave [Ru(tacn)(1,2,5,6- η -cod)H]ClO₄ **1**. When *tert*-butyl alcohol was used as the solvent, [Ru(tacn)(1,2,3,4,5- η -C₈H₁₁)]ClO₄ **2** was obtained. The Ru-H moiety in **1** is characterized by a ¹H NMR signal at δ -6.11 and a v(Ru-H) stretch at 2040 cm⁻¹. Crystal structure analysis shows that the co-ordinated cod of **1** is in the tub form, whereas complex **2** has an η ⁵-cyclooctadienyl ligand.

The co-ordination chemistry of facially co-ordinating ligands such as $L^{1}-L^{4}$, 1,4,7-triazacyclononane (L^{5}) and N,N',N''trimethyl-1,4,7-triazacyclononane (tacn), which are isostructural to cyclopentadienyl and pentamethylcyclopentadienyl, has been an area of considerable interest in recent years.¹⁻³ In this context, tacn is of particular interest to the study of highvalent organometallic complexes.^{3,4} This ligand resembles pentamethylcyclopentadienyl in that it is also a sterically bulky and facially co-ordinating ligand. As with other macrocyclic tertiary amines, it is a good ligand for the generation of highvalent metal complexes. In fact, a highly reactive *cis*-dioxoruthenium(v1) complex of tacn has recently been prepared and characterized.^{3d} We herein describe the preparation, crystal structure and spectroscopic properties of two cationic organoruthenium(II) complexes, which are formed from the reaction of tacn with [{Ru(cod)Cl₂}_n] (cod = cycloocta-1,5-diene).

Experimental

All reactions were performed using standard Schlenk-line techniques under a nitrogen atmosphere. Solvents were degassed by purging with nitrogen for 20 min. The compound $[{Ru(cod)Cl_2}_n]^5$ and tacn⁶ were prepared according to the literature methods. Trifluoroacetic acid was distilled before use. Other reagents were used as received. Infrared spectra were obtained using a Shimadzu IR-408 spectrophotometer, UV/VIS spectra on a Perkin-Elmer Lambda 19 UV/NIR spectrophotometer. Proton NMR spectra were obtained from a JEOL 270 Fourier-transform-NMR spectrometer with SiMe₄ as internal reference. Microanalyses were conducted by Butterworth Laboratories Ltd.

Preparations.—[Ru(tacn)(1,2,5,6-η-cod)H]ClO₄ 1. The compound tacn (0.5 g, 2.9 mmol) was added to degassed ethanolwater (30 cm³, 1:5 v/v) and the mixture purged with nitrogen for 20 min. Then [{Ru(cod)Cl₂}_n] (0.8 g, 2.9 mmol) and zinc dust (*ca.* 2 g) were added and the suspension refluxed for 12 h. The resulting solution was filtered and solid NaClO₄ was added to afford compound 1 as a pale yellow solid. This was collected on frit, washed with diethyl ether and air-dried. Yield 0.2 g (14%) (Found: C, 42.10; H, 7.10; N, 8.65. Calc. for C₁₇H₃₄-ClN₃O₄Ru: C, 42.45; H, 7.10; N, 8.75%). ¹H NMR (CD₃CN): δ -6.11 (1 H, s, Ru-H), 1.50–1.64 (4 H, m, CH₂ of cod),

2.20–2.30 (2 H, m), 2.42–2.68 (14 H, m, CH₂ of tacn and two N–Me), 2.70–2.82 (2 H, m), 2.86–3.00 (2 H, m, CH₂ of tacn), 3.04–3.20 (4 H, m), 3.32–3.42 (2 H, br m, olefinic H of cod), 3.51 (3 H, s, N–Me). IR (cm⁻¹): 2040 [v(Ru–H)], 1623 [v(C=C)].

[Ru(tacn)(1,2,3,4,5-η-C₈H₁₁)]ClO₄ **2**. The procedure was the same as that for **1** except *tert*-butyl alcohol was used instead of ethanol. Compound **2** was obtained as a yellow solid. Yield 0.2 g (14%) (Found: C, 43.25; H, 7.15; N, 8.95. Calc. for C₁₇H₃₂ClN₃O₄Ru·H₂O: C, 41.10; H, 6.90; N, 8.45%). ¹H NMR (CD₃CN): δ 0.90–1.05 (1 H, m, H⁷), 1.15–1.25 (1 H, m, H⁷), 1.35–1.50 (4 H, m, two H⁶ and two H⁸), 2.40–2.50 (2 H, m, CH₂ of tacn), 2.50–2.75 (14 H, CH₂ of tacn and two N–Me), 2.85–3.00 (2 H, m, CH₂ of tacn), 3.10–3.25 (2 H, m, H¹ and H⁵), 3.70–3.85 (5 H, m, H² and H⁴, and N–Me), 5.90 (1 H, t, *J* 6.11 Hz, H³).

Crystal Structural Determinations.—Crystal data. $C_{17}H_{34}$ -ClN₃O₄Ru·H₂O 1, M = 498.01, triclinic, space group *P*I, a = 9.223(1), b = 9.640(1), c = 12.382(1)Å, $\alpha = 81.87(1), \beta =$ 79.31(1), $\gamma = 75.06(1)^{\circ}$, U = 1040.1(1.0)Å³, Z = 2, $D_c =$ 1.590 g cm⁻³, μ (Mo-K α) = 8.99 cm⁻¹, F(000) = 518.

A crystal of dimensions $0.1 \times 0.1 \times 0.2$ mm was used for data collection at 22 °C on an Enraf-Nonius CAD-4 diffractometer with graphite monochromatized Mo-K α radiation ($\lambda = 0.71073$ Å) using the ω -2 θ scan mode. Intensity data ($2\theta_{max} = 56$, $h \ 0$ to 12, k - 12 to 12, l - 16 to 16) were corrected for Lorentz and polarization effects and empirical absorption based on the ψ -scans of six strong reflections. 4700 Independent reflections were obtained, 4142 reflections with $F_o \ge 6\sigma(F_o)$ were considered observed and used in the structural analysis. The structure was solved by Patterson and Fourier methods and refined by full-matrix least squares using the Enraf-Nonius SDP-1985 programs.⁷ The Ru, Cl, O, N and C atoms were refined anisotropically and H atoms at calculated positions and isotropic thermal parameters equal to 1.3 times that of the attached C atom were not refined. The H atoms of the water molecule were not found. Convergence for 244 variables by least-squares refinement on F with $w = 4F_o^2/\sigma^2(F_o^2)$, where $\sigma^2(F_o^2) = [\sigma^2(I) + (0.04F_o^2)^2]$ for reflections with $I \ge 3\sigma(I)$, was reached at R = 0.038 and $R' = [\Sigma w(|F_o| - |F_c|)^2 / \Sigma w|F_o|^2]^{\frac{1}{2}}$ 0.053 and S = 1.951 for 4142 reflections; $(\Delta/\sigma)_{max} = 0.01$. A final Fourier difference map was featureless, with maximum positive and negative peaks of 0.89 and 0.52 e Å⁻³ respectively. The oxygen atom [O(5)] of the water molecule is 2.95 Å from O(3) and 2.84 Å from O(4) of the perchlorate ion.

 $C_{17}H_{32}ClN_3O_4Ru$ **2**, M = 478.98, orthorhombic, space group $P2_12_12_1$, a = 8.783(2), b = 14.815(4), c = 15.047(3)Å, U = 1957.8(8) Å³, Z = 4, $D_c = 1.625$ g cm⁻³, μ (Mo-K α) = 10.816 cm⁻¹, F(000) = 992.

A crystal of dimensions $0.50 \times 0.60 \times 0.70$ mm was used for data collection at 298 K on a Nonius diffractometer with graphite monochromatized Mo-K α radiation ($\lambda = 0.7107$ Å) using the θ -2 θ scan mode ($2\theta_{max} = 50.0^{\circ}$). Data reduction and structure refinement were performed using the NRCVAX program.⁸ 1983 Unique reflections were measured, 1927 of which with $I \ge 2\sigma(I)$ were used in the structural analysis. The number of variables was 236 and the same weighting scheme as for 1 was used in the least-squares refinement. The final *R*, *R'* and *S* values were 0.041, 0.044 and 1.86 respectively. A final Fourier difference map was featureless with maximum positive and negative peaks of 178 and -0.81 e Å⁻³ respectively.

Tables 1 and 2 list the atomic coordinates of compounds 1 and 2 respectively. Selected bond distances and angles are given in Table 3.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

Dienylruthenium(II) amine complexes were reported previously by Singleton and co-workers.^{9a} They found that [{Ru(cod)-Cl₂}_n] reacted with NH₂NMe₂ to give [Ru(NH₂NMe₂)₃-(cod)H]PF₆,⁹ which has the hydride and cod *cis* to each other. Our interest in dienylruthenium(II) complexes of macrocyclic amines stemmed from the recent findings that Ru^{II}-cod complexes may play an important role in the cycloaddition reactions of olefins and/or alkynes.¹⁰

Ruthenium complexes of tacn were first studied by Wieghardt and co-workers,^{3a} but those reported are mostly dimeric. It was only recently that both Wieghardt and co-workers^{3b,c} and Che and co-workers^{3d,e} reported the preparation of some monomeric ruthenium complexes of tacn.

In this work [{Ru(cod)Cl₂}_n] was found to react with tacn in refluxing aqueous ethanol and aqueous *tert*-butyl alcohol to give compounds 1 and 2 respectively. They are stable diamagnetic solids. Assignments of the ¹H NMR spectra of complexes 1 and 2 are hampered by the overlapping of the methylene protons between tacn and the π -bonded moiety. For 1, the ¹H NMR signal at δ -6.11 and IR absorption band at 2040 cm⁻¹ are characteristic of the Ru–H moiety.¹¹ In addition, the broad olefinic protons at δ 3.32–3.42 are at higher field relative to those in other Ru^{II}-cod complexes.^{12,13} This is likely a consequence of the enhanced π basicity of Ru^{II} by tacn, which is a good σ donor. Similar reasoning can also be employed to explain why the 1,2,3,4,5- η -C₈H₁₁ protons in 2 appear at relatively higher field than in [Ru(C₆H₆)(1,2,3,4,5- η -C₈H₁₁]^{+.13} The NMR data manifest a C_s symmetry for both 1 and 2.

For complex 1, no deuterium exchange was observed in

Table 1 Positional parameters of the non-hydrogen atoms of complex 1

Atom	x	у	Ζ
Ru	-0.24652(3)	0.159 93(2)	0.236 78(2)
Cl	0.164 1(1)	-0.3844(1)	0.277 74(9)
O(1)	0.174 2(7)	-0.417 6(6)	0.175 3(4)
O(2)	0.270 5(6)	-0.3121(6)	0.287 7(5)
O(3)	0.033 1(9)	-0.297(1)	0.307 4(9)
O(4)	0.160(1)	0.497 6(7)	0.348 3(6)
O(5)	0.234 4(6)	0.275 7(7)	0.517 1(5)
N(1)	-0.267 1(4)	0.404 7(3)	0.196 1(3)
N(2)	-0.011 1(3)	0.174 6(3)	0.235 1(3)
N(3)	-0.268 4(4)	0.230 7(4)	0.403 4(2)
C(1)	-0.366 9(6)	0.486 5(4)	0.115 6(4)
C(2)	0.111 0(5)	0.062 4(5)	0.180 2(4)
C(3)	-0.359 6(6)	0.157 8(6)	0.495 6(3)
C(4)	-0.112 6(6)	0.416 8(6)	0.150 6(7)
C(5)	0.009 1(6)	0.317 1(5)	0.181 7(6)
C(6)	0.008 8(6)	0.161 4(9)	0.351 2(4)
C(7)	-0.113 9(6)	0.203 9(9)	0.429 0(4)
C(8)	-0.3402(9)	0.385 6(6)	0.398 5(5)
C(9)	-0.316(1)	0.470 6(5)	0.299 3(5)
C(10)	-0.227 3(4)	0.135 2(4)	0.063 0(3)
C(11)	-0.3731(5)	0.184 5(5)	0.016 3(3)
C(12)	-0.512 5(5)	0.205 0(6)	0.102 8(4)
C(13)	-0.484 4(4)	0.191 6(4)	0.220 3(3)
C(14)	-0.438 8(4)	0.059 9(4)	0.280 3(3)
C(15)	-0.409 3(5)	-0.0838(4)	0.234 4(4)
C(16)	-0.2820(6)	-0.109 4(4)	0.141 3(4)
C(17)	-0.183 8(4)	-0.000 7(4)	0.120 4(3)

Table 2 Positional parameters of the non-hydrogen atoms of complex 2

Atom	x	у	Z
Ru	0.524 83(7)	0.987 43(3)	0.857 47(4)
N(1)	0.360 6(7)	1.098 3(4)	0.872 8(5)
N(2)	0.679 7(7)	1.105 4(4)	0.861 3(5)
N(3)	0.506 1(9)	1.035 5(4)	0.7157(4)
C(1)	0.438 2(11)	1.184 4(6)	0.892 2(7)
C(2)	0.601 9(12)	1.173 9(6)	0.915 4(7)
C(3)	0.707 2(10)	1.139 2(8)	0.769 0(7)
C(4)	0.656 8(13)	1.077 9(8)	0.700 0(6)
C(5)	0.382 9(12)	1.103 4(7)	0.709 3(6)
C(6)	0.283 7(11)	1.106 1(9)	0.785 3(8)
C(7)	0.249 2(13)	1.080 2(7)	0.942 9(8)
C(8)	0.835 2(12)	1.095 8(8)	0.901 5(7)
C(9)	0.484 5(14)	0.967 1(6)	0.644 7(6)
C(10)	0.570 7(12)	0.949 2(6)	0.995 2(6)
C(11)	0.680 3(12)	0.909 0(7)	0.935 9(8)
C(12)	0.647 4(12)	0.860 4(6)	0.857 9(7)
C(13)	0.499 7(17)	0.852 3(5)	0.817 9(6)
C(14)	0.359 8(11)	0.876 0(5)	0.856 3(7)
C(15)	0.288 9(14)	0.836 0(7)	0.937 0(8)
C(16)	0.393 9(15)	0.812 5(7)	1.011 5(8)
C(17)	0.464 8(15)	0.896 3(7)	1.051 7(6)
Cl	1.009 0(2)	0.350 0(1)	0.805 8(1)
O(1)	1.008 5(10)	0.284 6(5)	0.737 5(5)
O(2)	1.003 8(13)	0.436 3(5)	0.769 9(7)
O(3)	0.881 6(9)	0.337 8(7)	0.859 5(6)
O(4)	1.146 1(9)	0.343 8(7)	0.854 8(6)

 CD_3CN-D_2O . The Ru-H moiety is quite inert and it does not react with either $(CD_3)_2CO$ or neat CF_3CO_2H in CD_3CN .

Using a $D_2O-CD_3CD_2OD$ (5:1 v/v) solvent system for the synthesis no deuterium incorporation was found in the product. This would exclude the possibility that the Ru-H moiety of 1 was formed by α -hydride migration of ethanol, a reaction pathway previously reported by Vaska and Diluzio.¹⁴ Hence the hydride ligand in 1 is suggested to come from cod, but further investigation is needed.

Table 3 Selected bond distances (Å) and angles (°) for complexes 1 and 2

[Ru(tacn)(1,2,4,5-n-cod)H]ClO ₄ 1									
Ru-N(1)	2.308(4)	Ru–C(10)	2.168(3)	C(10)-C(17)	1.398(5)				
Ru-N(2)	2.208(3)	Ru-C(13)	2.180(4)	C(13)-C(14)	1.384(6)				
Ru-N(3)	2.222(3)	Ru-C(14)	2.178(5)	Ru–C(17)	2.162(4)				
N(1)-Ru-C(10)	90.4(1)	N(2)-Ru-C(10)	97.7(1)	N(2)-Ru-C(13)	167.8(1)				
N(1)-Ru-C(13)	89.8(1)	N(1)-Ru-C(14)	124.5(1)	N(1)-Ru-C(17)	126.8(1)				
N(2)-Ru-C(14)	155.2(1)	N(2)-Ru-C(17)	94.6(1)	N(3)-Ru-C(10)	168.8(1)				
N(3)-Ru-C(13)	101.1(1)	N(3)-Ru-C(14)	94.5(1)	N(3)-Ru-C(17)	153.1(1)				
C(10)-Ru- $C(13)$	78.9(1)	C(10)-Ru-C(14)	78.9(1)	C(10)-Ru- $C(17)$	37.7(1)				
C(13)-Ru-C(14)	37.0(1)	C(13)-Ru- $C(17)$	89.8(2)	C(14)-Ru- $C(17)$	79.4(1)				
Ru-C(13)-C(12)	114.2(2)	Ru-C(14)-C(13)	71.6(2)						
$[Ru(tacn)(1,2,3,4,5-\eta^5-C_8H_{11})]ClO_4 2$									
$R_{\rm H} = N(1)$	2,198(6)	Ru-N(2)	2.215(6)	Ru-N(3)	2.255(6)				
$\mathbf{R}_{\mathbf{u}} = \mathbf{C}(10)$	2.186(9)	Ru-C(11)	2.146(10)	Ru-C(12)	2.168(9)				
Ru = C(13)	2.100(7)	Ru - C(14)	2.197(8)	C(10)-C(11)	1.44(2)				
C(10)-C(17)	1.48(1)	C(11)-C(12)	1.41(2)	C(12) - C(13)	1.44(2)				
C(13)-C(14)	1.40(2)	C(14)-C(15)	1.49(2)	C(15)-C(16)	1.49(2)				
C(16)-C(17)	1.52(2)								
-()									
N(1) - Ru - N(2)	79.1(2)	N(1)-Ru-N(3)	79.4(3)	N(1)-Ru-C(10)	102.4(3)				
N(1) - Ru - C(11)	139.8(4)	N(1) - Ru - C(12)	166.9(3)	N(1)-Ru-C(13)	132.3(4)				
N(1) - Ru - C(14)	97.4(3)	N(2)-Ru-N(3)	79.6(3)	N(2)-Ru-C(10)	93.9(3)				
N(2)-Ru-C(11)	91.2(3)	N(2)-Ru-C(12)	112.3(3)	N(2)-Ru-C(13)	145.5(4)				
N(2)-Ru-C(14)	176.5(3)	N(3)-Ru-C(10)	172.8(3)	N(3)-Ru-C(11)	137.5(4)				
N(3)-Ru-C(12)	108.3(3)	N(3)-Ru-C(13)	91.5(3)	N(3)-Ru-C(14)	100.5(3)				
C(10)-Ru-C(11)	38.9(4)	C(10)-Ru- $C(12)$	71.4(4)	C(10)-Ru-C(13)	92.3(3)				
C(10)-Ru-C(14)	86.3(4)	C(11)-Ru-C(12)	38.1(5)	C(11)-Ru-C(13)	72.9(5)				
C(11)-Ru-C(14)	91.0(4)	C(12)-Ru-C(13)	39.3(5)	C(12)-Ru-C(14)	71.1(4)				
C(13)-Ru-C(14)	38.0(5)	C(11)-C(10)-C(17)	123.8(8)	C(10)-C(11)-C(12)	126.2(10)				
C(11)-C(12)-C(13)	125.3(9)	Ru-C(13)-C(12)	72.9(5)	Ru-C(13)-C(14)	74.7(5)				
C(12)-C(13)-C(14)	126.8(8)	C(14)-C(15)-C(16)	116.6(9)	C(15)-C(16)-C(17)	111.3(9)				
C(10)-C(17)-C(16)	117.5(9)	C(13)-C(14)-C(15)	127.0(9)						

Fig. 1 A perspective view of the complex cation of 1. The hydride was not located

Structures of Complexes 1 and 2.---A perspective view of the complex cation of 1 is shown in Fig. 1. The hydride was not located but its existence is inferred from the spectroscopic results described above and the assumption of a Ru^{II} oxidation state. The Ru-N(1) distance of 2.308(4) Å is significantly longer than Ru-N(2) and Ru-N(3) [2.208(3) and 2.222(3) Å respectively]. Presumably this is due to the stronger trans influence of the hydride over the olefinic groups. The cod ligand is in the usual tub form.¹⁵ The Ru-C distances are longer

Fig. 2 A perspective view of the complex cation of 2

than the corresponding ones in $[Ru(NH_2NMe_2)_3(cod)H]^+$.^{9b} In the latter, the C=C distances are 1.41(2) and 1.40(2) Å, whereas in 1, these are 1.398(5) and 1.384(6) Å.

Fig. 2 shows a perspective view of the cation of 2. The metalbonded part of the η^5 -C₈H₁₁ ring does not deviate from planarity and is characterized by C-C bond lengths not significantly different from each other. These structural features are characteristic of the co-ordination of an η^5 -cyclooctadienyl ligand. Similar observations on other η^5 -cyclooctadienylmetal complexes have been previously reported.¹⁶

Acknowledgements

We thank The University of Hong Kong and the Hong Kong Research Grants Council for support and S.-M. Y. is grateful

References

- N. W. Alcock, I. D. Burns, K. S. Claire and A. F. Hill, *Inorg. Chem.*, 1992, **31**, 2906; A. Llobet, D. J. Hodgson and T. J. Meyer, *Inorg. Chem.*, 1990, **29**, 3760; B. Moreno, S. S.-Etinne, B. Chandret, A. R.-Fernandez, F. Jalon and S. Trofimenko, *J. Am. Chem. Soc.*, 1994, **116**, 2635.
- 2 P. S. Moritz, A. A. Diamentis, F. R. Keene, H. R. Snow and E. R. T. Tiekink, *Aust. J. Chem.*, 1988, **41**, 1353; F. R. Keene, D. J. Szalda and T. A. Wilson, *Inorg. Chem.*, 1987, **26**, 2211.
- (a) P. Neubold, B. S. P. C. Della Vedora, K. Wieghardt, B. Nuber and J. Weiss, *Inorg. Chem.*, 1990, 29, 3355; (b) R. Schneider, T. Weyhermüller, K. Wieghardt and B. Nuber, *Inorg. Chem.*, 1993, 32, 4925; (c) R. Schneider, K. Wieghardt and B. Nuber, *Inorg. Chem.*, 1993, 32, 4935; (d) W. C. Cheng, W. Y. Yu, K. K. Cheung and C. M. Che, J. Chem. Soc., Dalton Trans., 1994, 57; (e) W. C. Cheng, W. Y. Yu, K. K. Cheung and C. M. Che, J. Chem. Soc., Chem. Commun., 1994, 1063.
- 4 L. Wang and T. C. Flood, J. Am. Chem. Soc., 1992, 114, 3169.
- 5 E. W. Abel, M. A. Bennett and G. Wilkinson, J. Chem. Soc., 1959, 3178.
- 6 K. Wieghardt, P. Chandhuri, B. Nuber and J. Weiss, *Inorg. Chem.*, 1982, 21, 3086.
- 7 SDP Structure Determination Package, Enraf-Nonius, Delft, 1985.

- 8 E. J. Cabe, Y. Le Page, J. P. Charland, F. L. Lee and P. S. White, J. Appl. Crystallogr., 1989, 22, 384.
- 9 (a) T. V. Ashworth, E. Singleton and J. J. Hough, J. Chem. Soc., Dalton Trans., 1977, 1809; (b) T. V. Ashworth, M. J. Nolte and E. Singleton, J. Chem. Soc., Dalton Trans., 1978, 1040; (c) T. V. Ashworth, E. Singleton, M. Laing and L. Pope, J. Chem. Soc., Dalton Trans., 1978, 1032.
- B. M. Trost, J. A. Martinez, R. J. Kulawiec and A. F. Indolese, J. Am. Chem. Soc., 1993, 115, 10402; B. M. Trost and A. J. Indolese, J. Am. Chem. Soc., 1993, 115, 4361; B. M. Trost and T. J. J. Muller, J. Am. Chem. Soc., 1994, 116, 4985; T. Mitsudo, S. Zhang, M. Nagao and Y. Watanabe, J. Chem. Soc., Chem. Commun., 1991, 598; T. Mitsudo, H. Naruse, T. Kondo, Y. Ozaki and Y. Watanabe, Angew. Chem., Int. Edn. Engl., 1994, 33, 580.
- 11 G. Wilkinson and F. A. Cotton, Advanced Inorganic Chemistry, 5th edn., Wiley-Interscience, New York, 1988, p. 1097.
- 12 U. Kölle, G. Flunkert, R. Görissen, M. U. Schmidt and U. Englert, Angew. Chem., Int. Edn. Engl., 1992, 31, 440.
- 13 F. Bouachir, B. Chaudret and I. Tkatchenko, J. Chem. Soc., Chem. Commun., 1986, 94.
- 14 L. Vaska and J. W. Diluzio, J. Am. Chem. Soc., 1962, 83, 4989.
- 15 K. M. Frosin and L. Dahlenburg, Inorg. Chim. Acta, 1990, 167, 83.
- 16 H. C. Stynes and J. A. Ibers, Inorg. Chem., 1971, 10, 2304.

Received 7th July 1994; Paper 4/04145C