603

Exploring the Auxiliary Co-ordination Sphere of Tripodal Amino(triamido) Actinide Complexes[†]

Peter Scott* and Peter B. Hitchcock

School of Chemistry and Molecular Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK

High-yield syntheses of the soluble, volatile complexes $[\{ML(CI)\}_2]$ [M = U or Th, $L = N(CH_2CH_2-NSiMe_3)_3]$ have been achieved. The molecular structure of the uranium complex shows it to be a dimer bridged by long U-(μ -CI) bonds. These compounds are shown to be versatile starting materials for exploration of the chemistry of the amino(triamido) actinide fragment. Their reactions with Na[C₅R₅] (R = H or Me) gave high yields of the monomeric complexes $[ML(C_5R_5)]$ for which analogous non-chelate compounds are unknown. These species are fluxional and display apparent three-fold symmetry on the NMR time-scale in solution at room temperature, although an exchange process *via* a trigonal-bipyramidal transition state is postulated on the basis of variable-temperature NMR studies for the compound M = Th, R = Me. The molecular structure of the compound M = U, R = Me has been determined by X-ray diffraction. Reaction of the chloro complexes with lithium tetrahydroborate in tetrahydrofuran (thf) gave high yields of $[ML(H_3BH)(thf)]$. The uranium derivative has been structurally characterised and has distorted-octahedral geometry. Sublimation of these compounds *in vacuo* led cleanly to the base-free complexes $[\{ML(H_3BH)\}_2]$. The volatile dimeric alkoxide derivatives $[\{ML(OBu^t)\}_2]$ have been prepared similarly.

The sterically demanding amide N(CH₂CH₂NSiMe₃)₃ has previously been used in the synthesis of complexes of main-group elements^{1,2} and transition metals.³ We were interested as to whether this diverse and interesting chemistry could be extended to the much larger actinide metals, and have recently reported the first examples thereof.⁴ These latter compounds are related to the non-chelate complexes [M{N- $(SiMe_3)_2$ ₃Cl] (M = U or Th) which have an extensive chemistry.⁵ It is well established that the use of tripodal ligands can lead to new types of reactivity at the metal centre, not only because of the extra stability conferred by the chelate effect, but also since the ligating atoms are constrained to facial coordination. Indeed it might be expected that the M{N[CH₂- $CH_2N(SiMe_3)]_3$ (ML) fragment would be somewhat more robust than $M[N(SiMe_3)_2]_3$. In an attempt to learn what kinds of ligand environments can be supported, and what kinds of steric constraints are manifest in the ML system, we report here the synthesis of a variety of derivatives of this fragment (Scheme 1).

Results and Discussion

Synthesis of $[{ML(Cl)}_2]$.—The preparation of $[{ML(Cl)}_2]$ (M = U 1 or Th 2) via the tetrahydrofuran adducts $[ML(Cl)(thf)_n]$ has been described previously.⁴ Characterising data for these and all new compounds are given in Table 1.

The molecular structure of complex 1 as determined by X-ray diffraction⁴ is shown in Fig. 1. Positional parameters are given in Table 2 and selected bond lengths and angles in Table 3. The structure consists of a dimer of distorted edge-sharing octahedral [UL(Cl)] units bridged through the Cl atoms, with a crystallographic inversion centre midway between the uranium atoms.

The ¹H NMR spectra of paramagnetic complex 1 and diamagnetic 2 in $[{}^{2}H_{8}]$ toluene at room temperature each

Non-SI unit employed: bar = 10^5 Pa.

Scheme 1 (i) Li₃L, thf, -80 °C, sublimation; (ii) Na[C₅R₅], thf, -80 °C, sublimation; (iii) Li[BH₄], thf, -80 °C, sublimation; (iv) K[OBu'], thf, -80 °C, sublimation; (v) Li[BH₄], thf, -80 °C; (vi) sublimation

consist of one signal for the trimethylsilyl groups and two for the ethylene backbone. This is consistent with these species having trigonal-bipyramidal structures similar to that found in analogous main-group and transition-metal complexes,^{2,3} but is perhaps more likely to be due to the presence of a fast fluxional process (see below). This behaviour, which persists at low temperatures, was found in all the new complexes described herein unless otherwise stated.

Cyclopentadienyl Derivatives.—Addition of cold tetrahydrofuran to a mixture of complex 1 or 2 and an excess of $Na[C_5H_5]$ followed by warming to room temperature gives green (M = U) and colourless (M = Th) solutions. Evaporation of volatiles and sublimation of the residue at 150 °C and 10⁻⁶ mbar leads to isolation of the pure compounds $[ML(\eta-C_5H_5)]$ (M = U 3 or Th 4) as oils which crystallise slowly at room temperature. Analogous reactions with $Na[C_5Me_5]$ give, after sublimation, crystalline $[ML(C_5Me_5)]$ (M = U 5 or Th 6). All

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Table 1 Analytical and spectroscopic data

Compound IColourCHNSpectroscopic data*IBright green28.256.208.75(28.45)(6.20)(8.85)'H NMR ([² H ₈]toluene, $w_{\pm} = ca. 50$ Hz): 12.8 (27 H, s, Me ₃ Si), 11.5 (6 H, s, CH ₂), -46.5 (6 H, s, CH ₂) Mass spectrum (EI): m/z 652 [7, $(M^+ + Cl) - Me]$, 632 (42, M^+), 616 (38%, $M - Me$) Solution molecular weight (CH ₂ Cl ₂): 1252 IR: 1378s, 1350w, 1283m, 1143w, 1130w, 1089m, 1059m, 1026w, 950m, 930m, 906m, 838s (br), 775m, 722m, 669m2White28.506.308.85'H NMR (3.38 (6 H, t, J 5, CH ₂), 2.46 (6 H, t, J 5, CH ₂), 0.38 (27 H, s, Me ₃ Si)'1C-{ ¹ H} NMR ([² H ₈]toluene): 58.7 (s, CH ₂), 46.3 (s, CH ₂), 0.7 (s, Me ₃ Si)'1C-{ ¹ H} NMR ([² H ₈]toluene): 58.7 (s, CH ₂), 46.3 (s, CH ₂), 0.7 (s, Me ₃ Si)'1C-{ ¹ H} NMR ([² H ₈]toluene): 58.7 (s, CH ₂), 46.3 (s, CH ₂), 0.7 (s, Me ₃ Si)'1C-{ ¹ H} NMR ([² H ₈]toluene): 58.7 (s, CH ₂), 46.3 (s, CH ₂), 0.7 (s, Me ₃ Si)'1C-{ ¹ H} NMR ([² H ₈]toluene): 58.7 (s, CH ₂), 46.3 (s, CH ₂), 0.7 (s, Me ₃ Si)'1C-{ ¹ H} NMR ([² H ₈]toluene): 58.7 (s, CH ₂), 46.3 (s, CH ₂), 0.7 (s, Me ₃ Si)'1A NMR (¹ MR (¹ A = c.20 CD H ₂): 3.30 (27 H, s, Me ₃ Si), -0.53 (5 H, s, η-C ₅ H ₅), -7.36 (6 H, s, CH ₂), 0.16 (27, M + CH ₂), 3.30 (6 H, s, CH			Analysis	s ^a (%)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Compound	Colour	C	Н	N	Spectroscopic data ^b
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Bright green	28.25	6.20	8.75	¹ H NMR ([² H ₈]toluene, $w_{\pm} = ca. 50$ Hz): 12.8 (27 H, s, Me ₃ Si), 11.5 (6 H, s, CH ₂),
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(28.43)	(0.20)	(8.85)	-46.5 (6 H, s, CH ₂) Mass spectrum (EI): m/z 652 [7, (M^+ + Cl) - Me], 632 (42, M^+), 616 (38%, M^-
2 White 28.50 6.30 8.85 (28.70) (6.25) (8.95) (28.70) (6.25) (8.95) (28.70) (6.25) (8.95) (30.55) (6.75) (8.55) (6.75) (8.55) (6.75) (8.95) (13C + [H] NMR (12H_3]toluene): 58.7 (s, CH_2), 0.38 (27 H, s, Me_3Si) (28.70) (6.25) (8.95) (13C + [H] NMR (12H_3]toluene): 58.7 (s, CH_2), 46.3 (s, CH_2), 0.7 (s, Me_3Si) (338 s genetrum (EI): m/z 646 [5, ($M^{+} + CI$) - Me], 626 (48, M^{+}), 611 (52, $M^{+} - Me$), 591 (58%, $M^{+} - CI$) Solution molecular weight (CH ₂ Cl ₂): 1260 IR: 1377s, 1350w, 1285m, 1143w, 1130w, 1089m, 1059m, 1026w, 951w, 930m, 904m, 840s (br), 775m, 720m, 665m (36.25) (6.70) (8.45) s, CH ₂), -16.02 (6 H, s, CH ₂) (27 H, s, Me_3Si), -0.53 (5 H, s, \eta-C ₅ H ₅), -7.36 (6 H, (36.25) (6.75) (8.55) (6.75) (8.55) (14 NMR ($I_2^{*}H_3$]toluene): 6.60 (5 H, s, η -C ₅ H ₅), 3.05 (6 H, t, J 5, CH ₂), 2.29 (6 H, t, J 5, (36.55) (6.75) (8.55) (27 H, s, Me_3Si) (13C (12 H, s, Me_3Si)) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 3.05 (6 H, t, J 5, CH ₂), 2.29 (6 H, t, J 5, CH ₂), 0.16 (27 H, s, Me_3Si) (13C (12 M - Me), 597 (100%, $M - C_5H_5$) (13C (12 H ₃]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅), 6.67 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) (13C (12^{*}H_3]toluene): 116.9 (s, η -C ₅ H ₅						Me) Solution molecular weight (CH ₂ Cl ₂): 1252
2 White $28.50 \ (6.30 \ (28.70) \ (6.25) \ (28.70) \ (6.25) \ (28.70) \ (6.25) \ (8.95) \ (28.70) \ (6.25) \ (8.95) \ (28.70) \ (6.25) \ (8.95) \ (28.70) \ (6.25) \ (8.95) \ (28.70) \ (6.25) \ (8.95) \ (28.70) \ (6.25) \ (8.95) \ (28.70) \ (28.$						IR: 1378s, 1350w, 1283m, 1143w, 1130w, 1089m, 1059m, 1026w, 950m, 930m, 906m,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	White	28.50	6.30	8.85	8388 (br), 775m, 722m, 669m ¹ H NMR 3 38 (6 H ± 1.5 CH ₂) 2 46 (6 H ± 1.5 CH ₂) 0 38 (27 H s Me ₂ Si)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(28.70)	(6.25)	(8.95)	$^{13}C-{^{1}H}$ NMR ([$^{2}H_{8}$]toluene): 58.7 (s, CH ₂), 46.3 (s, CH ₂), 0.7 (s, Me ₃ Si)
Solution molecular weight $(CH_2CI_2): 1260$ IR: 1377s, 1350w, 1285m, 1143w, 1130w, 1089m, 1059m, 1026w, 951w, 930m, 904m, 840s (br), 775m, 720m, 665m 3 Pale green 35.75 6.65 8.25 ¹ H NMR ($w_4 = ca. 20$ Hz): 3.30 (27 H, s, Me_3Si), -0.53 (5 H, s, η -C ₅ H ₅), -7.36 (6 H, (36.25) (6.70) (8.45) s, CH_2), -16.02 (6 H, s, CH_2) 4 White 36.35 6.75 8.25 ¹ H NMR ($[2^{+}H_8]$ toluene): 6.60 (5 H, s, η -C ₅ H ₅), 3.05 (6 H, t, J 5, CH ₂), 2.29 (6 H, t, J 5, (36.55) (6.75) (8.55) CH ₂), 0.16 (27 H, s, Me ₃ Si) ¹³ C ($[^{2^{+}H_8}]$ toluene): 116.9 (s, η -C ₅ H ₅), 66.7 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si) Mass spectrum (EI): m/z 656 (25, M^+), 641 (12, $M -$ Me), 591 (100%, $M -$ C ₅ H ₅) 5 Red-orange 40.80 7.35 7.60 ¹ H NMR $(^{C}w_4 = ca. 200$ Hz): 79.5 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s), (40.80 7.35 7.60 ¹ H NMR $(^{C}W_4 = Ca. 200$ Hz): 79.5 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s),						Mass spectrum (EI): m/z 646 [5, $(M^+ + CI) - Me$], 626 (48, M^+), 611 (52, $M^+ - Me$) 591 (58% $M^+ - CI$)
3Pale green 35.75 6.65 8.25 1 H NMR ($w_4 = ca. 20$ Hz): 3.30 (27 H, s, Me ₃ Si), -0.53 (5 H, s, η -C ₅ H ₅), -7.36 (6 H, s, CH ₂)4White 36.35 6.75 8.25 1 H NMR ($w_4 = ca. 20$ Hz): 3.30 (27 H, s, Me ₃ Si), -0.53 (5 H, s, η -C ₅ H ₅), -7.36 (6 H, s, CH ₂)4White 36.35 6.75 8.25 1 H NMR ($w_4 = ca. 20$ Hz): 3.30 (27 H, s, Me ₃ Si), -0.53 (5 H, s, η -C ₅ H ₅), -7.36 (6 H, mass spectrum (EI): m/z 662 (7, M^+), 649 (4, M – Me), 597 (100%, M – C ₅ H ₅)5Red-orange 40.80 7.35 7.60 1 H NMR (1 H ₂ H ₈] toluene): 116.9 (s, η -C ₅ H ₅), 66.7 (s, CH ₂), 42.8 (s, CH ₂), 1.9 (s, Me ₃ Si)5Red-orange 40.80 7.35 7.60 1 H NMR (0 W ₄ = ca. 200 Hz): 79.5 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H,						Solution molecular weight (CH ₂ Cl ₂): 1260
3Pale green 35.75 6.65 8.25 1 H NMR ($w_4 = ca. 20$ Hz): 3.00 (27 H, s, Me_3Si), -0.53 (5 H, s, η -C ₅ H ₅), -7.36 (6 H, (36.25)4White 36.35 6.75 8.25 1 H NMR ($w_4 = ca. 20$ Hz): 3.00 (27 H, s, Me_3Si), -0.53 (5 H, s, η -C ₅ H ₅), -7.36 (6 H, (36.25)4White 36.35 6.75 8.25 1 H NMR ($w_4 = ca. 20$ Hz): 3.00 (27 H, s, Me_3Si)5Red-orange 40.80 7.35 7.60 1 H NMR ($w_4 = ca. 200$ Hz): 79.5 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s), -6.3 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s), -8.3						IR: 1377s, 1350w, 1285m, 1143w, 1130w, 1089m, 1059m, 1026w, 951w, 930m, 904m,
4 White $36.35 (6.70) (8.45) (6.75) (8.57) (1.50) (5.75) (8.75) (1.50) (5.75) (8.75) (1.50) (8.75) (1.50) (8.75) (1.50) (8.75) (1.50) (8.75) (1.50) (8.75) (1.50) (8.75) (1.50) (8.75) (1.50) (1.50) (8.75) (1.50) (1.50) (8.75) (1.50) $	3	Pale green	35.75	6.65	8.25	^{840s} (br), 7/5m, 7/20m, 665m ¹ H NMR ($w_1 = ca, 20$ Hz); 3.30 (27 H, s, Me ₂ Si), -0.53 (5 H, s, n-C _e H _e), -7.36 (6 H.
4 White 36.35 6.75 8.25 (36.55) (6.75) (8.55) (6.75) $(8.55)5 Red-orange 40.80 7.35 7.60(40.02)$ (7.42) (7.45) (7.5)		8	(36.25)	(6.70)	(8.45)	s, CH ₂), -16.02 (6 H, s, CH ₂)
5 Red-orange 40.80 7.35 7.60 H_{2} (12) H_{1} (17) H_{2} (12)	4	White	36 35	675	8 25	Mass spectrum (EI): m/z 662 (7, M^+), 649 (4, M^- Me), 597 (100%, M^- C ₅ H ₅) ¹ H NMR (Γ^2 H ₂ Itoluene): 6 60 (5 H s n ₂ C ₂ H ₃) 3 05 (6 H t 15 CH) 2 29 (6 H t 15
5 Red-orange 40.80 7.35 7.60 $1^{13}C ([^{2}H_{8}]toluene): 116.9 (s, \eta-C_{5}H_{5}), 66.7 (s, CH_{2}), 42.8 (s, CH_{2}), 1.9 (s, Me_{3}Si)$ $Mass spectrum (EI): m/z 656 (25, M^{+}), 641 (12, M - Me), 591 (100\%, M - C_{5}H_{5})$ $1^{14} NMR^{c} (w_{\frac{1}{2}} = ca. 200 Hz): 79.5 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s),$			(36.55)	(6.75)	(8.55)	CH ₂), 0.16 (27 H, s, Me ₃ Si)
5 Red-orange 40.80 7.35 7.60 ¹ H NMR $^{c}(w_{4} = ca. 200 \text{ Hz})$: 79.5 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s),						$^{13}C([^{2}H_{8}]toluene): 116.9 (s, \eta-C_{5}H_{5}), 66.7 (s, CH_{2}), 42.8 (s, CH_{2}), 1.9 (s, Me_{3}Si)$
	5	Red-orange	40.80	7.35	7.60	¹ H NMR ^c ($w_{\perp} = ca. 200 \text{ Hz}$): 79.5 (2 H, s), 41.5 (2 H, s), -5.4 (18 H, s), -8.3 (2 H, s).
(40.95) (7.45) (7.65) $-19.1(2 H, s), -26.2(9 H, s), -45.8(2 H, s), -88.6(2 H, s)$		-	(40.95)	(7.45)	(7.65)	-19.1 (2 H, s), -26.2 (9 H, s), -45.8 (2 H, s), -88.6 (2 H, s)
Mass spectrum (E1): m/z /33 (1, M^{-1}), 718 (6, M^{-1} Me), 688 (1, M^{-1} 3Me), 632 (2), 618 (4), 599 (100%, M^{-1} CeMee)						Mass spectrum (E1): m/z /33 (1, M^{-1}), /18 (6, M^{-1} Me), 688 (1, M^{-1} 3Me), 632 (2), 618 (4), 599 (100%, M^{-1} C ₂ Me ₄)
6 White 40.90 7.60 7.50 ¹ H NMR ($[^{2}H_{8}]$ toluene): 2.99 (6 H, t, J 6, CH ₂), 2.44 (6 H, t, J 6, CH ₂), 2.09 (15 H, s,	6	White	40.90	7.60	7.50	¹ H NMR ($[^{2}H_{8}]$ toluene): 2.99 (6 H, t, J 6, CH ₂), 2.44 (6 H, t, J 6, CH ₂), 2.09 (15 H, s,
(41.30) (7.50) (7.70) η -C ₅ Me ₅), 0.21 (27 H, s, Me ₃ St) ¹³ C-{ ¹ H} NMR (DEPT [² H ₂]toluene): 63.8 (s. CH ₂) 46.5 (s. CH ₂) 12.6 (s. n-			(41.30)	(7.50)	(7.70)	η -C ₅ Me ₅), 0.21 (27 H, s, Me ₃ Si) ¹³ C-{ ¹ H} NMR (DEPT [² H ₂]toluene): 63.8 (s, CH ₂) 46.5 (s, CH ₂) 12.6 (s, n ₂)
C_5Me_5), 1.7 (s, Me ₃ Si)						C_5Me_5 , 1.7 (s, Me ₃ Si)
Mass spectrum (EI): m/z 711 (5, M – Me), 681 (6), 623 (2), 611 (8), 591 (100%, M –						Mass spectrum (EI): m/z 711 (5, M – Me), 681 (6), 623 (2), 611 (8), 591 (100%, M – C. Me.)
7 Pale green 32.95 7.55 8.05 ¹ H NMR ($w_{+} = ca. 20$ Hz): 27.32 (4 H, s, thf), 16.47 (6 H, s, CH ₂), 13.75 (27 H, s,	7	Pale green	32.95	7.55	8.05	¹ H NMR ($w_{+} = ca. 20$ Hz): 27.32 (4 H, s, thf), 16.47 (6 H, s, CH ₂), 13.75 (27 H, s,
(33.35) (7.50) (8.20) Me ₃ Si), -34.84 (6 H, s, CH ₂), -109.2 (4 H, vbr, q, BH ₄) Mass grant run (FL), $m/2$ (65, (22, 14, $\pm)$) (16, (22), (12, (14, $\pm)$)) 508 (559), 14, \pm)			(33.35)	(7.50)	(8.20)	Me_3Si , -34.84 (6 H, s, CH_2), -109.2 (4 H, vbr, q, BH_4) Measuremetry (EI), m/c (85 (2) M^{\pm}) (16 (22) (12 (M - 4)5) 508 (559) M - 4)5
Mass spectrum (E1): $m/2$ 665 (23, M^{-1}), 616 (22), 612 (M^{-1} thi), 598 (55%, M^{-1} thi – BH ₃)						Mass spectrum (E1): $m/2 \ 085 \ (23, M^{-1}), \ 010 \ (22), \ 012 \ (M^{-1} - \text{th}1), \ 598 \ (55\%, M^{-1} - \text{th}1) = BH_3$
IR: 2452s (B-H _t str.), 2349w, 2300m, 2256s, 2201s, 2163s and 2135m (B-H _b str.),						IR: 2452s (B-H ₁ str.), 2349w, 2300m, 2256s, 2201s, 2163s and 2135m (B-H _b str.),
8 White 33.45 7.55 8.00 ¹ H NMR: $4.12^{4.e}$ (4 H, br q, J 85, BH ₄), 3.75 (4 H, m, thf), 3.31 (6 H, t, J 7, CH ₃), 2.44	8	White	33.45	7.55	8.00	¹ 246vs (bridge def.) ¹ H NMR: $4.12^{4.e}$ (4 H, br a. J 85, BH ₂), 3.75 (4 H, m, thf), 3.31 (6 H, t. J 7, CH ₃), 2.44
(33.60) (7.55) (8.25) (6 H, t, J 7, CH ₂), 1.29 (4 H, m, thf), 0.33 (27 H, s, Me ₃ Si)			(33.60)	(7.55)	(8.25)	(6 H, t, J 7, CH ₂), 1.29 (4 H, m, thf), 0.33 (27 H, s, Me ₃ Si)
$^{13}C-\{^{1}H\}$ NMR: 71.5 (s, tht), 60.3 (s, CH ₂), 46.1 (s, CH ₂), 25.3 (s, tht), 0.9 (s, Me ₃ Si) ^{11}B NMR: -11.9 (anth. J _{pr} 85). $^{11}B-\{^{1}H\}$ NMR: -11.9 (s)						$^{13}\text{C}-\{^{1}\text{H}\}$ NMR: 71.5 (s, tht), 60.3 (s, CH ₂), 46.1 (s, CH ₂), 25.3 (s, tht), 0.9 (s, Me ₃ Si) ^{11}B NMR: -11.9 (anth. J _m , 85). $^{11}\text{B}-\{^{1}\text{H}\}$ NMR: -11.9 (s)
Mass spectrum (EI): m/z 606 (20, M – thf), 591 (29, M – thf – BH ₄), 577 (29%)						Mass spectrum (EI): m/z 606 (20, $M - \text{thf}$), 591 (29, $M - \text{thf} - \text{BH}_4$), 577 (29%)
IR: 2452s (B-H _t str.), 2348w, 2302m, 2257s, 2200s, 2165s and 2135m (B-H _b str.), 1246vs (bridge def.)						IR: 2452s (B-H, str.), 2348w, 2302m, 2257s, 2200s, 2165s and 2135m (B-H _b str.), 1246vs (bridge def)
9 Pale green 29.65 6.95 9.40 ¹ H NMR ($w_{\frac{1}{2}} = ca. 15$ Hz): 9.96 (27 H, s, Me ₃ Si), 7.51 (6 H, s, CH ₂), -32.20 (6 H, s,	9	Pale green	29.65	6.95	9.40	¹ H NMR ($w_4 = ca. 15$ Hz): 9.96 (27 H, s, Me ₃ Si), 7.51 (6 H, s, CH ₂), -32.20 (6 H, s,
(29.40) (7.05) (9.15) CH_2 , -64.52 (4 H, q, J, 85, BH ₄) Mass creatium (EI): m (a 612 (12 M ⁺) 508 (55% M = BH))			(29.40)	(7.05)	(9.15)	CH_2 , -64.52 (4 H, q, J, 85, BH_4) Maga apartrum (EI): m/a 612 (12, M^{\pm}) 508 (558/ M^{\pm} BH)
Solution molecular weight (C_6H_6): 1220						Solution molecular weight (C_6H_6): 1220
IR: 2460s (B-H, str.), 2362w, 2210m, 2144s (B-H _b str.), 1247 of 1263vs (bridge def.) IN NIAB: $4.60^{\circ}(4.4 + br.c.)$ / 285 PH) 2.32 (6.4 + 1.5 CH) 2.35 (6.4 + 1.7 CH)	10	White	20.00	7 15	8 80	IR: 2460s (B–H, str.), 2362w, 2210m, 2144s (B–H _b str.), 1247 of 1263vs (bridge def.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	white	(29.70)	(7.15)	(9.25)	$0.24 (27 \text{ H}, \text{ s}, \text{Me}_3\text{Si})$
$^{13}C-\{^{1}H\}$ NMR ([$^{2}H_{8}$]toluene): 63.9 (s, CH ₂), 45.5 (s, CH ₂), 0.3 (s, Me ₃ Si)						$^{13}C-\{^{1}H\}$ NMR ([$^{2}H_{8}$]toluene): 63.9 (s, CH ₂), 45.5 (s, CH ₂), 0.3 (s, Me ₃ Si)
Mass spectrum (EI): m/z 606 (25, M^+), 591 (65, M^- Me), 578 (50%)						Mass spectrum (EI): m/z 606 (25, M^+), 591 (65, $M - Me$), 578 (50%)
Solution molecular weight (C_6H_6) : 1205						Solution molecular weight (C_6H_6) : 1205
11 Light purple 33.70 7.15 7.95 1 H NMR ($w_{\pm} = ca. 15$ Hz): 64.81 (6 H, s, CH ₂), 59.12 (9 H, s, Bu'), 9.87 (6 H, s, CH ₂),	11	Light purple	33.70	7.15	7.95	IK: 2461s (B-H ₁ str.), 2362w, 2209m, 2146s (B-H _b str.), 1247 or 1262vs (bridge def.) ¹ H NMR ($w_{\pm} = ca. 15$ Hz): 64.81 (6 H, s, CH ₂), 59.12 (9 H, s, Bu'), 9.87 (6 H, s, CH ₂).
$(34.00) (7.20) (8.35) -28.79 (27 \text{H}, \text{Me}_3 \text{Si})$		0 1 1	(34.00)	(7.20)	(8.35)	$-28.79(27 \text{ H}, \text{Me}_3\text{Si})$
Mass spectrum (EI): m/z 670 (36, M^+), 614 (13, M^- Bu'), 597 (12%, M^- OBu') Solution molecular weight (C _e H _e): 1310						Mass spectrum (E1): m/z 670 (36, M^+), 614 (13, M^- Bu'), 597 (12%, M^- OBu') Solution molecular weight (C ₄ H ₄): 1310
12 White 33.90 7.45 8.50 ¹ H NMR: $3.36(6H, t, J 5, CH_2), 2.40(6H, t, J 5, CH_2), 1.41(9H, s, OBu'), 0.31(27H, CH_2), 0.41(2H, s, OBu'), 0.31(2H, CH_2), 0.41(2H, s, OBu'), 0.41(2H, $	12	White	33.90	7.45	8.50	¹ H NMR: 3.36 (6 H, t, J 5, CH ₂), 2.40 (6 H, t, J 5, CH ₂), 1.41 (9 H, s, OBu'), 0.31 (27 H,
(34.30) (7.30) (8.45) s, Me ₃ Si) ¹³ C NMR (Γ^{2} H_3tahiene): 78.7 (s OCMe_) 63.7 (s CH_) 45.2 (s CH_) 33.7 (s			(34.30)	(7.30)	(8.45)	s, Me ₃ Si) ¹³ C NMR ([² H ₂]toluene): 78.7 (s. OCMe ₂), 63.7 (s. CH ₂), 45.2 (s. CH ₂), 33.7 (s.
$OCMe_3$), 0.7 (s, Me_3Si)						$OCMe_3$), 0.7 (s, Me_3Si)
29 Si-{ ¹ H} NMR ([² H ₈]toluene): -5.5 (s, Me ₃ Si) Mass spectrum (FL): m/z 665 (15 M^+) 592 (M^- OBu ⁴)						$^{27}Si-\{^{1}H\}$ NMR ([$^{2}H_{8}$]toluene): -5.5 (s, Me ₃ Si) Mass spectrum (EI): m/z 665 (15 M^{+}) 592 (M – OBu ¹)
Solution molecular weight (C_6H_6): 1205						Solution molecular weight (C_6H_6): 1205
^a Calculated values in parentheses. ^b All NMR spectra obtained on solutions in [² H ₆]benzene at 298 K unless otherwise stated. Data given as	^a Calculated	values in parent	heses. ^b All	NMR s	pectra ol	ptained on solutions in $[{}^{2}H_{6}]$ benzene at 298 K unless otherwise stated. Data given as

chemical shift (δ), relative intensity, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, qnt = quintet, m = multiplet, br = broad), coupling constant J in Hz, assignment. Assignment of ¹³C-{¹H} NMR spectra made with reference to DEPT (distortionless enhancement of polarisation transfer) spectra where appropriate. Infrared bonds in cm⁻¹.^c Not assigned. See text. ^d One peak of BH₄ quartet overlaps with adjacent multiplet due to thf ligand. ^{e 1}H-{¹¹B} NMR spectrum gave broad singlet.

Fig. 1 An ORTEP⁶ drawing of complex 1

 Table 2
 Fractional atomic coordinates for compound 1

Atom	x	У	Z
U	0.183 92(5)	0.099 65(4)	0.160 90(3)
Cl	-0.1352(3)	0.078 0(3)	0.053 9(2)
Si(1)	0.103 3(4)	-0.1282(3)	0.285 1(2)
Si(2)	0.155 4(4)	0.329 8(3)	0.403 9(3)
Si(3)	0.306 8(4)	0.349 0(3)	0.084 5(3)
N(1)	0.198 2(10)	-0.076 1(8)	0.208 2(7)
N(2)	0.254 6(10)	0.225 6(9)	0.335 1(7)
N(3)	0.346 6(10)	0.208 5(9)	0.109 8(7)
N(4)	0.467 7(10)	0.080 2(9)	0.246 6(7)
C(1)	0.339 9(13)	-0.1321(11)	0.202 5(9)
C(2)	0.481 0(13)	-0.035 9(10)	0.276 0(9)
C(3)	0.408 6(13)	0.221 8(12)	0.404 2(8)
C(4)	0.525 8(13)	0.195 9(11)	0.341 9(9)
C(5)	0.503 8(14)	0.188 4(11)	0.118 6(9)
C(6)	0.542 1(14)	0.081 2(11)	0.165 3(9)
C(7)	-0.074 1(15)	-0.051 1(12)	0.282 2(10)
C(8)	0.050 7(15)	-0.304 1(11)	0.234 4(10)
C(9)	0.222 3(16)	-0.087 4(14)	0.429 7(10)
C(10)	-0.046 5(15)	0.321 2(14)	0.316 5(10)
C(11)	0.146 6(16)	0.290 9(14)	0.527 9(10)
C(12)	0.254 9(18)	0.496 0(14)	0.452 4(12)
C(13)	0.344 0(17)	0.354 9(14)	-0.042 5(10)
C(14)	0.428 7(17)	0.488 2(12)	0.197 2(11)
C(15)	0.100 8(16)	0.362 3(13)	0.074 9(11)

Table 3 Selected bond lengths (Å) and angles (°) for complex 1

U-Cl	2.820(3)	U-N(2)	2.259(8)
U-Cl'	2.911(2)	U-N(3)	2.247(11)
U-N(1)	2.236(10)	U-N(4)	2.567(9)
$\begin{array}{l} U-N(4)-C(2)\\ U-N(4)-C(4)\\ U-N(4)-C(6)\\ U-N(3)-C(5)\\ U-N(2)-C(3)\\ U-N(2)-C(3)\\ U-N(2)-Si(2)\\ U-N(1)-C(1)\\ U-N(1)-Si(1)\\ Cl-U-Cl'\\ U-Cl-U'\\ N(4)-U-Cl\\ \end{array}$	111.4(6) 104.3(7) 105.4(7) 124.8(9) 121.1(5) 116.9(7) 130.7(5) 113.6(8) 129.1(5) 75.49(8) 104.51(9) 170.7(2)	N(4)-U-N(3) N(4)-U-N(2) N(4)-U-Cl' N(3)-U-Cl' N(3)-U-Cl' N(3)-U-N(2) N(3)-U-N(1) N(2)-U-Cl N(2)-U-Cl' N(2)-U-N(1) N(1)-U-Cl	67.8(3) 73.5(3) 69.9(3) 98.2(2) 117.2(2) 81.9(2) 96.3(3) 132.0(4) 112.5(2) 171.5(2) 92.5(3) 102.2(2)

the compounds may be recrystallised from pentane at low temperature.

A small evacuated glass tube containing complex 5 was heated in an oven at 60 °C overnight to produce large clear red

Fig. 2 An ORTEP drawing of complex 5 viewed perpendicular to the η -C₅Me₅ ligand

Fig. 3 An ORTEP drawing of complex 5 viewed nearly along the apical N-U bond

crystals which were subjected to a single-crystal X-ray structural analysis. Two views of one of the three independent molecules in the unit cell are shown in Figs. 2 and 3. Positional parameters (for all three molecules) are given in Table 4 and selected bond lengths and angles (molecule 1) in Table 5. The other molecules have essentially the same structure, differing only in conformation of the C2 linkages in the tripodal fragment or by small rotations of the $C_5 Me_5$ ring about its centre relative to the rest of the molecule. The atom U(1) lies *ca.* 0.850 Å (molecule 2, 0.873; molecule 3, 0.856 Å) out of the plane defined by N(1), N(2) and N(3), away from the apical N(4). The position of the C_5Me_5 group is best described by the angle N(3)-U(1)-Cp(1) of *ca*. 152.8° (143.3, 152.3°). Some distortion of the ligands arises as a consequence of steric compression between the C_5Me_5 ligand and the Me_3Si groups. For example, while C(21) (which does not point toward a Me₃Si group) lies only 0.04(2) Å out of the plane of the C_5Me_5 carbocycle, the other methyl group carbon atoms C(22)-C(25) lie out of this plane by between 0.17(2) and 0.28(2) Å away from U(1). Also, atoms Si(1) and Si(2) lie out of the planes U(1)-N(1)-C(2) and U(1)-N(2)-C(4) by 0.406(6) and 0.344(7) Å respectively. In contrast, the relatively unencumbered group containing Si(3) is almost planar.

While complexes 3 and 4 display apparent three-fold symmetry according to NMR spectroscopy, the ¹H NMR spectrum of 5 was extremely complicated; the number of peaks precludes the possibility of the presence a highly fluxional species analogous to 3. However, it must also be considered that the effective time-scale of the ¹H NMR experiment is somewhat greater for paramagnetic uranium(IV) compared to the analogous thorium(IV) compounds because of the extremely wide chemical shift range of the former. We have recently reported similar observations for highly sterically encumbered tris(tetramethylcyclopentadienyl) derivatives of the actinide

 Table 4
 Fractional atomic coordinates for compound 5

Atom	x	у	2	Atom	x	у	Ζ
Molecule 1							
U(1)	0.368 76(7)	0.184 71(4)	0.218 97(3)	C(10)	0.396 8(27)	0.277 0(15)	0.339 1(10)
Si(1)	0.448 7(6)	0.036 6(3)	0.138 3(2)	C(11)	0.630 5(24)	0.360 2(14)	0.281 2(9)
S1(2)	0.444 1(7)	0.343 4(3)	0.285 6(2)	C(12)	0.359 4(28)	0.439 8(16)	0.297 3(10)
SI(3)	0.624 7(6)	0.091 7(4)	0.277 0(3)	C(13)	0.459 1(25)	0.065 0(14)	0.314 0(9)
N(1)	0.4008(14)	0.130 5(8)	0.148 5(5)	C(14)	0.736 5(23)	0.134 0(13)	0.314 5(8)
N(2)	0.3980(15)	0.300 0(8)	0.236 6(5)	C(15)	0.721 4(26)	0.0003(14)	0.257 2(9)
N(3) N(4)	0.385 2(15) 0.531 1(17)	0.1313(9)	0.2310(0)	C(10)	0.0900(19)	0.2190(10)	0.205 2(7)
C(1)	0.3311(17) 0.5124(25)	0.2010(9) 0.2346(20)	0.1310(0) 0.1045(12)	C(17)	0.0992(18)	0.2389(10)	0.252 /(7)
C(1)	0.3124(33) 0.4186(22)	0.2340(20) 0.1795(12)	$0.104 \ 3(12)$ 0.104 \ 7(8)	C(10)	0.1150(18)	0.1710(10) 0.1108(10)	0.2814(0)
C(2)	0.4100(22) 0.4994(32)	0.1733(12) 0.3433(18)	0.1047(0) 0.1565(11)	C(20)	0.1100(18)	0.110.8(10) 0.142.7(10)	0.233 8(0)
C(4)	0.4111(25)	0.349.9(10) 0.359.9(14)	0.195 2(9)	C(20)	0.1020(18)	0.1427(10) 0.2775(13)	0.2039(0)
C(5)	0.4111(25) 0.6544(36)	0.3377(14) 0.2419(20)	0.1992(9)	C(21)	0.0750(23)	$0.277 \ 5(13)$ $0.322 \ 1(13)$	0.1050(8) 0.2701(8)
C(6)	0.699 6(23)	0.1872(13)	0.195 6(8)	C(23)	0.1034(23)	0.1647(13)	0.335 7(8)
C(7)	0.4024(24)	-0.0240(13)	0.194 0(8)	C(24)	0.101 0(22)	0.0261(13)	0.272.5(8)
C(8)	0.635 1(24)	0.021 5(14)	0.119 1(9)	C(25)	0.0784(22)	0.0951(12)	0.163 8(8)
C(9)	0.364 9(27)	-0.001 2(15)	0.089 8(10)		· · · · · · · · · · · · · · · · · · ·		
Molecule 2							
U(2)	0.187 62(7)	0.732 78(4)	0.448 64(2)	C(35)	0.291 7(22)	0.869 0(12)	0.353 9(8)
Si(4)	0.173 3(6)	0.627 5(3)	0.569 7(2)	C(36)	0.260 6(24)	0.782 3(14)	0.270 9(9)
Si(5)	0.329 0(6)	0.784 5(4)	0.328 5(2)	C(37)	0.515 6(24)	0.775 4(14)	0.311 0(9)
Si(6)	0.442 3(6)	0.853 7(3)	0.480 6(2)	C(38)	0.280 8(26)	0.912 7(15)	0.492 8(9)
N(5)	0.168 3(13)	0.640 4(7)	0.510 0(5)	C(39)	0.515 8(24)	0.841 3(14)	0.536 0(9)
N(6)	0.258 9(14)	0.715 2(8)	0.369 9(5)	C(40)	0.571 7(26)	0.904 8(15)	0.434 8(9)
N(7)	0.394 8(13)	0.771 7(8)	0.461 9(5)	C(41)	-0.080 6(17)	0.719 1(10)	0.428 4(6)
N(8)	0.366 4(13)	0.616 9(8)	0.434 9(5)	C(42)	-0.098 6(18)	0.725 6(10)	0.479 3(6)
C(26)	0.302 9(19)	0.548 8(10)	0.460 2(7)	C(43)	-0.0652(18)	0.799 7(10)	0.487 3(7)
C(27)	0.164 1(20)	0.569 5(11)	0.485 0(7)	C(44)	-0.0358(18)	0.841 5(10)	0.443 9(6)
C(28)	0.408 2(20)	0.607 4(11)	0.3837(7)	C(45)	-0.048 5(18)	0.793 2(10)	0.406 9(7)
C(29)	0.290 6(20)	0.635 8(11)	0.358 3(7)	C(46)	-0.1192(23)	0.650 5(13)	0.403 0(8)
C(30)	0.4/80(20)	0.63/6(11)	0.45/9(/)	C(47)	-0.1633(22)	0.662.5(12)	0.5184(8)
C(31)	0.5130(21) 0.1051(24)	0.7190(12)	0.4479(7)	C(48)	-0.0858(24)	0.8311(13)	0.3370(8) 0.4352(8)
C(32)	0.1931(24) 0.0206(23)	0.7200(14) 0.580.7(13)	0.3914(9) 0.606.2(8)	C(49)	-0.025 2(25) -0.050 5(21)	0.930 / (13) 0.816 5(12)	0.433 2(8)
C(34)	0.0290(23) 0.3234(24)	0.5607(15)	0.0002(8) 0.5845(9)	C(30)	-0.050 5(21)	0.810 5(12)	0.554 0(8)
Molecule 2	0.323 4(24)	0.303 9(14)	0.564 J(3)				
III(2)	0 100 65(6)	0 605 27(4)	0 110 40(2)	C(60)	0.050.6(22)	0 546 6(12)	0.053.2(8)
S(7)	-0.10903(0)	0.093.37(4) 0.810.6(4)	0.11049(3) 0.0054(2)	C(60)	0.0390(23) 0.3350(24)	0.3400(13)	0.0332(8) 0.0271(9)
SI(7) Si(8)	0.0310(0)	0.8190(4)	0.003 + (2) 0.224 $0(2)$	C(61)	0.333(24)	0.5170(14)	0.0271(9)
Si(0)	-0.1002(0)	0.5896(3)	0.227 9(2)	C(62)	-0.1082(23)	0.508.8(13)	$0.110 \ J(2)$
N(9)	-0.0581(13)	0.3370(3)	0.0772(2)	C(64)	-0.2324(25)	0.503.0(15) 0.573.2(14)	0.280.3(9)
N(10)	-0.1360(14)	0.6733(8)	0.001 = (5) 0.192 0(5)	C(65)	0.252 = (25)	0.5752(14)	0.2454(10)
N(10)	0.1104(14)	0.665.8(8)	0.192.0(5) 0.105.4(5)	C(66)	-0.382.8(18)	$0.644\ 2(10)$	0.134 2(6)
N(12)	0.002.6(14)	0.796 6(8)	$0.152\ 2(5)$	C(67)	-0.3330(17)	0.6052(10)	0.093 7(6)
C(51)	-0.0070(24)	0.8711(14)	0.124 8(9)	C(68)	-0.3107(19)	0.659 0(10)	0.053 3(7)
C(52)	-0.0812(22)	0.8712(12)	0.086 0(8)	C(69)	-0.3520(18)	0.731 8(10)	0.067 3(7)
C(53)	0.137 7(30)	0.774 9(17)	0.151 6(11)	C(70)	-0.395 1(18)	0.723 3(10)	0.118 4(6)
C(54)	0.202 0(21)	0.712 4(12)	0.125 7(8)	C(71)	-0.441 8(21)	0.608 4(12)	0.183 5(7)
C(55)	-0.062 8(29)	0.796 9(17)	0.201 5(10)	C(72)	-0.325 2(20)	0.516 2(12)	0.091 6(7)
C(56)	-0.145 0(23)	0.738 1(13)	0.220 7(8)	C(73)	-0.276 2(21)	0.637 1(12)	0.001 0(7)
C(57)	0.038 0(26)	0.734 9(15)	-0.027 1(9)	C(74)	-0.365 8(21)	0.805 4(12)	0.036 0(8)
C(58)	0.208 3(25)	0.846 4(14)	0.004 5(9)	C(75)	-0.456 3(20)	0.788 7(12)	0.148 8(7)
C(59)	-0.048 6(27)	0.896 8(15)	-0.031 4(10)				

metals.⁷ At 223 K only two resonances were observed. That at δ 12.80 was sufficiently sharp to resolve ²⁹Si satellites of appropriate intensity, indicating that this is due to one or more of the trimethylsilyl groups. The peak at δ –9.42 was of similar intensity but with $w_{\frac{1}{2}} = ca$. 375 Hz. For diamagnetic **6** the results of variable-temperature ¹H NMR studies were rather more conclusive. At 223 K, broad peaks in the expected region for backbone CH₂ resonances, a single sharp η -C₅Me₅ resonance, and two resolved Me₃Si resonances at δ 0.36 and 0.23 were observed. The latter peaks coalesced at 243 K. At room temperature, sharp resonances for the trimethylsilyl groups, the ethylene backbone and the pentamethylcyclopentadienyl ligand were observed. Notably, the appearance of the latter peak did not change significantly over this range in

temperature. Hence, although the room-temperature NMR spectra of all these compounds indicate *average* C_{3v} symmetry, we expect that the ground-state geometry is close to that displayed in the solid state (Fig. 2). A fluxional process like that in Fig. 4 proceeding *via* a distorted trigonal-bipyramidal transition state is in accord with the variable-temperature NMR spectra described above.

A complex related to **3-6**, *viz*. $[U(NEt_2)_3(\eta-C_5H_5)]$ has been reported in a mixture,⁸ but interestingly while the four-membered metallacycle $[U\{CH_2SiMe_2N(SiMe_3)\}\{N(Si-Me_3)_2\}_2]$ reacts under mild conditions with compounds containing acidic C-H bonds, its reaction with cyclopentadiene did not give the expected $[U\{N(SiMe_3)_2\}_3(\eta-C_5H_5)]$ which is still unknown.⁹

Fig. 4 Proposed fluxional process leading to apparent three-fold symmetry at room temperature for complex 6

Table 5 Selected	bond lengths (A)	and angles (°) for comp	lex 5
$U(1)-C(C_5H_5)_{av}$	2.85(1)	U(1)–N(3)	2.25(2)
U(1)-Cp(1)*	2.58	U(1) - N(4)	2.61(2)
U(1) - N(1)	2.264(15)	$C-C(C_5H_5)_{av}$	1.40(1)
U(1) - N(2)	2.28(2)		
U(1)-N(4)-C(1)	108(2)	N(2)-U(1)-Cp(1)	100.2
U(1)-N(4)-C(3)	107(1)	N(3)-U(1)-Cp(1)	152.8
U(1)-N(4)-C(5)	104(2)	N(4)-U(1)-Cp(1)	133.3
U(1)-N(3)-C(6)	117(1)	N(1)-U(1)-N(2)	131.5(5)
U(1)-N(3)-Si(3)	125.2(8)	N(1)-U(1)-N(3)	91.0(5)
U(1)-N(2)-C(4)	113(1)	N(1)-U(1)-N(4)	66.7(5)
U(1)-N(2)-Si(2)	133.0(8)	N(2)-U(1)-N(3)	90.9(5)
U(1)-N(1)-C(2)	119(1)	N(2)-U(1)-N(4)	67.4(5)
U(1)-N(1)-Si(1)	128.1(8)	N(3)-U(1)-N(4)	73.9(5)
N(1)-U(1)-Cp(1)	99.6		
* Cp = Centroid o	f C ₅ H ₅ ring.		

Tetrahydroborato Derivatives.—The chloro complexes 1 and 2 react smoothly with an excess of lithium tetrahydroborate in thf to give pale green and colourless solutions respectively of $[ML(H_3BH)(thf)]$ (M = U 7 or Th 8) which were obtained by crystallisation at low temperature from pentane. The molecular structure of 7 is shown in Fig. 5. Positional parameters are given in Table 6 and a list of selected bond lengths and angles in Table 7. The structure is related to that of 1 and 5 in that the tripodal amino(triamido) ligand occupies four sites of a distorted octahedron. Although hydrogen atoms associated with the tetrahydroborate ligand were not located, the U-B distance of

Fig. 5 An ORTEP drawing of complex 7

 Table 6
 Fractional atomic coordinates for compound 7

Atom	r	v	7
	A	<i>y</i>	2 0 100 01(0)
U	0.122 39(4)	0.213 11(3)	0.122 81(3)
Si(1)	-0.119 3(4)	0.337 4(2)	0.163 8(2)
Si(2)	0.378 6(3)	0.095 4(2)	0.090 2(2)
Si(3)	0.270 3(4)	0.367 7(2)	0.011 6(2)
0	0.019 6(7)	0.104 4(4)	0.197 9(5)
N(1)	-0.005 0(9)	0.274 8(6)	0.203 1(5)
N(2)	0.282 9(8)	0.135 1(6)	0.157 6(5)
N(3)	0.246 4(9)	0.311 7(5)	0.097 7(6)
N(4)	0.238 9(10)	0.248 6(6)	0.267 9(6)
C(1)	0.145 8(14)	0.251 3(10)	0.327 0(9)
C(2)	0.023 9(12)	0.280 2(9)	0.296 9(8)
C(3)	0.334 7(16)	0.194 3(10)	0.293 7(9)
C(4)	0.325 2(12)	0.125 0(8)	0.249 1(8)
C(5)	0.291 8(19)	0.323 6(11)	0.253 6(10)
C(6)	0.328 5(14)	0.337 9(9)	0.171 1(8)
C(7)	-0.0695(14)	0.436 3(9)	0.190 4(9)
C(8)	-0.2690(14)	0.320 1(9)	0.210 7(10)
C(9)	-0.145 4(15)	0.328 7(9)	0.047 3(9)
C(10)	0.338 8(13)	0.132 9(9)	-0.0173(8)
càń	0.360 0(14)	-0.007 8(8)	0.087 4(9)
C(12)	0.547 7(14)	0.119 7(11)	0.124 0(10)
C(13)	0.174 4(14)	0.335 9(9)	-0.0871(9)
C(14)	0.441 0(13)	0.365 1(10)	0.008 3(9)
C(15)	0.228 4(18)	0.466 9(9)	0.028 3(11)
C(16)	0.045 5(14)	0.025 9(7)	0.180 9(10)
C(17)	-0.0595(15)	-0.0173(10)	0.202 6(13)
C(18)	-0.145 4(17)	0.030 7(10)	0.231 6(18)
C(19)	-0.1070(14)	0.107 2(9)	0.221 7(10)
B	-0.0121(15)	0.150 3(9)	-0.0114(10)

2.68(2) Å and IR data (Table 1) support the assignment of H_3BH co-ordination of the BH_4 group.¹⁰ Unlike the more sterically congested compounds 1 and 5, the amido fragments in 7 are virtually planar.

Complexes 7 and 8 sublime cleanly at 150 °C and 10⁻⁶ mbar to give essentially quantitative yields of the thf-free compounds $[{ML(BH_4)}_2]$ (M = U 9 or Th 10). Large clear crystals of these compounds have been grown by crystallisation from various solvents and by vapour diffusion, but none has yielded sufficiently strong reflections for a structure determination by X-ray diffraction. Their formulation as dimers is based on solution molecular-weight determinations in benzene (see Experimental section). Mass spectra gave no higher mass peaks than those expected for the monomeric unit.

Table 7	Selected	bond	lengths ((Å)	and	angles	രി	for	comple	x 7
---------	----------	------	-----------	-----	-----	--------	----	-----	--------	-----

U-B	2.68(2)	U-N(2)	2.234(9)
U0	2.585(8)	U-N(3)	2.266(10)
U-N(1)	2.253(10)	U-N(4)	2.572(9)
U-N(4)-C(1)	106.7(8)	N(4)UN(3)	74.3(3)
U-N(4)-C(3)	110.4(8)	N(4)U-N(2)	69.5(3)
U-N(4)-C(5)	104.0(8)	N(4)-U-N(1)	68.8(3)
U-N(3)-C(6)	115.0(8)	N(3)-U-B	117.4(4)
U-N(3)-Si(3)	136.6(5)	N(3)-U-O	162.1(3)
U-N(2)-C(4)	117.5(7)	N(3) - U - N(2)	94.5(3)
U-N(2)-Si(2)	126.9(5)	N(3)-U-N(1)	97.0(4)
U-N(1)-C(2)	121.6(7)	N(2)-U-B	105.4(4)
U-N(1)-Si(1)	124.3(5)	N(2)UO	76.9(3)
B-U-O	80.3(4)	N(2)-U-N(1)	131.5(3)
N(4)U-B	168.0(4)	N(1)-U-B	110.3(4)
N(4)-U-O	87.9(3)	N(1)UO	162.1(3)

Alkoxide Derivatives.—The reaction of complex 1 or 2 with an excess of potassium *tert*-butoxide leads to the formation of an intractable mixture. In contrast, addition of thf at -80 °C to a stoichiometric (1:1) mixture of the chloride compounds with potassium *tert*-butoxide, stirring for 3 d at ambient temperature and sublimation (80 °C and 10⁻⁶ mbar) leads to moderate yields of the alkoxo derivatives [{ML(OBu^t)}₂] (M = U 11 or Th 12). Presumably the dimers (solution molecular weight) are bridged by alkoxide groups to give structures analogous to that of 1. The appearance of only one peak in the ²⁹Si NMR spectrum and the absence of ²⁹Si satellites on the Bu^t resonance preclude the possibility that 11 and by analogy 12 are the trimethylsilyl derivatives [ML(SiMe₃)] which would have similar mass spectra.

Conclusion

We have described the synthesis of the chloride-bridged dimers $[{ML(Cl)}_2]$ (M = U 1 or Th 2) via the thf adducts [ML(Cl)(thf)]. These compounds, like all the other species reported here, are thermally stable, crystalline, highly soluble in hydrocarbons, and sublime readily *in vacuo*. The ML fragment is quite robust, and under suitable conditions the chlorine atoms in 1 and 2 can be replaced in high yield by other ligands without significant disruption of the tripodal chelate.

With transition metals, $N(CH_2CH_2NSiMe_3)_3$ forms complexes of three-fold symmetry (e.g. trigonal bi- and monopyramidal structures).³ In the case here of the much larger actinide metals we have found that in the solid state the amino(triamido) fragment occupies four cofacial co-ordination sites of a distorted octahedron. Despite this, all NMR spectra indicate that if this structure is retained in solution then a facile fluxional process is taking place which leads to apparent threefold symmetry. In the case of $[\{ML(\mu-Cl)\}_2]$ 1 and 2 and the alkoxide derivatives $[\{ML(\mu-OBu^t)\}_2]$ 11 and 12 this process must be preceded by scission of the bridging bonds in the dimer, while for $[ML(H_3BH)(thf)]$ 7 and 8 reversible loss of the thf ligand is likely. In the case of the highly sterically encumbered compounds $[ML(\eta-C_5Me_5)]$ 5 and 6 only, these processes could be slowed on the NMR time-scale at accessible temperatures.

We are currently engaged in attempts to make higheroxidation-state derivatives of the uranium compounds and other reactivity studies.

Experimental

All manipulations were carried out under an inert atmosphere of argon using standard Schlenk techniques, or in a N₂-filled dry-box. The NMR samples were made up in the dry-box and the sample tubes sealed *in vacuo*. Solvents were pre-dried over sodium wire and then distilled over potassium (tetrahydrofuran)

or sodium-potassium alloy (light petroleum, b.p. 40-60 °C) under a slow passage of nitrogen. Deuteriated solvents were dried over molten potassium and distilled. The NMR spectra were recorded on Bruker AC-250, WM-360 or AMX-500 spectrometers, and the spectra referenced internally using residual protio solvent resonances relative to tetramethylsilane (δ 0), or to external tetramethylsilane in the case of ²⁹Si spectra. Infrared spectra were obtained as Nujol mulls in an air-tight holder using a Perkin-Elmer FTIR spectrometer, electron impact (EI) mass spectra obtained on a VG Autospec mass spectrometer by Dr. Ali Abdul-Sada. Elemental Analyses were performed by Medac, Brunel University, UK, or by Canadian Microanalytical Services, Delta, B.C., Canada. Solution molecular-weight determinations were by the isopiestic (Signer) method in dry benzene on ca. 200 mg samples.¹¹ Literature methods were used for the preparation of Li_3L , UCl₄¹² and $Na[C_5Me_5]$ ¹³ $Na[C_5H_5]$ was prepared by titration of Na in liquid ammonia with freshly distilled C_5H_6 and dried in vacuo overnight, LiBH₄ and KOBu^t (Aldrich Chemical Company) were dried at 100 °C in vacuo for a few hours before use and ThCl₄ (CERAC) was used without further purification.

 $[UL(\eta-C_5H_5)]$ 3.—Tetrahydrofuran (10 cm³) was added at -80 °C to a mixture of complex 1 (0.250 g, 0.20 mmol) and Na[C₅H₅] (0.15 g, excess) and the mixture was stirred for 8 h at ambient temperature to give a clear green solution. After evaporation of volatiles the green residue was sublimed at 150 °C and 10⁻⁶ mbar to give an analytically pure emeraldgreen oil which solidified over a period of 1 h (0.243 g, 92%). The analogous thorium compound 4 was prepared similarly (0.248 g, 94%).

[UL(η -C₅Me₅)] **5**.—Tetrahydrofuran (10 cm³) was added at -80 °C to a mixture of complex **1** (0.250 g, 0.20 mmol) and Na[C₅Me₅] (0.20 g, excess) and the mixture was stirred for 8 h at ambient temperature to give a clear bright orange solution. After evaporation of volatiles the residue was sublimed at 120 °C and 10⁻⁶ mbar to give analytically pure red crystals (0.265 g, 90%) which may be further crystallised from light petroleum at low temperature to give thick red needles. The analogous thorium compound **6** was prepared similarly (0.278 g, 96%).

[UL(H₃BH)(thf)] 7.—Tetrahydrofuran (10 cm³) was added at -80 °C to a mixture of complex 1 (0.250 g, 0.20 mmol) and LiBH₄ (0.10 g, excess) and the mixture was stirred for 8 h at ambient temperature to give a pale green solution. After evaporation of volatiles the residue was recrystallised from light petroleum at low temperature to give large green needles suitable for X-ray diffraction (0.252 g, 92%). The analogous thorium compound **8** was prepared similarly (0.250 g, 93%).

[{UL(H₃BH)}₂] 9.—Tetrahydrofuran (40 cm³) was added at -80 °C to a mixture of complex 1 (1.00 g, 0.79 mmol) and LiBH₄ (0.40 g, excess) and the mixture was stirred for 8 h at ambient temperature to give a pale green solution. After evaporation of volatiles the residue was sublimed at 150 °C and 10^{-6} mbar to give an analytically pure light green solid (0.904 g, 93%). The analogous thorium compound 10 was prepared similarly (0.900 g, 94%).

 $[{UL(OBu')}_2]$ 11.—Tetrahydrofuran (10 cm³) was added at -80 °C to a mixture of complex 1 (0.250 g, 0.20 mmol) and KOBu' (0.045 g, 0.040 mmol) and the mixture was stirred for 3 d at ambient temperature to give a light brown solution. After evaporation of volatiles the residue was sublimed at 80 °C and 10⁻⁶ mbar to give analytically pure light purple crystals (0.245 g, 87%). Recrystallisation from light petroleum at low temperature gave brown needles. The analogous thorium compound 12 was prepared similarly but in somewhat lower yield (0.150 g, 54%).

Table 8 Experimental data for the X-ray diffraction study of complexes 1, 5 and 7*

	1	5	7
Molecular formula	C30H70Cl2NoSi6U2	C25H54N4Si3U	C10H31BN4OSi3U
М	1266.4	733.0	684.7
Crystal system	Triclinic	Triclinic	Monoclinic
Space group	<i>P</i> 1 (no. 2)	P1 (no. 2)	$P2_1/n$ (no. 14)
a/Å	9.123(4)	9.903(2)	10.705(4)
b/Å	11.170(3)	17.610(4)	17.863(6)
c/Å	13.598(7)	28.384(4)	15.848(4)
$\alpha/^{\circ}$	106.84(4)	84.98(2)	90
β/°	105.59(4)	81.16(2)	96.31(2)
v/°	93.05(3)	87.92(2)	90
$U'Å^3$	1257.0	4871(2)	3012
Z	1	6	4
$\frac{1}{D_{-}}$ /g cm ⁻³	1.67	1.50	1.51
F(000)	616	2196	1360
$\lambda(Mo-K\alpha)/Å$	0.710 69	0.710 73	0.710 69
μ/cm^{-1}	63.8	48.7	52.4
T/K	173	293	173
Crystal size/mm	$0.25 \times 0.20 \times 0.08$	$0.2 \times 0.15 \times 0.2$	$0.25 \times 0.25 \times 0.25$
$2\theta_{max}/^{\circ}$	46	44	46
Unique reflections	3482	11 916	4315
Significant reflections, $ F^2 > 2\sigma(F^2)$	3097	7776	2872
No. of variables	217	457	262
Empirical absorption correction.	0.99, 0.48	1.00, 0.88	0.999, 0.908
$T_{\rm max}, T_{\rm min}$	(from ψ scans)	(from ψ scans)	
Goodness of fit	2.0	1.5	1.2
$(\Delta \rho)_{\rm max\ min}/e\ {\rm \AA}^{-3})$	+1.49, -0.43	+1.20, -0.34	+0.81, -0.36
	(near Ú)	(near U atoms)	(near U)
$(\Delta/\sigma)_{max}$	0.01	0.05	0.02
R, R'	0.042, 0.056	0.061, 0.061	0.046, 0.047
* Details in common: scan mode θ -2 θ ; weighting scheme	$e, w = \sigma^2(F).$		

Crystallography.—A crystal of complex 5 was mounted in a glass capillary, while that of 7 was coated with inert oil and transferred to the cold (173 K) nitrogen gas stream on the diffractometer (Enraf-Nonius CAD4). Non-H atoms were located by heavy-atom methods (SHELXS 86)¹⁴ and refined by full-matrix least squares with anisotropic thermal parameters (except for C and N atoms in 5 which were refined isotropically) using the MOLEN program package¹⁵ and scattering factors from ref. 16. Hydrogen atoms on the η -C₅Me₅ ligand in 5 and the BH₄ ligand in 7 were omitted and the rest fixed in calculated positions. Table 8 lists full experimental data.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

P. S. thanks the Ramsay Memorial Fellowships Trust and the Royal Commission for the Exhibition of 1851 for a Ramsay Fellowship.

References

- 1 D. Gudat and J. G. Verkade, Organometallics, 1989, 8, 2772.
- 2 J. G. Verkade, Acc. Chem. Res., 1993, 26, 483.
- 3 W. M. P. B. Menge and J. G. Verkade, *Inorg. Chem.*, 1991, **30**, 4628; A. A. Naiini, W. M. P. B. Menge and J. G. Verkade, *Inorg. Chem.*, 1991, **30**, 5009; C. C. Cummins, R. R. Schrock and W. M. Davis, *Organometallics*, 1992, **11**, 1452; C. C. Cummins, J. Lee and R. R. Schrock, *Angew. Chem.*, *Int. Ed. Engl.*, 1992, **31**, 1501; W. Plass and J. G. Verkade, *J. Am. Chem. Soc.*, 1992, **114**, 2275; C. C. Cummins, R. R. Schrock and W. M. Davis, *Angew. Chem.*, *Int.*

Ed. Engl., 1993, 32, 756; A. A. Naiini, S. L. Ringrose, Y. Su,
R. A. Jacobson and J. G. Verkade, *Inorg. Chem.*, 1993, 32, 1290;
V. Christou and J. Arnold, *Angew. Chem.*, *Int. Ed. Engl.*, 1993, 32, 1450;
J. Pinkas, B. Gaul and J. G. Verkade, *J. Am. Chem. Soc.*, 1993, 115, 3925;
C. C. Cummins and R. R. Schrock, *Inorg. Chem.*, 1994, 33, 395.

- 4 P. Scott and P. B. Hitchcock, Polyhedron, 1994, 13, 1651.
- 5 D. C. Bradley, J. S. Ghotra and F. A. Hart, *Inorg. Nucl. Chem. Lett.*, 1974, **10**, 209; H. W. Turner, R. A. Andersen, A. Zalkin and D. H. Templeton, *Inorg. Chem.*, 1979, **18**, 1221; R. A. Andersen, A. Zalkin and D. H. Templeton, *Inorg. Chem.*, 1981, **20**, 623; S. J. Simpson, H. W. Turner and R. A. Andersen, *Inorg. Chem.*, 1981, **20**, 2991.
- 6 C. K. Johnson, ORTEP II, Report ORNL-5738, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 7 F. G. N. Cloke, S. A. Hawkes, P. B. Hitchcock and P. Scott, Organometallics, 1994, 13, 2895.
- 8 F. Osolla, G. Rosetta, P. Zanella, G. Paulucci and R. D. Fischer, J. Organomet. Chem., 1986, 309, 55.
- 9 A. Dormond, A. A. El Bouadili and C. Moïse, J. Chem. Soc., Chem. Commun., 1985, 914.
- 10 T. J. Marks and J. R. Kolb, Chem. Rev., 1977, 77, 263.
- 11 D. F. Shriver and M. A. Drezdon, *Manipulation of Air-sensitive Compounds*, 2nd edn., Wiley, New York, 1986.
- 12 J. A. Hermann and J. F. Suttle, Inorg. Synth., 1957, 5, 143
- 13 K. H. den Haan, J. L. de Boer, J. H. Teuben, A. L. Spek, B. Kojić-Prodić, G. R. Hayes and R. Huis, Organometallics, 1986, 5, 1726.
- 14 G. M. Sheldrick, SHELX 86, University of Göttingen, 1986.
- 15 MOLEN, Structure Determination System, Enraf-Nonius, Delft, 1990.
- 16 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.

Received 22nd September 1994; Paper 4/05793G