Terdentate (P,N,N) Complexes of a New Pyridyl Azine Phosphine Z,E-PPh₂CH₂(Bu^t)C=N-N=C(Me)C₅H₄N and its Deprotonated Derivative (an Azo Phosphine) with Transition Metals

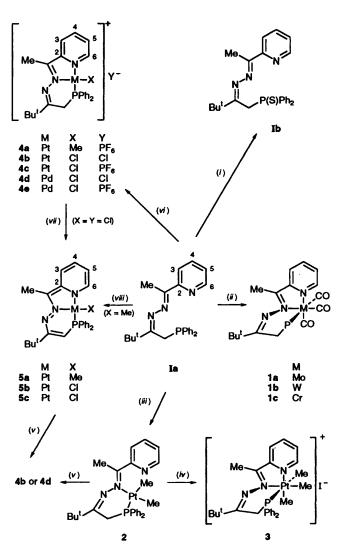
King Kuok Hii, Sarath D. Perera and Bernard L. Shaw School of Chemistry, The University of Leeds, Leeds LS2 9JT, UK

tert-Butyl diphenylphosphinomethyl ketone hydrazone, Z-PPh2CH2C(But)=NNH2 condensed with 2-acetylpyridine to give Z_*E -PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N la, which reacts with $[M(CO)_{4}(nbd)]$ (nbd = norbornadiene) to give highly coloured tricarbonyl $[M(CO)_3\{PPh_2CH_2C(Bu^t)=N-N=C(Me)C_5H_4N\}]$ (M = Mo 1a, W 1b or Cr 1c). Under mild conditions, la reacted with [PtMe2(cod)] (cod = cycloocta-1,5-diene) to give the dimethylplatinum(II) complex [PtMe,{PPh,CH,C(But)=N-N=C(Me)C,H,N}] 2 containing the bidentate azine phosphine Complex 2 reacted with Mel to give the fac-trimethylplatinum(IV) [PtMe₃{PPh₂CH₂C(Bu¹)=N-N=C(Me)C₅H₄N}]] 3 in which the phosphine is terdentate. Under slightly acidic conditions, la reacted with [PtMe2(cod)] to give a yellow methylplatinum(II) cation isolated as the PF_6 salt, $[PtMe\{PPh_2CH_2C(Bu^t)=N-N=C(Me)C_5H_4N^t\}]PF_6$ 4a. Deprotonation of this cation with NaOMe gave the deep blue neutral methylplatinum(II) complex [PtMe{PPh,CH=C(But)-N=N-C(Me)=C,H,N}] 5a, containing a terdentate azo phosphine Treatment [PtCl₂(cod)] with la gave the vellow $[PtCl\{PPh,CH,C(Bu^t)=N-N=C(Me)C_sH_4N\}]Cl \ \ 4b, \ \ which \ \ with \ \ NH_4PF_{\varepsilon} \ \ gives \ \ the \ \ corresponding$ Sodium methoxide immediately deprotonates 4b to give the intensely deep blue neutral chloroplatinum(II) complex [PtCl{PPh2CH=C(But)-N=N-C(Me)=C₅H₄N}] Treatment of [PdCl₂(NCPh)₂] with la gave the yellow chloropalladium(II) chloride salt [PdCI{PPh,CH,C(Bu¹)=N-N=C(Me)C,H,N}]Cl 4d, which on deprotonation with NEt,, gives the deep purple, neutral chloropalladium(II) complex 5c. Infrared, ³¹P-{¹H}, ¹H, some ¹³C-{¹H} NMR and UV/VIS data are given.

In a previous paper 1 we described the preparation of a new chelating (P,N) compound Z-PPh₂CH₂C(Bu')=NNH₂ from the phosphino dimethylhydrazone Z-PPh₂CH₂C(Bu¹)=NN-Me₂ by a hydrazine-exchange reaction. It condenses with aldehydes and ketones [QC(=O)R] to give mixed-azine monophosphines of type PPh₂CH₂C(Bu^t)=N-N=C(Q)R.¹⁻⁶ We have studied the co-ordination chemistry 1-6 of these azine phosphines, in particular the promotion of agostic C-H interaction 3 or aryl fluoride co-ordination 4 with ruthenium(II), and cyclometallation with Ir^I, ⁵ W⁰ (ref. 6) and Pt^{II}. ⁷ Recently, we reported the synthesis of an azine diphosphine Z,Z-PPh₂CH₂C(Bu^t)=N-N=C(Bu^t)CH₂PPh₂, and the ability of it, or its corresponding E,Z-isomer, to co-ordinate to Group 6 metal carbonyls,8 and also to platinum and palladium, either in a bidentate (P,P) or terdentate (P,N,P) manner. Since pyridine derivatives 11-14 have been widely used as nitrogen-donor ligands with both 'soft' and 'hard' metal centres, we incorporated the pyridine functionality into our azinephosphine system, in order to investigate the co-ordination chemistry of a potential terdentate (P,N,N) ligand. In this paper we describe the synthesis of a new pyridyl azine phosphine Z,E-PPh₂CH₂(Bu^t)C=N-N=C(Me)C₅H₄N Ia and its complexes with Group 6 metal carbonyls and also with palladium and platinum. There are several reports on other types of pyridylphosphine ligands which are quite different from Ia and the co-ordination chemistry of these has been reviewed. 13 They include $R_2P(CH_2)_nR'$ (n = 1-3, R = Ph, R' = a 2pyridyl moiety), $R_n PR'_{3-n}$ (n = 0-2), $R'PhP(CH_2)_n PPh(R')$

 $(n = 1-3) R'(CH_2)_2 PR(CH_2)_n R'$ (n = 2 or 3) and $[Ph_2P-(CH_2)_n]_2 R''$ (n = 1 or 2, R'' = a pyridine-2,6-diyl moiety).

Results and Discussion


Complexes of Ia with Group 6 Metal Carbonyls.—The various reactions of the pyridyl azine phosphine Ia are summarised in Scheme 1. The compounds described were characterised by elemental analyses (Experimental section) and by IR and ³¹P-{¹H} (Table 1), ¹H (Table 2), ¹³C-{¹H} NMR (Table 3) and UV/VIS (Table 4) spectroscopies. The phosphino hydrazone Z-PPh₂CH₂C(Bu')=NNH₂ condensed rapidly with 2-acetyl-pyridine in ethanol to give the crystalline pyridyl mixed-azine phosphine Z,E-PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N Ia in ca. 70% yield. This phosphine was found to be very air sensitive and was stored under nitrogen or argon at -15 °C. The ³¹P-{¹H} NMR spectrum in CDCl₃ is a singlet at δ -12.1. Treatment of Ia with monoclinic sulfur in benzene solution gave the corresponding phosphine sulfide Ib, which has a phosphorus-31 chemical shift of δ 37.2.

Treatment of Ia with $[Mo(CO)_3(cht)]^{15}$ or $[Mo(CO)_4(nbd)]^{15}$ {cht = cyclohepta-1,3,5-triene, nbd = norbornadiene (bicyclo[2.2.1]hepta-2,5-diene)} gave a deep purple solution, from which a purple compound was isolated in high yield. The infrared spectrum of this compound showed three bands for $\nu(C\equiv O)$ at 1900, 1810 and 1780 cm⁻¹, similar to literature values for zerovalent molybdenum fac-tricarbonyls. 8.16-18 In the $^{13}C-\{^1H\}$ NMR spectrum, three

Table 1 Infrared and 31P-{1H} NMR b data

	IR/cm ⁻¹			³¹ P-{ ¹ F	I} NMR
Compound	v(C=N)	v(M-Cl)	v(C≡O)°	δ	¹ J(MP)/Hz
Ia	1610m	_	_	-12.1	
Ib	1615m			37.2	_
1a	1595w, 1610w	_	1900s, 1810m, 1780m	35.6d	
1b	1595w	_	1910s, 1820m, 1790m	28.4	229
1c	1590w, 1610w	_	1910s, 1820m, 1790m	56.1 d	_
2	1585m, 1595m	_		34.8	2164
3	1585s			-1.1^{d}	1121
4a	1590m			23.4 ^d	4299
4b	1595m	340w		19.4ª	3713
4c	1590m, 1605m	340w	_	20.1 d	3716
4d	1595m, 1610m	340w		48.0	
4e	1590m, 1605m	340w		50.6 ^d	
5a				-2.6	3790
5b		330w		- 10.5	3377
5c	,	340w		17.4	

^a As KBr discs. ^b Recorded at 36.2 MHz, chemical shifts are in ppm relative to 85% H₃PO₄, solvent CDCl₃ unless otherwise stated. ^c In CH₂Cl₂. ^d In CD₂Cl₂.

Scheme 1 (i) Sulfur; (ii) $[M(CO)_4(nbd)]$ (M = Mo, W or Cr); (iii) $[PtMe_2(cod)]$; (iv) MeI; (v) excess of HCl; (vi) for 4a, $[PtMe_2(cod)-H^+-NH_4PF_6]$; for 4b, $[PtCl_2(cod)]$; for 4c, $[PtCl_2(cod)]-NH_4PF_6$; for 4d, $[PdCl_2(NCPh)_2]$; for 4e, $[PdCl_2(NCPh)_2]-NH_4PF_6$; (vii) base; (viii) $[PtMe_2(cod)]-H^+$, NaOMe

doublets were observed in the C=O region, at δ 232.3 with $^{2}J(PC) = 9.2$, 227.4 with $^{2}J(PC) = 10.7$ and 213.9 with $^{2}J(PC) = 36.6$ Hz. The first two resonances with small $^{2}J(PC)$ values are assigned to the carbonyl carbons cis to phosphorus and that with a large ${}^{2}J(PC)$ value is assigned to the carbonyl carbon trans to phosphorus. 6,8,19,20 Hence, this tricarbonylmolybdenum(0) complex has a fac geometry as shown in 1a. The observed low δ_C value of 27.3 for the methylene carbon is consistent with the values obtained for methylene carbons in six-membered chelate rings.^{2,6,9,20} In the proton NMR spectrum (Table 2) the methylene protons are non-equivalent, as expected for a fac geometry. The mass spectrum gave an intensity profile at m/z 583 (for molybdenum-98) for the parent molecular ion and profiles due to successive loss of one, two and three carbonyl ligands (see Experimental section). Similarly, treatment of the corresponding tungsten and chromium complexes $[M(CO)_4(nbd)]$ $(M = W \text{ or } Cr)^{15.21}$ with the phosphine Ia gave the hoped for fac-tricarbonyl complexes 1b and 1c, respectively. Details of the preparation and characterising data are in the Experimental section and in Tables 1-4. The UV/VIS absorption spectra of 1a-1c are discussed below.

Complexes of Ia with Platinum and Palladium.—Treatment of Ia with $[PtMe_2(cod)]^9$ (cod = cycloocta-1,5-diene) at ca. 20 °C in ethanol gave the bidentate dimethylplatinum(II) complex 2, which has δ_P 34.8 with ${}^1J(PtP) = 2164$ Hz. This small value of ¹J(PtP) is consistent with phosphorus trans to a methyl group. 2,22,23 The proton NMR spectrum showed two doublets with platinum-195 satellites for the two methyl groups on platinum; that at $\delta - 0.24$ with ${}^2J(PtH) = 69.3$ Hz is assigned to the group *trans* to phosphorus 2,9,23,24 and the other, at δ 0.63 with ${}^2J(PtH) = 90.5$ Hz, to the group *trans* to nitrogen. 2,25,26 The MeC=N proton resonance appeared as a doublet at 8 2.32 with satellites due to coupling to platinum-195, ${}^{5}J(PH)$ 2.2 and ${}^{4}J(PtH)$ 4.6 Hz. In the ${}^{13}C-\{{}^{1}H\}$ NMR spectrum the resonance for the methylene carbon appeared as a doublet at δ 24.9 with ${}^{1}J(PC) = 17.2$ Hz, in agreement with the presence of a six-membered chelate ring. ^{2,6,9,20} The doublet at δ 7.5 with a large ${}^{2}J(PC)$ value of 109.6 Hz is assigned to the methyl carbon trans to phosphorus, whilst that at $\delta - 23.6$ with a small ${}^{2}J(PC)$ value of 4.4 Hz is assigned to the methyl carbon cis to phosphorus. 9,10 The pyridyl carbons (e.g. C^2-C^6) are coupled neither to phosphorus-31 nor to platinum-195, confirming the presence of an unco-ordinated pyridyl group.

Table 2 Proton NMR data a [b 2 J(PH), c 2 J(HH), d 3 J(PtH), e 3 J(PH), f 4 J(PtH), g 5 J(PH), h 2 J(PtH)]

Compound	$\delta(\mathbf{B}\mathbf{u}^t)$	$\delta(CH_2)$	δ(=CMe)	Others
Ia	1.22 (s)	3.31 (2 H, d, 3.4 ^b)	2.21 (s)	_
Ib	1.21 (s)	4.07 (2 H, d, 14.9 ^b)	2.41 (s)	
1a ⁱ	1.30 (s)	2.85 (1 H, dd, 9.5, 6 17.6°)	2.15 (d, 4.9°)	
	()	3.09 (1 H, dd, 6.4, 17.6°)	, , ,	
1 b	1.30 (s)	2.82 (1 H, dd, 10.2, b 17.3°)	2.14 (d, 5.4°)	
	, ,	3.10 (1 H, dd, 6.6, b 17.3c)	, , , ,	
1e i	1.32 (s)	2.91 (1 H, dd, 9.5, ^b , 17.4 ^c)	2.17 (d, 6.4 ^g)	_
		2.93 (1 H, dd, 6.9, ^b 17.4°)		
2	0.89 (s)	2.51 (1 H, dd, 10.5, ^b 12.7, ^c 10.0 ^d)	$2.32 (d, 2.2, ^{g} 4.6)^{f}$	-0.24 (3 H, d, 7.8, 69.3, PtMe trans to P)
		3.56 (1 H, dd, 10.0, b 12.7, c 18.0 d)		0.63 (3 H, d, 7.5, e 90.5, h PtMe trans to N)
3^i	1.35 (s)	2.97 (1 H, m, br, 18.0°)	$2.68 (d, 2.7, {}^{g} 3.3 {}^{f})$	0.53 (3 H, d, 7.7, ^e 58.3, ^h PtMe trans to P)
		3.40 (1 H, m, br, 18.0°)		1.02 (3 H, d, 8.3, 68.8, PtMe trans to N)
				1.35 (3 H, d, 6.7, 68.0, PtMe trans to N)
4a ^{ij}	0.91 (s)	3.51 (2 H, d, 13.9, ^b 47.4 ^d)	$2.62 (s, 4.4^{f})$	0.70 (3 H, d, 2.7, ^e 73.0, ^h PtMe)
				7.93 (1 H, m, 1.2, ^g 5.6, ^k 7.6, ^k , 1.5, ^l H ⁵)
				8.28 (1 H, m, $0.7,^{9}$ $0.7,^{m}$ $1.5,^{1}$ $8.0,^{k}$ H ³)
				8.40 (1 H, m, 0.4," 1.7, 17.6, 8.0, H ⁴)
				$8.89(1 \text{ H, m, } 3.5,^{\circ} 34.5,^{d} 5.6,^{k} 1.7,^{l} 0.7,^{m} \text{ H}^{6})$
4b '	0.92 (s)	3.55 (2 H, d, 14.1, ^b 39.6 ^a)	$2.71 \text{ (s, } 10.3^{f})$	
4c ⁱ	0.89 (s)	3.95 (2 H, d, 14.5, 43.0 ^d)	$2.78 \text{ (s, } 10.5^{f})$	-
4d _	0.90 (s)	3.33 (2 H, d, 14.9 ^b)	2.84 (s)	-
4e ⁱ	0.90 (s)	4.01 (2 H, d, 15.4 ^b)	2.96 (s)	-
5a ^j	1.26 (s)		$2.20 (s, 3.4^{f})$	0.67 (3 H, d, 2.2, 69.8, PtMe)
				4.25 (1 H, d, 3.2, 50.0, d=CHP)
				6.95 (1 H, m, 1.4, ^g 1.3, ^l 5.8, ^k 7.2, ^k H ⁵)
				7.20 (1 H, m, 1.3, ^g 2.2, ^t 8.2, ^k H ³)
-			225 (225)	8.20 (1 H, m, 33.0, ^d H ⁶)
5b	1.26 (s)		$2.25 (s, 2.2^f)$	3.99 (1 H, d, 4.6, 31.2, d=CHP)
5c	1.28 (s)		2.44 (s)	$3.82 (1 \text{ H}, d, 3.6, ^d = \text{CHP})$

^a Recorded at 100 MHz, chemical shifts are in ppm relative to SiMe⁴, J values are in Hz, solvent CDCl₃ unless otherwise stated. ⁱ In CD₂Cl₂. ^j Recorded at 250 MHz. ^{k 3}J(HH). ^{l 4}J(HH). ^{m 5}J(HH). ^{n 6}J(PH).

Treatment of complex 2 with MeI gave the fac-trimethylplatinum(IV) iodide salt 3; a 1:1 electrolyte with a specific molar conductivity (Λ_m) of 0.104 Ω^{-1} cm² mol⁻¹ in acetone solution.²⁷ The low ${}^{1}J(PtP)$ value of 1121 Hz is similar to other values reported for platinum(IV)-tertiary phosphine complexes. 2,9,10 The proton resonance at δ 0.53(d) with $^3J(PH)$ 7.7 and $^2J(PtH)$ 58.3 Hz is assigned to the PtMe group trans to phosphorus, $^{2.9,10,28}$ whilst the two doublets at δ 1.02 with $^3J(PH)$ 8.3 and ${}^{2}J(PtH)$ 68.8 Hz and 1.35 with ${}^{3}J(PH)$ 6.7 and ${}^{2}J(PtH)$ 68.0 Hz are assigned to the two PtMe groups trans to nitrogens, 2.9.10.25.26 as expected for a fac geometry. Treatment of Ia with [PtMe2(cod)] in the presence of acetic acid followed by NH₄PF₆, or treatment of the dimethylplatinum(II) complex 2 with 1 mol equivalent of HCl at 20 °C followed NH₄PF₆, gave the methylplatinum(II) $[PtMe\{PPh_2CH_2C(Bu^i)=N-N=C(Me)C_5H_4N\}]PF_6 \ \ \textbf{4a} \ \ with \ \ a \ \ terdentate pyridyl azine phosphine ligand. The $^{31}P-\{^{1}H\}$ NMR$ spectrum showed a singlet at δ 23.4 with ${}^{1}J(PtP) = 4299$ Hz. The latter value is slightly higher than most others ^{2,14,29-33} (i.e. 3000-4000 Hz) for tertiary phosphine ligands trans to nitrogen donors, however a value of 4220 Hz was observed for a cyclometallated alkylplatinum(II) complex, viz. [(PhMe2P)Cl-Pt(Me₂)NCH₂CHCHCH₂NMe₂)PtCl(PMe₂Ph)].³⁴ The pre-

sence of a *cis*-alkyl ligand is known to increase $^1J(PtP)$ relative to a *cis*-halide ligand. 10,22,34,35 In the proton NMR spectrum, the platinum-methyl protons appeared as a doublet at δ 0.70 with $^3J(PH)=2.7$ and $^2J(PtH)=73.0$ Hz. A detailed NMR study at high field (400 and 250 MHz), including [proton, 13 C, two-dimensional $^{1}H-^{13}$ C correlation spectroscopy (COSY), attached proton test and homonuclear decoupling experiments], has enabled us to assign all the pyridyl protons (H $^3-$ H 6 , see Fig. 1) and carbons (C $^2-$ C 6); for example, the H 6 proton resonates at δ 8.89 with couplings to the H 3 (0.7), H 4 (1.7), H 5 (5.6), 31 P (3.5) and 195 Pt (34.5 Hz) nuclei. The carbon-13

resonance at δ 23.7 for the methylene carbon confirmed the presence of the six-membered chelate ring. $^{2.6,9,20}$ The pyridyl carbons C^3 and C^6 showed couplings to platinum-195 of $^3J(PtC)=15.0$ Hz and $^2J(PtC)=38.6$ Hz, respectively, indicative of co-ordination of the pyridyl nitrogen to platinum. Treatment of Ia with $[PtCl_2(cod)]_{,}^9$ or of 2 with an excess of HCl, gave the terdentate chloroplatinum(II) chloride salt 4b, which has δ_P 19.4 with $^1J(PtP)=3713$ Hz, and one IR band at 340 cm $^{-1}$ for $\nu(Pt-Cl)$. The corresponding PF_6 salt 4c was prepared by the addition of NH_4PF_6 to a methanolic solution of 4b. Similarly, the analogous terdentate chloropalladium(II) chloride salt 4d and the PF_6 salt 4e were prepared and characterised.

The methylene protons on a carbon adjacent to a C=N bond and a co-ordinated tertiary phosphine group are activated and can often be removed by a base such as NEt3 or by NaOMe.^{2,10} Treatment of the methylplatinum(II) chloride salt $[\dot{P}tMe\{\dot{P}Ph_2CH_2C(Bu^t)=N-\dot{N}=C(Me)C_5H_4\dot{N}\}]Cl$, prepared in situ from [PtMe₂(cod)] and Ia in the presence of acetic acid, with 1 equivalent of NaOMe in methanol removed one of the methylene protons to give the intensely dark blue neutral methylplatinum(II) complex Γ PtMe{ \dot{P} Ph₂CH=C(Bu¹)-N= \dot{N} -C(Me)=C₅H₄ \dot{N} }] 5a, containing an azo phosphine ligand. Removal of a methylene proton in the six-membered chelate ring is likely to induce high conjugation and transfer (or localisation) of the negative charge on to the pyridine nitrogen, thus converting the azine (-C=N-N=C-) backbone into the more conjugated azo (=C-N=N-C=) backbone with an exocyclic carbon-carbon double bond to the pyridyl residue, as shown in 5a-5c. Similar deprotonation processes resulting in stable =C₅H₄N⁻ moieties have been observed with cationic complexes containing ligands such as 1,3-bis(2'-pyridyl)-2,3-diazaprop-1-ene, HC(R)=NNH(R)(R = 2-pyridyl), and related 2-pyridylhydrazones, viz. R^1R^2C =

Table 3 13C-{1H} NMR data"	-{¹H} NMR	data "										
					Pyridyl carbons	pons	PPh_2					
Compound Ia	MeC= 13.8 (d, 2.7)	CMe ₃ 28.7 (d, 1.3)	CH ₂ P 26.2 (d, 23.0)	CMe ₃ 38.9 (s)	C ² 155.5 (s)	C³-C ⁶ 121.1 (s), 123.4 (s), 135.6 (s), 148.2 (s)	C _{ipso} 139.0 (d, 17.3)	Cortho 132.9 (d, 20.4)	С _{тега} 128.2 (d, 7.0)	C _{para} 128.5 (s)	C=N 158.8 (s), 168.6 (d,	Others
1a	14.6 (d, 1.5)	28.5 (s)		40.4 (d, 5.0)	152.7 (s)	123.0 (s), 123.8 (s), 133.8 (s), 152.2 (s)	131.0 (d, 23.5), 134.1 (d, 32.1)	130.3 (d, 12.4), 134.2 (d, 12.4)	127.7 (d, 8.4), 128.7 (d, 9.9)	128.6 (s) 130.4 (s)	5.3) 154.7 (d, 6.1), 169.6 (s)	213.9 (d, C≡O trans to P, 36.6). 227.4 (d, C≡O trans to N, 10.7). 232.3 (d, C≡O trans to N, 232.3 (d, C≡O trans to N,
1b b	15.2 (d, 2.4)	28.6 (s)	27.1 (d, 18.8)	40.8 (d, 4.9)	154.2 (s)	124.2 (s), 125.1 (s), 133.9 (s), 152.4 (s)	130.0 (d, 29.9) 133.3 (d,	130.6 (d, 12.0) 134.6 (d,	128.3 (d, 8.8) 129.1 (d,	129.3 (s), 131.1 (s)	156.4 (d, 7.2) 172.0 (d,	9.2) 208.6 (d, C≡O trans to P, 35.3), 221.5 (d, C≡O trans to N, 7.2),
1c ^b	14.7 (d, 2.4)	28.6 (s)	27.1 (d, 16.9)	40.4 (d, 5.2)	153.8 (s)	122.3 (s), 123.8 (s), 133.4 (s), 152.8 (s)	39.2) 130.3 (d, 23.3), 135.3 (d,	13.8) 130.5 (d, 10.9), 134.0 (d,	10.2) 127.9 (d, 8.4), 129.0 (d,	128.7 (s), 130.7 (s)	0.8) 154.5 (d, 8.0), 170.6 (s)	227.1 (d, C=0 trans to N, 6.4) 224.6 (d, C=0, 3.1), 234.2 (d, C=0, 17.7), 239.7 (d, C=0, 15.3)
7	19.4 (s)	27.6 (s)	24.9 (d, 17.2)	39.3 (d, 2.0)	155.7 (s)	123.4 (s), 124.4 (s), 134.7 (s), 148.4 (s)	32.2) 128.1 (d, 10.9, 132.9 (d,	12.6) 131.9 (d, 11.8), 134.9 (d,	9.3) 128.3 (d, 10.1), 128.7 (d,	130.0 (d, 1.6) 130.8 (d,	162.7 (d, 3.7), 170.1 (s)	-23.6 (d, PtMe trans to N, 4.4), 7.5 (d, PtMe trans to P,
48 b.c	17.1 (s)	27.7 (s)	23.7 (d, 33.5)	42.4 (d, 2.3)	156.6 (s)	127.0 (d, C ³ , 3.0, 15.0 ⁴), 129.0 (C ⁵), 142.0 (s, C ⁶), 147.5 (s, C ⁶),	10.8) 126.5 (d, 64.3)	13.8) 134.1 (d, 11.6, 32.0 ⁴)	9.0) 129.5 (d, 6.2)	1.9) 133.0 (s)	156.7 (d, 2.7), 177.4 (s)	. 109.6) 11.3 (d, PtMe, 7.1)
्र ⁴ कर	15.1 (s)	30.6 (s)	İ	41.3 (d, 12.5)	161.3 (s)	38.6°) 19.7 (d, C ⁵ , 3.2, 28.0) 119.8 (d, C ³ , 2.4, 19.3°), 139.5 (s, C ⁴), 145.4 (s, C ⁶ , 39.2°)	135.1 (d, 67.2)	133.1 (d, 10.8, 31.6) ⁴	128.6 (d, 10.8)	130.2 (d, 2.7)	1	-12.2 (d, PtMe, 7.6), 63.1 (d, =CHP, 77.0, 19.0 ⁴), 145.8 (s, NC=), 176.6 (d, NC=, 9.1)

^a Recorded at 100.6 MHz, chemical shifts are in ppm relative to SiMe₄, J(PC) values in Hz in parentheses, solvent CDCl₃ unless otherwise stated. ^b In CD₂Cl₂. ^c Recorded at 62.9 MHz. ^d J(PtC) values. ^e Obscured by C_{meta} resonance.

Table 4 UV/VIS data a

Complex	Colour	$\lambda_1^{\ b}/nm$	λ_2/nm
1a	Purple	285 (15 400)	564 (5 000)
1b	Blue	300 (11 800)	574 (7 100)
1c	Blue	400 (2 900)	600 (2 500)
5a	Blue	345 (7 700)	614 (12 600)
5b	Blue	336 (5 300)	600 (10 400)
5c	Purple	253 (22 100)	578 (3 900)

^a Recorded in freshly prepared dichloromethane solutions using silica cells on a Perkin-Elmer 402 UV/VIS spectrometer. Absorption coefficients (dm³ mol⁻¹ cm⁻¹) in parentheses. Bands observed below 250 nm are not included as these are subject to solvent effects. ^b Only the most intense band is quoted.

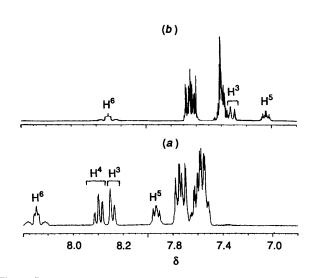


Fig. 1 Proton NMR (250 MHz) spectra in the aromatic region for (a) the pyridine cation 4a and (b) its corresponding deprotonated (blue) complex 5a. The effect of deprotonation on the pyridine residue is clearly shown. For 5a the resonance for H⁴ (δ ca. 7.4) is hidden behind the phenyl resonances as shown by the $^1\mathrm{H}^{-13}\mathrm{C}$ COSY experiment

NNH(R) ($R^1 = 2$ -pyridyl, 2-quinolyl, 8-quinolyl or 1-isoquinolyl; R² = H, Me, Et, Prⁿ or Buⁿ), and di-2'-pyridylamine. 11,36,37 Deprotonation of di-2'-pyridylmethane with LiBun gives an alkali-metal derivative, in which a lithium atom is co-ordinated to the nitrogen atom of the $=C_5H_4N^-$ moiety.³⁸ Furthermore, some photoinduced intramolecular hydrogentransfer processes have been known to generate $=C_5H_4NH$ moieties. ³⁹⁻⁴¹ Our neutral azo phosphine complex **5a** showed a phosphorus-31 resonance at δ -2.6 with a ¹J(PtP) value of 3790 Hz, consistent with a phosphorus atom trans to a nitrogen donor. In the proton NMR spectrum the =CHP proton appeared as a doublet at δ 4.25 with satellites, $^2J(PH) = \bar{3}.2$ and $^{3}J(PtH) = 50.0$ Hz, whilst the carbon-13 resonance for the =CHP carbon absorbed at δ 63.1 with $^{1}J(PC) = 77.0$ Hz. 10 The protons (H³, H⁵ and H⁶, see Fig. 1) and carbons (C²-C⁶) were assigned using a two-dimensional ¹H-¹³C COSY experiment at 250 MHz; the resonances due to C⁵ and C³ appeared as doublets at δ 119.7 [$^4J(PC) = 3.2$, $^3J(PtC) = 28.0$] and 119.8 $[^4J(PC) = 2.4, ^3J(PtC) = 19.3]$, respectively. Similarly, the chloride salts 4b (Pt) and 4d (Pd) were deprotonated with NaOMe or NEt₃ to give the corresponding neutral azo phosphine complexes 5b and 5c, respectively. These neutral blue (Pt) or purple (Pd) azo phosphine complexes of type $[MCl\{PPh_2CH=C(Bu')-N=N-C(Me)=C_5H_4N'\}]$ 5 (M = Pt or Pd) are immediately reprotonated with 1 equivalent of HCl to give the corresponding yellow chloride salt 4b or 4d. Treatment of 5a with an excess of HCl gave the chloroplatinum(II) chloride salt 4b and methane.

UV/VIS Spectroscopy of Complexes of types 1 and 5.—The Group 6 metal carbonyls 1a-1c, containing the Z,E-azine phosphine ligand, and the platinum(II) and palladium(II) complexes 5a-5c, containing the azo phosphine ligand, are highly coloured. Their UV/VIS spectroscopic data are given in Table 4. In each case only one absorption band was observed in the visible region $[\lambda_2 = 560-600 \text{ nm}; \text{ absorption coefficient}$ $(\epsilon) = 2500-13\,000 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$ but several absorption bands ($\varepsilon = 2900-22\,000\,\mathrm{dm^3\ mol^{-1}\ cm^{-1}}$) were present in the UV and far-UV region. The origins of these deep blue or purple colours are not clear since several electronic transitions are possible in these systems. For example, the azo functionality is known to induce metal to ligand charge transfer (m.l.c.t.) involving the ligand's π^* (N=N) orbital,⁴² whereas pyridine derivatives are known to engage in metal-to-ligand charge transfers as well as ligand-centred (l.c.) π - π * excitations, ⁴³ and there is also evidence for strong mixing between the l.c. and m.l.c.t. transitions.44

Experimental

The apparatus used and general techniques were the same as in other recent papers from this laboratory. **pert-Butyl diphenyl-phosphinomethyl ketone hydrazone was prepared as reported previously. **Infrared spectra were recorded using a Perkin-Elmer model 257 grating spectrometer, NMR spectra using a JEOL FX-90Q (operating frequencies for **1H and **3**P of 89.5** and 36.2 MHz respectively), a JEOL FX-100 (operating frequencies for **1H and **3**P of 99.5** and 40.25 MHz respectively), a Bruker ARX-250 (operating frequencies for **1H and **1**C of 250.13** and 62.9 MHz respectively) or a Bruker AM-400 spectrometer (operating frequencies for **1H, **3**P and **1**C of 400.13, 161.9 and 100.6 MHz respectively); **1Hz respectively; **1Hz

Z,E-PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N Ia.—A solution containing tert-butyl diphenylphosphinomethyl ketone hydrazone, Z-PPh₂CH₂(Bu')C=NNH₂ (2.0 g, 6.7 mmol) and 2-acetylpyridine (0.80 cm³, 7.12 mmol) in degassed ethanol was put aside at ca. 20 °C for 30 min, and then cooled to -15 °C. This gave the required phosphine Ia as a white crystalline solid (1.86 g, 69%) (Found: C, 73.6; H, 7.15; N, 10.2. C₂₅H₂₈N₃P-0.4EtOH requires C, 73.8; H, 7.3; N, 10.0%).

Z,E-P(=S)Ph₂CH₂(Bu¹)C=N-N=C(Me)C₅H₄N **Ib**.—A mixture of compound **Ia** (80 mg, 0.20 mmol) and monoclinic sulfur (6.5 mg, 0.20 mmol) was refluxed in benzene (2.0 cm³) for 1 h. The reaction mixture was then filtered and the solvent removed under reduced pressure. The required product **Ib** was obtained as fine white needles by recrystallising the residue from methanol. Yield 45 mg, 52% (Found: C, 68.45; H, 6.7; N, 9.55. C₂₅H₂₈N₃PS-0.3MeOH requires C, 68.5; H, 6.7; N, 9.5%).

fac-[Mo(CO)₃{PPh₂CH₂(Bu¹)C=N-N=C(Me)C₅H₄N}] 1a. — (i) From [Mo(CO)₃(η^6 -cht)]. A solution of [Mo(CO)₃(η^6 -cht)] (0.24 g, 0.87 mmol) in benzene (2.0 cm³) was added to a solution of compound Ia (0.42 g, 1.05 mmol) in benzene (3.0 cm³) and the resultant mixture put aside for 1 h. The required product 1a crystallised as an intensely purple solid and was collected. Yield 0.48 g, 97%. A sample for microanalysis was obtained by recrystallisation from dichloromethane (Found: C, 56.5; H, 4.8; N, 7.25. C₂₈H₂₈MoN₃O₃P·0.2CH₂Cl₂ requires C, 56.5; H, 4.8; N, 7.0%). m/z (EI): 583 (M^+), 555 (M — CO), 527 (M — 2CO) and 499 (M — 3CO).

(ii) From [Mo(CO)₄(nbd)]. Complex 1a was prepared and isolated in 80% yield after treating [Mo(CO)₄(nbd)] with 1

mol equivalent of **Ia** in a similar fashion to that described in method (i).

fac-[W(CO)₃{PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N}] **1b.** —Compound **Ia** (100 mg, 0.25 mmol) and [W(CO)₄(nbd)] (95 mg, 0.25 mmol) were refluxed together in benzene solution for 15 h. The required product **1b** crystallised from the cooled solution as a deep purple solid (117 mg, 70%). A sample for microanalysis was obtained by recrystallisation from dichloromethane—methanol (Found: C, 47.75; H, 4.1; N, 5.8. C₂₈-H₂₈N₃O₃PW-0.6CH₂Cl₂ requires C, 47.7; H, 4.1; N, 5.8%). m/z (EI): 669 (M^+), 613 (M – 2CO) and 585 (M – 3CO).

fac-[Cr(CO)₃{PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N}] 1c.—Compound Ia (80 mg, 0.20 mmol) and [Cr(CO)₄(nbd)] (50 mg, 0.20 mmol) were refluxed in benzene (2.5 cm³) for 7.5 h and then cooled to ca. 20 °C. The required product 1c separated as a dark blue solid, and was filtered off and washed with methanol. Yield 50 mg, 48% (Found: C, 61.4; H, 5.3; N, 7.3. $C_{28}H_{28}CrN_3O_3P$ 0.8MeOH requires C, 61.0; H, 5.6; N, 7.4%).

[PtMe₂{PPh₂CH₂(Bu¹)C=N-N=C(Me)C₅H₄N}] 2.—A solution of compound Ia (145 mg, 0.36 mmol) in ethanol (2.0 cm³) was added to a solution of [PtMe₂(cod)] (120 mg, 0.36 mmol) in ethanol (2.0 cm³) and the mixture put aside for 30 min. The required dimethylplatinum(II) complex 2 crystallised as yellow microcrystals and was collected. Yield 168 mg, 74% (Found: C, 51.65; H, 5.5; N, 6.7. C₂₇H₃₄N₃PPt requires C, 51.75; H, 5.45; N, 6.7%). m/z(EI): 626 (M^+), 611 (M^- Me) and 595 (M^- 2Me).

fac-[PtMe₃{PPh₂CH₂(Bu¹)C=N-N=C(Me)C₅H₄N}]I 3.— An excess of iodomethane (0.1 cm³) was added to a solution of complex **2** (50 mg, 0.80 mmol) in benzene (2.0 cm³) and the mixture put aside at room temperature for 20 min. The resulting dark blue solution was evaporated to dryness under reduced pressure and the residue triturated with diethyl ether; this gave the trimethylplatinum(IV) complex **3** as a blue solid, which was filtered off and washed with diethyl ether. Yield 53 mg, 86% (Found: C, 43.85; H, 4.85; N, 5.45. C₂₈H₃₇IN₃PPt requires C, 43.8; H, 4.85; N, 5.45%). $\Lambda_{\rm m}$ (acetone) = 0.104 Ω^{-1} cm² mol⁻¹.

[PtMe{PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N}]PF₆ 4a.— A solution of [PtMe₂(cod)] (80 mg, 0.24 mmol) in benzene (1.0 cm³) was added to a solution of compound Ia (80 mg, 0.27 mmol) in ethanol (2.0 cm³) and glacial acetic acid (0.1 cm³) added. The solvents were then removed under reduced pressure and a saturated ammonium hexafluorophosphate(v) solution in ethanol (1 cm³) was added to the residue. The monomethyl-platinum(II) complex 4a crystallised as yellow needles (102 mg, 56%). An analytically pure sample was obtained by recrystallisation from dichloromethane-hexane (Found: C, 41.25; H, 4.15; N, 5.5. C₂₆H₃₁F₆N₃P₂Pt requires C, 41.3; H, 4.15; N, 5.5%). m/z (EI): 610 (M – HPF₆) and 595 (M – HPF₆ – Me).

[PtCl{PPh₂CH₂(Bu¹)C=N-N=C(Me)C₅H₄N}]Cl 4b.—Acetic acid (0.1 cm³) and a solution of compound Ia (165 mg, 0.41 mmol) in dichloromethane (2.0 cm³) were added to a solution of [PtCl₂(cod)] (150 mg, 0.40 mmol) in dichloromethane (1 cm³). The reaction mixture was put aside to stand for 20 min at 20 °C, after which the solvent was removed under reduced pressure. Addition of diethyl ether to the residue gave the chloroplatinum(II) salt 4b as a bright yellow solid (260 mg, 97%) (Found: C, 45.0; H, 4.45; N, 6.0. C₂₅H₂₈Cl₂N₃PPt·0.25Et₂O requires C, 45.5; H, 4.50; N, 6.1%).

[PtCl{PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N}]PF₆ 4c.— This salt was obtained in 40% yield after treating the chloroplatinum(II) chloride salt **4b** with NH₄PF₆ in MeOH, in a similar manner to that described for **4a** (Found: C, 38.75; H, 3.65; N, 5.4. $C_{25}H_{28}ClF_6N_3P_2Pt$ requires C, 38.65; H, 3.65; N, 5.4%).

[PdCl{PPh₂CH₂Bu¹)C=N-N=C(Me)C₅H₄N}]Cl 4d.—A solution of [PdCl₂(NCPh)₂] (330 mg, 0.87 mmol) in dichloromethane (2.0 cm³) was added to a solution of compound Ia (350 mg, 0.87 mmol) in benzene (3.0 cm³). The chloropalladium(II) chloride salt 4d crystallised as yellow microcrystals (300 mg, 60%) (Found: C, 49.8; H, 4.8; N, 7.0. C₂₅H₂₈Cl₂N₃PPd·0.4CH₂Cl₂ requires C, 49.8; H, 4.8; N, 6.9%).

[PdCl{PPh₂CH₂(Bu')C=N-N=C(Me)C₅H₄N}]PF₆ 4e.—A saturated solution of NH₄PF₆ in ethanol was added to a solution of the chloropalladium(II) chloride salt 4d (300 mg, 0.52 mmol) in ethanol (2 cm³). The PF₆ salt 4e was obtained as a pale yellow solid (290 mg, 81%) (Found: C, 42.65; H, 4.0; N, 6.0. C₂₅H₂₈ClF₆N₃P₂Pd·0.28CH₂Cl₂ requires C, 42.65; H, 4.0; N, 5.9%).

[PtMe{PPh₂CH=C(Bu¹)N=N-C(Me)=C₅H₄N}] **5a.**—A solution of compound **Ia** (125 mg, 0.31 mmol) in ethanol (2.0 cm³) was added to a solution of [PtMe₂(cod)] (100 mg, 0.30 mmol) in dichloromethane. Glacial acetic acid (0.2 cm³) was then added. When the effervescence had subsided, sodium methoxide (0.673 mol dm⁻³ in methanol, 0.45 cm³, 0.30 mmol) was then added. The required deprotonated product **5a** precipitated as a dark blue solid. Yield 122 mg, 67% (Found: C, 49.75; H, 4.8; N, 6.5. C₂₆H₃₀N₃PPt·0.25CH₂Cl₂ requires C, 49.75; H, 4.85; N, 6.6%). m/z (EI): 610 (M +) and 595 (M − Me).

[PtCl{PPh₂CH=C(Bu¹)N=N-C(Me)=C₅H₄N}] 5b.—The chloroplatinum(II) complex 4b (200 mg, 0.30 mmol) was dissolved in methanol (2.5 cm³). A solution of sodium methoxide in methanol (0.673 mol dm⁻³, 0.45 cm³, 0.30 mmol) was then added. The required product 5b precipitated as a deep blue solid which was collected. Yield 102 mg, 54%. A sample for microanalysis was recrystallised from dichloromethane—methanol (Found: C, 47.0; H, 4.3; N, 6.4. $C_{25}H_{27}ClN_3PPt$ -0.1CH₂Cl₂ requires C, 47.0; H, 4.3; N, 6.5%). m/z (EI): 630 (M^+).

[PdCl{PPh₂CH=C(Bu¹)N=N-C(Me)= C_5H_4N }] 5c.—The palladium(II) complex 4d (80 mg, 0.14 mmol) was dissolved in dichloromethane (1.5 cm³). Triethylamine (0.02 cm³, 0.14 mmol) was added. The resulting intensely purple solution was evaporated to dryness under reduced pressure and the residue triturated with methanol, to give the required product 5c as a purple solid (68 mg, 91%) (Found: C, 54.1; H, 4.85; N, 7.65. $C_{25}H_{27}\text{ClN}_3\text{PPd-0.2CH}_2\text{Cl}_2$ requires C, 54.1; H, 4.90; N, 7.50%), m/z (EI): 541 (M^+).

Acknowledgements

We thank the SERC for a fellowship (to S. D. P.), the Committee of Vice-Chancellors and Principals for an ORS award (to K. K. H.), the University of Leeds for a Tetley and Lupton Scholarship (to K. K. H.), and the Trustees of the Edward Boyle Foundation for a scholarship (to K. K. H.). We thank Johnson Matthey plc for a generous loan of platinum and palladium salts.

References

- 1 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 2361.
- 2 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 103 and refs. therein.

- 3 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1201
- 4 S. D. Perera and B. L. Shaw, Inorg. Chim. Acta., in the press.
- 5 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1203
- 6 S. D. Perera and B. L. Shaw, J. Organomet. Chem., 1994, 479, 117.
- 7 S. D. Perera and B. L. Shaw. The Chemistry of the Platinum Group Metals, 5th International Conference, The Royal Society of Chemistry, St. Andrews, 1993, Abstracts p. B65.
- 8 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 1469.
- 9 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1993, 3653 and refs. therein.
- 10 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 3311.
- 11 C. F. Bell, Rev. Inorg. Chem., 1979, 1, 133.
- 12 M. D. Ward, Annu. Rep. Prog. Chem., Sect. A, Inorg. Chem., 1991, 88, 247 and refs. therein.
- 13 G. R. Newkome, Chem. Rev., 1993, 93, 2067.
- 14 A. Hessler, J. Fischer, S. Kucken and O. Stelzer, *Chem. Ber.*, 1994, 127, 481.
- 15 M. A. Bennett, L. Pratt and G. Wilkinson, J. Chem. Soc., 1961, 2037.
- 16 G. R. Dobson, R. C. Taylor and T. D. Walsh, *Inorg. Chem.*, 1967, 6, 1929.
- 17 V. V. S. Reddy, Inorg. Chim. Acta, 1988, 144, 177.
- 18 J. W. Faller, N. Zhang, K. J. Chase, W. K. Musker, A. R. Amaro and C. M. Semko, J. Organomet. Chem., 1994, 468, 175.
- 19 G. T. Andrews, I. J. Colquhoun and W. McFarlane, *Polyhedron*, 1983, 2, 783.
- 20 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 713.
- 21 R. B. King, Organometallic Syntheses, Academic Press, New York, 1965, vol. 1.
- 22 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Complexes, Springer, Berlin, 1979.
- 23 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 999.

- 24 B. L. Shaw and J. D. Vessey, J. Chem. Soc., Dalton Trans., 1992, 1929.
- 25 C. M. Anderson, M. Crespo, M. C. Jennings, A. J. Lough, G. Ferguson and R. J. Puddephatt, Organometallics, 1991, 10, 2672.
- 26 M. Crespo, M. Martinez, J. Sales, X. Solans and M. Font-Bardia, Organometallics, 1992, 11, 1288.
- 27 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
- 28 J. D. Ruddick and B. L. Shaw, J. Chem. Soc., 1961, 2037.
- 29 M. K. Cooper and J. M. Downes, *Inorg. Chem.*, 1978, 17, 880.
- 30 D. Hedden and D. M. Roundhill, Inorg. Chem., 1985, 24, 4152.
- 31 A. Albinati, P. S. Pregosin and F. Wombacher, *Inorg. Chem.*, 1990, 29, 1812.
- 32 M. Bassett, D. L. Davies, J. Neild, L. J. S. Prouse and D. R. Russell, *Polyhedron*, 1991, 10, 501.
- 33 J.-T. Chen, T.-M. Huang, M.-C. Cheng, Y.-C. Lin and Y. Wang, Organometallics, 1992, 11, 1761.
- 34 J. Ř. Briggs, C. Crocker, W. S. McDonald and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1982, 457.
- 35 F. H. Allen and A. Pidcock, J. Chem. Soc. A, 1968, 2700.
- 36 J. F. Geldard and F. Lions, Inorg. Chem., 1963, 2, 270.
- 37 J. F. Geldard and F. Lions, J. Am. Chem. Soc., 1962, 84, 2262.
- 38 H. Gornitzka and D. Stalke, Angew. Chem., Int. Ed. Engl., 1994, 33, 693.
- 39 T. Arai, M. Moriyama and K. Tokumaru, J. Am. Chem. Soc., 1994, 116, 3171.
- 40 L. Kaczmarek, R. Balicki, J. Lipkowski, P. Borowicz and A. Grabowska, J. Chem. Soc., Perkin Trans. 2, 1994, 1603.
- 41 S. M. Ormson and R. G. Brown, Prog. React. Kinet., 1994, 19, 45.
- 42 A. D. Ryabov, L. G. Kuz'mina, N. V. Dvortsova, D. J. Stufkens and R. van Eldik, *Inorg. Chem.*, 1993, 32, 3166.
- 43 M. G. Colombo and H. U. Gudel, Inorg. Chem., 1993, 32, 3081
- 44 M. G. Colombo, A. Hauser and H. U. Gudel, *Inorg. Chem.*, 1990, 29, 1812.

Received 17th August 1994; Paper 4/05046K