633

Complexes of the Bidentate Ligands Z-PPh₂CH₂C(Bu^t)=NNR₂ (R = Me or H) with Rhodium and Iridium

Sarath D. Perera and Bernard L. Shaw

School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

Treatment of 0.5 equivalent of $[{RhCl(CO)_2}_2]$ with the phosphino dimethylhydrazone Z- $PPh_2CH_2C(Bu')=NNMe_2(L^1)$ or the phosphino hydrazone Z-PPh_2CH_2C(Bu')=NNH_2 (L^2) gave the chelate complexes [RhCl(CO){PPh2CH2C(But)=NNR2}] (R = Me 1a or H 1b). Complex 1a reacts with another mole of L¹ to give the bis(phosphine)rhodium(1) complex *trans*-[RhCl(CO)-{PPh₂CH₂C(Bu¹)=NNMe₂}] **2a**. The analogous iridium(1) complex **2b** was prepared by treating [IrCl(CO)₂(H₂NC₆H₄Me-*p*)] with 2 mol equivalents of L¹. Complex **2a** reacts with [PtCl₂(cod)] (cod = cycloocta-1,5-diene) to give a 1:1 mixture of the chelate 1a and [PtCl₂{PPh₂CH₂C(Bu^t)=NN- Me_2]. Treatment of [IrCl(CO)₂(H₂NC₆H₄Me-p)] with 2 equivalents of L² gave the hydridoiridium(III) complex *cis*-[irH(Cl){PPh,CH,C(Bu¹)=NNH₂},Cl **3a**. Treatment of [{MCl(cod)}₂] (M = Rh or ir) with two equivalents of L1 in methanol in the presence of NH4PF6 gave the cationic complexes $[\dot{M}(cod){\dot{P}Ph_2CH_2C(Bu')=N\dot{N}Me_2}]PF_6$ (M = Rh 4a or Ir 4b) in which L¹ is bidentate. When [{MCl(cod)}2] was treated with 2 equivalents of L1 in benzene it yielded the neutral complexes $[MCl(cod){PPh_2CH_2C(Bu^t)=NNMe_2}]$ (M = Rh 5a or Ir 5b) in which L¹ is monodentate through phosphorus. Treatment of $[{MCl(cod)}_2]$ with 2 equivalents of L² in CD_2Cl_2 gave the cationic chelate complexes [M(cod){PPh₂CH₂C(Bu^t)=NNH₂}]CI (M = Rh 4c or lr 4d). Treatment of [{RhCI(cod)}₂] or $[{RhCl(C_8H_{14})_2}_2]$ (C₈H₁₄ = cyclooctene) with 2 equivalents of L² per rhodium atom gave the cationic bis(phosphine)rhodium(I) complex $[Rh{PPh_2CH_2C(Bu^t)=NNH_2}_2]Cl$ 6. Treatment of $[RhCl(PPh_3)_3]$ with 1 equivalent of L¹ in C_6D_6 gave the Wilkinson-type complex [RhCl(PPh₃){PPh₂CH₂C(Bu^t)=NNMe₂}] 7, which readily reacts with dioxygen to give the adduct *cis*- $[\dot{R}hCl(O_2)(PPh_3){\dot{P}Ph_2CH_2C(Bu')=NNMe_2}]$ 8. The rhodium(III) complex 8 reacts with sulfur dioxide to give the rhodium(III) sulfate cis-[RhCl(SO₄)(PPh₃){PPh₂CH₂C(Bu^t)=NNMe₂}] 9. Treatment of $[{MCl(C_{g}H_{14})_{2}}_{2}]$ with 2 equivalents of L¹ per rhodium atom gave the bis(phosphine) complexes *cis*-[MCI{PPh2CH2C(Bu')=NNMe2}{PPh2CH2C(Bu')=NNMe2}] (M = Rh 10a or Ir 10b), containing one chelate and one monodentate phosphine ligand. These complexes reacted rapidly with dioxygen to give corresponding dioxygen adducts cis-[MCI(0,){PPh,CH,C(Bu')=NNMe,}{PPh,CH,C(Bu')=NNMe,}] (M = Rh 11a or Ir 11b). Proton, ³¹P-{¹H} and some ¹³C-{¹H} NMR data are given.

In a previous paper¹ we reported the synthesis of Z-tert-butyl diphenylphosphinomethyl ketone dimethylhydrazone, Z-PPh₂- $CH_2C(Bu')=NNMe_2(L^1)$ and Z-tert-butyl diphenylphosphinomethyl ketone hydrazone, Z-PPh₂CH₂C(Bu')=NNH₂ (L^2). We have described the complexes and subsequent chemistry of these bidentate (P,N) ligands L^1 and L^2 with Cr^0 , Mo^0 and $W^{0,1}$ and more recently with Pd^{II} and $Pt^{II,2}$ We have also used L^2 as a 'reagent' for derivatising aldehydes and ketones, R'C(=O)R" $(\mathbf{R}' = \mathbf{H} \text{ or } \mathbf{M}\mathbf{e}, \mathbf{R}'' = aryl, alkyl, alkenyl or heterocyclic$ radical), as azines of type PPh₂CH₂C(Bu')=N-N=CR'R". By complexing the azines to metals, one of the R groups becomes compressed against the metal which promoted agostic C-H interaction,³ C-F co-ordination,⁴ C-H bond fission ⁵ or C-X bond fission (X = I, Br, Cl⁶ or F⁷). In the present paper we describe the synthesis and characterisation of some rhodium and iridium complexes containing L^1 or L^2 and other ligands such as carbon monoxide, cycloocta-1,5-diene, triphenylphosphine or dioxygen. There is increasing interest in the use of organometallic or catalytic chemistry.⁸⁻²¹ Some examples with rhodium or iridium include o-PPh₂C₆H₄(CH₂)_nNMe₂ (n = 0or 1),^{14,15} PPh₂(CH₂)_nNMe₂ (n = 2 or 3),¹⁵ o-PPh₂C₆H₄-NH₂,¹⁶ o-PPh₂C₆H₄NHR (R = Et or CH₂Ph),¹⁷ PPh₂-(CH₂)₂(2-C₅H₄N)¹⁸ and o-PPh₂C₆H₄CH=NR (R = Et, Prⁿ, Prⁱ or Bu^t).^{19,20} bidentate (P,N) compounds to generate new co-ordination,

Results and Discussion

For the convenience of the reader the phosphine ligands L^1 and L^2 , and the complexes prepared from them, are shown in Schemes 1–4. Elemental analyses, and some mass spectral and infrared data are in the Experimental section, ${}^{31}P{-}{^{1}H}$ and ${}^{13}C{-}{^{1}H}$ NMR data in Table 1, and 14 NMR data in Table 2. Some of the complexes are very air-sensitive 16,17,22 and were characterised by ${}^{1}H$ and ${}^{31}P{-}{^{1}H}$ NMR spectroscopy, only.

Treatment of L¹ with 0.5 mol equivalent of the binuclear rhodium(1) complex [{RhCl(CO)₂}₂] gave a single product **1a** with a six-membered chelate ring and phosphorus *trans* to chlorine. There are several pieces of evidence, indicative of the formation of a six-membered chelate ring, *i.e.* with NMe₂ co-ordinated. The shifts to low field of the methyl protons of the NMe₂ group on co-ordination ($\Delta\delta_{\rm H} \approx +0.9$ ppm) and also the carbon-13 shifts of the NMe₂ methyls ($\Delta\delta_{\rm C} \approx +5.5$ ppm) suggest that the NMe₂ nitrogen is co-ordinated to rhodium. Similar co-ordination shifts have been found for *o*-(diphenylphosphino)-*N*,*N*-dimethylaniline, (*o*-PPh₂C₆H₄NMe₂) on chelation to rhodium.¹⁴ Additionally, the carbon-13 chemical shift ($\delta_{\rm C}$) for the CH₂ group is 21.2, typical of a six-membered chelate ring.^{2,6,23,24} The ³¹P-{¹H} NMR data, $\delta_{\rm P} = 54.4$ with ¹*J*(RhP) = 178 Hz, are typical of phosphorus *trans* to chlorine ^{15,18,22,25,26} and the value of ²*J*(PC) of 18 Hz for the

Table 1 ${}^{31}P-{}^{1}H$ and ${}^{13}C-{}^{1}H$ NMR data ^b

Compound	
L1	$\delta_{\mathbf{n}}$: -9.7
	δ_{cc} 28.3 (3C. s. CMe_) 29.0 [1C. d. ¹ /(PC) 21.6 CH_1 38.4 (1C. s. CMe_) 45.8 (2C. s. NMe_) 128.1 (2C. s. C.) 128.1 [4C. d. ³ /(PC)
	7.0. C.1. 132.4 [4C, d. $\frac{2}{7}$ /[PC) 20.1, C.1. 141.6 [2C, d. $\frac{1}{7}$ /[PC) 169. C.1 and 177.1 (C. s. C.N.)
L ²	$\delta_{\rm D}$: -22.6
	δ_{r} : 26.2 [1C, d, ¹ J(PC) 22.7, CH ₂], 28.6 (3C, s, CMe ₂), 38.1 [1C, d, ³ J(PC)], 4, CMe ₂], 128.5 [4C, d, ³ J(PC) 7.0, C, 1, 129.0 (2C, s, C, 1)]
	132.8 [4C, d, ² J(PC) 19.7, C, 1, 137.6 [2C, d, ¹ J(PC) 14.9, C, 1 and 156.6 (1C, s, C=N)
1a	δ _P : 54.4 [¹ J(RhP) 178]
	δ _c : 21.2 [1C, d, ¹ J(PC) 22.5, CH ₂], 27.1 (3C, s, CMe ₃), 40.5 [1C, d, ³ J(PC) 2.2, CMe ₃], 51.3 (2C, s, NMe ₃), 128.6 [4C, d, ³ J(PC) 10.8,
	C _m], 131.2[2C, d, ⁴ J(PC)2.3, C _n], 132.4[2C, dd, ¹ J(PC)52.3, ² J(RhC)2.0, C ₁ , 133.0[4C, d, ² J(PC)12.1, C ₁ , 169.3(1C, s, C=N) and
	187.1 [1C, dd, ² J(PC) 18.0, ¹ J(RhC) 73.2, C≡O]
1b	$\delta_{\rm P}$: 73.7 [¹ J(RhP) 189]
	δ _c : 24.9[1C,d, ¹ J(PC) 20.1, CH ₂], 27.2 (3C, s, CMe ₃), 39.2 (1C, s, CMe ₃), 128.5 [4C,d, ³ J(PC) 10.8, C _m], 131.0 (2C, s, C _n), 132.6 [2C, d,
	¹ J(PC) 49.2, C ₁], 133.0 [4C, d, ² J(PC) 11.7, C ₀], 172.2 (1C, s, C=N) and 187.8 [1C, dd, ² J(PC), 18.2, ¹ J(RhC) 73.3, C=O]
2a	δ_{P} : 22.8 [¹ J(RhP) 130]
	$\frac{\delta_{C}}{\delta_{C}}: 26.2 \left[2C, t, ^{1}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 38.9 (2C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (6C, s, CMe_{3}), 46.4 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (4C, s, NMe_{2}), 127.6 \left[8C, t, ^{3}J(PC) + {}^{3}J(PC) 20.7, CH_{2}\right], 28.9 (4C, s, NMe_{2}), 28.9 (4C, s$
	$^{3}J(PC) 9.7, C_{m}], 129.4 (4C, s, C_{p}), 133.7 [8C, t,]^{2}J(PC) + {}^{4}J(PC) 12.7, C_{o}], 135.3 [4C, t,]^{1}J(PC) + {}^{3}J(PC) 42.7, C_{i}], 172.1 [2C, t, 1]^{1}J(PC) + {}^{3}J(PC) 42.7, C_{i}], 172$
	$ ^{2}J(PC) + {}^{4}J(PC) $ 7.4, C=N] and 187.5 [1C, dt, ${}^{2}J(PC)$ 15.1, ${}^{1}J(RhC)$ 76.3, C=O]
2b	$\delta_{\mathbf{P}}(\mathbf{C}_{\mathbf{G}}\mathbf{D}_{\mathbf{G}})$; 17.2
	δ_{c} : 25.9 [2C, t, ³ J(PC) + ³ J(PC)] 25.0, CH ₂], 29.2 (6C, s, CMe ₃), 39.0 (2C, s, CMe ₃), 46.0 (4C, s, NMe ₂), 127.6 [8C, t, ³ J(PC) +
	$J(PC) 10.2, C_{m} , 129.9$ (4C, s, C _p), 134.2 [8C, t, $ ^{2}J(PC) + {}^{4}J(PC) 12.5, C_{p} , 135.3$ [4C, t, $ ^{4}J(PC) + {}^{4}J(PC) 45.5, C_{i} , 171.1$ [1C,
•	t, $\frac{3}{(PC)}$ [1.0, C=O] and 172.5 [2C, t, $\frac{3}{(PC)} + \frac{3}{(PC)}$ [16.1, C=N]
3a	$\delta_{P}(CD_{2}Cl_{2})$: 24.9
	$\delta_{C}(\text{MeOH}-C_{6}D_{6}): 25.9 [2C, d, J(PC) 28.3, CH_{2}], 27.0 (6C, s, CMe_{3}), 39.6 [2C, d, J(PC) 1.3, CMe_{3}], 128.2 [4C, d, J(PC) 8.4, C_{m}], 128.2 [4C, d$
	$128.0 [4C, q, {}^{*}J(PC)] 11.0, C_{m}, 150.2 [4C, q, {}^{*}J(PC)] 53.3, C_{1}, 151.5 (2C, s, C_{p}), 151.6 (2C, s, C_{p}), 153.2 [4C, q, {}^{*}J(PC)] 10.3, C_{o}, 154.8$
2L	[4C, d, "7(PC) 9.9, C ₀] and 174.3 [2C, d, "7(PC) 1.3, C=N]
30	$Op(CD_2CL_2)$; 22.3
44	$0_{p,-4}$ (3, 7) (KHZ) 10/ $8 \cdot 20$ [1] (2 4 1/DC) 20.5 CH 3 27 1 (2C 5 CM 5) 28.2 (2C 5 CH 56 ad) 21.2 [2C 4 3/DC) 2.4 CH 56 add 40.0 [1C 4
	$0_{\rm C}$ 20.1, [16, 4] $J({\rm re})$ 20.3, ${\rm en}_2$], 27.1 (56, 5, ${\rm em}_3$), 26.3 (26, 5, ${\rm en}_2$ 01 (00), 51.5 [26, 4], $J({\rm re})$ 2.4, ${\rm en}_2$ 01 (00), 40.5 [16, 4], 3^{1} (PC) 2. (Ma) 52.8 (20) s Ma) 55.7 [26, 4] (PD) (12.6 CH of could 100 110 CH of 2.4 (PC)) 6 CH of could remain
	$f_0 = 12.8$, $f_0 = 1.26$, $f_1 = 1.20$,
	$169.6(1.0 \circ C - N)$
4h	δ 35 9
-10	δ.: 18.8 [1C d ⁻¹ /(PC)26.5 CH_1 27.1 (3C s CMe_) 29.2 [2C d ⁻³ /(PC)1.7 CH_ofcod] 31.5 [2C d ⁻³ /(PC)3.0 CH_ofcod] 41.5
	$[16, d^{-3}/PC) \ge CMe_1 = 336[2C, d^{-3}/PC) + 0.006e_1 = 60.9(2C, s) CH of cod) = 972[2C, d^{-2}/PC) + 0.006e_1 = 2706[2C, d^{-3}/PC) + 0.006e_1 = 0.00$
	¹ J(PC) 54.3, C.I. 129,414C, d. ³ J(PC) 10.6, C. I. 132,312C, d. ⁴ J(PC) 2,3, C.I. 133,714C, d. ² J(PC) 10.8, C. 1 and 171.4 (1C, s. C=N)
4c	$\delta_{\omega}(CD_{\gamma}Cl_{\gamma})$; 53.6 [¹ J(RhP) 169]
4d	$\delta_{\rm P}({\rm CD}_{2}{\rm Cl}_{2}):$ 35.9
5a	δ _p : 21.4 [¹ J(RhP) 152]
	δ _c : 27.7 [1C, d, ¹ J(PC) 16.0, CH ₂], 28.6 (3C, s, CMe ₃), 28.8 (2C, br s, CH ₂ of cod), 32.8 (2C, br s, CH ₂ of cod), 39.3 [2C, d, ³ J(PC) 1.3,
	CMe ₃], 46.6 (2C, s, NMe ₂), 70.2 (2C, br s, CH of cod), 101.9 (2C, br s, CH of cod), 127.8 [4C, d, ³ J(PC) 9.6, C _m], 130.0 [2C, d, ⁴ J(PC)
	2.0, C _p], 132.5 [2C, d, ¹ J(PC) 37.4, C _i], 134.4 [4C, d, ² J(PC) 11.1, C _o] and 172.6 [1C, d, ² J(PC) 7.7, C=N]
5b	$\delta_{P}(CD_{2}Cl_{2}): 11.7$
6	$\delta_{P}(CD_{2}Cl_{2}): 74.2 [^{1}J(RhP) 191]$
7	$\delta_{P}(C_{6}D_{6}): 60.3 (P_{A}), 49.9 (P_{B}) [^{1}J(RhP_{A}) 211, ^{1}J(RhP_{B}) 178 and ^{2}J(PP) 46]$
8	δ_{P} : 41.8 (P _A), 36.3 (P _B) [¹ J(RhP _A) 162, ¹ J(RhP _B) 129 and ² J(PP) 21]
	δ_{c} : 27.2 [1C, d, 'J(PC) 20.3, CH_2], 27.4 (3C, s, CMe_3), 40.6 [1C, d, 'J(PC) 2.5, CMe_3], 45.6 [1C, t, 'J(PC) = 'J(RhC) 2.0, Me_2],
	5/.0[1C, d, ³ /PC)1.4, NMe ₂], 12/.5[6C, d, ³ /(PC)10.6, C _m], 128.5[2C, d, ³ /(PC)9.9, C _m], 129.0[2C, d, ³ /(PC)9.4, C _m], 130.3[3C,
	$a, 7(PC) 2.5, C_p, 130.6 [1C, a, 7(PC) 2.0, C_p], 131.3 [1C, a, 7(PC) 2.5, C_p], 132.6 [2C, a, 7(PC) 60.4, C_1, 132.8 [2C, a, 7(PC) 9.4, 132.6 [2C, a, 7(PC) 9.4])$
0	c_0 , 153.9 [50, u, $\neg /(rC)$ 54.0, c_1 , 153.1 [60, a, $\neg /(rC)$ 94.2, c_0], 153.6 [2C, a, $\neg /(rC)$ 94.8, c_0] and 170.0 [1C, d, $\neg /(rC)$ 1.9, C=N] S (CD) (0.7 (P) $\neg / (P) \rightarrow (CP)$ 14.0 [1(P) P) 112 $a = 4.2$ (CD) 201
7	op(にひ2に), せい・(てん), 22.0 (FB)[-J(KIIFA)142, -J(KIIFB)113 810 -J(FF)29] 8、(CT)-(CT)-(S2-(D-)46-(D-)-(T)7(D-D-)19-17(D-D-)17(D-D-)27(D-)47
OK.	$v_{P}(\nabla J_{2} \nabla J_{2})$, $J_{2} \nabla J_{2}$ (J_{1}), $H_{0,2} (\Gamma_{B}) [J_{1} \nabla J_{1} \nabla J_{1}]$, $J_{1} \nabla J_{1} \nabla J_{1} \nabla J_{1} \nabla J_{1}$
1.00	$v_{\rm P}(\nabla D_2 \cup z_2), z_2, z_3, (z_4), (z_7, (z_6), (z_7, z_6), (z_7, z_7))$
1h	$\mathcal{O}_{\mathcal{O}}(\mathcal{O}))))))))))))))))))))))))))))))))))))$
Recorded at	36.7 MHz chemical shifts in nom relative to 85% H-PO. 1 I(RhP) values in Hz solvent CDCL unless otherwise stated ^b Recorded at

100.6 MHz, chemical shifts in ppm relative to SiMe₄, J values in Hz, solvent CDCl₃ unless otherwise stated; C₆, C₉, C_m and C₉ refer to ipso-, ortho-, meta- and para-carbons of the PPh2 group.

C=O ligand suggests that C=O is cis to phosphorus.^{26,27} The v(C=0) value of 1995 cm⁻¹ is similar to values reported for carbonylrhodium(I) complexes.^{15,18,28}

Similar treatment of the rhodium(I) complex [{ $RhCl(CO)_2$ }] with 2 equivalents of L^2 gave the corresponding chelate complex 1b in excellent (89%) yield. This was characterised in a similar fashion to 1a. A proton NMR study in which a CDCl₃ solution of 1b was shaken with D_2O caused rapid exchange of the NH₂ protons for deuterons.

Treatment of $[{RhCl(CO)_2}_2]$ with 2 equivalents of L¹ per rhodium atom gave the trans-chloro(carbonyl)rhodium(1) complex 2a, which was also prepared by treating the chelate complex 1a with 1 mol equivalent of L^1 via a ring-opening reaction. For **2a** the ${}^{1}J(RhP)$ value of 130 Hz is typical for complexes of type *trans*-[RhCl(CO)(PR₃)₂].²⁹⁻³¹ In the proton NMR spectrum the value of $\delta_{\rm H}(\rm NMe_2)$ 1.93 is similar to that of the free hydrazone (2.10) and quite different to the value when NMe₂ is co-ordinated, *i.e.* δ 3.03 for the chelate complex 1a. In the ¹³C-{¹H} NMR spectrum of 2a the resonances for CH₂, C=N and C_o, C_m and C_p carbons of the phenyl rings are virtual 1:2:1 triplets, ³¹ whilst C=O appears as a doublet of triplets (Table 1). The bis(phosphine) complex 2a when treated with 1 equivalent of $[PtCl_2(cod)]$ (cod = cycloocta-1,5-diene) reacted rapidly to give a 1:1 mixture of the chelate complexes 1a and $[PtCl_{2}{PPh_{2}CH_{2}C(Bu')=NNMe_{2}}]^{2} (Scheme 1).$ Treatment of [IrCl(CO)₂(H₂NC₆H₄Me-*p*)] with 2 mol

Table 2 Proton NMR data^a

	δ(B u')	δ(CH ₂ P)	$\delta(\text{NMe}_2), \delta(\text{NH}_2)$
L^1	1.12 (9 H. s)	3.05 [2 H. d. ² J(PH) 2.9]	$2.10(6 H. s. NMe_{2})$
L ²	0.98(9H,s)	$3.10[2 \text{ H}, d, ^{2}J(\text{PH}) 2.2]$	$4.75(2 \text{ H}, \text{ br s}, \text{ NH}_2)$
18	0.70 (9 H. s)	3.14 [2 H, dd, ² /(PH) 12.7, ³ /(RhH) 1.4]	$3.03(6 H. s. NMe_2)$
16	0.65 (9 H. s)	3.42 [2 H. d. ² J(PH) 12.7]	6.58 (2 H, br s, NH_2) ^b
2a	1.14 (18 H. s)	$3.97 (4 \text{ H}, \text{vt}, N = 8.8)^{\circ}$	$1.93 (12 H, s, NMe_2)$
2b ^d	1.34 (18 H, s)	4.31 (4 H, vt, $N = 9.3$) ^c	$1.91(12 \text{ H. s. NMe}_{2})$
3a e	0.59 (18 H, s)	$3.33 [2 \text{ H}, \text{t}, {}^{2}J(\text{PH}) = {}^{2}J(\text{HH}) 13.2]$	-21.31 [1 H, t, ² J(PH) 16.5, IrH]
		$3.78 [2 \text{ H}, \text{ t}, {}^{2}J(\text{PH}) = {}^{2}J(\text{HH}) [13.2]$	7.69 [2 H, br d, ³ J(HH) 11.0, NH ₂] ^b
			9.94 $[2 \text{ H}, \text{ br d}, {}^{3}J(\text{HH}) 11.0, \text{NH}_{2}]^{b}$
3b ^e	0.59 (18 H, s)	2.92 [2 H, t, ${}^{2}J(PH) = {}^{2}J(HH)$ 13.2]	-21.81 [1 H, t, ² J(PH) 16.6, IrH]
		$3.18[2 \text{ H}, \text{t}, {}^{2}J(\text{PH}) = {}^{2}J(\text{HH})[13.2]$	5.49 [2 H, br d, ${}^{3}J(HH)$ 11.7, NH ₂] ^b
			5.78 [2 H, br d, ${}^{3}J(HH)$ 11.7, NH ₂] ^b
4a ^{f,g}	0.63 (9 H, s)	3.13 [2 H, d, ² J(PH) 11.5]	$3.06(6 \text{ H}, \text{ s}, \text{NMe}_2)$
4b ^ƒ , ^ℎ	0.64 (9 H, s)	3.45 [2 H, d, ² J(PH) 11.6]	$3.21 (6 H, s, NMe_2)$
4c ^{<i>e</i>,<i>i</i>}	0.61 (9 H, s)	3.64 [2 H, dd, ² J(PH) 12.0, ³ J(RhH) 1.5]	8.19 (2 H, br s, NH_2) ^b
4d ^{e, j}	0.63 (9 H, s)	3.52 [2 H, d, ² J(PH) 11.5]	k
5a ^{7,1}	1.22 (9 H, s)	3.89 [2 H, d, ² J(PH) 12.6]	$2.12 (6 H, s, NMe_2)$
5b ^{e,m}	1.12 (9 H, s)	3.97 [2 H, d, ² J(PH) 12.7]	$2.06 (6 H, s, NMe_2)$
6°	0.58 (18 H, s)	$3.13 (4 \text{ H}, \text{ fd}, N = 9.3)^c$	8.07 (4 H, br s, NH ₂) ^b
74	0.45 (9 H, s)	2.61 [2 H, d, ² <i>J</i> (PH) 11.2]	$3.49 (6 H, s, NMe_2)$
8 ^d	0.69 (9 H, s)	2.66 [1 H, dd, ² J(HH) 13.9, ² J(P _A H) 10.1]	2.46 [3 H, d, ${}^{4}J(P_{B}H)$ 2.4, NMe ₂]
		$3.14 [1 \text{ H}, \text{ t}, {}^{2}J(\text{HH}) = {}^{2}J(\text{P}_{\text{A}}\text{H}) 14.0]$	$3.94 [3 H, d, {}^{4}J(P_{B}H) 2.2, NMe_{2}]$
9°	0.62 (9 H, s)	$3.07 [1 \text{ H, m, }^2 J(\text{HH}) 13.9]^n$	$3.01 [3 H, d, {}^{4}J(P_{B}H) 3.7, NMe_{2}]$
		$3.38 [1 \text{ H}, \text{ m}, {}^{2}J(\text{HH}) 13.9]^{n}$	$3.53 [3 H, d, {}^{4}J(P_{B}H) 2.7, NMe_{2}]$
10a ^e	0.49 (9 H, s)	2.80 [2 H, d, ${}^{2}J(P_{B}H)$ 11.3, CH ₂ P _B]	$1.56 (6 H, s, NMe_2)$
	1.48 (9 H, s)	$3.95 [2 \text{ H}, \text{d}, {}^{2}J(\text{P}_{A}\text{H}) 12.5 \text{ CH}_{2}\text{P}_{A}]$	$3.24 (6 H, s, Me_2 NRh)$
106 <i>°</i>	0.50 (9 H, s)	2.97 [2 H, d, ${}^{2}J(P_{B}H)$ 11.7, CH ₂ P _B]	$1.51 (6 H, s, NMe_2)$
	1.43 (9 H, s)	$3.98 [2 \text{ H}, \text{d}, {}^{2}J(\text{P}_{\text{A}}\text{H}) 12.7, \text{CH}_{2}\text{P}_{\text{A}}]$	$3.35[6 \text{ H}, \text{d}, {}^{4}J(P_{B}\text{H}) 1.2, \text{ Me}_{2}\text{NIr}]$
lla	0.48 (9 H, s)	2.38 [1 H, m, ${}^{2}J(HH)$ 15.5, $CH_{2}P_{A}$]"	$1.67 (6 H, s, NMe_2)$
	0.97 (9 H, s)	2.76 (2 H, m, CH_2P_B)"	$2.39[3 \text{ H}, \text{d}, J(P_{B}\text{H}) 2.9, \text{Me}_{2}\text{NRh}]$
	A 40 (0 **)	$3.57 [1 H, dd, ^2J(HH) 15.5, ^2J(P_AH) 13.4, CH_2P_A]$	$3.48[3 \text{ H}, \text{d}, J(P_BH) 2.4, \text{ Me}_2\text{NRh}]$
llb	0.49 (9 H, s)	2.70 [1 H, dd, ${}^{2}J$ (HH) 15.4, ${}^{2}J$ (P _A H) 11.7, CH ₂ P _A]	1.69 (6 H, s, NMe_2)
	0.86 (9 H, s)	$3.19 [1 H, t, {}^{2}J(HH) = {}^{2}J(P_{B}H) [4.1, CH_{2}P_{B}]$	2.49 [3 H, d, $^{-}J(P_BH)$ 2.4, Me ₂ N[r]
		$3.34 [1 \text{ H}, \text{t}, {}^{2}J(\text{HH}) = {}^{2}J(\text{P}_{\text{B}}\text{H}) [4.1, \text{CH}_{2}\text{P}_{\text{B}}]$	$3.3/[3 \text{ H}, d, J(P_BH) 2.0, Me_2NIr]$
		3.65 [1 H, dd, ² J(HH) 15.4, ² J(P _A H) 13.4, CH ₂ P _A]	

^{*a*} Recorded at 100 MHz, chemical shifts (δ) in ppm relative to SiMe₄, solvent CDCl₃ unless otherwise stated, coupling constants *J* in Hz; s = singlet, d = doublet, dd = doublet of doublets, fd = apparent filled-in doublet, t = triplet, vt = virtual triplet and br = broad. ^{*b*} Observed weak coupling to phosphorus and exchange with D₂O. ^{*c*} N = |²J(PH) + ⁴J(PH)|. ⁴ In C₆D₆. ^{*c*} In CD₂Cl₂. ^{*f*} Recorded at 400 MHz. ^{*g*} Resonances due to cod appeared as multiplets at δ 2.03 (2 H), 2.20 (2 H), 2.30 (2 H), 2.56 (2 H), 3.22 (2 H) and 5.55 (2 H). ^{*h*} Resonances due to cod appeared as multiplets at δ 1.95 (2 H), 2.38 (2 H), 3.00 (2 H) and 5.21 (2 H). ^{*i*} Resonances due to cod appeared as broad peaks at δ 1.95–2.50 (8 H), 4.22 (2 H) and 4.52 (2 H). ^{*i*} Resonances due to cod appeared as broad peaks at δ 1.68 (4 H), 2.19 (4 H) and 3.62 (4 H). ^{*k*} Resonances due to NH₂ were not observed. ^{*i*} Resonances due to cod appeared as broad peaks at δ 1.63 (4 H), 2.13 (4 H) and 3.67 (4 H). ^{*n*} Obscured by other peaks.

equivalents of L¹ gave the bis(phosphine) complex **2b** in good (78%) yield. The characterising data show that this Vaska-type iridium(1) complex is analogous to the rhodium(1) complex **2a**, *i.e.* the phosphine ligands are monodentate through phosphorus and mutually *trans*. The v(C=O) value of 1955 cm⁻¹ is similar to literature values for carbonyliridium(1) complexes of the type *trans*-[IrCl(CO)(PR₃)₂].^{18,32}

Treatment of $[IrCl(CO)_2(H_2NC_6H_4Me-p)]$ with 2 mol equivalents of L^2 gave the hydridoiridium(III) salt 3a (Scheme 2), i.e. the carbonyl ligand was displaced. The mother-liquors from this reaction were very dark brown and we were unable to isolate any other product from them. We suggest that the source of hydride is an NH hydrogen from p-toluidine or from the hydrazone L^2 . This chloride salt **3a** was converted into the corresponding mixed chloride-tetraphenylborate salt 3b, when treated with NaBPh₄. The ³¹P-{¹H} NMR data for 3a or 3b show a singlet resonance (i.e. the two phosphorus nuclei are chemically equivalent) whilst the hydride resonance is a triplet at $\delta \approx -21.5$ with a ²J(PH) value of 16.5 Hz, and v(Ir-H) at 2210 cm⁻¹.¹⁷ The hydride must therefore be trans to chloride. As would be expected the CH_2 resonance in the ¹H-{³¹P} NMR spectrum is an AB pattern with ${}^{2}J(HH) = 13.2$ Hz. The NH₂ protons also showed an AB pattern with ${}^{2}J(HH) = 13.2$ Hz. In the ${}^{13}C-{}^{1}H$ NMR spectrum the carbon-13 resonances for CH_2 , C=N, and C_o, C_m and C_p carbons of the phenyl rings are

doublets suggesting that the two phosphorus donor atoms are not strongly coupled and are therefore mutually *cis*. We have reported that palladium(II) or platinum(II) centres react with 2 mol of L² to give bis(chelate) complexes of type *cis*- $[M{PPh_2CH_2C(Bu')=NNH_2}_2]^{2+}$ (M = Pd or Pt).²

Treatment of the binuclear complex [{RhCl(cod)}₂] with 2 mol equivalents of L¹ in methanol in the presence of NH₄PF₆ gave the hoped for cationic cycloocta-1,5-diene complex **4a** (Scheme 3). The ¹H and ¹³C-{¹H} NMR data [*e.g.* $\delta_{\rm H}(\rm NMe_2) = 3.06$ and $\delta_{\rm C}(\rm NMe_2) = 52.8$] clearly indicate the co-ordination of the NMe₂ nitrogen to rhodium. The P,N chelation is also supported by the observation of a downfield ring shift¹⁷ ($\Delta\delta_{\rm P} \approx 26$ ppm) in the phosphorus-31 resonance ($\delta_{\rm P}$ 47.5) of **4a** when compared to the phosphorus-31 chemical shift of complex **5a** ($\delta_{\rm P}$ 21.4, see below) in which the phosphine ligand L¹ is monodentate. The analogous cationic iridium(1) complex **4b** was similarly prepared and fully characterised.

Treatment of $[{MCl(cod)}_2]$ (M = Rh or Ir) with L¹ in benzene gave the neutral cycloocta-1,5-diene complex **5a** (Rh) or **5b** (Ir), respectively in which L¹ is monodentate. The complexes were characterised by ³¹P-{¹H} and ¹H NMR spectroscopy (Tables 1 and 2) and **5a** additionally by ¹³C-{¹H} NMR spectroscopy. The proton, ³¹P-{¹H} and ¹³C-{¹H} NMR spectra clearly show that the NMe₂ is not co-ordinated in these

Scheme 1 (i) 0.5 equivalent [{RhCl(CO)₂}₂]; (ii) 0.25 equivalent [{RhCl(CO)₂}₂] or 0.5 equivalent [IrCl(CO)₂($H_2NC_6H_4Me_p$)]; (iii) 1.0 equivalent L¹

Scheme 2 (i) 0.5 equivalent $[IrCl(CO)_2(H_2NC_6H_4Me-p)];$ (ii) NaBPh₄

complexes. The value of ${}^{1}J(RhP)$ of 152 Hz is typical for a complex of type [RhCl(diene)(PR₃)].^{17,22,25,33}

The chelating phosphine cycloocta-1,5-diene salts 4c (Rh) or 4d (Ir) from L² were prepared *in situ* by treating the appropriate complex [{MCl(cod)}₂] (M = Rh or Ir) with L² in CD₂Cl₂ solution. These chelate complexes 4c and 4d are extremely air-sensitive. Treatment of [{RhCl(cod)}₂] with 1 mol equivalent of L² per rhodium atom gave salt 4c which when treated with a second mol of L² gave the bis(chelate) salt *cis*-[Rh{PPh₂CH₂C(Bu¹)=NNH₂}₂]Cl 6. We assign a *cis* geometry to the bis(chelate) ligands from the value of ¹J(RhP) of 191 Hz, typical of phosphorus *trans* to nitrogen, and in the ¹H NMR spectrum the CH₂ resonance is of a 'filled in' doublet type with N = 9.3 Hz suggesting that ²J(PP) is not large and that the phosphorus donor atoms are not mutually *trans*.^{2,31} We also made the bis(chelate) salt 6 by treating L² with 0.25 equivalent of the complex [{RhCl(C₈H₁₄)₂}₂] (C₈H₁₄ = cyclooctene).

of the complex [{RhCl(C_8H_{14})_2] [(C_8H_{14} = cyclooctene). We also studied the action of L¹ on the Wilkinson catalyst [RhCl(PPh₃)₃] (Scheme 4). Treatment with 1 mol of L¹ displaced two triphenylphosphine ligands and gave the hoped for chelate triphenylphosphine complex 7. This was very airsensitive and only characterised by NMR spectroscopy in C_6D_6

solution. The ³¹P-{¹H} NMR data [²J(PP) = 46 Hz] indicated that the two phosphorus nuclei were mutually cis. The resonances were assigned to P_A (the chelate) and P_B (PPh₃) on the basis of selective decoupling which established that the CH₂ protons were coupled to P_A only $[^2J(P_AH) = 11.2 \text{ Hz}]$. The ¹H NMR spectrum suggested from the value of $\delta(NMe_2)$ 3.49 that the NMe₂ nitrogen is co-ordinated to rhodium. A benzene solution of this Wilkinson-type complex 7, prepared in situ, reacted with dioxygen (or air) to give the pale yellow dioxygen adduct 8 in 95% isolated yield. This dioxygen adduct was fully characterised, by C, H, N and Cl analysis, ¹H, ¹³C-{¹H} and $^{31}\text{P-}\{^1\text{H}\}$ NMR and mass spectroscopy. In the mass spectrum the parent molecular ion (M + 1) was readily observed as were the other ions corresponding to loss of dioxygen, and dioxygen and chlorine. In the infrared spectrum (KBr) there is a band at 870 cm^{-1} , assigned to v(O-O).³⁴⁻³⁷ As would be expected in the ¹H NMR spectrum the CH₂ protons are non-equivalent and mutually coupled $[^{2}J(HH) = 13.9 \text{ Hz}]$, and they are coupled only to P_A. In contrast, the NMe₂ hydrogens are coupled only to P_B suggesting that the NMe₂ group is *trans* to P_B ,^{4,28} the methyls being non-equivalent with ${}^{4}J(P_BMe) = 2.2$ and 2.4 Hz, respectively. The dioxygenrhodium(III) complex 8 reacted rapidly with sulfur dioxide to give the rhodium(III) sulfate 9 in 76% isolated yield. Complex 9 was fully characterised. In the

Scheme 4 (*i*) [RhCl(PPh₃)₃]; (*ii*) O₂; (*iii*) SO₂; (*iv*) 0.25 equivalent [$MCl(C_8H_{14})_2$]

infrared spectrum the bands due to $v(SO_4)$ at 1260, 1160 and 655 cm⁻¹ are at similar frequencies to those found for other bidentate sulfur complexes.^{19,37}

Treatment of $[\{RhCl(C_8H_{14})_2\}_2]$ with 2 mol equivalents of L¹ per rhodium atom gave the bis(phosphine)rhodium(1) complex **10a**, containing one chelate and one monodentate Z-PPh₂CH₂C(Bu')=NNMe₂ ligand. This complex was characterised by elemental analysis and mass spectrometry and by ³¹P-{¹H} and ¹H NMR spectroscopy. In particular, in the ³¹P-{¹H} NMR spectrum the value of ²J(PP) of 44 Hz indicates mutually *cis*-phosphine ligands, and the ¹J(RhP) values of 218 and 179 Hz are similar to those of 7. In the ¹H NMR spectrum there are two sets of Bu¹, CH₂ and NMe₂ protons, corresponding to chelating and monodentate Z-PPh₂CH₂-C(Bu¹)=NNMe₂ ligands, respectively. The singlet at δ 1.56 is assigned to the un-co-ordinated NMe₂ group. Treatment of complex **10a** with a one-third mol of L¹ did not result in a ringopening reaction to give a complex of type [RhCl(L¹)₃] at 20 °C in benzene solution.

An analogous bis(phosphine)iridium(I) complex 10b was prepared *in situ* and characterised in solution. From the NMR data it is clearly analogous to the bis(phosphine)rhodium(I) complex 10a. Complex 10a or 10b in dichloromethane solution reacted rapidly with dioxygen to give the corresponding dioxygen adduct 11a or 11b, respectively, both of which were isolated and characterised.

Experimental

All the reactions were carried out in an inert atmosphere of dry nitrogen or dry argon. Infrared spectra were recorded using a Perkin-Elmer model 457 grating spectrometer, NMR spectra using a JEOL FX-90Q (operating frequencies for ¹H and ³¹P of

89.5 and 36.2 MHz), FX-100 (operating frequencies for ¹H and ³¹P of 99.5 and 40.25 MHz) or a Bruker AM-400 spectrometer (operating frequencies for ¹H, ³¹P and ¹³C of 400.13, 161.9 and 100.6 MHz), respectively. The ¹H and ¹³C chemical shifts are relative to tetramethylsilane and ³¹P shifts to 85% phosphoric acid. Fast atom bombardment (FAB) mass spectra were recorded on a VG Autospec spectrometer using 8 kV acceleration. For metal complexes m/z values are quoted for ³⁵Cl, ¹⁰³Rh and ¹⁹³Ir.

The compounds Z-PPh₂CH₂C(Buⁱ)=NNMe₂ L¹ and Z-PPh₂CH₂C(Buⁱ)=NNH₂ L² were prepared according to our published procedure; 1 [{RhCl(CO)₂}₂], 38 [IrCl(CO)₂(H₂NC₆-H₄Me-*p*)], 39 [{RhCl(cod)₂], 40 [RhCl(PPh₃)₃], 41 [{IrCl-(cod)₂], 42 [{IrCl(C₈H₁₄)₂}₂] 42 and [{RhCl(C₈H₁₄)₂}₂] 43 were prepared according to literature procedures.

[$\dot{R}hCl(CO)$ { $\dot{P}Ph_2CH_2C(Bu^i)=N\dot{N}Me_2$ }] **1a**.—The complex [{ $RhCl(CO)_2$ }₂] (75 mg, 0.19 mmol) was added to a solution of the phosphino dimethylhydrazone L¹ (126 mg, 0.38 mmol) in benzene (3 cm³). After 10 min the resulting yellow solution was concentrated to a low volume (*ca.* 0.5 cm³) under reduced pressure and the residue triturated with methanol to give the required product **1a** as yellow microcrystals (144 mg, 76%) (Found: C, 51.15; H, 5.5; Cl, 7.4; N, 5.7. C₂₁H₂₇ClN₂OPRh requires C, 51.2; H, 5.2; Cl, 7.2; N, 5.7%); *m/z* (FAB) 466 (*M* – CO) and 457 (*M* – Cl); IR(CH₂Cl₂): v(C=O) 1995 cm⁻¹.

[$\dot{R}hCl(CO)$ { $\dot{P}Ph_2CH_2C(Bu')=N\dot{N}H_2$ }] **1b**.—The complex [{ $RhCl(CO)_2$ }_2] (75 mg, 0.19 mmol) was added to a solution of the phosphino hydrazone L² (111 mg, 0.37 mmol) in benzene (3 cm³). After 10 min the resulting yellow solution was concentrated to a low volume (*ca.* 0.5 cm³) under reduced pressure. Addition of hexane to the residue gave the required product **1b** as yellow microcrystals (155 mg, 89%) (Found: C, 49.05; H, 5.05; Cl, 7.65; N, 5.65. C₁₉H₂₃ClN₂OPRh requires C, 49.1; H, 5.0; Cl, 7.65; N, 6.0%); *m/z* (FAB) 437 (*M* + 1 – CO); IR(CH₂Cl₂): v(C=O) 1995 cm⁻¹.

trans-[RhCl(CO){PPh₂CH₂C(Bu')=NNMe₂}₂ **2a**.—The complex [{RhCl(CO)₂}₂] (50 mg, 0.13 mmol) was added to a solution of L¹ (168 mg, 0.51 mmol) in benzene (3 cm³). After 10 min the resulting yellow solution was filtered and concentrated to a low volume (*ca*. 0.5 cm³) under reduced pressure. Addition of hexane (2 cm³) to the residue gave the required product **2a** as pale yellow microcrystals (170 mg, 80%) (Found: C, 60.95; H, 6.75; Cl, 4.25; N, 6.6. C₄₁H₅₄ClN₄OP₂Rh·0.25C₆H₆ requires C, 60.85; H, 6.65; Cl, 4.25; N, 6.7%); *m/z* (FAB) 819 (*M* + 1), 783 (*M* - Cl) and 755 (*M* - Cl - CO); IR(CH₂Cl₂): v(C≡O) 1960 cm⁻¹.

trans-[IrCl(CO){PPh₂CH₂C(Bu¹)=NNMe₂}₂] **2b**.—The complex [IrCl(CO)₂(H₂NC₆H₄Me-*p*)] (75 mg, 0.19 mmol) was added to a solution of L¹ (126 mg, 0.39 mmol) in benzene (4 cm³) and the solution was warmed to *ca*. 70 °C for 1 min. The solution was then filtered and concentrated to a low volume (*ca*. 0.5 cm³) under reduced pressure. Addition of hexane (2 cm³) to the residue gave the required product **2b** as yellow microcrystals (135 mg, 78%) (Found: C, 54.4; H, 6.0; Cl, 4.0; N, 6.0. C₄₁H₅₄ClIrN₄OP₂ requires C, 54.2; H, 6.0; Cl, 3.9; N, 6.15%); *m/z* (FAB) 909 (*M* + 1) and 873 (*M* - Cl); IR(CH₂Cl₂): v(C=O) 1955 cm⁻¹.

cis-[IrH(Cl){PPh₂CH₂C(Bu⁺)=NNH₂}₂]Cl **3a**.—The complex [IrCl(CO)₂(H₂NC₆H₄Me-*p*)] (100 mg, 0.25 mmol) and L² (150 mg, 0.50 mmol) in benzene (4 cm³) were heated under reflux for 15 min. The resulting white precipitate of **3a** was filtered off, washed with hexane and dried. Yield 105 mg, 97% with respect to chlorine (Found: C, 50.0; H, 5.5; Cl, 7.95; N, 6.65. C₃₆H₄₇Cl₂IrN₄P₂ requires C, 50.2; H, 5.5; Cl, 8.25; N, 6.5%); m/z (FAB) 825 (M – Cl) and 789 (M – Cl – HCl); IR(KBr): v(Ir–H) 2210 cm⁻¹.

cis-[$\dot{I}rH(Cl){\dot{P}Ph_2CH_2C(Bu')=N\dot{N}H_2}_2$][BPh₄]_{0.6}Cl_{0.4} 3b. —An excess of NaBPh₄ (100 mg, 0.29 mmol) in ethanol (1 cm³) was added to a solution of the chloride salt 3a (50 mg, 0.058 mmol) in ethanol (1.5 cm³). The required product 3b was obtained as a white solid (42 mg, 64%) (Found: C, 60.3; H, 5.65; Cl, 4.05; N, 4.85. C₃₆H₄₇IrN₄P₂•0.6C₂₄H₂₀B•0.4Cl requires C, 60.1; H, 5.65; Cl, 4.05; N, 4.85%). m/z (FAB) 825 (M – BPh₄/ Cl) and 789 (M – BPh₄/Cl – HCl); IR(KBr): v(Ir-H) 2210 cm⁻¹.

 $[Rh(cod){PPh_2CH_2C(Bu')=NNMe_2}]PF_6$ 4a.—An excess of NH₄PF₆ (0.2 g, 1.2 mmol) in methanol (*ca.* 1 cm³) was added to a solution containing [{RhCl(cod)}₂] (125 mg, 0.25 mmol) and L¹ (165 mg, 0.50 mmol) in methanol (3 cm³). The resulting yellow crystals of complex 4a were filtered off, washed with cold methanol and dried. Yield 0.31 g, 91% (Found: C, 49.6; H, 5.65; N, 4.1. C₂₈H₃₉F₆N₂P₂Rh requires C, 49.3; H, 5.75; N, 4.1%); m/z (FAB) 537 ($M - PF_6$).

 $[ir(cod){PPh_2CH_2C(Bu^t)=NNMe_2}]PF_6$ 4b.—Complex 4b was prepared from $[{IrCl(cod)}_2]$ and isolated in 35% yield as orange microcrystals in a similar manner to the analogous rhodium(1) complex 4a. An analytical sample was recrystallised from benzene-methanol (Found: C, 44.75; H, 5.05; N, 3.5. $C_{28}H_{39}F_6IrN_2P_2\cdot 0.25C_6H_6$ requires C, 44.75; H, 5.15; N, 3.55%); m/z (FAB) 627 ($M - PF_6$).

 $[\dot{R}h(cod)\{\dot{P}Ph_2CH_2C(Bu')=N\dot{N}H_2\}]Cl$ 4c.—Complex 4c was prepared *in situ* by dissolving $[\{RhCl(cod)\}_2]$ (15 mg, 0.03 mmol) and L² (17 mg, 0.057 mmol) in CD₂Cl₂ (*ca*. 0.4 cm³).

 $[Ir(cod){\dot{P}Ph_2CH_2C(Bu')=N\dot{N}H_2}]Cl$ 4d.—Complex 4d was prepared *in situ* by dissolving $[{IrCl(cod)}_2]$ (10 mg, 0.015 mmol) and L² (8.9 mg, 0.03 mmol) in CD₂Cl₂ (ca. 0.4 cm³).

[RhCl(cod){PPh₂CH₂C(Buⁱ)=NNMe₂] **5a**.—The complex [{RhCl(cod)₂] (50 mg, 0.10 mmol) and L¹ (66 mg, 0.20 mmol) were dissolved in benzene (3 cm³). After 15 min the solution was concentrated to a low volume (*ca*. 0.3 cm³) under reduced pressure. Addition of hexane (1 cm³) to the residue gave the required product **5a** as bright yellow microcrystals (80 mg, 70%) (Found: C, 58.05; H, 6.45; Cl, 6.35; N, 4.5. C₂₈H₃₉ClN₂PRh requires C, 58.7; H, 6.85; Cl, 6.2; N, 4.9%); m/z (FAB) 573 (M + 1) and 537 (M - Cl).

[IrCl(cod){PPh₂CH₂C(Bu¹)=NNMe₂}] **5b**.—The complex [{IrCl(cod)₂] (67 mg, 0.10 mmol) and L¹ (66 mg, 0.20 mmol) were heated under reflux in benzene (4 cm³) for 20 min. The solution was then filtered and the filtrate concentrated to a low volume (*ca.* 0.3 cm³) under reduced pressure. Addition of hexane (2 cm³) to the residue gave the required product **5b** as bright yellow microcrystals (53 mg, 40%) (Found: C, 50.8; H, 5.85; Cl, 5.5; N, 4.35. C₂₈H₃₉CIIrN₂P requires C, 50.75; H, 5.95; Cl, 5.35; N, 4.2%); m/z (FAB) 663 (M + 1) and 627 (M - Cl).

cis-[Rh{PPh₂CH₂C(Bu¹)=NNH₂}₂]Cl 6.—(*i*) From [{RhCl-(cod)}₂]. Complex 6 was prepared *in situ* by dissolving [{RhCl(cod)}₂](15 mg, 0.03 mmol) and L² (37 mg, 0.057 mmol) in CD₂Cl₂ (*ca*. 0.5 cm³).

(ii) From [{RhCl(C_8H_{14})₂}₂]. Complex 6 was prepared in situ by dissolving [{RhCl(C_8H_{14})₂}₂] (15 mg, 0.021 mmol) and L² (25 mg, 0.084 mmol) in CD₂Cl₂ (ca. 0.5 cm³).

cis-[$\dot{R}hCl(PPh_3){\dot{P}Ph_2CH_2C(Bu')=N\dot{N}Me_2}$] 7.---Complex 7 was prepared *in situ* by dissolving [RhCl(PPh_3)] (15 mg, 0.016 mmol) and L¹ (5.3 mg, 0.016 mmol) in C₆D₆ (ca. 0.5 cm³).

cis- $[RhCl(O_2)(PPh_3){PPh_2CH_2C(Bu^t)=NNMe_2}]$ 8.—Dioxygen was bubbled for 2 min through a solution containing $[RhCl(PPh_3)_3]$ (0.24 g, 0.26 mmol) and L¹ (84 mg, 0.26 mmol) in benzene (5 cm³), and the solution was then concentrated to a low volume (*ca*. 0.5 cm³) under reduced pressure. Addition of cyclohexane (2 cm³) to the residue gave the required product **8** as yellow microcrystals (0.19 g, 95%) (Found: C, 59.75; H, 5.45; Cl, 4.8; N, 3.45. C₃₈H₄₂ClN₂O₂P₂Rh requires C, 60.1; H, 5.5; Cl, 4.65; N, 3.7%); m/z (FAB) 759 (M + 1), 726 (M – 2O) and 691 (M – 2O – Cl); IR(KBr): v(O–O) 870 cm⁻¹.

cis-[RhCl(SO₄)(PPh₃){PPh₂CH₂C(Bu¹)=NNMe₂}] 9.--Sulfur dioxide was bubbled for 30 s through a solution containing complex 7 (50 mg, 0.065 mmol) in CH₂Cl₂ (1.5 cm³). After 30 min the solution was concentrated to a low volume (ca. 0.3 cm³) under reduced pressure. Addition of hexane (1 cm³) to the residue gave the required product 9 as yellow microcrystals (41 mg, 76%) (Found: C, 55.25; H, 5.05; Cl, 4.5; N, 3.4. C₃₈H₄₂ClN₂O₄P₂RhS requires C, 55.45; H, 5.15; Cl, 4.3; N, 3.4%); m/z (FAB) 823 (M + 1), 786 (M - HCl) and 725 (M - HSO₄); IR(KBr): v(SO₄) 1260m, 1160s and 655s cm⁻¹.

cis-[RhCl{PPh₂CH₂C(Buⁱ)=NNMe₂}{PPh₂CH₂C(Buⁱ)= NNMe₂] **10a**.—The complex [{RhCl(C₈H₁₄)₂}₂] (30 mg, 0.042 mmol) and L¹ (55 mg, 0.167 mmol) were warmed in acetone (2 cm³) for 1 min. The resulting yellow solution was then cooled to -30 °C. The required product **10a** deposited as orange crystals (47 mg, 71%) (Found: C, 60.65; H, 7.35; Cl, 4.25; N, 6.25. C₄₀H₅₄ClN₄P₂Rh·C₃H₆O requires C, 60.8; H, 7.1; Cl, 4.15; N, 6.6%); m/z (FAB) 790 (M⁺) and 755 (M - Cl).

cis-[$irCl{\dot{P}Ph_2CH_2C(Bu')=N\dot{N}Me_2}{PPh_2CH_2C(Bu')=}$ NNMe₂] **10b**.—Complex **10a** was prepared *in situ* by dissolving [{ $IrCl(C_8H_{14})_2$] (15 mg, 0.016 mmol) and L¹ (22 mg, 0.067 mmol) in CD₂Cl₂ (ca. 0.5 cm³).

cis-[$\dot{R}hCl(O_2)$ { $\dot{P}Ph_2CH_2C(Bu')=NNMe_2$ }{ $PPh_2CH_2C-(Bu')=NNMe_2$ }] **11a**.—Dioxygen was bubbled for 1 min through a solution containing [{ $RhCl(C_8H_{14})_2$ }_2] (90 mg, 0.125 mmol) and L¹ (165 mg, 0.50 mmol) in CH₂Cl₂ (4 cm³). The solution was then concentrated to a low volume (ca. 0.5 cm³) under reduced pressure. Addition of hexane (3 cm³) to the residue gave the required product **11a** as brown microcrystals (0.16 g, 77%) (Found: C, 56.55; H, 6.7; Cl, 7.85; N, 6.45. C₄₀H₅₄ClN₄O₂P₂Rh-0.5CH₂Cl₂ requires C, 56.2; H, 6.4; Cl, 8.2; N, 6.45%); *m/z* (FAB) 823 (*M* + 1); IR(KBr): v(O–O) 865 cm⁻¹.

cis-[**i**rCl(O₂){**PPh**₂CH₂C(**B**u¹)=**N**NMe₂}{**PPh**₂CH₂C(**B**u¹)= NNMe₂}] **11b**.—Complex **11b** was prepared using [{IrCl-(C₈H₁₄)₂}₂] in a similar manner to that of **11a**, in 45% yield (Found: C, 52.65; H, 5.8; Cl, 3.8; N, 6.0. C₄₀H₅₄ClIrN₄O₂P₂ requires C, 52.65; H, 5.95; Cl, 3.9; N, 6.15%); m/z (FAB) 913 (M + 1); IR(KBr): v(O-O) 860 cm⁻¹.

Acknowledgements

We thank the SERC for a fellowship (to S. D. P.) and for other support, and Johnson Matthey for a generous loan of platinum metal salts.

References

- 1 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 2361.
- 2 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 103 and refs. therein.
- 3 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1201.
- 4 S. D. Perera and B. L. Shaw, Inorg. Chim. Acta, in the press.
- 5 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1203.
- 6 S. D. Perera and B. L. Shaw, J. Organomet. Chem., 1994, 479, 117.

J. CHEM. SOC. DALTON TRANS. 1995

- 7 S. D. Perera and B. L. Shaw, unpublished work.
- 8 J. M. Brown, D. I. Hulmes and P. J. Guiry, *Tetrahedron*, 1994, 50, 4493 and refs. therein.
- 9 G. R. Newkome, Chem. Rev., 1993, 93, 2067.
- 10 K. Mashima, T. Akutagawa, X. Zhang, H. Takaya, T. Taketomi, H. Kumobayashi and S. Akutagawa, J. Organomet. Chem., 1992, 428, 213.
- E. Farnetti, G. Nardin and M. Graziani, J. Organomet. Chem., 1991, 417, 163 and refs. therein.
- 12 K. V. Baker, J. M. Brown, N. A. Cooley, G. D. Hughes and R. J. Taylor, J. Organomet. Chem., 1989, 397, 406 and refs. therein.
- 13 T. Hayashi and M. Kumada, Acc. Chem. Res., 1982, 15, 395. 14 T. B. Rauchfuss and D. M. Roundhill, J. Am. Chem. Soc., 1974, 96,
- 3098. 15 D. M. Roundhill, R. A. Bechtold and S. G. N. Roundhill, *Inorg.*
- Chem., 1980, 19, 284 and refs. therein. 16 G. J. Organ, M. K. Cooper, K. Henrick and M. McPartlin, J. Chem.
- Soc., Dalton Trans., 1984, 2377.
- 17 S. Park, M. P. Johnson and D. M. Roundhill, *Organometallics*, 1989, 8, 1700.
- 18 M. P. Anderson, A. L. Casalnuovo, B. J. Johnson, B. M. Mattson, A. M. Mueting and L. H. Pignolet, *Inorg. Chem.*, 1988, 27, 1649 and refs. therein.
- 19 C. A. Ghilardi, S. Midollini, S. Moneti, A. Olardini and G. Scapacci, J. Chem. Soc., Dalton Trans., 1992, 3371.
- 20 P. Barbaro, C. Bianchini, F. Laschi, S. Midollini, S. Moneti, G. Scapacci and P. Zanello, *Inorg. Chem.*, 1994, 33, 1622.
- 21 T. Yoshida, K. Tani, T. Yamagata, Y. Tatsuno and T. Saito, J. Chem. Soc., Chem. Commun., 1990, 292.
- 22 V. V. S. Reddy, A. Varshney and G. M. Gray, J. Organomet. Chem., 1990, 391, 259.

- 23 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1993, 3653 and refs. therein.
- 24 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 713.
- 25 D.A. Slack, I. Greveling and M. C. Baird, Inorg. Chem., 1979, 18, 3125.
- 26 E. Rotondo, G. Battaglia, G. Giordano and F. P. Cusmano, J. Organomet. Chem., 1993, 450, 245.
- 27 F. Neve, M. Ghedini and A. Crispini, *Organometallics*, 1992, 11, 3324.
 28 K. K. Hii, S. D. Perera and B. L. Shaw, *J. Chem. Soc.*, *Dalton Trans.*,
- 1994, 3589. D Benggoin and D. W. Kung 31D and 13C NMD of Transition
- 29 P. S. Pregosin and R. W. Kunz, ³¹P and ¹³C NMR of Transition Metal Complexes, Springer, Berlin, 1979.
- 30 A. R. Sanger, J. Chem. Soc., Dalton Trans., 1977, 120.
- 31 S. D. Perera, B. L. Shaw, M. Thornton-Pett and J. D. Vessey, *Inorg. Chim. Acta*, 1992, **198–200**, 149 and refs. therein.
- 32 A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1968, 1887.
- 33 R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1971, 93, 2397.
- 34 J. S. Valentine, Chem. Rev., 1973, 73, 235.
- 35 M. Selke, C. S. Foote and W. Karney, *Inorg. Chem.*, 1993, 32, 5425 and refs. therein.
- 36 C. A. Reed and W. R. Roper, J. Chem. Soc., Dalton Trans., 1973, 1370.
- 37 R. W. Horn, E. Weissberger and J. P. Collman, *Inorg. Chem.*, 1970, 9, 2367.
- 38 J. A. McCleverty and G. Wilkinson, Inorg. Synth., 1966, 8, 211.
- 39 U. Klabunde, Inorg. Synth., 1974, 15, 82.
- 40 G. Giordano and R. H. Crabtree, Inorg. Synth., 1979, 19, 218.
- 41 J. A. Osborn and G. Wilkinson, *Inorg. Synth.*, 1968, **10**, 67.
- 42 J. L. Herde, J. C. Lambert and C. V. Senoff, Inorg. Synth., 1974, 15, 18.
- 43 A. van der Ent and A. L. Onderdelinden, *Inorg. Synth.*, 1973, **14**, 92.

Received 23rd August 1994; Paper 4/05147E