Complexes of the Bidentate Ligands $\mathbf{Z}-\mathrm{PPh}_{\mathbf{2}} \mathrm{CH}_{\mathbf{2}} \mathbf{C}\left(\mathrm{Bu}^{\mathbf{t}}\right)=\mathrm{NNR}_{\mathbf{2}}$ ($\mathrm{R}=\mathbf{M e}$ or H) with Rhodium and Iridium

Sarath D. Perera and Bernard L. Shaw
School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

Abstract

Treatment of 0.5 equivalent of $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right]$ with the phosphino dimethylhydrazone Z $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}\left(\mathrm{~L}^{1}\right)$ or the phosphino hydrazone $Z-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNH}_{2}$ ($\left.\mathrm{L}^{2}\right)$ gave the chelate complexes $\left[\mathrm{RhCl}(\mathrm{CO})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNR}_{2}\right\}\right.$] $(\mathrm{R}=\mathrm{Me} 1 \mathrm{a}$ or H 1 b$)$. Complex 1a reacts with another mole of L^{1} to give the bis(phosphine)rhodium(1) complex trans-[RhCl(CO)$\left.\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe}_{2}\right\}_{2}\right]$ 2a. The analogous iridium(1) complex $\mathbf{2 b}$ was prepared by treating $\left[\mathrm{IrCl}(\mathrm{CO})_{2}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right]$ with 2 mol equivalents of L^{1}. Complex 2 a reacts with $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right]$ $\left(\right.$ cod $=$ cycloocta-1,5-diene) to give a $1: 1$ mixture of the chelate 1 a and $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{2}\right)=\mathrm{NN}\right.\right.$ $\left.\left.\mathrm{Me}_{2}\right\}\right]$. Treatment of $\left[\operatorname{IrCl}(\mathrm{CO})_{2}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right]$ with 2 equivalents of L^{2} gave the hydridoiridium(III) complex cis- $\left[\mathrm{IrH}(\mathrm{Cl})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{*}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl} 3 \mathrm{a}$. Treatment of $\left[\{\mathrm{MCl}(\mathrm{cod})\}_{2}\right]$ ($\mathrm{M}=\mathrm{Rh}$ or Ir) with two equivalents of L^{1} in methanol in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave the cationic complexes $\left[\mathrm{M}(\mathrm{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{2}\right)=\mathrm{NNMe}_{2}\right\}\right] \mathrm{PF}_{6} \quad(\mathrm{M}=\mathrm{Rh} 4 \mathrm{a}$ or $\operatorname{Ir} 4 \mathrm{4b})$ in which L^{1} is bidentate. When $\left[\{\mathrm{MCl}(\operatorname{cod})\}_{2}\right]$ was treated with 2 equivalents of L^{1} in benzene it yielded the neutral complexes $\left[\mathrm{MCl}(\operatorname{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{*}\right)=\mathrm{NNMe}_{2}\right\}\right] \quad(\mathrm{M}=\mathrm{Rh} 5 \mathrm{a}$ or Ir 5 b$)$ in which L^{1} is monodentate through phosphorus. Treatment of $\left[\{\mathrm{MCl}(\mathrm{cod})\}_{2}\right]$ with 2 equivalents of L^{2} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ gave the cationic chelate complexes [$\left.M(\operatorname{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{*}\right)=\mathrm{NNH}_{2}\right\}\right] \mathrm{Cl}\left(M=\mathbf{R h} \mathbf{4 c}\right.$ or Ir 4d). Treatment of [$\left.\{\mathrm{RhCl}(\mathrm{cod})\}_{2}\right]$ or $\left[\left\{\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right] \quad\left(\mathrm{C}_{8} \mathrm{H}_{14}=\right.$ cyclooctene $)$ with 2 equivalents of L^{2} per rhodium atom gave the cationic bis(phosphine)rhodium(1) complex $\left[\mathrm{Rh}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{+}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl}$ 6. Treatment of $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with 1 equivalent of L^{1} in $\mathrm{C}_{6} \mathrm{D}_{6}$ gave the Wilkinson-type complex $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{+}\right)=\mathrm{NNMe} \mathrm{M}_{2}\right\}\right]$ 7, which readily reacts with dioxygen to give the adduct cis[$\left.\mathrm{RhCl}\left(\mathrm{O}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{*}\right)=\mathrm{NNMe} \mathrm{N}_{2}\right\}\right]$ 8. The rhodium (III) complex 8 reacts with sulfur dioxide to give the rhodium (III) sulfate cis- $\left[\mathrm{RhCl}\left(\mathrm{SO}_{4}\right)\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{*}\right)=\mathrm{NN}_{\mathrm{N}} \mathrm{Me}_{2}\right\}\right]$ 9. Treatment of [$\left\{\mathrm{MCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}$] with 2 equivalents of L^{1} per rhodium atom gave the bis(phosphine) complexes cis[$\mathrm{MCl}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{2}\right)=\mathrm{NN} \mathrm{Me}_{2}\right\}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe} \mathrm{N}_{2}\right\}$] ($\mathrm{M}=\mathrm{Rh} 10 \mathrm{a}$ or Ir 10b), containing one chelate and one monodentate phosphine ligand. These complexes reacted rapidly with dioxygen to give corresponding dioxygen adducts cis-[$\left[\widehat{M C l}\left(\mathrm{O}_{2}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{*}\right)=\mathrm{NNMe} \mathrm{N}_{2}\right\}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{+}\right)=\mathrm{NNMe}_{2}\right\}\right]$ ($\mathrm{M}=\mathrm{Rh}$ 11a or Ir 11 b). Proton, ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and some ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data are given.

In a previous paper ${ }^{1}$ we reported the synthesis of Z-tert-butyl diphenylphosphinomethyl ketone dimethylhydrazone, $Z-\mathrm{PPh}_{2^{-}}$ $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\left(\mathrm{~L}^{1}\right)$ and Z-tert-butyl diphenylphosphinomethyl ketone hydrazone, $Z-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\left(\mathrm{~L}^{2}\right)$. We have described the complexes and subsequent chemistry of these bidentate (P, N) ligands L^{1} and L^{2} with $\mathrm{Cr}^{0}, \mathrm{Mo}^{0}$ and $\mathrm{W}^{0},{ }^{1}$ and more recently with $\mathrm{Pd}^{\mathrm{II}}$ and $\mathrm{Pt}^{\mathrm{H}} .{ }^{2}$ We have also used L^{2} as a 'reagent' for derivatising aldehydes and ketones, $R^{\prime} C(=0) R^{\prime \prime}$ ($\mathrm{R}^{\prime}=\mathrm{H}$ or $\mathrm{Me}, \mathrm{R}^{\prime \prime}=$ aryl, alkyl, alkenyl or heterocyclic radical), as azines of type $\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{N}-\mathrm{N}=\mathrm{CR}^{\prime} \mathrm{R}^{\prime \prime}$. By complexing the azines to metals, one of the R groups becomes compressed against the metal which promoted agostic $\mathrm{C}-\mathrm{H}$ interaction, ${ }^{3} \mathrm{C}-\mathrm{F}$ co-ordination, ${ }^{4} \mathrm{C}-\mathrm{H}$ bond fission ${ }^{5}$ or $\mathrm{C}-\mathrm{X}$ bond fission ($\mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}^{6}$ or F^{7}). In the present paper we describe the synthesis and characterisation of some rhodium and iridium complexes containing L^{1} or L^{2} and other ligands such as carbon monoxide, cycloocta-1,5-diene, triphenylphosphine or dioxygen. There is increasing interest in the use of bidentate (P, N) compounds to generate new co-ordination, organometallic or catalytic chemistry. ${ }^{8-21}$ Some examples with rhodium or iridium include $o-\mathrm{PPh}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NMe}_{2}(n=0$ or 1), ${ }^{14,15} \mathrm{PPh}_{2}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NMe}_{2}(n=2$ or 3$),{ }^{15}{ }_{o-} \mathrm{PPh}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-$ $\mathrm{NH}_{2}{ }^{16} \quad o-\mathrm{PPh}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NHR}\left(\mathrm{R}=\mathrm{Et}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{Ph}\right),{ }^{17} \mathrm{PPh}_{2}-$ $\left(\mathrm{CH}_{2}\right)_{2}\left(2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)^{18}$ and $o-\mathrm{PPh}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{NR}\left(\mathrm{R}=\mathrm{Et}, \mathrm{Pr}^{\mathrm{n}}\right.$, Pr^{i} or Bu^{\prime}). ${ }^{19,20}$

Results and Discussion

For the convenience of the reader the phosphine ligands L^{1} and L^{2}, and the complexes prepared from them, are shown in Schemes 1-4. Elemental analyses, and some mass spectral and infrared data are in the Experimental section, ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data in Table 1, and ${ }^{1} \mathrm{H}$ NMR data in Table 2. Some of the complexes are very air-sensitive ${ }^{16,17.22}$ and were characterised by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy, only.
Treatment of L^{1} with 0.5 mol equivalent of the binuclear rhodium(1) complex $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right]$ gave a single product 1a with a six-membered chelate ring and phosphorus trans to chlorine. There are several pieces of evidence, indicative of the formation of a six-membered chelate ring, i.e. with NMe_{2} co-ordinated. The shifts to low field of the methyl protons of the NMe_{2} group on co-ordination ($\Delta \delta_{\mathrm{H}} \approx+0.9 \mathrm{ppm}$) and also the carbon-13 shifts of the NMe_{2} methyls ($\Delta \delta_{\mathrm{C}} \approx+5.5 \mathrm{ppm}$) suggest that the NMe_{2} nitrogen is co-ordinated to rhodium. Similar co-ordination shifts have been found for o-(diphenyl-phosphino)- N, N-dimethylaniline, ($o-\mathrm{PPh}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}$) on chelation to rhodium. ${ }^{14}$ Additionally, the carbon- 13 chemical shift $\left(\delta_{\mathrm{C}}\right)$ for the CH_{2} group is 21.2 , typical of a six-membered chelate ring. ${ }^{2,6,23,24}$ The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data, $\delta_{\mathrm{P}}=54.4$ with ${ }^{1} J(\mathrm{RhP})=178 \mathrm{~Hz}$, are typical of phosphorus trans to chlorine ${ }^{15,18,22,25,26}$ and the value of ${ }^{2} J(\mathrm{PC})$ of 18 Hz for the

Table $1{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}{ }^{a}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data ${ }^{b}$
Compound
$\mathrm{L}^{1} \quad \delta_{\mathrm{P}}:-9.7$
$\delta_{\mathrm{c}:} 28.3\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe} \mathrm{Cl}_{3}\right), 29.0\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 21.6, \mathrm{CH}_{2}\right], 38.4\left(1 \mathrm{C}, \mathrm{s}, \mathrm{CMe}_{3}\right), 45.8\left(2 \mathrm{C}, \mathrm{s}, \mathrm{NMe}_{2}\right), 128.1\left(2 \mathrm{C}, \mathrm{s}, \mathrm{C}_{p}\right), 128.1\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC})\right.$
$7.0, \mathrm{C}_{m}$], 132.4 [4C, d, ${ }^{2} J(\mathrm{PC}) 20.1, \mathrm{C}_{o}$], $141.6\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 16.9, \mathrm{C}_{i}\right]$ and 177.1 ($1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N}$)
$\mathrm{L}^{2} \quad \begin{aligned} & \mathrm{C} \\ & \delta_{\mathrm{p}}:-22.6\end{aligned}$
$\delta_{\mathrm{c}}: 26.2\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 22.7, \mathrm{CH}_{2}\right], 28.6\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 38.1\left[1 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 1.4, \mathrm{CMe}_{3}\right], 128.5\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 7.0, \mathrm{C}_{m}\right], 129.0\left(2 \mathrm{C}, \mathrm{s}, \mathrm{C}_{p}\right)$, $132.8\left[4 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 19.7, \mathrm{C}_{o}\right], 137.6\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 14.9, \mathrm{C}_{i}\right]$ and $156.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N})$
$1 \mathrm{a} \quad \delta_{\mathrm{p}}: 54.4\left[{ }^{1} J(\mathrm{RhP}) 178\right]$
$\delta_{\mathrm{c}}: 21.2\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 22.5, \mathrm{CH}_{2}\right], 27.1\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe}_{3}\right), 40.5\left[1 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 2.2, \mathrm{CMe}_{3}\right], 51.3\left(2 \mathrm{C}, \mathrm{s}, \mathrm{NMe}_{2}\right), 128.6\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 10.8\right.$, $\left.\mathrm{C}_{m}\right], 131.2\left[2 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC}) 2.3, \mathrm{C}_{p}\right], 132.4\left[2 \mathrm{C}, \mathrm{dd},{ }^{1} J(\mathrm{PC}) 52.3,{ }^{2} J(\mathrm{RhC}) 2.0, \mathrm{C}_{i}\right], 133.0\left[4 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 12.1, \mathrm{C}_{o}\right], 169.3(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N})$ and 187.1 [1C , dd, $\left.{ }^{2} J(\mathrm{PC}) 18.0,{ }^{1} J(\mathrm{RhC}) 73.2, \mathrm{C} \equiv \mathrm{O}\right]$
δ_{p} : 73.7 [1 $\left.{ }^{1} J(\mathrm{RhP}) 189\right]$
$\delta_{\mathrm{C}}: 24.9\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 20.1, \mathrm{CH}_{2}\right], 27.2\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 39.2\left(1 \mathrm{C}, \mathrm{s}, C \mathrm{Me}_{3}\right), 128.5\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 10.8, \mathrm{C}_{m}\right], 131.0(2 \mathrm{C}, \mathrm{s}, \mathrm{C} p), 132.6[2 \mathrm{C}, \mathrm{d}$,
$\left.{ }^{1} J(\mathrm{PC}) 49.2, \mathrm{C}_{i}\right], 133.0$ [4C, d, $\left.{ }^{2} J(\mathrm{PC}) 11.7, \mathrm{C}_{o}\right], 172.2(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N})$ and $187.8\left[1 \mathrm{C}, \mathrm{dd}^{2}{ }^{2} J(\mathrm{PC}), 18.2,{ }^{1} J(\mathrm{RhC}) 73.3, \mathrm{C} \equiv \mathrm{O}\right]$
$\delta_{\mathrm{P}}: 22.8\left[{ }^{1} J(\mathrm{RhP}) 130\right]$
$\delta_{\mathrm{c}}: 26.2\left[2 \mathrm{C}, \mathrm{t},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 20.7, \mathrm{CH}_{2}\right], 28.9(6 \mathrm{C}, \mathrm{s}, \mathrm{CMe} 3), 38.9\left(2 \mathrm{C}, \mathrm{s}, \mathrm{CMe}_{3}\right), 46.4\left(4 \mathrm{C}, \mathrm{s}, \mathrm{NMe}_{2}\right), 127.6\left[8 \mathrm{C}, \mathrm{t},\left.\right|^{3} J(\mathrm{PC})+\right.$ $\left.{ }^{5} J(\mathrm{PC}) \mid 9.7, \mathrm{C}_{m}\right], 129.4\left(4 \mathrm{C}, \mathrm{s}, \mathrm{C}_{p}\right), 133.7\left[8 \mathrm{C}, \mathrm{t},\left.\right|^{2} J(\mathrm{PC})+{ }^{4} J(\mathrm{PC}) \mid 12.7, \mathrm{C}_{0}\right], 135.3\left[4 \mathrm{C}, \mathrm{t}, 1^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 42.7, \mathrm{C}_{i}\right], 172.1[2 \mathrm{C}, \mathrm{t}$, $\left.\left.\right|^{2} J(\mathrm{PC})+{ }^{4} J(\mathrm{PC}) \mid 7.4, \mathrm{C}=\mathrm{N}\right]$ and 187.5 [1C, dt, $\left.{ }^{2} J(\mathrm{PC}) 15.1,{ }^{1} J(\mathrm{RhC}) 76.3, \mathrm{C} \equiv \mathrm{O}\right]$
$\delta_{\mathrm{P}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 17.2$
$\delta_{\mathrm{c}}: 25.9\left[2 \mathrm{C}, \mathrm{t},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 25.0, \mathrm{CH}_{2}\right], 29.2(6 \mathrm{C}, \mathrm{s}, \mathrm{CMe} 3), 39.0\left(2 \mathrm{C}, \mathrm{s}, C \mathrm{Me}_{3}\right), 46.0\left(4 \mathrm{C}, \mathrm{s}, \mathrm{NMe}_{2}\right), 127.6\left[8 \mathrm{C}, \mathrm{t},\left.\right|^{3} J(\mathrm{PC})+\right.$ $\left.{ }^{5} J(\mathrm{PC}) \mid 10.2, \mathrm{C}_{m}\right], 129.9\left(4 \mathrm{C}, \mathrm{s}, \mathrm{C}_{p}\right), 134.2\left[8 \mathrm{C}, \mathrm{t},\left.\right|^{2} J(\mathrm{PC})+{ }^{4} J(\mathrm{PC}) \mid 12.5, \mathrm{C}_{o}\right], 135.3\left[4 \mathrm{C}, \mathrm{t},\left.\right|^{1} J(\mathrm{PC})+{ }^{3} J(\mathrm{PC}) \mid 45.5, \mathrm{C}_{i}\right], 171.1[1 \mathrm{C}$, $\left.\mathrm{t},{ }^{2} J(\mathrm{PC}) 11.0, \mathrm{C} \equiv \mathrm{O}\right]$ and $172.5\left[2 \mathrm{C}, \mathrm{t},\left.\right|^{2} J(\mathrm{PC})+{ }^{4} J(\mathrm{PC}) \mid 16.1, \mathrm{C}=\mathrm{N}\right]$
3a
$\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 24.9$
$\delta_{\mathrm{C}}\left(\mathrm{MeOH}-\mathrm{C}_{6} \mathrm{D}_{6}\right): 25.9\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 28.3, \mathrm{CH}_{2}\right], 27.0\left(6 \mathrm{C}, \mathrm{s}, \mathrm{CMe}{ }_{3}\right), 39.6\left[2 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 1.3, C \mathrm{Me}_{3}\right], 128.2$ [4C, d, $\left.{ }^{3} J(\mathrm{PC}) 8.4, \mathrm{C}_{m}\right]$, $128.6\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 11.0, \mathrm{C}_{m}\right], 130.2\left[4 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 63.3, \mathrm{C}_{i}\right], 131.5\left(2 \mathrm{C}, \mathrm{s}, \mathrm{C}_{p}\right), 131.6\left(2 \mathrm{C}, \mathrm{s}, \mathrm{C}_{p}\right), 133.2\left[4 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 10.3, \mathrm{C}_{o}\right], 134.8$ [4C, d, ${ }^{2} J(\mathrm{PC}) 9.9, \mathrm{C}_{o}$] and 174.3 [2C, d, $\left.{ }^{2} J(\mathrm{PC}) 1.3, \mathrm{C}=\mathrm{N}\right]$
3b $\quad \delta_{\mathbf{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 22.3$
$4 \mathrm{a} \quad \delta_{\mathrm{p}}: 47.5,{ }^{1} J(\mathrm{RhP}) 167$
$\delta_{\mathrm{c}}: 20.1,\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 20.5, \mathrm{CH}_{2}\right], 27.1\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 28.3\left(2 \mathrm{C}, \mathrm{s}, \mathrm{CH}_{2}\right.$ of $\left.\operatorname{cod}\right), 31.3$ [2C, d, ${ }^{3} J(\mathrm{PC}) 2.4, \mathrm{CH}_{2}$ of cod], 40.9 [1C, d, $\left.{ }^{3} J(\mathrm{PC}) 2.2, C \mathrm{Me}_{3}\right], 52.8\left(2 \mathrm{C}, \mathrm{s}, \mathrm{NMe}_{2}\right), 75.7$ [2C, d, ${ }^{1} J(\mathrm{RhC}) 12.6, \mathrm{CH}$ of cod], 109.1 [2C, dd, ${ }^{2} J(\mathrm{PC}) 6.6,{ }^{1} J(\mathrm{RhC}) 9.6, \mathrm{CH}$ of cod trans to P], $128.3\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 46.4, \mathrm{C}_{i}\right], 129.3\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 10.3, \mathrm{C}_{m}\right], 132.0\left[2 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC}) 2.2, \mathrm{C}_{p}\right], 133.3\left[4 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 11.0, \mathrm{C}_{o}\right]$ and $169.6(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N})$
4b
$\delta_{\mathrm{p}}: 35.9$
$\delta_{\mathrm{C}}: 18.8\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 26.5, \mathrm{CH}_{2}\right], 27.1\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CM} e_{3}\right), 29.2\left[2 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 1.7, \mathrm{CH}_{2}\right.$ of cod$], 31.5\left[2 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 3.0, \mathrm{CH}_{2}\right.$ of cod], 41.5 $\left[1 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 2.5, C \mathrm{Me}_{3}\right], 53.6\left[2 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 1.0, \mathrm{NMe}_{2}\right], 60.9(2 \mathrm{C}, \mathrm{s}, \mathrm{CH}$ of $\operatorname{cod}), 97.2$ [2C, d, ${ }^{2} J(\mathrm{PC}) 12.0, \mathrm{CH}$ of cod], 127.9 [2C, d, $\left.{ }^{1} J(\mathrm{PC}) 54.3, \mathrm{C}_{i}\right], 129.4\left[4 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 10.6, \mathrm{C}_{m}\right], 132.3\left[2 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC}) 2.3, \mathrm{C}_{p}\right], 133.7\left[4 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 10.8, \mathrm{C}_{0}\right]$ and $171.4(1 \mathrm{C}, \mathrm{s}, \mathrm{C}=\mathrm{N})$ $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 53.6\left[{ }^{1} J(\mathrm{RhP}) 169\right]$
4 c
$\mathbf{4 d}$
$5 \mathbf{5}$
$\delta_{\mathbf{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 35.9$
$\delta_{\mathrm{P}}: 21.4\left[{ }^{1} J(\mathrm{RhP}) 152\right]$
$\left.\delta_{\mathrm{c}}: 27.7\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 16.0, \mathrm{CH}_{2}\right], 28.6(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe})_{3}\right), 28.8\left(2 \mathrm{C}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right.$ of cod$), 32.8\left(2 \mathrm{C}, \mathrm{br} \mathrm{s}, \mathrm{CH}_{2}\right.$ of cod), $39.3\left[2 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 1.3\right.$, $\left.C \mathrm{Me}_{3}\right], 46.6\left(2 \mathrm{C}, \mathrm{s}, \mathrm{NMe}_{2}\right), 70.2\left(2 \mathrm{C}, \mathrm{brs}, \mathrm{CH}\right.$ of cod), $101.9(2 \mathrm{C}, \mathrm{brs}, \mathrm{CH}$ of $\operatorname{cod}), 127.8\left[4 \mathrm{C}, \mathrm{d},{ }^{3} \mathrm{~J}(\mathrm{PC}) 9.6, \mathrm{C}_{m}\right], 130.0\left[2 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC})\right.$ $\left.2.0, \mathrm{C}_{p}\right], 132.5\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 37.4, \mathrm{C}_{i}\right], 134.4\left[4 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 11.1, \mathrm{C}_{o}\right]$ and $172.6\left[1 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 7.7, \mathrm{C}=\mathrm{N}\right]$
$\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 11.7$
$\delta_{\mathbf{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 74.2\left[{ }^{1} J(\mathrm{RhP}) 191\right]$
$\delta_{\mathrm{P}}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 60.3\left(\mathrm{P}_{\mathrm{A}}\right), 49.9\left(\mathrm{P}_{\mathrm{B}}\right)\left[{ }^{1} J\left(\mathrm{RhP}_{\mathrm{A}}\right) 211,{ }^{1} J\left(\mathrm{RhP}_{\mathrm{B}}\right) 178\right.$ and $\left.{ }^{2} J(\mathrm{PP}) 46\right]$
$\delta_{\mathrm{P}}: 41.8\left(\mathrm{P}_{\mathrm{A}}\right), 36.3\left(\mathrm{P}_{\mathrm{B}}\right)\left[{ }^{1} J\left(\mathrm{RhP}_{\mathrm{A}}\right) 162,{ }^{1} J\left(\mathrm{RhP}_{\mathrm{B}}\right) 129\right.$ and $\left.{ }^{2} J(\mathrm{PP}) 21\right]$
δ_{s} : $27.2\left[1 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 20.3, \mathrm{CH}_{2}\right], 27.4\left(3 \mathrm{C}, \mathrm{s}, \mathrm{CMe} e_{3}\right), 40.6\left[1 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 2.5, C \mathrm{Me}_{3}\right], 45.6\left[1 \mathrm{C}, \mathrm{t},{ }^{3} J(\mathrm{PC})={ }^{2} J\left(\mathrm{RhC}^{2}\right) 2.0, \mathrm{NMe}_{2}\right]$, $57.0\left[1 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 1.4, \mathrm{NMe}_{2}\right], 127.5\left[6 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 10.6, \mathrm{C}_{m}\right], 128.5\left[2 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 9.9, \mathrm{C}_{m}\right], 129.0\left[2 \mathrm{C}, \mathrm{d},{ }^{3} J(\mathrm{PC}) 9.4, \mathrm{C}_{m}\right], 130.3[3 \mathrm{C}$, $\left.\mathrm{d},{ }^{4} J(\mathrm{PC}) 2.5, \mathrm{C}_{p}\right], 130.6\left[1 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC}) 2.0, \mathrm{C}_{p}\right], 131.3\left[1 \mathrm{C}, \mathrm{d},{ }^{4} J(\mathrm{PC}) 2.5, \mathrm{C}_{p}\right], 132.6\left[2 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 60.4, \mathrm{C}_{i}\right], 132.8\left[2 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 9.4\right.$, $\left.\mathrm{C}_{o}\right], 133.9\left[3 \mathrm{C}, \mathrm{d},{ }^{1} J(\mathrm{PC}) 54.0, \mathrm{C}_{i}\right], 135.1$ [6C, d, $\left.{ }^{2} J(\mathrm{PC}) 9.2, \mathrm{C}_{o}\right], 135.6\left[2 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 9.8, \mathrm{C}_{o}\right]$ and $170.0\left[1 \mathrm{C}, \mathrm{d},{ }^{2} J(\mathrm{PC}) 1.9, \mathrm{C}=\mathrm{N}\right]$ $\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 40.7\left(\mathrm{P}_{\mathrm{A}}\right), 22.6\left(\mathrm{P}_{\mathrm{B}}\right)$ [${ }^{1} J\left(\mathrm{RhP}_{\mathrm{A}}\right) 142,{ }^{1} J\left(\mathrm{RhP}_{\mathrm{B}}\right) 113$ and $\left.{ }^{2} J(\mathrm{PP}) 29\right]$
$\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 56.2\left(\mathrm{P}_{\mathrm{A}}\right), 46.9\left(\mathrm{P}_{\mathrm{B}}\right){ }^{1} J\left(\mathrm{RhP}_{\mathrm{A}}\right) 218,{ }^{1} J\left(\mathrm{RhP}_{\mathrm{B}}\right) 179$ and $\left.{ }^{2} J(\mathrm{PP}) 44\right]$
$\left.\delta_{\mathbf{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 25.3\left(\mathrm{P}_{\mathrm{A}}\right), 7.9\left(\mathrm{P}_{\mathrm{B}}\right){ }^{2} J(\mathrm{PP}) 22\right]$
$\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 43.0\left(\mathrm{P}_{\mathrm{A}}\right), 33.5\left(\mathrm{P}_{\mathrm{B}}\right)\left[{ }^{1} J\left(\mathrm{RhP}_{\mathrm{A}}\right) 159,{ }^{1} J\left(\mathrm{RhP}_{\mathrm{B}}\right) 122\right.$ and $\left.{ }^{2} J(\mathrm{PP}) 22\right]$
$\left.\delta_{\mathrm{P}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 6.5\left(\mathrm{P}_{\mathrm{A}}\right),-16.5\left(\mathrm{P}_{\mathrm{B}}\right){ }^{2} J(\mathrm{PP}) 9\right]$

9

10a
10b
11a
11b
${ }^{a}$ Recorded at 36.2 MHz , chemical shifts in ppm relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4},{ }^{1} J(\mathrm{RhP})$ values in Hz , solvent CDCl_{3} unless otherwise stated. ${ }^{b}$ Recorded at 100.6 MHz , chemical shifts in ppm relative to SiMe_{4}, J values in Hz , solvent CDCl_{3} unless otherwise stated; $\mathrm{C}_{i}, \mathrm{C}_{o}, \mathrm{C}_{m}$ and C_{p} refer to ipso-, ortho-, meta- and para-carbons of the PPh_{2} group.
$\mathrm{C} \equiv \mathrm{O}$ ligand suggests that $\mathrm{C} \equiv \mathrm{O}$ is cis to phosphorus. ${ }^{26,27}$ The $v(\mathrm{C} \equiv \mathrm{O})$ value of $1995 \mathrm{~cm}^{-1}$ is similar to values reported for carbonylrhodium(I) complexes. ${ }^{15,18,28}$

Similar treatment of the rhodium(I) complex [$\left.\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right]$ with 2 equivalents of L^{2} gave the corresponding chelate complex 1 b in excellent (89%) yield. This was characterised in a similar fashion to $\mathbf{1 a}$. A proton NMR study in which a CDCl_{3} solution of $\mathbf{1 b}$ was shaken with $\mathrm{D}_{2} \mathrm{O}$ caused rapid exchange of the NH_{2} protons for deuterons.

Treatment of $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right]$ with 2 equivalents of L^{1} per rhodium atom gave the trans-chloro(carbonyl)rhodium(I) complex 2a, which was also prepared by treating the chelate complex 1 a with 1 mol equivalent of L^{1} via a ring-opening
reaction. For $2 a$ the ${ }^{1} J(\mathrm{RhP})$ value of 130 Hz is typical for complexes of type trans-[RhCl(CO)(PR $\left.)_{2}\right] \cdot{ }^{29-31}$ In the proton NMR spectrum the value of $\delta_{\mathrm{H}}\left(\mathrm{NMe}_{2}\right) 1.93$ is similar to that of the free hydrazone (2.10) and quite different to the value when NMe_{2} is co-ordinated, i.e. $\delta 3.03$ for the chelate complex 1a. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 2 a the resonances for CH_{2}, $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}_{o}, \mathrm{C}_{m}$ and C_{p} carbons of the phenyl rings are virtual $1: 2: 1$ triplets, ${ }^{m 1}$ whilst $\mathrm{C} \equiv \mathrm{O}$ appears as a doublet of triplets (Table 1). The bis(phosphine) complex 2a when treated with 1 equivalent of $\left[\mathrm{PtCl}_{2}(\operatorname{cod})\right](\operatorname{cod}=$ cycloocta-1,5-diene) reacted rapidly to give a $1: 1$ mixture of the chelate complexes $1 \mathbf{a}$ and $\left[\mathrm{PtCl}_{2}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe} \mathrm{N}_{2}\right\}\right]^{2}$ (Scheme 1).

Treatment of $\left[\operatorname{IrCl}(\mathrm{CO})_{2}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right]$ with 2 mol

Table 2 Proton NMR data ${ }^{a}$

	$\delta\left(\mathrm{Bu}^{\text {t }}\right.$)	$\delta\left(\mathrm{CH}_{2} \mathrm{P}\right)$
L^{1}	1.12 (9 H, s)	3.05 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 2.9\right]$
L^{2}	$0.98(9 \mathrm{H}, \mathrm{s})$	3.10 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 2.2\right]$
1 a	0.70 (9 H, s)	3.14 [2 H, dd, $\left.{ }^{2} J(\mathrm{PH}) 12.7,{ }^{3} J(\mathrm{RhH}) 1.4\right]$
1b	0.65 (9 H, s)	3.42 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 12.7\right]$
2a	1.14 (18 H, s)	3.97 (4 H, vt, $N=8.8)^{\text {c }}$
$2 \mathbf{b}^{\text {d }}$	$1.34(18 \mathrm{H}, \mathrm{s})$	4.31 (4 H, vt, $N=9.3)^{\text {c }}$
33^{e}	$0.59(18 \mathrm{H}, \mathrm{s})$	$3.33\left[2 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{PH})={ }^{2} J(\mathrm{HH}) 13.2\right]$
		$3.78\left[2 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{PH})={ }^{2} J(\mathrm{HH}) 13.2\right]$
$3 \mathrm{~b}^{\text {e }}$	$0.59(18 \mathrm{H}, \mathrm{s})$	$2.92\left[2 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{PH})={ }^{2} J(\mathrm{HH}) 13.2\right]$
		$3.18\left[2 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{PH})={ }^{2} J(\mathrm{HH}) 13.2\right]$
49 ${ }^{\text {f.g }}$	0.63 (9 H, s)	3.13 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 11.5\right]$
$4 \mathrm{~b}^{\text {f.h }}$	0.64 (9 H, s)	3.45 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 11.6\right]$
$4 \mathrm{c}^{\text {e, },}$	0.61 (9 H, s)	3.64 [2 H, dd, $\left.{ }^{2} J(\mathrm{PH}) 12.0,{ }^{3} J(\mathrm{RhH}) 1.5\right]$
$4 d^{\text {e,j }}$	0.63 (9 H, s)	3.52 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 11.5\right]$
$5 \mathrm{a}^{\text {f.l }}$	1.22 (9 H, s)	3.89 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 12.6\right]$
$55^{\text {e,m }}$	1.12 (9 H, s)	3.97 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 12.7\right]$
$6{ }^{\text {e }}$	$0.58(18 \mathrm{H}, \mathrm{s})$	3.13 (4 H, fd, $N=9.3)^{\text {c }}$
$7^{\text {d }}$	0.45 (9 H, s)	2.61 [2 H, d, $\left.{ }^{2} J(\mathrm{PH}) 11.2\right]$
$8^{\text {d }}$	0.69 (9 H, s)	2.66 [1 H, dd, $\left.{ }^{2} J(\mathrm{HH}) 13.9,{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 10.1\right]$
		$3.14\left[1 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{HH})={ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 14.0\right]$
9^{e}	$0.62(9 \mathrm{H}, \mathrm{s})$	3.07 [1 H, m, $\left.{ }^{2} J(\mathrm{HH}) 13.9\right]^{n}$
		3.38 [1 H, m, $\left.{ }^{2} J(\mathrm{HH}) 13.9\right]^{\prime \prime}$
$10 a^{e}$	0.49 (9 H, s)	$2.80\left[2 \mathrm{H}, \mathrm{d},{ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 11.3, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{B}}\right.$]
	1.48 (9 H, s)	$3.95\left[2 \mathrm{H}, \mathrm{d},{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 12.5 \mathrm{CH}_{2} \mathrm{P}_{\mathrm{A}}\right]$
$10 b^{e}$	0.50 (9 H, s)	2.97 [2 H, d, ${ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 11.7, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{B}}$]
	1.43 (9 H, s)	3.98 [2 H, d, $\left.{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 12.7, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{A}}\right]$
11a	0.48 (9 H, s)	2.38 [1 H, m, $\left.{ }^{2} J(\mathrm{HH}) 15.5, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{A}}\right]^{n}$
	0.97 (9 H, s)	2.76 ($\left.2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{B}}\right)^{n}$
		3.57 [1 H, dd, $\left.{ }^{2} J(\mathrm{HH}) 15.5,{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 13.4, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{A}}\right]$
$11 b^{e}$	0.49 (9 H, s)	$2.70\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J(\mathrm{HH}) 15.4,{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 11.7, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{A}}\right]$
	0.86 (9 H, s)	$3.19\left[1 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{HH})={ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 14.1, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{B}}\right]$
		$3.34\left[1 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{HH})={ }^{2} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 14.1, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{B}}\right]$
		$3.65\left[1 \mathrm{H}, \mathrm{dd},{ }^{2} J(\mathrm{HH}) 15.4,{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right) 13.4, \mathrm{CH}_{2} \mathrm{P}_{\mathrm{A}}\right]$

$\delta\left(\mathrm{NMe}_{2}\right), \delta\left(\mathrm{NH}_{2}\right)$
2.10 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
4.75 (2 H, br s, NH_{2})
3.03 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
$6.58\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)^{\text {b }}$
1.93 ($12 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
1.91 ($12 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
-21.31[1 H, t, $\left.{ }^{2} J(\mathrm{PH}) 16.5, \mathrm{IrH}\right]$
7.69 [2 H, br d, $\left.{ }^{3} \mathrm{~J}(\mathrm{HH}) 11.0, \mathrm{NH}_{2}\right]^{\text {b }}$
$9.94\left[2 \mathrm{H}, \mathrm{br} \mathrm{d},{ }^{3} J(\mathrm{HH}) 11.0, \mathrm{NH}_{2}\right]^{\text {b }}$
$-21.81\left[1 \mathrm{H}, \mathrm{t},{ }^{2} J(\mathrm{PH}) 16.6, \mathrm{IrH}\right]$
5.49 [2 H, br d, $\left.{ }^{3} \mathrm{~J}(\mathrm{HH}) 11.7, \mathrm{NH}_{2}\right]^{\text {b }}$
5.78 [2 H, br d, $\left.{ }^{3} J(\mathrm{HH}) 11.7, \mathrm{NH}_{2}\right]^{\text {b }}$
3.06 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
3.21 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
8.19 ($\left.2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)^{\text {b }}$
k
2.12 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
2.06 (6 H, s, NMe_{2})
$8.07\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)^{\text {b }}$
3.49 (6 H, s, NMe_{2})
2.46 [$3 \mathrm{H}, \mathrm{d},{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 2.4, \mathrm{NMe}_{2}$]
3.94 [$3 \mathrm{H}, \mathrm{d},{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 2.2, \mathrm{NMe}_{2}$]
3.01 [$3 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 3.7, \mathrm{NMe}_{2}$]
3.53 [$3 \mathrm{H}, \mathrm{d},{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 2.7, \mathrm{NMe}_{2}$]
1.56 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
3.24 ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{NRh}$)
1.51 ($6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}$)
$3.35\left[6 \mathrm{H}, \mathrm{d},{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 1.2, \mathrm{Me}_{2} \mathrm{NIr}\right]$
1.67 (6 H, s, NMe_{2})
2.39 [3 H, d, $\left.{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 2.9, \mathrm{Me}_{2} \mathrm{NRh}\right]$
3.48 [$3 \mathrm{H}, \mathrm{d},{ }^{4} \mathrm{~J}\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 2.4, \mathrm{Me}_{2} \mathrm{NRh}$]
1.69 (6 H, s, NMe_{2})
2.49 [3 H, d, $\left.{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 2.4, \mathrm{Me}_{2} \mathrm{NIr}\right]$
3.57 [$\left.3 \mathrm{H}, \mathrm{d},{ }^{4} J\left(\mathrm{P}_{\mathrm{B}} \mathrm{H}\right) 2.0, \mathrm{Me}_{2} \mathrm{NIr}\right]$

${ }^{a}$ Recorded at 100 MHz , chemical shifts (δ) in ppm relative to SiMe_{4}, solvent CDCl_{3} unless otherwise stated, coupling constants J in Hz ; s $=\operatorname{singlet,~}$ $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{fd}=$ apparent filled-in doublet, $\mathrm{t}=$ triplet, $\mathrm{vt}=$ virtual triplet and $\mathrm{br}=$ broad. ${ }^{b}$ Observed weak coupling to phosphorus and exchange with $\mathrm{D}_{2} \mathrm{O} .{ }^{c} N=\left.\right|^{2} J(\mathrm{PH})+{ }^{4} J(\mathrm{PH}) \mid$. ${ }^{d}$ In $\mathrm{C}_{6} \mathrm{D}_{6} .{ }^{e}$ In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. ${ }^{f}$ Recorded at 400 MHz . ${ }^{g}$ Resonances due to cod appeared as multiplets at $\delta 2.03(2 \mathrm{H}), 2.20(2 \mathrm{H}), 2.30(2 \mathrm{H}), 2.56(2 \mathrm{H}), 3.22(2 \mathrm{H})$ and $5.55(2 \mathrm{H}) .{ }^{h}$ Resonances due to cod appeared as multiplets at $\delta 1.78(2 \mathrm{H}), 2.00(2 \mathrm{H}), 2.08(2 \mathrm{H}), 2.38(2 \mathrm{H}), 3.00(2 \mathrm{H})$ and $5.21(2 \mathrm{H}) .{ }^{i}$ Resonances due to cod appeared as broad peaks at $\delta 1.95-2.50(8 \mathrm{H}), 4.22$ $(2 \mathrm{H})$ and $4.52(2 \mathrm{H}) .{ }^{j}$ Resonances due to cod appeared as broad peaks at $\delta 1.68(4 \mathrm{H}), 2.19(4 \mathrm{H})$ and $3.62(4 \mathrm{H})$. ${ }^{k}$ Resonances due to NH_{2} were not observed. ${ }^{l}$ Resonances due to cod appeared as broad peaks at $\delta 1.85(2 \mathrm{H}), 2.00(2 \mathrm{H}), 2.34(4 \mathrm{H}), 2.91(2 \mathrm{H})$ and $5.46(2 \mathrm{H}) .{ }^{m}$ Resonances due to cod appeared as broad peaks at $\delta 1.63(4 \mathrm{H}), 2.13(4 \mathrm{H})$ and $3.67(4 \mathrm{H}) .{ }^{n}$ Obscured by other peaks.
equivalents of L^{1} gave the bis(phosphine) complex $\mathbf{2 b}$ in good (78%) yield. The characterising data show that this Vaska-type iridium(I) complex is analogous to the rhodium(I) complex $\mathbf{2 a}$, i.e. the phosphine ligands are monodentate through phosphorus and mutually trans. The $v(\mathrm{C} \equiv \mathrm{O})$ value of $1955 \mathrm{~cm}^{-1}$ is similar to literature values for carbonyliridium(I) complexes of the type trans- $\left[\operatorname{IrCl}(\mathrm{CO})\left(\mathrm{PR}_{3}\right)_{2}\right] .{ }^{18,32}$

Treatment of $\left[\operatorname{IrCl}(\mathrm{CO})_{2}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right]$ with 2 mol equivalents of L^{2} gave the hydridoiridium(III) salt 3a (Scheme 2), i.e. the carbonyl ligand was displaced. The mother-liquors from this reaction were very dark brown and we were unable to isolate any other product from them. We suggest that the source of hydride is an NH hydrogen from p-toluidine or from the hydrazone L^{2}. This chloride salt 3a was converted into the corresponding mixed chloride-tetraphenylborate salt $\mathbf{3 b}$, when treated with NaBPh_{4}. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for $\mathbf{3 a}$ or $\mathbf{3 b}$ show a singlet resonance (i.e. the two phosphorus nuclei are chemically equivalent) whilst the hydride resonance is a triplet at $\delta \approx-21.5$ with a ${ }^{2} J(\mathrm{PH})$ value of 16.5 Hz , and $\mathrm{v}(\mathrm{Ir}-\mathrm{H})$ at $2210 \mathrm{~cm}^{-1} .{ }^{17}$ The hydride must therefore be trans to chloride. As would be expected the CH_{2} resonance in the ${ }^{1} \mathrm{H}-\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum is an AB pattern with ${ }^{2} J(\mathrm{HH})=13.2 \mathrm{~Hz}$. The NH_{2} protons also showed an AB pattern with ${ }^{2} J(\mathrm{HH})=13.2 \mathrm{~Hz}$. In the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum the carbon-13 resonances for $\mathrm{CH}_{2}, \mathrm{C}=\mathrm{N}$, and $\mathrm{C}_{o}, \mathrm{C}_{m}$ and C_{p} carbons of the phenyl rings are
doublets suggesting that the two phosphorus donor atoms are not strongly coupled and are therefore mutually cis. We have reported that palladium(II) or platinum(II) centres react with 2 mol of L^{2} to give bis(chelate) complexes of type cis$\left[\mathrm{M}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{t}\right)=\mathrm{NNH}_{2}\right\}_{2}\right]^{2+}(\mathrm{M}=\mathrm{Pd}$ or Pt$) .{ }^{2}$

Treatment of the binuclear complex $\left[\{\mathrm{RhCl}(\operatorname{cod})\}_{2}\right]$ with 2 mol equivalents of L^{1} in methanol in the presence of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave the hoped for cationic cycloocta-1,5-diene complex $4 \mathbf{a}$ (Scheme 3). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data [e.g. $\delta_{\mathrm{H}}\left(\mathrm{NMe}_{2}\right)=3.06$ and $\left.\delta_{\mathrm{C}}\left(\mathrm{NMe}_{2}\right)=52.8\right]$ clearly indicate the co-ordination of the NMe_{2} nitrogen to rhodium. The P, N chelation is also supported by the observation of a downfield ring shift ${ }^{17}\left(\Delta \delta_{\mathrm{P}} \approx 26 \mathrm{ppm}\right)$ in the phosphorus- 31 resonance ($\delta_{\mathrm{P}} 47.5$) of $4 \mathfrak{a}$ when compared to the phosphorus- 31 chemical shift of complex 5a ($\delta_{\mathbf{P}} 21.4$, see below) in which the phosphine ligand L^{1} is monodentate. The analogous cationic iridium(\mathbf{I}) complex $\mathbf{4 b}$ was similarly prepared and fully characterised.

Treatment of $\left[\{\mathrm{MCl}(\operatorname{cod})\}_{2}\right]\left(\mathbf{M}=\mathrm{Rh}\right.$ or Ir) with L^{1} in benzene gave the neutral cycloocta-1,5-diene complex 5a (Rh) or 5 b (Ir), respectively in which L^{1} is monodentate. The complexes were characterised by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy (Tables 1 and 2) and 5a additionally by ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. The proton, ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra clearly show that the NMe_{2} is not co-ordinated in these

Scheme 3 (i) 0.5 equivalent $\left[\{\mathrm{MCl}(\operatorname{cod})\}_{2}\right]$ and $\mathrm{NH}_{4} \mathrm{PF}_{6}$ in MeOH ; (ii) 0.5 equivalent $\left[\{\mathrm{MCl}(\operatorname{cod})\}_{2}\right]-\mathrm{C}_{6} \mathrm{H}_{6}$; (iii) 0.5 equivalent $\left[\{\mathrm{RhCl}(\text { cod })\}_{2}\right]-\mathrm{CD}_{2} \mathrm{Cl}_{2} ;$ (iv) $\mathrm{L}^{2} ;\left(\right.$ (v) 0.25 equivalent $\left[\{\mathrm{RhCl}(\operatorname{cod})\}_{2}\right]-$ $\mathrm{CD}_{2} \mathrm{Cl}_{2} ;$ (vi) 0.5 equivalent $\left[\{\mathrm{IrCl}(\mathrm{cod})\}_{2}\right]-\mathrm{CD}_{2} \mathrm{Cl}_{2}$
solution. The ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR data $\left[{ }^{2} J(\mathrm{PP})=46 \mathrm{~Hz}\right]$ indicated that the two phosphorus nuclei were mutually cis. The resonances were assigned to P_{A} (the chelate) and $\mathrm{P}_{\mathrm{B}}\left(\mathrm{PPh}_{3}\right)$ on the basis of selective decoupling which established that the CH_{2} protons were coupled to P_{A} only $\left[{ }^{2} J\left(\mathrm{P}_{\mathrm{A}} \mathrm{H}\right)=11.2 \mathrm{~Hz}\right.$. The ${ }^{1} \mathrm{H}$ NMR spectrum suggested from the value of $\delta\left(\mathrm{NMe}_{2}\right) 3.49$ that the NMe_{2} nitrogen is co-ordinated to rhodium. A benzene solution of this Wilkinson-type complex 7, prepared in situ, reacted with dioxygen (or air) to give the pale yellow dioxygen adduct 8 in 95% isolated yield. This dioxygen adduct was fully characterised, by $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and Cl analysis, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR and mass spectroscopy. In the mass spectrum the parent molecular ion $(M+1)$ was readily observed as were the other ions corresponding to loss of dioxygen, and dioxygen and chlorine. In the infrared spectrum (KBr) there is a band at $870 \mathrm{~cm}^{-1}$, assigned to $v(\mathrm{O}-\mathrm{O}) .{ }^{34-37}$ As would be expected in the ${ }^{1} \mathrm{H}$ NMR spectrum the CH_{2} protons are non-equivalent and mutually coupled $\left[{ }^{2} J(\mathrm{HH})=13.9 \mathrm{~Hz}\right]$, and they are coupled only to P_{A}. In contrast, the NMe_{2} hydrogens are coupled only to P_{B} suggesting that the NMe_{2} group is trans to $\mathrm{P}_{\mathrm{B}},{ }^{4,28}$ the methyls being non-equivalent with ${ }^{4} J\left(\mathrm{P}_{\mathrm{B}} M e\right)=2.2$ and 2.4 Hz , respectively. The dioxygenrhodium(iII) complex 8 reacted rapidly with sulfur dioxide to give the rhodium(in) sulfate 9 in 76% isolated yield. Complex 9 was fully characterised. In the

L^{1}
7

M
10a Rh
11a Rh
11b Ir
 $\left[\left\{\mathrm{MCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right]$
infrared spectrum the bands due to $v\left(\mathrm{SO}_{4}\right)$ at 1260,1160 and $655 \mathrm{~cm}^{-1}$ are at similar frequencies to those found for other bidentate sulfur complexes. ${ }^{19,37}$
Treatment of $\left[\left\{\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right]$ with 2 mol equivalents of L^{1} per rhodium atom gave the bis(phosphine)rhodium(1) complex 10a, containing one chelate and one monodentate $Z-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe}_{2}$ ligand. This complex was characterised by elemental analysis and mass spectrometry and by ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. In particular, in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum the value of ${ }^{2} J(\mathrm{PP})$ of 44 Hz indicates mutually cis-phosphine ligands, and the ${ }^{1} J(\mathrm{RhP})$ values of 218 and 179 Hz are similar to those of 7. In the ${ }^{1} \mathrm{H}$ NMR spectrum there are two sets of $\mathrm{Bu}^{\mathrm{l}}, \mathrm{CH}_{2}$ and NMe_{2} protons, corresponding to chelating and monodentate $Z-\mathrm{PPh}_{2} \mathrm{CH}_{2}{ }^{-}$ $\mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}$ ligands, respectively. The singlet at $\delta 1.56$ is assigned to the un-co-ordinated NMe_{2} group. Treatment of complex 10a with a one-third mol of $\mathrm{L}^{1^{1}}$ did not result in a ringopening reaction to give a complex of type $\left[\mathrm{RhCl}\left(\mathrm{L}^{1}\right)_{3}\right]$ at $20^{\circ} \mathrm{C}$ in benzene solution.
An analogous bis(phosphine)iridium(I) complex 10b was prepared in situ and characterised in solution. From the NMR data it is clearly analogous to the bis(phosphine)rhodium(I) complex 10a. Complex 10a or 10b in dichloromethane solution reacted rapidly with dioxygen to give the corresponding dioxygen adduct 11a or 11b, respectively, both of which were isolated and characterised.

Experimental

All the reactions were carried out in an inert atmosphere of dry nitrogen or dry argon. Infrared spectra were recorded using a Perkin-Elmer model 457 grating spectrometer, NMR spectra using a JEOL FX-90Q (operating frequencies for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ of
89.5 and 36.2 MHz), FX-100 (operating frequencies for ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ of 99.5 and 40.25 MHz) or a Bruker AM-400 spectrometer (operating frequencies for ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ of $400.13,161.9$ and 100.6 MHz), respectively. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are relative to tetramethylsilane and ${ }^{31} \mathrm{P}$ shifts to 85% phosphoric acid. Fast atom bombardment (FAB) mass spectra were recorded on a VG Autospec spectrometer using 8 kV acceleration. For metal complexes m / z values are quoted for ${ }^{35} \mathrm{Cl},{ }^{103} \mathrm{Rh}$ and ${ }^{193} \mathrm{Ir}$.
The compounds $Z-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2} \quad \mathrm{~L}^{1} \quad$ and $Z-\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNH}_{2} \mathrm{~L}^{2}$ were prepared according to our published procedure; ${ }^{1}\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right],{ }^{38}\left[\mathrm{IrCl}(\mathrm{CO})_{2}\left(\mathrm{H}_{2} \mathrm{NC}_{6}-\right.\right.$ $\left.\left.\mathrm{H}_{4} \mathrm{Me}-p\right)\right]^{39} \quad\left[\{\mathrm{RhCl}(\mathrm{cod})\}_{2}\right],{ }^{40} \quad\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{41} \quad[\{\mathrm{IrCl}-$ $\left.(\mathrm{cod})\}_{2}\right],^{42}\left[\left\{\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right]^{42}$ and $\left[\left\{\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right]^{43}$ were prepared according to literature procedures.
$\left[\mathrm{RhCl}(\mathrm{CO})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}\right\}\right]$ 1a.-The complex $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right](75 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added to a solution of the phosphino dimethylhydrazone $\mathrm{L}^{1}(126 \mathrm{mg}, 0.38 \mathrm{mmol})$ in benzene ($3 \mathrm{~cm}^{3}$). After 10 min the resulting yellow solution was concentrated to a low volume ($c a .0 .5 \mathrm{~cm}^{3}$) under reduced pressure and the residue triturated with methanol to give the required product 1a as yellow microcrystals ($144 \mathrm{mg}, 76 \%$) (Found: C, $51.15 ; \mathrm{H}, 5.5 ; \mathrm{Cl}, 7.4 ; \mathrm{N}, 5.7 . \mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{OPRh}$ requires C, $51.2 ; \mathrm{H}, 5.2 ; \mathrm{Cl}, 7.2 ; \mathrm{N}, 5.7 \%$); m / z (FAB) 466 $(M-\mathrm{CO})$ and $457(M-\mathrm{Cl}) ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C}=0) 1995 \mathrm{~cm}^{-1}$.
$\left[\overparen{\left.\operatorname{RhCl}(\mathrm{CO})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\right\}\right] \quad \text { 1b. - The complex }}\right.$ $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right](75 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added to a solution of the phosphino hydrazone $L^{2}(111 \mathrm{mg}, 0.37 \mathrm{mmol})$ in benzene $\left(3 \mathrm{~cm}^{3}\right)$. After 10 min the resulting yellow solution was concentrated to a low volume ($c a .0 .5 \mathrm{~cm}^{3}$) under reduced pressure. Addition of hexane to the residue gave the required product 1b as yellow microcrystals ($155 \mathrm{mg}, 89 \%$) (Found: $\mathrm{C}, 49.05 ; \mathrm{H}, 5.05 ; \mathrm{Cl}, 7.65 ; \mathrm{N}, 5.65 . \mathrm{C}_{1}{ }_{9} \mathrm{H}_{23} \mathrm{ClN}_{2}$ OPR h requires C, 49.1; H, $5.0 ; \mathrm{Cl}, 7.65 ; \mathrm{N}, 6.0 \%$); m / z (FAB) 437 ($M+1$ $\mathrm{CO})$; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{O}) 1995 \mathrm{~cm}^{-1}$.
trans- $\left[\mathrm{RhCl}(\mathrm{CO})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}\right\}_{2}\right] \quad$ 2a.-The complex $\left[\left\{\mathrm{RhCl}(\mathrm{CO})_{2}\right\}_{2}\right](50 \mathrm{mg}, 0.13 \mathrm{mmol})$ was added to a solution of $\mathrm{L}^{1}(168 \mathrm{mg}, 0.51 \mathrm{mmol})$ in benzene ($3 \mathrm{~cm}^{3}$). After 10 \min the resulting yellow solution was filtered and concentrated to a low volume ($c a .0 .5 \mathrm{~cm}^{3}$) under reduced pressure. Addition of hexane ($2 \mathrm{~cm}^{3}$) to the residue gave the required product 2 a as pale yellow microcrystals ($170 \mathrm{mg}, 80 \%$) (Found: C, 60.95 ; H, $6.75 ; \mathrm{Cl}, 4.25 ; \mathrm{N}, 6.6 . \mathrm{C}_{41} \mathrm{H}_{54} \mathrm{ClN}_{4} \mathrm{OP}_{2} \mathrm{Rh} \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{6}$ requires C , $60.85 ; \mathrm{H}, 6.65 ; \mathrm{Cl}, 4.25 ; \mathrm{N}, 6.7 \%) ; m / z(\mathrm{FAB}) 819(M+1), 783$ $(M-\mathrm{Cl})$ and $755(M-\mathrm{Cl}-\mathrm{CO}) ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{C} \equiv \mathrm{O}) 1960$ cm^{-1}.
trans- $\left[\mathrm{IrCl}(\mathrm{CO})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{l}}\right)=\mathrm{NNMe}_{2}\right\}_{2}\right] \quad$ 2b.-The complex $\left[\operatorname{IrCl}(\mathrm{CO})_{2}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right](75 \mathrm{mg}, 0.19 \mathrm{mmol})$ was added to a solution of $\mathrm{L}^{1}(126 \mathrm{mg}, 0.39 \mathrm{mmol})$ in benzene (4 cm^{3}) and the solution was warmed to $\mathrm{ca} .70^{\circ} \mathrm{C}$ for 1 min . The solution was then filtered and concentrated to a low volume ($c a$. $0.5 \mathrm{~cm}^{3}$) under reduced pressure. Addition of hexane $\left(2 \mathrm{~cm}^{3}\right)$ to the residue gave the required product 2 b as yellow microcrystals ($135 \mathrm{mg}, 78 \%$) (Found: C, $54.4 ; \mathbf{H}, 6.0 ; \mathrm{Cl}, 4.0 ; \mathrm{N}, 6.0$. $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{ClIrN} \mathrm{N}_{4} \mathrm{OP}_{2}$ requires $\mathrm{C}, 54.2 ; \mathrm{H}, 6.0 ; \mathrm{Cl}, 3.9 ; \mathrm{N}, 6.15 \%$); m / z (FAB) $909(M+1)$ and $873(M-\mathrm{Cl}) ; \operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{C} \equiv O) 1955 \mathrm{~cm}^{-1}$.
$c i s-\left[\overline{\mathrm{IrH}(\mathrm{Cl})}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl}$ 3a.-The complex $\left[\operatorname{IrCl}(\mathrm{CO})_{2}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)\right](100 \mathrm{mg}, 0.25 \mathrm{mmol})$ and L^{2} ($150 \mathrm{mg}, 0.50 \mathrm{mmol}$) in benzene ($4 \mathrm{~cm}^{3}$) were heated under reflux for 15 min . The resulting white precipitate of 3a was filtered off, washed with hexane and dried. Yield $105 \mathrm{mg}, 97 \%$ with respect to chlorine (Found: C, 50.0; H, 5.5; Cl, 7.95; N, 6.65. $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{Cl}_{2} \mathrm{IrN}_{4} \mathrm{P}_{2}$ requires C, $50.2 ; \mathrm{H}, 5.5 ; \mathrm{Cl}, 8.25 ; \mathrm{N}, 6.5 \%$); m / z (FAB) $825(M-\mathrm{Cl})$ and $789(M-\mathrm{Cl}-\mathrm{HCl})$; $\mathrm{IR}(\mathrm{KBr})$: $v(\mathrm{Ir}-\mathrm{H}) 2210 \mathrm{~cm}^{-1}$.
$c i s-\left[\mathrm{IrH}(\mathrm{Cl})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\right\}_{2}\right]\left[\mathrm{BPh}_{4}\right]_{0.6} \mathrm{Cl}_{0.4} \quad$ 3b . -An excess of $\mathrm{NaBPh}_{4}(100 \mathrm{mg}, 0.29 \mathrm{mmol})$ in ethanol (1 cm^{3}) was added to a solution of the chloride salt 3 a (50 mg , 0.058 mmol) in ethanol ($1.5 \mathrm{~cm}^{3}$). The required product 3b was obtained as a white solid ($42 \mathrm{mg}, 64 \%$) (Found: C, 60.3 ; H, 5.65 ; $\mathrm{Cl}, 4.05 ; \mathrm{N}, 4.85 . \mathrm{C}_{36} \mathrm{H}_{47} \mathrm{IrN}_{4} \mathrm{P}_{2} \cdot 0.6 \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B} \cdot 0.4 \mathrm{Cl}$ requires C , $60.1 ; \mathrm{H}, 5.65 ; \mathrm{Cl}, 4.05 ; \mathrm{N}, 4.85 \%$). m / z (FAB) 825 ($M-\mathrm{BPh}_{4} /$ Cl) and $789\left(M-\mathrm{BPh}_{4} / \mathrm{Cl}-\mathrm{HCl}\right) ; \operatorname{IR}(\mathrm{KBr}): v(\mathrm{Ir}-\mathrm{H}) 2210$ cm^{-1}.
$\left[\mathrm{Rh}(\mathrm{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}\right\}\right] \mathrm{PF}_{6} \mathbf{4 a}$.-An excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}(0.2 \mathrm{~g}, 1.2 \mathrm{mmol})$ in methanol (ca. $1 \mathrm{~cm}^{3}$) was added to a solution containing $\left[\{\mathrm{RhCl}(\operatorname{cod})\}_{2}\right](125 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $L^{1}(165 \mathrm{mg}, 0.50 \mathrm{mmol})$ in methanol ($3 \mathrm{~cm}^{3}$). The resulting yellow crystals of complex 4a were filtered off, washed with cold methanol and dried. Yield $0.31 \mathrm{~g}, 91 \%$ (Found: C, 49.6; H, 5.65; $\mathrm{N}, 4.1 . \mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{P}_{2} \mathrm{Rh}$ requires $\mathrm{C}, 49.3 ; \mathrm{H}, 5.75 ; \mathrm{N}, 4.1 \%$); m / z (FAB) $537\left(M-\mathrm{PF}_{6}\right)$.
$\left[\operatorname{Ir}(\operatorname{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\right\}\right] \mathrm{PF}_{6} \mathbf{4 b}$.-Complex 4b was prepared from $\left[\{\operatorname{IrCl}(\operatorname{cod})\}_{2}\right]$ and isolated in 35% yield as orange microcrystals in a similar manner to the analogous rhodium(1) complex 4a. An analytical sample was recrystallised from benzene-methanol (Found: C, 44.75; H, 5.05; N, 3.5. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~F}_{6} \mathrm{IrN}_{2} \mathrm{P}_{2} \cdot 0.25 \mathrm{C}_{6} \mathrm{H}_{6}$ requires $\mathrm{C}, 44.75 ; \mathrm{H}, 5.15$; $\mathrm{N}, 3.55 \%$); m / z (FAB) $627\left(M-\mathrm{PF}_{6}\right)$.
$\left[\mathrm{Rh}(\operatorname{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNH}_{2}\right\}\right] \mathrm{Cl} \quad 4 \mathrm{c}$--Complex 4 c was prepared in situ by dissolving $\left[\{\mathrm{RhCl}(\operatorname{cod})\}_{2}\right](15 \mathrm{mg}, 0.03$ $\mathrm{mmol})$ and $\mathrm{L}^{2}(17 \mathrm{mg}, 0.057 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(c a .0 .4 \mathrm{~cm}^{3}\right)$.
$\left[\operatorname{Ir}(\operatorname{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNH}_{2}\right\}\right] \mathrm{Cl} 4 \mathrm{~d}$.-Complex 4 d was prepared in situ by dissolving [\{IrCl($\left.\operatorname{cod})\}_{2}\right](10 \mathrm{mg}, 0.015$ $\mathrm{mmol})$ and $\mathrm{L}^{2}(8.9 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(c a .0 .4 \mathrm{~cm}^{3}\right)$.
$\left[\mathrm{RhCl}(\operatorname{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\right\}\right]$ 5a.-The complex $\left[\{\mathrm{RhCl}(\mathrm{cod})\}_{2}\right](50 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{L}^{1}(66 \mathrm{mg}, 0.20 \mathrm{mmol})$ were dissolved in benzene ($3 \mathrm{~cm}^{3}$). After 15 min the solution was concentrated to a low volume ($c a .0 .3 \mathrm{~cm}^{3}$) under reduced pressure. Addition of hexane $\left(1 \mathrm{~cm}^{3}\right)$ to the residue gave the required product 5 a as bright yellow microcrystals ($80 \mathrm{mg}, 70 \%$) (Found: C, 58.05; H, 6.45; Cl, 6.35; N, 4.5. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{ClN}_{2} \mathrm{PRh}$ requires C, $58.7 ; \mathrm{H}, 6.85 ; \mathrm{Cl}, 6.2 ; \mathrm{N}, 4.9 \%$); m / z (FAB) $573(M+$ 1) and $537(M-\mathrm{Cl})$.
$\left[\mathrm{IrCl}(\operatorname{cod})\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe}_{2}\right\}\right] \quad \mathbf{5 b}$. - The complex $\left[\{\operatorname{IrCl}(\operatorname{cod})\}_{2}\right](67 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $^{1}(66 \mathrm{mg}, 0.20 \mathrm{mmol})$ were heated under reflux in benzene $\left(4 \mathrm{~cm}^{3}\right)$ for 20 min . The solution was then filtered and the filtrate concentrated to a low volume ($c a .0 .3 \mathrm{~cm}^{3}$) under reduced pressure. Addition of hexane ($2 \mathrm{~cm}^{3}$) to the residue gave the required product $5 \mathbf{b}$ as bright yellow microcrystals ($53 \mathrm{mg}, 40 \%$) (Found: C, 50.8 ; $\mathrm{H}, 5.85 ; \mathrm{Cl}, 5.5 ; \mathrm{N}, 4.35 . \mathrm{C}_{28} \mathrm{H}_{39} \mathrm{ClIrN}_{2} \mathrm{P}$ requires C , 50.75 ; $\mathrm{H}, 5.95 ; \mathrm{Cl}, 5.35 ; \mathrm{N}, 4.2 \%) ; m / z(\mathrm{FAB}) 663(M+1)$ and 627 $(M-\mathrm{Cl})$.
cis- $\left[\mathrm{Rh}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{l}}\right)=\mathrm{NNH}_{2}\right\}_{2}\right] \mathrm{Cl} 6$.-(i) From $[\{\mathrm{RhCl}-$ (cod) $\}_{2}$. Complex 6 was prepared in situ by dissolving $\left[\{\mathrm{RhCl}(\mathrm{cod})\}_{2}\right](15 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{L}^{2}(37 \mathrm{mg}, 0.057 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (ca. $0.5 \mathrm{~cm}^{3}$).
(ii) From $\left[\left\{\mathrm{RhCl}_{\left.\left.\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right] \text {. Complex } 6 \text { was prepared in }}\right.\right.$ situ by dissolving $\left[\left\{\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right](15 \mathrm{mg}, 0.021 \mathrm{mmol})$ and $\mathrm{L}^{2}(25 \mathrm{mg}, 0.084 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(c a .0 .5 \mathrm{~cm}^{3}\right)$.
cis- $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}\right\}\right]$ 7.-Complex 7 was prepared in situ by dissolving $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)\right](15 \mathrm{mg}, 0.016$ mmol) and $\mathrm{L}^{1}(5.3 \mathrm{mg}, 0.016 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}\left(c a .0 .5 \mathrm{~cm}^{3}\right)$.
cis- $\left[\mathrm{RhCl}\left(\mathrm{O}_{2}\right)\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe}_{2}\right\}\right] \quad$ 8.-Dioxygen was bubbled for 2 min through a solution containing $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right](0.24 \mathrm{~g}, 0.26 \mathrm{mmol})$ and $\mathrm{L}^{1}(84 \mathrm{mg}, 0.26 \mathrm{mmol})$
in benzene ($5 \mathrm{~cm}^{3}$), and the solution was then concentrated to a low volume ($c a .0 .5 \mathrm{~cm}^{3}$) under reduced pressure. Addition of cyclohexane ($2 \mathrm{~cm}^{3}$) to the residue gave the required product 8 as yellow microcrystals ($0.19 \mathrm{~g}, 95 \%$) (Found: C, 59.75 ; H, 5.45; $\mathrm{Cl}, 4.8 ; \mathrm{N}, 3.45 . \mathrm{C}_{38} \mathrm{H}_{42} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Rh}$ requires $\mathrm{C}, 60.1 ; \mathrm{H}, 5.5$; $\mathrm{Cl}, 4.65 ; \mathrm{N}, 3.7 \%$); $m / z(\mathrm{FAB}) 759(M+1), 726(M-2 \mathrm{O})$ and $691(M-2 O-C l) ; ~ I R(K B r): v(O-O) 870 \mathrm{~cm}^{-1}$.
cis- $\left[\mathrm{RhCl}\left(\mathrm{SO}_{4}\right)\left(\mathrm{PPh}_{3}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\right\}\right] \quad$ 9.Sulfur dioxide was bubbled for 30 s through a solution containing complex $7(50 \mathrm{mg}, 0.065 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$. After 30 min the solution was concentrated to a low volume (ca. $0.3 \mathrm{~cm}^{3}$) under reduced pressure. Addition of hexane $\left(1 \mathrm{~cm}^{3}\right)$ to the residue gave the required product 9 as yellow microcrystals $(41 \mathrm{mg}, 76 \%$) (Found: C, $55.25 ; \mathrm{H}, 5.05$; Cl, $4.5 ; \mathrm{N}, 3.4$. $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{RhS}$ requires C, $55.45 ; \mathrm{H}, 5.15 ; \mathrm{Cl}, 4.3$; $\mathrm{N}, 3.4 \%) ; m / z(\mathrm{FAB}) 823(M+1), 786(M-\mathrm{HCl})$ and 725 ($M-\mathrm{HSO}_{4}$); $\mathrm{IR}(\mathrm{KBr}): \mathrm{v}^{\left(\mathrm{SO}_{4}\right)} 1260 \mathrm{~m}, 1160 \mathrm{~s}$ and $655 \mathrm{~s} \mathrm{~cm}^{-1}$.
$c i s-\left[\mathrm{RhCl}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\mathrm{NNMe}_{2}\right\}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{l}}\right)=\right.\right.$ $\left.\left.\mathrm{NNMe}_{2}\right\}\right]$ 10a.-The complex $\left[\left\{\mathrm{RhCl}_{(}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right](30 \mathrm{mg}$, 0.042 mmol) and $\mathrm{L}^{1}(55 \mathrm{mg}, 0.167 \mathrm{mmol})$ were warmed in acetone ($2 \mathrm{~cm}^{3}$) for 1 min . The resulting yellow solution was then cooled to $-30^{\circ} \mathrm{C}$. The required product 10 a deposited as orange crystals ($47 \mathrm{mg}, 71 \%$) (Found: C, 60.65 ; H, 7.35 ; Cl, 4.25; $\mathrm{N}, 6.25 . \mathrm{C}_{40} \mathrm{H}_{54} \mathrm{ClN}_{4} \mathrm{P}_{2} \mathrm{Rh} \cdot \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$ requires C, $60.8 ; \mathrm{H}, 7.1$; $\mathrm{Cl}, 4.15 ; \mathrm{N}, 6.6 \%) ; m / z(\mathrm{FAB}) 790\left(M^{+}\right)$and $755(M-\mathrm{Cl})$.
cis- $\left[\mathrm{IrCl}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\right\}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)=\right.\right.$ $\left.\mathrm{NNMe}_{2}\right\}$] 10b.-Complex 10a was prepared in situ by dissolving $\left[\left\{\operatorname{IrCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right](15 \mathrm{mg}, 0.016 \mathrm{mmol})$ and L^{1} ($22 \mathrm{mg}, 0.067 \mathrm{mmol}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}\left(c a .0 .5 \mathrm{~cm}^{3}\right.$).
$c i s-\left[\mathrm{RhCl}\left(\mathrm{O}_{2}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\prime}\right)=\mathrm{NNMe}_{2}\right\}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}-\right.\right.$ $\left.\left(\mathrm{Bu}^{1}\right)=\mathrm{NNMe}_{2}\right\}$] 11a.-Dioxygen was bubbled for 1 min through a solution containing $\left[\left\{\mathrm{RhCl}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}\right](90 \mathrm{mg}$, $0.125 \mathrm{mmol})$ and $\mathrm{L}^{1}(165 \mathrm{mg}, 0.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$. The solution was then concentrated to a low volume (ca. 0.5 cm^{3}) under reduced pressure. Addition of hexane ($3 \mathrm{~cm}^{3}$) to the residue gave the required product 11a as brown microcrystals ($0.16 \mathrm{~g}, 77 \%$) (Found: C, $56.55 ; \mathrm{H}, 6.7$; Cl, $7.85 ; \mathrm{N}, 6.45$. $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Rh} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C, $56.2 ; \mathrm{H}, 6.4 ; \mathrm{Cl}$, 8.2; $\mathrm{N}, 6.45 \%$); m / z (FAB) $823(M+1)$; $\operatorname{IR}(\mathrm{KBr}): v(\mathrm{O}-\mathrm{O}) 865$ cm^{-1}.
cis- $\left[\operatorname{IrCl}\left(\mathrm{O}_{2}\right)\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{l}}\right)=\mathrm{NNMe}_{2}\right\}\left\{\mathrm{PPh}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{Bu}^{\mathrm{l}}\right)=\right.\right.$ $\left.\mathrm{NNMe}_{2}\right\}$] 11b.-Complex 11b was prepared using [$\{\mathrm{IrCl}-$ $\left.\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right\}_{2}$] in a similar manner to that of 11a, in 45% yield (Found: C, 52.65; H, 5.8; Cl, 3.8; N, 6.0. $\mathrm{C}_{40} \mathrm{H}_{54} \mathrm{CIIrN}_{4} \mathrm{O}_{2} \mathrm{P}_{2}$ requires C, $52.65 ; \mathrm{H}, 5.95 ; \mathrm{Cl}, 3.9$; N, 6.15%); m / z (FAB) 913 $(M+1)$; $\operatorname{IR}(\mathrm{KBr}): \mathrm{v}(\mathrm{O}-\mathrm{O}) 860 \mathrm{~cm}^{-1}$.

Acknowledgements

We thank the SERC for a fellowship (to S. D. P.) and for other support, and Johnson Matthey for a generous loan of platinum metal salts.

References

1 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 2361.
2 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 103 and refs. therein.
3 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1201.

4 S. D. Perera and B. L. Shaw, Inorg. Chim. Acta, in the press.
5 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1203.

6 S. D. Perera and B. L. Shaw, J. Organomet. Chem., 1994, 479, 117.

7 S. D. Perera and B. L. Shaw, unpublished work.
8 J. M. Brown, D. I. Hulmes and P. J. Guiry, Tetrahedron, 1994, 50, 4493 and refs. therein.
9 G. R. Newkome, Chem. Rev., 1993, 93, 2067.
10 K. Mashima, T. Akutagawa, X. Zhang, H. Takaya, T. Taketomi, H. Kumobayashi and S. Akutagawa, J. Organomet. Chem., 1992, 428, 213.

11 E. Farnetti, G. Nardin and M. Graziani, J. Organomet. Chem., 1991, 417, 163 and refs. therein.
12 K. V. Baker, J. M. Brown, N. A. Cooley, G. D. Hughes and R. J. Taylor, J. Organomet. Chem., 1989, 397, 406 and refs. therein.

13 T. Hayashi and M. Kumada, Acc. Chem. Res., 1982, 15, 395.
14 T. B. Rauchfuss and D. M. Roundhill, J. Am. Chem. Soc., 1974, 96, 3098.

15 D. M. Roundhill, R. A. Bechtold and S. G. N. Roundhill, Inorg. Chem., 1980, 19, 284 and refs. therein.
16 G. J. Organ, M. K. Cooper, K. Henrick and M. McPartlin, J. Chem. Soc., Dalton Trans., 1984, 2377.
17 S. Park, M. P. Johnson and D. M. Roundhill, Organometallics, 1989, 8, 1700 .
18 M. P. Anderson, A. L. Casalnuovo, B. J. Johnson, B. M. Mattson, A. M. Mueting and L. H. Pignolet, Inorg. Chem., 1988, 27, 1649 and refs. therein.
19 C. A. Ghilardi, S. Midollini, S. Moneti, A. Olardini and G. Scapacci, J. Chem. Soc., Dalton Trans., 1992, 3371.

20 P. Barbaro, C. Bianchini, F. Laschi, S. Midollini, S. Moneti, G. Scapacci and P. Zanello, Inorg. Chem., 1994, 33, 1622.

21 T. Yoshida, K. Tani, T. Yamagata, Y. Tatsuno and T. Saito, J. Chem. Soc., Chem. Commun., 1990, 292.
22 V. V. S. Reddy, A. Varshney and G. M. Gray, J. Organomet. Chem., 1990, 391, 259.

23 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc. Dalton Trans., 1993, 3653 and refs. therein.
24 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 713.
25 D. A. Slack, I. Greveling and M. C. Baird, Inorg. Chem., 1979, 18, 3125
26 E. Rotondo, G. Battaglia, G. Giordano and F. P. Cusmano, J. Organomet. Chem., 1993, 450, 245.

27 F. Neve, M. Ghedini and A. Crispini, Organometallics, 1992, 11, 3324
28 K. K. Hii, S. D. Perera and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1994, 3589.
29 P. S. Pregosin and R. W. Kunz, ${ }^{31} P$ and ${ }^{13} C$ NMR of Transition Metal Complexes, Springer, Berlin, 1979.
30 A. R. Sanger, J. Chem. Soc., Dalton Trans., 1977, 120.
31 S. D. Perera, B. L. Shaw, M. Thornton-Pett and J. D. Vessey, Inorg Chim. Acta, 1992, 198-200, 149 and refs. therein.
32 A. J. Deeming and B. L. Shaw, J. Chem. Soc. A, 1968, 1887.
33 R. R. Schrock and J. A. Osborn, J. Am. Chem. Soc., 1971, 93, 2397. 34 J. S. Valentine, Chem. Rev., 1973, 73, 235.
35 M. Selke, C. S. Foote and W. Karney, Inorg. Chem., 1993, 32, 5425 and refs. therein.
36 C. A. Reed and W. R. Roper, J. Chem. Soc., Dalton Trans., 1973, 1370.
37 R. W. Horn, E. Weissberger and J. P. Collman, Inorg. Chem., 1970, 9, 2367.

38 J. A. McCleverty and G. Wilkinson, Inorg. Synth., 1966, 8, 211.
39 U. Klabunde, Inorg. Synth., 1974, 15, 82.
40 G. Giordano and R. H. Crabtree, Inorg. Synth., 1979, 19, 218.
41 J. A. Osborn and G. Wilkinson, Inorg. Synth., 1968, 10, 67.
42 J. L. Herde, J. C. Lambert and C. V. Senoff, Inorg. Synth., 1974, 15, 18.
43 A. van der Ent and A. L. Onderdelinden, Inorg. Synth., 1973, 14, 92.
Received 23rd August 1994; Paper 4/05147E

