Co-ordination Complexes of the Bismuth(iII) Thiolate $\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3} \dagger$

Louis J. Farrugia, ${ }^{\boldsymbol{a}}$ Fiona J. Lawlor ${ }^{\text {b }}$ and Nicholas C. Norman ${ }^{*, b}$
${ }^{a}$ The University of Glasgow, Department of Chemistry, Glasgow G12 8QQ, UK
${ }^{b}$ The University of Newcastle upon Tyne, Department of Chemistry, Newcastle upon Tyne NE1 7RU, UK

Abstract

The reaction between $\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3} 1$ and SPPh_{3} afforded crystals of [$\left.\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SPPh}_{3}\right)\right] 5$ which was characterised by X-ray crystallography. Complex 5 contains a bismuth centre bonded to three $\mathrm{SC}_{6} \mathrm{~F}_{5}$ groups and the sulfur atom of a SPPh ${ }_{3}$ ligand such that the co-ordination geometry is disphenoidal with the SPPh_{3} ligand trans to one thiolate group. An additional intermolecular interaction is also present due to a weakly bridging thiolate sulfur which results in a centrosymmetric dimer with each bismuth centre having square-based pyramidal five-co-ordination. A similar structure was observed for the anion in the ionic complex $\left[\mathrm{K}(18\right.$-crown-6) $]\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{NCS})\right] 6$ (18-crown-6 $=1,4,7,10,13,16$ hexaoxacyclooctadecane) derived from the reaction between 1 and [$\mathrm{K}(18$-crown-6)]SCN. The anion $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{NCS})\right]^{-}$has a disphenoidal geometry with an axial thiolate and N-bonded thiocyanate ligand which also bridges between two centrosymmetrically related bismuth centres giving a structure similar to 5 . The reaction between 1 and either OPPh_{3}, hmpa (hexamethylphosphoramide) or dmpu (N, N^{\prime}-dimethylpropyleneurea) afforded the bis(ligand) complexes $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right]$. $\mathrm{CH}_{2} \mathrm{Cl}_{2} 8,\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{hmpa})_{2}\right] 9$ and $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{dmpu})_{2}\right] 10$ respectively all of which were characterised by X-ray crystallography. The structures of 8-10 are all similar in being monomeric and having a five-co-ordinate, square-based pyramidal geometry around the bismuth centre with one thiolate in the apical site and the two ligands in a cis configuration in the basal plane each trans to a basal thiolate. The reaction between 1 and $N_{1} N^{\prime}$-dimethylthiourea, $\mathrm{S}=\mathrm{C}(\mathrm{NHMe})_{2}$, afforded the tris(ligand) complex $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left\{\mathrm{~S} \approx \mathrm{C}(\mathrm{NHMe})_{2}\right\}_{3}\right]$ 11. An X-ray crystallographic study revealed a six-co-ordinate complex with a geometry close to that of a regular octahedron with the three thiolates and three thiourea ligands both having fac configurations. The structures are discussed in terms of the $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group having properties analogous to chloride, and hence being a pseudohalide, and also in terms of ligand co-ordination occuring through the thiolate $\mathrm{Bi}-\mathrm{S} \sigma^{*}$ orbitals.

In a recent paper ${ }^{1}$ we reported a synthesis and the crystal structure of the bismuth(III) thiolate $\operatorname{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}$ 1. Compound 1 exists in the solid state as weakly bound dimers in which each bismuth centre has a four-co-ordinate, disphenoidal geometry with one $\mathrm{Bi}-\mathrm{S}$ bond being significantly longer than the other three (see below, the three shortest bonds define a trigonal pyramid); the only other structurally characterised bismuth(III) thiolate is $\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Bu}_{3}-2,4,6\right)_{3} 2^{2}$ which is monomeric in the solid state with no short intermolecular $\mathrm{Bi} \cdot . . \mathrm{S}$ contacts.

The reasons for the difference between these two structures, i.e. why 1 is dimeric whereas 2 is monomeric, can be attributed both to the greater steric bulk of the $\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Bu}_{3}^{\mathrm{t}}-2,4,6$ group in 2 and also to the more electron-withdrawing character of the $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group in 1. This latter feature should render the bismuth centre in compound 1 more Lewis acidic and hence more prone to associative intermolecular interactions, further evidence for which was provided by the observation that in the reaction between BiCl_{3} and $\mathrm{Na}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)$, it was the ionic complex $\left.\left[\mathrm{Na}_{2} \text { (thf }\right)_{4}\right]\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{5}\right] 3$ (thf $=$ tetrahydrofuran) which was formed (1 was prepared from the reaction between BiPh_{3} and 3 equivalents of $\mathrm{HSC}_{6} \mathrm{~F}_{5}$ in refluxing toluene). Compound 3 contains a five-co-ordinate thiolate anion $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{5}\right]^{2-}$, ${ }^{1}$ i.e. a complex of 1 and two $\mathrm{SC}_{6} \mathrm{~F}_{5}$ anions.

Prior to our own work in this area, there had been two previous reports concerning the synthesis of compound $1 ;{ }^{3,4}$ in ref. 4, the ionic compound $\left[\mathrm{AsPh}_{4}\right]\left[\mathrm{Bi}^{\left.\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{4}\right] 4 \text { was also }}\right.$ described. Furthermore, the point was made ${ }^{4}$ that the $\mathrm{SC}_{6} \mathrm{~F}_{5}$

[^0]
group [in 1 and in a range of other $\mathrm{E}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{x}$ element complexes] had much in common with chloride and should therefore be considered as a pseudohalide. Since bismuth(iII) halides form a range of co-ordination complexes with Lewisbase ligands, ${ }^{5}$ we reasoned that 1 should have an analogous chemistry and herein we describe our results which show that this prediction was well founded.

Results and Discussion

By comparison with ligand complexes of bismuth(III) halides, ${ }^{5}$ we should expect for 1 , complexes of the general formula $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{~L})_{n}\right]$ where $n=1,2$ or 3 . Perhaps the simplest way to envisage the structures of and bonding in such complexes is to assume that the acceptor orbitals associated with the bismuth
centre, which are responsible for its Lewis acidity, are the $\mathrm{Bi}-\mathrm{S}$ σ^{*} orbitals. This idea has been discussed recently for a range of bismuth(III) compounds, ${ }^{6}$ and a representation of the three $\mathrm{Bi}-\mathrm{S} \sigma^{*}$ orbitals, together with a σ-donor orbital from each of three ligands, L^{1}, L^{2} and L^{3}, is shown in A. In terms of the coordination geometry of the resulting complexes $\left[\mathrm{Bi}\left(\mathrm{SC}_{6}{ }^{-}\right.\right.$ $\left.\left.\mathrm{F}_{5}\right)_{3}(\mathrm{~L})_{n}\right]$, this bonding model leads directly to disphenoidal, square-based pyramidal and octahedral geometries for four-, five- and six-co-ordination with one, two and three ligands respectively. Examples of all of these types are discussed below.
The reaction between compound 1 and 3-4 equivalents of SPPh_{3} afforded orange crystals of the $1: 1$ complex $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SPPh}_{3}\right)\right] 5$ the structure of which was established

A

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 5

$\mathrm{Bi}(1)-\mathrm{S}(1)$	$2.58(1)$	$\mathrm{Bi}(1)-\mathrm{S}(2)$	$2.62(2)$
$\mathrm{Bi}(1)-\mathrm{S}(3)$	$2.57(1)$	$\mathrm{Bi}(1)-\mathrm{S}(4)$	$3.01(1)$
$\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right)$	$3.15(1)$		
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(2)$	$85.8(5)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$95.6(5)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(4)$	$83.6(4)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$89.0(5)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(4)$	$168.8(5)$	$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{S}(4)$	$96.0(4)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right)$	$81.1(4)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right)$	$75.2(5)$
$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right)$	$164.0(5)$	$\mathrm{S}(4)-\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right)$	$99.2(5)$
$\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right)-\mathrm{Bi}\left(1^{\prime}\right)$	$104: 8(6)$		

Primed atoms are related to unprimed atoms by inversion through the inversion centre at $(0,0,0)$.
by X-ray crystallography; selected bond lengths and angles are given in Table 1 and atomic positional parameters are presented in Table 2. The structure of 5 is such that the bismuth centre is bonded to three $\mathrm{SC}_{6} \mathrm{~F}_{5}$ groups with $\mathrm{Bi}-\mathrm{S}$ distances $\mathrm{Bi}(1)-\mathrm{S}(1)$ 2.58(1), $\mathrm{Bi}(1)-\mathrm{S}(2) 2.62(2)$ and $\mathrm{Bi}(1)-\mathrm{S}(3) 2.57(1) \AA$. In addition, a single SPPh_{3} ligand is bonded to the bismuth through sulfur $[\mathrm{Bi}(1)-\mathrm{S}(4) 3.01(1) \AA]$ approximately trans to $\mathrm{S}(2)$ $\left[\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(4) 168.8(5)^{\circ}\right]$; the co-ordination of $\mathrm{S}(4)$ trans to $\mathrm{S}(2)$ is undoubtedly responsible for the fact that $\mathrm{Bi}(1)-\mathrm{S}(2)$ is longer than the other two $\mathrm{Bi}-\mathrm{SC}_{6} \mathrm{~F}_{5}$ bonds [note that the $\mathrm{Bi}-\mathrm{S}(4)$ distance to the SPP_{3} ligand is the longest of all $\mathrm{Bi}-\mathrm{S}$ bonds]. A view of complex 5 is shown in Fig. 1 from which it is evident that a longer $\mathrm{Bi} \cdots \mathrm{S}$ intermolecular interaction is also present resulting in a centrosymmetric (crystallographic) dimeric structure, the longer interaction $\left[\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right) 3.15(1) \AA\right]$ being trans to the $\mathrm{Bi}(1)-\mathrm{S}(3)$ bond $\left[\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{S}\left(2^{\prime}\right) 164.0(5)^{\circ}\right]$. There is no apparent lengthening of the $\mathrm{Bi}(1)-\mathrm{S}(3)$ bond as a

Fig. 1 A view of the crystallographically centrosymmetric dimer of $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{SPPh}_{3}\right)\right] 5$ showing the atom numbering scheme. Ellipsoids are drawn at the 50% level

Table 2 Atomic positional parameters for complex 5

Atom	x	y	z	Atom	x	y	z
$\mathrm{Bi}(1)$	1536(1)	391(2)	350(1)	C(213)	2109(29)	-2635(24)	-1182(18)
S(1)	934(8)	2473(11)	215(6)	C(214)	2421(26)	-2186(35)	-1675(17)
S(2)	536(9)	-26(13)	-643(7)	C(215)	2149(28)	-1087(37)	-1860(13)
S(3)	2995(8)	676(13)	-176(5)	C(216)	1566(25)	-437(25)	--1552(13)
S(4)	2434(10)	1271(11)	1497(5)	C(311)	3748(12)	264(18)	357(8)
$\mathrm{P}(1)$	2389(8)	-20(10)	2037(5)	C(312)	3873(22)	-918(18)	319(14)
F(112)	1248(20)	2757(28)	-1045(9)	C(313)	4626(27)	-1449(21)	650(18)
F(113)	2660(28)	3846(35)	- 1421(13)	C(314)	5254(21)	-798(36)	1018(15)
F(114)	4085(22)	4910(30)	-674(16)	C(315)	5128(21)	383(35)	1057(15)
F(115)	3925(27)	4837(34)	452(16)	C(316)	4375(21)	914(20)	726(14)
F(116)	2585(20)	3691(26)	859(10)	C(411)	3475(18)	-91(27)	2540(12)
F(212)	1350(33)	-2342(39)	-358(24)	C(412)	4207(22)	652(25)	2452(12)
F(213)	2369(30)	-3665(35)	-1000(37)	C(413)	5053(19)	609(28)	2815(15)
F(214)	2937(36)	-2812(69)	-1987(32)	C(414)	5168(19)	-176(32)	3265(14)
F(215)	2337(40)	-668(63)	-2350(19)	C(415)	4436(25)	-918(29)	3353(13)
F(216)	1225(37)	571(40)	-1755(17)	C(416)	3590(21)	-876(26)	2990(14)
F(312)	3631(24)	- 1797(29)	1(22)	C(421)	1397(23)	82(32)	2439(15)
F(313)	5065(30)	-2597(42)	779(23)	C(422)	865(28)	1086(27)	2406(16)
F(314)	6039(27)	-1212(53)	1480(18)	C(423)	103(27)	1186(30)	2719(18)
F(315)	5668(28)	1077(49)	1439(15)	C(424)	-127(24)	284(38)	3064(17)
F(316)	4310(31)	1940(31)	701(20)	C(425)	405(28)	-720(32)	3097(16)
C(111)	1899(17)	3186(24)	-67(11)	C(426)	1168(26)	-821(26)	2784(17)
C(112)	1932(18)	3241(26)	-656(10)	C(431)	2239(18)	-1394(20)	1684(11)
C(113)	2667(22)	3817(29)	-870(9)	C(432)	1337(15)	- 1733(24)	1455(12)
C(114)	3370(20)	4337(30)	-495(14)	C(433)	1215(16)	-2706(26)	1109(13)
C(115)	3338(19)	4282(30)	95(13)	C(434)	1994(22)	-3340(22)	993(13)
C(116)	2602(21)	3706(27)	309(9)	C(435)	2896(18)	-3001(24)	1223(13)
C(211)	1255(18)	-886(23)	-1060(11)	C(436)	3019(14)	-2028(25)	1568(12)
C(212)	1526(25)	-1985(25)	-875(13)				

result of this interaction although the large e.s.d.s mask any small differences that might be present. With the $\mathrm{Bi}(1) \ldots$ $S\left(2^{\prime}\right)$ interaction included, the overall co-ordination geometry around the bismuth centres is square-based pyramidal with the bridging thiolates and the SPPh_{3} ligand in the basal plane.
A similar structure was observed for the anion $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{NCS})\right]^{-}$in the yellow ionic complex $[\mathrm{K}(18-$ crown-6) $]\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{NCS})\right] 6$ (18 -crown- $6=1,4,7,10,13,16-$ hexaoxacyclooctadecane) obtained from the reaction between compound 1 and [K(18-crown-6)]SCN a view of which is shown in Fig. 2. Selected bond lengths and angles are listed in Table 3 and atomic positional parameters are presented in Table 4. The bismuth centre in 6 is bonded to three $\mathrm{SC}_{6} \mathrm{~F}_{5}$ groups $[\mathrm{Bi}(1)-\mathrm{S}(2) 2.614(2), \mathrm{Bi}(1)-\mathrm{S}(3) 2.645(2) \mathrm{Bi}(1)-\mathrm{S}(4)$ $2.564(2) \AA]$ and one thiocyanate group through the nitrogen atom $[\mathrm{Bi}(1)-\mathrm{N}(1) 2.577(6) \AA]$ such that the co-ordination geometry defined by the one nitrogen and three sulfur atoms is disphenoidal with the nitrogen and one sulfur in axial sites. Of the three Bi-S distances, $\mathrm{Bi}(1)-\mathrm{S}(3)$ which is trans to the NCS ligand is the longest with $\mathrm{Bi}(1)-\mathrm{S}(2)$ being slightly longer than $\mathrm{Bi}(1)-\mathrm{S}(4)$. This latter feature is the result of a long interaction between the sulfur atom of a thiocyanate group in an adjacent

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 6

$\mathrm{Bi}(1)-\mathrm{N}(1)$	$2.577(6)$	$\mathrm{Bi}(1)-\mathrm{S}(2)$	$2.614(2)$
$\mathrm{Bi}(1)-\mathrm{S}(3)$	$2.645(2)$	$\mathrm{Bi}(1)-\mathrm{S}(4)$	$2.564(2)$
$\mathrm{Bi}(1)-\mathrm{S}\left(1^{\prime}\right)$	$3.178(2)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.141(7)$
$\mathrm{C}(1)-\mathrm{S}(1)$	$1.619(6)$		
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{S}(2)$	$87.2(1)$	$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$168.0(1)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{S}(4)$	$88.1(1)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$88.18(6)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(4)$	$95.95(6)$	$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{S}(4)$	$81.31(5)$
$\mathrm{N}(1)-\mathrm{Bi}(1)-\mathrm{S}\left(1^{\prime}\right)$	$99.9(2)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}\left(1^{\prime}\right)$	$165.8(1)$
$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{S}\left(1^{\prime}\right)$	$87.1(1)$	$\mathrm{S}(4)-\mathrm{Bi}(1)-\mathrm{S}\left(1^{\prime}\right)$	$96.5(1)$

Primed atoms are related to unprimed atoms by inversion through the inversion centre at $\left(0, \frac{1}{2}, 0\right)$.
anion $\left[\mathrm{Bi}(1)-\mathrm{S}\left(1^{\prime}\right) 3.178(2) \AA\right]$ which is approximately trans to $\mathrm{S}(2)\left[\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}\left(1^{\prime}\right) 165.8(1)^{\circ}\right]$. This $\mathrm{Bi}(1) \cdots \mathrm{S}\left(1^{\prime}\right)$ interaction results in a centrosymmetric (crystallographic) dimer structure for the anion in 6 (Fig. 3) and an overall square-based pyramidal geometry around each bismuth centre as in 5 . There are no other short $\mathrm{Bi} \cdots \mathrm{S}$ or $\mathrm{Bi} \cdots \mathrm{F}$ contacts in either 5 or 6 .

Fig. 2 A view of the anion $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{NCS})\right]^{-}$in 6 showing the atom numbering scheme. Ellipsoids are drawn at the 30% level

Table 4 Atomic positional parameters for complex 6

Atom	x	y	z	Atom	x	y	z
$\mathrm{Bi}(1)$	927(1)	4438(1)	1725(1)	C(3)	7658(11)	320(14)	6077(8)
K(1)	5790(2)	879(1)	4171(1)	C(5)	6536(13)	1715(10)	6729(7)
S(1)	-66(2)	3148(2)	- 1979(1)	C(6)	5625(12)	2293(9)	6603(6)
S(2)	1179(2)	2400(1)	1715(1)	C(8)	4730(12)	3319(8)	5682(8)
S(3)	1569(2)	5057(2)	3568(1)	C(9)	4507(8)	3490(6)	4788(7)
S(4)	3143(2)	4937(2)	1789(1)	C(11)	4253(12)	2789(10)	3201(8)
N(1)	756(5)	3723(5)	-78(4)	C(12)	4415(9)	1947(11)	2425(7)
$\mathrm{O}(1)$	7694(5)	-348(5)	4463(4)	C(14)	5519(10)	433(14)	1746(6)
$\mathrm{O}(4)$	6510(6)	667(5)	6007(4)	C(15)	6567(12)	-83(10)	1867(6)
$\mathrm{O}(7)$	5368(5)	2510(4)	5767(4)	C(17)	7857(11)	-790(9)	2858(9)
$\mathrm{O}(10)$	4495(5)	2629(4)	4039(4)	C(18)	8040(10)	-1068(10)	3687(9)
O(13)	5217(7)	1237(6)	2483(4)	C(211)	107(5)	1778(4)	728(4)
O(16)	6780(5)	-380(5)	2680(4)	C(212)	-1079(6)	1766(5)	800(4)
F(212)	-1459(4)	2210(4)	1627(3)	C(213)	-1931(6)	1282(6)	25(5)
F(213)	-3089(4)	1294(5)	112(4)	C(214)	-1579(8)	824(6)	-822(5)
F(214)	-2448(5)	375(4)	-1583(3)	C(215)	-425(8)	805(5)	-917(5)
F(215)	-106(5)	329(4)	-1760(3)	C(216)	408(6)	1277(5)	-147(5)
F(216)	1558(4)	1253(3)	-255(3)	C(311)	311 (5)	4373(5)	3783(3)
F(312)	1480(3)	3049(4)	4178(4)	C(312)	404(5)	3443(5)	4055(4)
F(313)	-413(5)	1998(4)	4497(5)	C(313)	-552(7)	2907(6)	4226(5)
F(314)	-2590(4)	2738(4)	4282(3)	C(314)	-1652(6)	3282(6)	4117(5)
$\mathrm{F}(315)$	-2875(4)	4572(5)	3749(4)	C(315)	-1786(5)	4191(7)	3851(4)
F(316)	-989(4)	5641(4)	3450(3)	C(316)	-818(6)	4733(6)	3696(4)
$\mathrm{F}(412)$	4254(5)	3117(4)	523(4)	C(411)	3291(5)	4741(5)	618(4)
$F(413)$	4530(6)	2818(5)	-1262(4)	C(412)	3824(6)	3843(6)	116(5)
F(414)	3650(5)	4211(6)	-2157(3)	C(413)	3960(8)	3688(7)	-806(6)
F(415)	2557(6)	5969(6)	-1254(4)	C(414)	3529(6)	4393(8)	- 1268(5)
F(416)	2358(5)	6341(4)	570(4)	C(415)	3003(7)	5269(8)	-784(6)
C(1)	401(5)	3491(4)	-862(4)	C(416)	2900(6)	5452(6)	131(5)
C(2)	7905(12)	-497(11)	5319(9)				

Fig. 3 A view of the crystallographically centrosymmetric anionic dimer of $[\mathrm{K}(18$-crown- 6$)]\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{NCS})\right] 6$ showing the Bi , thiolate S and SCN atoms only. Ellipsoids are drawn at the 50% level

Fig. 4 A view of the structure of $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} 8$ showing the atom numbering scheme. Ellipsoids are drawn at the 20% level

With regard to the thiocyanate group in complex 6, a number of bonding modes have previously been observed in complexes of this group with bismuth, ${ }^{7}$ in particular N - and S-bonded terminal thiocyanates and bridging examples such as in $\left[\mathrm{Bi}_{2}(\text { phen })_{4}(\mathrm{NCS})_{4}(\mu-\mathrm{NCS})_{2}\right]$ (phen $=1,10$-phenanthroline) ${ }^{8}$ and $\left[\mathrm{NH}_{4}\right.$ (18-crown-6) $]\left[\mathrm{BiCl}_{3}(\mathrm{NCS})\right]$ 7.9 In both examples where bridging occurs, it is of a centrosymmetric form $\mathrm{Bi}_{2}(\mu-$ $\mathrm{NCS})_{2}$ analogous to 6 with similar $\mathrm{Bi}-\mathrm{N}$ and $\mathrm{Bi}-\mathrm{S}$ distances. Complex 7 is, in fact, rather similar to 6 in terms of the formula and differs only in the presence of $\mathrm{NH}_{4}{ }^{+}$rather than K^{+}and in having chloride rather than the $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group. The structure of the anionic bismuth part is, however, a little different in that the centrosymmetric $\mathrm{Bi}_{2} \mathrm{Cl}_{6}(\mu-\mathrm{NCS})_{2}$ units are further linked by bridging chloride interactions into polymeric chains wherein each bismuth is six-co-ordinate. The lesser degree of aggregation in 6 vs 7 is presumably a consequence of the much larger size of the $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group.

The reaction between complex 1 and an excess of either OPPh_{3}, hmpa (hmpa $=$ hexamethylphosphoramide) or dmpu [dmpu $=N, N^{\prime}$-dimethylpropyleneurea (1,3-dimethyl-1,3-diaz-inan-2-one] resulted, after work-up, in yellow crystals of the bis(ligand) complexes $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OPPh}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} 8$, $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{hmpa})_{2}\right] 9$ and $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{dmpu})_{2}\right] 10$ respectively. The structures of $\mathbf{8 - 1 0}$ were established by X-ray crystallography which revealed that they are all similar in comprising a five-co-ordinate square-based pyramidal bismuth

Fig. 5 A view of the structure of $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{hmpa})_{2}\right] 9$ showing the atom numbering scheme. Ellipsoids are drawn at the 30% level

Fig. 6 A view of the structure of $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}(\mathrm{dmpu})_{2}\right] 10$ showing the atom numbering scheme. Ellipsoids are drawn at the 30% level

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 8

$\mathrm{Bi}(1)-\mathrm{S}(1)$	$2.613(2)$	$\mathrm{Bi}(1)-\mathrm{S}(2)$	$2.617(2)$
$\mathrm{Bi}(1)-\mathrm{S}(3)$	$2.588(2)$	$\mathrm{Bi}(1)-\mathrm{O}(1)$	$2.627(5)$
$\mathrm{Bi}(1)-\mathrm{O}(2)$	$2.586(6)$		
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(2)$	$77.48(8)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$91.73(8)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$167.5(1)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$91.3(2)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$96.29(8)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$105.5(1)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$163.5(2)$	$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$75.9(1)$
$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$96.1(2)$	$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$88.0(2)$

centre bonded to three $\mathrm{SC}_{6} \mathrm{~F}_{5}$ groups, one apical and two basal, and the two oxygen atoms of the O-donor ligands, the latter occupying cis positions in the basal plane. Views of complexes 8-10 are shown in Figs. 4-6 respectively with selected bond lengths and angles given in Tables 5, 7 and 9 and atomic positional parameters presented in Tables 6,8 and 10 . In all three structures, the $\mathrm{Bi}-\mathrm{S}$ bonds trans to the O-donor atoms are significantly longer than the unique apical $\mathrm{Bi}-\mathrm{S}$ bond (average difference for $\mathbf{8}=0.027$, for $9=0.090$ and for $\mathbf{1 0}=0.033 \AA$). Furthermore, the longer of the basal $\mathrm{Bi}-\mathrm{S}$ bonds is always trans to the shorter $\mathrm{Bi}-\mathrm{O}$ bond. Thus for $\mathbf{8}$, the relevant distances

Table 6 Atomic positional parameters for complex 8

Atom	x	y	z	Atom	x	y	z
Bi(1)	3090(1)	1489(1)	1804(1)	C(136)	1397(4)	2733(3)	3889(3)
S(1)	4444(2)	710(1)	1355(1)	C(211)	1616(4)	3321(3)	507(2)
S(2)	3242(2)	487(1)	2513(1)	C(212)	1078(5)	3295(3)	996(2)
S(3)	4814(2)	2118(1)	2394(1)	C(213)	149(5)	3697(3)	1025(2)
$\mathrm{P}(1)$	1994(2)	2934(1)	2778(1)	C(214)	-241(4)	4126(3)	566(3)
$\mathrm{P}(2)$	2783(2)	2776(1)	464(1)	C(215)	298(5)	4152(2)	78(2)
$\mathrm{O}(1)$	2143(5)	2414(3)	2340(2)	C(216)	1226(5)	3750(3)	48(2)
O(2)	2826(5)	2222(3)	876(3)	C(221)	4104(4)	3234(3)	614(3)
F(312)	5762(7)	983(4)	410(4)	C(222)	5097(6)	2887(3)	830(3)
F(313)	5018(10)	892(4)	-764(4)	C(223)	6145(5)	3206(5)	954(3)
F(314)	2829(9)	592(4)	-1216(3)	C(224)	6201(6)	3872(5)	863(3)
F(315)	1335(8)	409(4)	-477(4)	C(225)	5208(8)	4218(3)	648(3)
F(316)	2043(5)	488(4)	693(3)	C(226)	4160(6)	3899(3)	524(3)
F(412)	3689(5)	184(3)	3785(2)	C(231)	2539(5)	2526(3)	- 293(2)
F(413)	2336(6)	380(4)	4585(3)	C(232)	3273(4)	2678(3)	-681(3)
F(414)	294(6)	1002(3)	4261(3)	C(233)	3014(6)	2476(3)	-1267(3)
F(415)	-381(5)	1408(3)	3133(3)	C(234)	2021(6)	2122(3)	-1464(2)
F(416)	919(4)	1154(3)	2320(2)	C(235)	1287(5)	1970(3)	-1076(3)
F(512)	5258(5)	1307(3)	3492(2)	C(236)	1546(5)	2172(3)	-491(3)
F(513)	6865(5)	383(3)	3787(3)	C(311)	3902(6)	736(3)	585(2)
F(514)	8329(5)	107(3)	3043(3)	C(312)	4670(6)	844(3)	204(4)
F(515)	8204(5)	754(3)	2017(3)	C(313)	4302(9)	802(4)	-403(3)
F(516)	6651(5)	1697(3)	1734(2)	C(314)	3166(10)	652(4)	-631(2)
C(111)	3025(4)	3572(2)	2792(3)	C(315)	2398(7)	543(4)	-251(4)
C(112)	3557(6)	3660(3)	2307(2)	C(316)	2766(6)	585(3)	357(3)
C(113)	4394(5)	4135(3)	2320(3)	C(411)	2353(5)	668(3)	3029(2)
C(114)	4698(5)	4522(3)	2819(4)	C(412)	2714(5)	469(3)	3611(3)
C(115)	$4166(6)$	4434(3)	3304(3)	C(413)	2024(6)	579(3)	4029(2)
C(116)	3329(5)	3960(3)	3291(2)	C(414)	972(6)	888(3)	3866(3)
C(121)	573(4)	3273(2)	2621(2)	C(415)	611(4)	1086(3)	3284(3)
C(122)	-322(5)	2863(2)	2383(2)	C(416)	1302(5)	976(3)	2866(2)
C(123)	-1439(4)	3095(3)	2268(2)	C(511)	5854(3)	1504(2)	2597(2)
C(124)	-1662(4)	3738(3)	2393(3)	C(512)	5930(3)	1165(2)	3125(2)
C(125)	-768(5)	4148(2)	2631(3)	C(513)	6773(4)	696(2)	3278(2)
C(126)	350(4)	3915(2)	2745(2)	C(514)	7541(4)	566(2)	2903(2)
C(131)	2190(5)	2633(3)	3520(2)	C(515)	7466(3)	905(2)	2374(1)
C(132)	3200(4)	2298(3)	3729(3)	C(516)	6622(3)	1373(2)	2222(2)
C(133)	3417(5)	2065(3)	4305(3)	$\mathrm{Cl}(1)$	8847(5)	1114(3)	-47(2)
C(134)	2624(6)	2165(3)	4673(2)	$\mathrm{Cl}(2)$	9570(4)	1808(2)	968(2)
C(135)	1614(5)	2500(3)	4465(2)	C(1)	8586(4)	1258(2)	620(1)

are (for $\mathrm{Bi}-\mathrm{S}$ followed by $\mathrm{Bi}-\mathrm{O}$) $2.613(2) / 2.627(5)$ and $2.617(2) / 2.586(6)$, for 9 the distances are $2.626(1) / 2.547(3)$ and $2.670(1) / 2.502(3)$ and for 10 they are $2.574(2) / 2.728(5)$ and $2.587(2) / 2.645(4) \AA$. In all cases, the Bi atom lies close to the mean plane defined by the four basal atoms [8, $0.020(1)$ below; 9, 0.096(1) below; 10, $0.118(1) \AA$ above (below and above refering to the apical $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group)]. In addition, for 8 there is a close $\mathrm{Bi} \ldots \mathrm{F}$ contact $[\mathrm{Bi}(1)-\mathrm{F}(416) 3.102(6) \AA]$ trans to the apical $\mathrm{Bi}-\mathrm{S}$ bond which may be viewed as occupying the sixth site of a co-ordination octahedron (albeit rather weakly). A similar situation exists for 9 where the $\mathrm{Bi}(1) \cdots \mathrm{F}(316)$ distance is $3.254(7) \AA$ and for 10 where the $\mathrm{Bi}(1) \cdots \mathrm{F}(126)$ distance is $3.194 \AA$.

An interesting point with regard to the structures of complexes 5 and 8 concerns the $\mathrm{Bi}-\mathrm{S}-\mathrm{P}$ and $\mathrm{Bi}-\mathrm{O}-\mathrm{P}$ angles which are $105.7(6)^{\circ}$ for 5 and $160.5(3)$ and $164.7(4)^{\circ}$ [for $\mathrm{O}(1)$ and $O(2)$ respectively] for 8 . The significantly larger angles in phosphine oxide complexes compared with phosphine sulfide complexes are quite general and have been commented upon by Burford. ${ }^{10}$ The more acute angle at sulfur may account for why 1 forms a mono(ligand) complex with SPPh_{3} in contrast to a bis(ligand) complex with OPPh_{3}, since in the former case, the effective steric size of the ligand is probably greater.

The reaction between compound 1 and an excess of $N, N^{\prime}-$ dimethylthiourea, $\mathrm{S}=\mathrm{C}(\mathrm{NHMe})_{2}$, afforded, after work-up, red-purple crystals of the tris(ligand) complex $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\{\mathrm{~S}=\right.$ $\left.\left.\mathrm{C}(\mathrm{NHMe})_{2}\right\}_{3}\right]$ 11. A view of the structure is shown in Fig. 7 with selected bond lengths and angles given in Table 11 and atomic positional parameters presented in Table 12. Molecules

Table 7 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 9

$\mathrm{Bi}(1)-\mathrm{S}(1)$	$2.626(1)$	$\mathrm{Bi}(1)-\mathrm{S}(2)$	$2.558(1)$
$\mathrm{Bi}(1)-\mathrm{S}(3)$	$2.670(1)$	$\mathrm{Bi}(1)-\mathrm{O}(1)$	$2.547(3)$
$\mathrm{Bi}(1)-\mathrm{O}(2)$	$2.502(3)$		
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(2)$	$94.40(4)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$86.03(3)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$167.49(7)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$82.00(7)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$95.26(5)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$74.76(7)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$88.78(8)$	$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$100.95(8)$
$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$167.62(7)$	$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$91.4(1)$

of 11 reside on a crystallographic C_{3} axis for which the unique $\mathrm{Bi}-\mathrm{SC}_{6} \mathrm{~F}_{5}$ and $\mathrm{Bi}-\mathrm{S}=\mathrm{C}(\mathrm{NHMe})_{2}$ distances are $2.721(2)$ and 2.946(3) \AA respectively. The C_{3} site symmetry requires that the three $\mathrm{SC}_{6} \mathrm{~F}_{5}$ groups adopt a fac configuration as must the three $\mathrm{S}=\mathrm{C}(\mathrm{NHMe})_{2}$ ligands. The interbond angle between the thiolate sulfurs is $94.61(8)^{\circ}$ whereas that between the thiourea sulfurs is slightly smaller at $90.27(11)^{\circ}$ which is consistent with the larger size of the $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group and the longer $\mathrm{Bi}-\mathrm{S}$ bond distance to the thiourea ligands.

The structures of complexes 5, 6 and 8-11 described above reveal that $\mathbf{1}$ is a Lewis acid which can co-ordinate one, two or three ligands in a manner which is similar to that of many ligand complexes of bismuth trihalides, although in the case of the halides, additional halide bridges are usually present in the mono- and bis-ligand complexes which result in six-coordination around the bismuth centre; ${ }^{5}$ this is probably the result of the much smaller size of halide vs. $\mathrm{SC}_{6} \mathrm{~F}_{5}$ as mentioned

Table 8 Atomic positional parameters for complex 9

Atom	x	y	z	Atom	x	y	z
$\mathrm{Bi}(1)$	-705(1)	1734(1)	2788(1)	C(12)	3093(6)	384(5)	981(4)
$\mathrm{P}(1)$	1600(1)	-1019(1)	1714(1)	C(13)	91(6)	- 1220(6)	928(4)
$\mathrm{P}(2)$	2002(1)	2557(1)	3091(1)	C(14)	1441(8)	-3017(5)	1425(4)
S(1)	-1732(1)	3846(1)	3143(1)	C(15)	3685(5)	-2477(6)	2100(5)
S(2)	-223(1)	2332(1)	1190(1)	C(16)	1700(5)	-2142(5)	3246(3)
S(3)	-3060(1)	1651(1)	3043(1)	C (21)	3877(5)	3631(5)	2491(4)
F(112)	-2476(3)	2346(2)	4806(2)	C(22)	3172(6)	3182(5)	1469(3)
F(113)	-4799(3)	2376(3)	5844(2)	C(23)	3406(5)	1523(6)	4163(4)
$\mathrm{F}(114)$	-6852(3)	3865(3)	5431(2)	C(24)	2864(7)	294(5)	3502(5)
$\mathrm{F}(115)$	-6533(3)	5319(3)	3974(2)	C(25)	838(6)	4705(4)	3465(4)
$\mathrm{F}(116)$	-4209(3)	5277(2)	2907(2)	C(26)	462(5)	3136(5)	4606(3)
F(212)	-2760(3)	2994(3)	898(2)	C(111)	-3253(3)	3821(3)	3819(2)
F(213)	-4234(3)	5116(4)	614(2)	C(112)	-3462(4)	3097(3)	4582(3)
F(214)	-3490(3)	6975(3)	578(2)	C(113)	-4649(5)	3102(4)	5119(3)
$\mathrm{F}(215)$	- 1277(4)	6699(3)	851(2)	C(114)	-5687(4)	3848(4)	4908(3)
F(216)	174(3)	4600(3)	1174(2)	C(115)	-5518(4)	4578(4)	4170(3)
$\mathrm{F}(312)$	-4123(3)	861(3)	1999(2)	C(116)	-4321(4)	4547(3)	3637(3)
F(313)	-3890(3)	-1279(3)	1830(2)	C(211)	-1235(4)	3709(4)	1049(2)
F(314)	-2459(4)	-3090(2)	2619(2)	C(212)	-2374(5)	3881(4)	907(3)
F(315)	-1239(3)	-2703(2)	3570(2)	C(213)	-3138(5)	4980(5)	758(3)
F(316)	- 1533(2)	-569(2)	3795(2)	C(214)	-2753(5)	5913(4)	731(3)
N(11)	2618(4)	-515(3)	902(2)	C(215)	-- 1650(5)	5773(4)	876(3)
N(12)	1020(4)	- 1801(3)	1388(2)	C(216)	-912(4)	4683(4)	1038(3)
N(13)	2364(3)	-1853(3)	2365(2)	C(311)	-2824(4)	230(3)	2896(3)
$\mathrm{N}(21)$	2981(3)	3188(3)	2337(2)	C(312)	--3408(4)	-4(4)	2402(3)
$\mathrm{N}(22)$	2689(4)	1439(3)	3653(2)	C(313)	-3292(5)	-1113(5)	2316(3)
$\mathrm{N}(23)$	1244(4)	3483(3)	3757(2)	C(314)	--2565(5)	- 2026(4)	2709(3)
$\mathrm{O}(1)$	574(3)	-107(2)	2146(2)	C(315)	-1971(4)	-1822(4)	3188(3)
$\mathrm{O}(2)$	1267(3)	2189(3)	2704(2)	C(316)	-2111(4)	-720(4)	3285(3)
C(11)	3147(8)	-910(7)	99(4)				

Table 9 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 10

$\mathrm{Bi}(1)-\mathrm{S}(1)$	$2.574(2)$	$\mathrm{Bi}(1)-\mathrm{S}(2)$	$2.587(2)$
$\mathrm{Bi}(1)-\mathrm{S}(3)$	$2.548(2)$	$\mathrm{Bi}(1)-\mathrm{O}(1)$	$2.645(4)$
$\mathrm{Bi}(1)-\mathrm{O}(2)$	$2.728(5)$		
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(2)$	$82.25(6)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$92.7(1)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$89.1(1)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$157.4(1)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(3)$	$89.3(1)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$166.0(1)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$88.2(1)$	$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{O}(1)$	$80.0(1)$
$\mathrm{S}(3)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$107.6(2)$	$\mathrm{O}(1)-\mathrm{Bi}(1)-\mathrm{O}(2)$	$103.7(2)$

above in connection with the structures of 6 and 7. The suggestion that the $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group may be considered as a pseudohalide ${ }^{4}$ is therefore reasonable.

In terms of the bonding in the ligand complexes, the use of $\mathrm{Bi}-\mathrm{S} \sigma^{*}$ orbitals in $\mathbf{1}$ to co-ordinate up to three ligands is clearly consistent with the observed structures in terms of the coordination geometries adopted. For four- and five-co-ordinate structures, these geometries are in accord with the predictions of VSEPR (valence-shell electron pain repulsion); for the six-coordinate structure of 11, the octahedral geometry and the resulting stereochemical inactivity of the $\mathrm{Bi}^{\mathrm{LII}}$ lone pair follows naturally from the model whereas VSEPR predictions for this co-ordination number and electron count are not unambiguous. As a further point, it is clear from the structures that the thiolate $\mathrm{Bi}-\mathrm{S}$ bond lengths are significantly lengthened as a result of the trans co-ordination of a ligand and also that the two $\mathrm{S}-\mathrm{Bi}-\mathrm{L}$ bond distances are correlated in such a way that as the $\mathrm{Bi}-\mathrm{L}$ distance gets shorter, the $\mathrm{Bi}-\mathrm{S}$ distance gets longer. All of these data are consistent with the σ^{*}-orbital model in which ligand electron pair donation populates an antibonding orbital.

As a final point, it is interesting to compare the structures of some of the complexes reported herein with a number of ligand adducts of bismuth(III) alkoxides. In ref. 1, we commented upon the relationship between the structure of 1 and that of the analogous alkoxide complex $\mathrm{Bi}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{3}$ 12. ${ }^{11}$ When 12 is

Fig. 7 A view of the structure of $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left\{\mathrm{~S}=\mathrm{C}(\mathrm{NHMe})_{2}\right\}_{3}\right] 11$ showing the atom numbering scheme. Ellipsoids are drawn at the 30% level
recrystallised from toluene, it crystallises as a dimer and as a toluene adduct. Complex 1 does not incorporate toluene when recrystallised from this solvent and, although a bridging thiolate interaction is present, it is much weaker than the corresponding bridging alkoxide in $\mathbf{1 2}$ as judged by the more symmetrical nature of the bridging $\mathrm{Bi}-\mathrm{O}$ bond distances in the latter. Crystallisation of $\mathbf{1 2}$ from thf-hexane yields crystals of $\left[\mathrm{Bi}_{2}\left(\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{4}\left(\mu-\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{4}\right] \cdot \mathrm{C}_{6} \mathrm{H}_{14}$ 12a and $\left[\mathrm{Bi}_{2}\left(\mathrm{OC}_{6}-\right.\right.$ $\left.\left.\mathrm{F}_{5}\right)_{4}\left(\mu-\mathrm{OC}_{6} \mathrm{~F}_{5}\right)_{2}(\text { thf })_{4}\right] \mathbf{1 2 b}$, which differ in whether hexane of crystallisation is present or not, both of which contain two thf ligands per bismuth centre but which have six-co-ordinate bismuth centres as a result of bridging $\mathrm{OC}_{6} \mathrm{~F}_{5}$ groups in contrast to the lack of bridging $\mathrm{SC}_{6} \mathrm{~F}_{5}$ groups in $\mathbf{8 - 1 0}$. This feature is again evident in the structure of the complex

Table 10 Atomic positional parameters for complex 10

Atom	x	y	z	Atom	x	y	z
$\mathrm{Bi}(1)$	3012(1)	2318(1)	3038(1)	C(14)	1192(14)	4753(13)	7144(10)
S(1)	4916(2)	1330(2)	3773(2)	C(15)	2021(13)	5224(9)	6239(9)
S(2)	4398(2)	1167(2)	1569(1)	C(16)	3511(9)	4882(9)	4512(8)
S(3)	4021(5)	3871(3)	2025(2)	C(21)	176(5)	2205(5)	2204(5)
$\mathrm{N}(12)$	715(5)	3900(5)	6008(4)	C(22)	896(9)	3015(9)	424(8)
N(16)	2436(6)	4655(5)	5371(5)	C(23)	-795(8)	2023(8)	953(6)
$\mathrm{N}(22)$	81(5)	2382(5)	1244(5)	C(24)	-1816(11)	1747(11)	1836(8)
$\mathrm{N}(26)$	- 597(6)	1641(6)	2951(5)	C(25)	-1446(8)	1188(9)	2728(8)
F(112)	6184(6)	2274(6)	4721(6)	C(26)	-491(10)	1406(9)	3992(7)
F(113)	5568(8)	2546(6)	6670(7)	C(111)	4369(7)	1613(5)	5049(5)
F(114)	3397(11)	2149(6)	8030(5)	C(112)	5098(8)	2019(7)	5400(7)
F(115)	1879(9)	1332(7)	7425(5)	C(113)	4825(12)	2189(8)	6349(10)
F(116)	2564(5)	977(5)	5452(5)	C(114)	3761(16)	1958(8)	7053(8)
F(212)	2868(5)	-142(4)	3361(3)	C(115)	2934(12)	1551(8)	6787(8)
F(213)	1393(6)	-1315(5)	3288(5)	C(116)	3293(9)	1383(6)	5747(6)
F(214)	1075(5)	-1386(5)	1465(6)	C(211)	3369(5)	426(4)	1575(4)
F(215)	2243(6)	-247(6)	-268(5)	C(212)	2746(6)	-164(5)	2440(5)
F(216)	3753(5)	928(4)	-216(3)	C(213)	1988(7)	-778(6)	2425(7)
F(312)	6258(7)	2907(5)	302(7)	C(214)	1813(7)	-803(7)	1525(8)
F(313)	6368(5)	3184(5)	- 1704(5)	C(215)	2407(8)	-255(7)	639(7)
F(314)	4313(6)	4384(5)	-2325(3)	C(216)	3166(7)	379(5)	670(5)
F(315)	2152(6)	5261(5)	-987(5)	C(311)	4101(11)	3947(6)	751(5)
F(316)	1974(7)	5038(6)	987(5)	C(312)	5244(9)	3480(6)	3(7)
$\mathrm{O}(1)$	2116(5)	3636(4)	4449(3)	C(313)	5292(7)	3625(6)	-1017(6)
$\mathrm{O}(2)$	933(5)	2542(5)	2411(5)	C(314)	4258(7)	4219(5)	- 1327(5)
C(11)	1779(6)	4047(5)	5238(4)	C(315)	3170 (8)	4671(6)	-651(6)
C(12)	-62(9)	3293(9)	5870(9)	C(316)	3083(8)	4549(6)	343(6)
C(13)	217(10)	4441(11)	6926(7)				

Table 11 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex 11

$\mathrm{Bi}(1)-\mathrm{S}(1)$	$2.721(2)$	$\mathrm{Bi}(1)-\mathrm{S}(2)$	$2.946(3)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(1 \mathrm{a})$	$94.61(8)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(1 b)$	$94.61(8)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(2)$	$81.62(9)$	$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(2 a)$	$170.83(8)$
$\mathrm{S}(1)-\mathrm{Bi}(1)-\mathrm{S}(2 b)$	$94.03(9)$	$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(2 a)$	$90.3(1)$
$\mathrm{S}(2)-\mathrm{Bi}(1)-\mathrm{S}(2 b)$	$90.3(1)$		

Symmetry transformations used to generate equivalent atoms: $\mathrm{a},-y$, $x-y, z ; \mathrm{b},-x+y,-x, z$.
$\left[\mathrm{Bi}_{2}\left\{\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right\}_{4}\left\{\mu-\mathrm{OCH}\left(\mathrm{CF}_{3}\right)_{2}\right\}_{2}(\text { thf })_{2}\right] \mathbf{1 3}^{11}$ which, as a mono(ligand) complex, is analogous to 5 the main difference being that the alkoxide bridges are much more developed in 13 than are the bridging thiolate interactions in 5. The comparisons between 1 and 12 are therefore consistent with the view that the bismuth centre in 14 is the more Lewis acidic as a result of the greater electron-withdrawing character of the $\mathrm{OC}_{6} \mathrm{~F}_{5}$ vs. the $\mathrm{SC}_{6} \mathrm{~F}_{5}$ group. An example of a tris(ligand) complex of an alkoxide is $\left[\mathrm{Bi}\left(\mathrm{OSiPh}_{3}\right)_{3}-\right.$ (thf) $)_{3}$. ${ }^{12}$

Experimental

General.--All experiments were performed under an atmosphere of dry, oxygen-free dinitrogen using standard Schlenk techniques. All solvents were dried and distilled over appropriate drying agents immediately prior to use. Microanalytical data were obtained at the University of Newcastle. Bismuth trichloride $(99.9 \%), \mathrm{HSC}_{6} \mathrm{~F}_{5}$ and other reagents were procured commercially and used without further purification.

Preparations.--In a typical reaction, crystals of complexes 5,8 and 11 were obtained by reacting a solution of $\mathbf{1}$ in thf (typically about $0.1 \mathrm{~g}, 0.125 \mathrm{mmol}$ of $1 \mathrm{in} 10 \mathrm{~cm}^{3}$ thf) with $3-4$ equivalents of the corresponding ligand. After stirring for 1 h , all volatiles were removed by vacuum and the resulting solid was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ to which hexanes ($\approx 30-40$

Table 12 Atomic positional parameters for complex 11

Atom		y	z
$\mathrm{Bi}(1)$	0	0	$-2590(1)$
$\mathrm{S}(1)$	$120(2)$	$1618(2)$	$-2156(1)$
$\mathrm{S}(2)$	$-1351(2)$	$460(3)$	$-3101(1)$
$\mathrm{F}(112)$	$665(8)$	$1296(7)$	$-1320(2)$
$\mathrm{F}(113)$	$2602(11)$	$2114(11)$	$-1004(3)$
$\mathrm{F}(114)$	$4291(8)$	$3340(10)$	$-1432(4)$
$\mathrm{F}(115)$	$4088(7)$	$3871(8)$	$-2174(3)$
$\mathrm{F}(116)$	$2186(6)$	$3143(6)$	$-2511(2)$
$\mathrm{N}(1)$	$-440(9)$	$1647(8)$	$-3729(3)$
$\mathrm{N}(2)$	$156(8)$	$2408(7)$	$-3127(3)$
$\mathrm{C}(1)$	$-485(9)$	$1577(10)$	$-3333(4)$
$\mathrm{C}(11)$	$-1187(14)$	$830(13)$	$-4010(4)$
$\mathrm{C}(21)$	$944(13)$	$3378(11)$	$-3296(5)$
$\mathrm{C}(111)$	$1358(8)$	$2129(8)$	$-1934(3)$
$\mathrm{C}(112)$	$1500(13)$	$1920(10)$	$-1542(4)$
$\mathrm{C}(113)$	$2478(18)$	$2315(16)$	$-1363(4)$
$\mathrm{C}(114)$	$3346(15)$	$2954(16)$	$-1589(6)$
$\mathrm{C}(115)$	$3248(11)$	$3204(12)$	$-1955(6)$
$\mathrm{C}(116)$	$2261(11)$	$2837(9)$	$-2134(4)$

cm^{3}) were added as an overlayer. Solvent diffusion over a period of days at $-30^{\circ} \mathrm{C}$ afforded crystals of 5,8 and 11 . Compounds 9 and 10 were prepared similarly but by dissolving 1 directly in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$, adding either hmpa or dmpu and overlayering with hexanes. Colours and analytical data for 5 and 8-11 are as follows: 5, orange (Found: C, 39.35; H, 1.20. $\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{BiF}_{15} \mathrm{PS}_{4}$ requires $\mathrm{C}, 39.30 ; \mathrm{H}, 1.40$); $\mathbf{8}$, yellow (Found: $\mathrm{C}, 45.65 ; \mathrm{H}, 2.10 . \mathrm{C}_{54} \mathrm{H}_{30} \mathrm{BiF}_{15} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ requires C , $45.65 ; \mathbf{H}, 2.25$); 9, yellow (Found: C, 31.85; H, 3.00; N, 7.35 . $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{BiF}_{15} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{3}$ requires $\mathrm{C}, 30.95 ; \mathrm{H}, 3.10 ; \mathrm{N}, 7.20$); 10 , yellow (Found: C, $33.80 ; \mathrm{H}, 2.10$; N, $5.10 . \mathrm{C}_{30} \mathrm{H}_{24} \mathrm{Bi}-$ $\mathrm{F}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{3}$ requires $\mathrm{C}, 33.90 ; \mathrm{H}, 2.30 ; \mathrm{N}, 5.25$); 11, redpurple (Found: C, $28.70 ; \mathrm{H}, 1.90 ; \mathrm{N}, 7.30 . \mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BiF}_{15} \mathrm{~N}_{6} \mathrm{~S}_{6}$ requires $\mathrm{C}, 29.00 ; \mathrm{H}, 2.15 ; \mathrm{N}, 7.50 \%$).

The urea and diphenyl sufoxide complexes $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\right.$ $\left.\left\{\mathrm{S}=\mathrm{C}\left(\mathrm{NH}_{2}\right)_{2}\right\}\right] 14$ and $\left[\mathrm{Bi}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{3}\left(\mathrm{OSPh}_{2}\right)_{2}\right] 15$ were prepared as yellow crystalline materials in a similar manner to 5 although
Table 13 Crystallographic and structure solution data for compounds 5, 6, 8-11

	5	6	8	9	10	11
Formula	$\mathrm{C}_{36} \mathrm{H}_{15} \mathrm{BiF}_{15} \mathrm{PS}_{4}$	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BiF}_{15} \mathrm{KNO}_{6} \mathrm{~S}_{4}$	$\mathrm{C}_{54} \mathrm{H}_{30} \mathrm{~F}_{15} \mathrm{BiO}_{2} \mathrm{P}_{2} \mathrm{~S}_{3} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{BiF}_{15} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{3}$	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{BiF}_{15} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{3}$	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{BiF}_{15} \mathrm{~N}_{6} \mathrm{~S}_{6}$
$M_{\text {r }}$	1100.67	1167.83	1447.81	1164.75	1062.69	1118.86
Space group	$P 2_{1} / n$	PT	$P 2_{1} / n$	PT	PT	$R \overline{3}$
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic	Triclinic	Trigonal
a / \AA	14.275(1)	11.3600(7)	11.866(1)	$11.7175(8)$	11.5075(8)	14.784(1)
b / \AA	11.6308(9)	12.7417(7)	20.599(2)	12.4263(10)	13.0926(7)	
c / \AA	23.446(2)	15.0991(9)	22.998(2)	17.077(2)	13.9520(10)	33.144(2)
$\alpha{ }^{\circ}$		107.434(4)		76.224(8)	76.218(5)	
$\beta /{ }^{\circ}$	97.06(3)	97.888(5)	100.386(8)	69.389(8)	69.829(6)	
$\gamma /{ }^{\circ}$		91.402(5)		71.034(6)	71.298(5)	
U / \AA^{3}	3863.3(5)	2060.4(2)	5529.2(9)	2179.5(3)	1849.6(2)	6273.6(7)
θ range for cell $/{ }^{\circ}$	17.7-19.2	17.6-19.4	17.5-20.1	17.5-20.8	17.6-20.8	17.5-21.1
Z	4	2	4	2	2	6
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.892	1.882	1.739	1.775	1.908	1.777
$F(000)$	2112	1132	2832	1140	1028	3252
$\mu(\mathrm{Mo}-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	49.22	46.92	35.49	43.62	50.47	46.1
T/K	292	292	293	292	292	292
Scan mode	$\theta-2 \theta$	$\theta-2 \theta$	$\theta-2 \theta$	- 2 -	- 2 -	- 2 2
θ range/ ${ }^{\circ}$	2.4-25.0	2.1-25.0	2.3-25.0	2.3-25.0	$2.4<-25.0$	2.8-25.0
Crystal size/mm	$0.38 \times 0.20 \times 0.13$	$0.33 \times 0.27 \times 0.13$	$0.3 \times 0.3 \times 0.2$	$0.4 \times 0.4 \times 0.3$	$0.43 \times 0.40 \times 0.40$	$0.3 \times 0.3 \times 0.2$
Range of transmission coefficients	0.554-0.352	0.81-1.18	0.83-1.29	0.87-1.12	0.83-1.21	$0.85-1.14$
No. of data collected	7639	7532	9960	8045	6860	1412
No. of unique data	5426	7230	9709	7640	6508	1407
$h k l$ range	$\begin{aligned} & 0-16,0-13 \\ & -27 \text { to } 27 \end{aligned}$	$\begin{aligned} & -13 \text { to } 13,-14 \text { to } 15, \\ & -17 \text { to } 0 \end{aligned}$	$\begin{aligned} & -14 \text { to } 13,-24 \text { to } 0, \\ & 0-27 \end{aligned}$	$\begin{aligned} & -13 \text { to } 0,-14 \text { to } 13, \\ & -20 \text { to } 18 \end{aligned}$	$\begin{aligned} & -13 \text { to } 0,-15 \text { to } 14, \\ & -16 \text { to } 15 \end{aligned}$	$\begin{array}{r} 0-15,0-15, \\ -39 \text { to } 0 \end{array}$
$R_{\text {merge }}$	0.022	0.028	0.055	0.014	0.027	0.011
No. of data in refinement	5426	7230	9709	7640	6508	1407
No. of refined parameters	262	532	604	544	500	168
Final R	0.154	0.033	0.051	0.026	0.036	0.032
Final $w R_{2}$	0.433	0.084	0.116	0.056	0.094	0.094
Goodness-of-fit, S	1.133	1.046	0.853	1.023	1.041	1.157
Largest max., min. remaining features in electron density map/e \AA^{-3}	+8.72, - 2.32	+0.87, -0.83	+0.88, - 1.29	+0.74, -0.61	+1.19, - 1.33	+0.57, -0.35
Max., mean shift/e.s.d. in last cycle	0.005, 0.001	0.001, 0.0005	0.001, 0.0005	0.022, 0.001	0.1, 0.002	0.005, 0.001
$R_{\text {merge }}=\Sigma \mid F_{\mathrm{o}}{ }^{2}-F_{\mathrm{o}}{ }^{2}($ mean $) \mid / \Sigma\left(F_{\mathrm{o}}{ }^{2}\right), R$ is the conventional $\left.R=\Sigma \mid\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)\right\} / \Sigma\left\|F_{\mathrm{o}}\right\|$ for those $F_{\mathrm{o}}>4 \sigma\left(F_{\mathrm{o}}\right), w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)\right]^{2} / \Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{\frac{1}{2}}$.						

X-ray quality crystals were not obtained (Found for 14: C, $25.45 ; \mathrm{H}, 0.25 ; \mathrm{N}, 3.65 . \mathrm{C}_{19} \mathrm{H}_{4} \mathrm{BiF}_{15} \mathrm{~N}_{2} \mathrm{~S}_{4}$ requires C, 25.85 ; $\mathrm{H}, 0.45 ; \mathrm{N}, 3.15$. Found for 15: C, 41.90; H, 1.40. $\mathrm{C}_{42} \mathrm{H}_{20^{-}}$ $\mathrm{BiF}_{15} \mathrm{O}_{2} \mathrm{~S}_{5}$ requires $\mathrm{C}, 41.65 ; \mathrm{H}, 1.65 \%$).

Complex 6 was prepared as yellow crystals by addition of 1 equivalent of [$\mathrm{K}(18$-crown- 6$)] \mathrm{SCN}$ to 1 in thf with crystallisation as for 5 (Found: C, 32.50; H, 1.85; N, 1.40. $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{BiF}_{15} \mathrm{KNO}_{6} \mathrm{~S}_{4}$ requires C, $31.90 ; \mathrm{H}, 2.10 ; \mathrm{N}, 1.20 \%$).

Typical crystalline yields for all complexes were about 50%.
X-Ray Crystallography.-Crystallographic data and details of the data collection procedures and structure refinement for all structures are presented in Table 13. The following section deals with the structure of complex 6; details for the other structures where different are given in parentheses. Data were collected on an Enraf-Nonius Turbo-CAD4 diffractometer, running under CAD4-Express software, and with graphitemonochromated X-radiation ($\lambda=0.71069 \AA$). Accurate unitcell parameters were determined by refinement of setting angles of 25 (23 for 5) optimal high-angle reflections which were flagged during data collection. Standard reflections were measured every 2 h during data collection, and a $7 \%(5,8 ; 8,13$; $9,10,10,4 ; 11,3 \%$) decrease in intensities was noted and an interpolated correction applied. Corrections were applied for Lorentz-polarisation and absorption (DIFABS ${ }^{13}$) (ψ scans for 5) effects. The structure was solved for the heavy atoms by direct methods (SHELX 86) (for 5, data were inadvertently collected on a twinned crystal. Although reflections from only one of the distinct twins were indexed, and used to give a unique cell, it was apparent from the structure solution that there were many coincident reflections from the other twin. This results in many of the $F_{\mathrm{o}} \mathrm{s}$ being more intense than the calculated $F_{\mathrm{c}} \mathrm{s}$, and hence the high residuals. Nevertheless, the overall chemical features of 5 were well enough defined though the accuracy of the metrical parameters is low. Out of the 7639 measured reflections, a total of 1602 had intensities less than or equal to zero, and these reflections were deleted from the data file) (initially for 11, as the statistics of the E-intensities indicated a non-centrosymmetric space group, the structure was solved in $R 3$, but it became clear during subsequent refinement that the true space group was $R \overline{3}$). Subsequent difference syntheses gave all other non-H atomic positions. All non-hydrogen atoms were allowed anisotropic thermal motion (for 5 , only the Bi, S and F atoms were allowed anisotropic thermal motion). Hydrogen atoms were included at calculated positions ($\mathrm{C}-\mathrm{H} 0.93 \AA$) and were assigned isotropic thermal parameters 1.2 times those of their attached carbon atom (phenyl groups for $\mathbf{8}$ were refined as rigid groups with idealised geometry, C-C $1.395 \AA$, angles
120°). Refinement was by full matrix least-squares on F^{2} using the weighting scheme $w=\left[\sigma^{2}\left(F_{\mathrm{o}}\right)^{2}+(0.0558 P)^{2}\right]^{-1}$ where $P=\left[F_{\mathrm{o}}+2 F_{\mathrm{c} 2} / 3 ; \sigma\left(F_{\mathrm{o}}\right)^{2}\right.$ was estimated from counting statistics $\left[5,(0.157 P)^{2}+613.0 P ; 8,0.0784 P ; 9,0.0167 P ; 10\right.$, $\left.(0.0694 P)^{2}+0.96 P ; 11,0.0617 P\right]$ Neutral-atom scattering factors were taken from ref. 14 with corrections for anomalous dispersion. Calculations were carried out using SHELXL 93. ${ }^{15}$

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for a studentship (F. J. L.) and N. C. N. also thanks the Royal Society for additional supporting funds.

References

1 L. J. Farrugia, F. J. Lawlor and N. C. Norman, Polyhedron, 1995, 14, 311.
2 D. A. Atwood, A. H. Cowley, R. D. Hernandez, R. A. Jones, L. L. Rand, S. G. Bott and J. L. Atwood, Inorg. Chem., 1993, 32, 2972.

3 M. E. Peach, Can. J. Chem., 1968, 46, 2699
4 M. Muller, R. J. H. Clark and R. S. Nyholm, Transition Met. Chem., 1978, 3, 369.
5 See, for example, W. Clegg, L. J. Farrugia, A. McCamley, N. C. Norman, A. G. Orpen, N. L. Pickett and S. E. Stratford, J. Chem. Soc., Dalton Trans., 1993, 2579

6 N. C. Norman, Phosphorus, Sulfur, Silicon, 1994, 87, 167.
7 A. Crispini, R. J. Errington, G. A. Fisher, F. J. Funke, N. C. Norman, A. G. Orpen, S. E. Stratford and O. Struve, J. Chem. Soc., Dalton Trans., 1994, 1327 and refs. therein.

8 N. Bertazzi, G. Alonzo, L. P. Battaglia, A. Bonamartini Corradi and G. Pelosi, J. Chem. Soc., Dalton Trans., 1990, 2403.

9 F. Yuepeng, X. Hongwei and Z. Wenxing, Chem. J. Chin. Univ., 1989, 10, 77.
10 N. Burford, Coord. Chem. Rev., 1992, 112, 1.
11 C. M. Jones, M. D. Burkart and K. H. Whitmire, Angew. Chem., Int. Ed. Engl., 1992, 31, 451; C. M. Jones, M. D. Burkart, R. E. Bachman, D. L. Serra, S.-J. Hwu and K. H. Whitmire, Inorg. Chem., 1993, 32, 5136.
12 M.-C. Massianai, R. Papiernik, L. G. Hubert-Pfalzgraf and J.-C. Daran, Polyhedron, 1991, 10, 437.

13 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
14 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
15 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.

Received 7th November 1994; Paper 4/06793B

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

