Distortions in Six-co-ordinate Complexes of Molybdenum(II) and Tungsten(II). Crystal Structures of *mer*-[Mo(SC₆H₂Prⁱ₃-2,4,6)₂(CO)₃(PMePh₂)], *cis,cis,cis*-[W(SC₆H₂Me₃-2,4,6)₂(CO)₂-(PMe₂Ph)₂] and [W(SeC₆H₃Prⁱ₂-2,6)₂(CO)₂(PMe₂Ph)₂][†]

Timothy E. Burrow,^a David L. Hughes,^b Alan J. Lough,^a Michael J. Maguire,^b Robert H. Morris^a and Raymond L. Richards^b

^a Department of Chemistry and the Scarborough Campus, University of Toronto, Toronto, Ontario M5S 1A1, Canada

^b Nitrogen Fixation Laboratory, University of Sussex, Brighton BN1 9RQ, UK

The red, diamagnetic complexes *mer*- $[Mo(SC_{e}H_{2}Pr_{3}^{i}-2.4,6)_{2}(CO)_{3}(PMePh_{2})]$ 1 and $[Mo(SC_{e}H_{2}Pr_{3}^{i}-2.4,6)_{2}(CO)_{2}(PMePh_{2})_{2}]$ 2 have been prepared by reaction of $[MoH(SC_{e}H_{2}Pr_{3}^{i}-2.4,6)_{3}(PMePh_{2})]$ with CO in tetrahydrofuran. The crystal structure of 1 shows it to have a distorted octahedral geometry with *mer*-CO ligands $[d(Mo-S) 2.380(1) \text{ and } 2.366(1); d(Mo-C) 2.030(5), 2.026(4) \text{ and } 2.066(5); d(Mo-P) 2.561(1) Å; large S-Mo-S angle of 116.0°]. Reaction of CO with <math>[WH(SC_{e}H_{2}Me_{3}-2.4,6)_{3}(PMe_{2}Ph)_{2}]$ in toluene gives green, distorted octahedral *cis,cis,cis*- $[W(SC_{e}H_{2}Me_{3}-2.4,6)_{2}(CO)_{2}(PMe_{2}Ph)_{2}]$ 3 [d(W-S) 2.379(2) and 2.385(2); d(W-C) 1.967(7) and 1.991(8); d(W-P) 2.556(2) and 2.507(2) Å]. Reaction with $[WH(SeC_{e}H_{3}Pr_{2}^{i}-2.6)_{3}(PMe_{2}Ph)_{2}]$ gives burgundy, trigonal prismatic $[W(SeC_{e}H_{3}Pr_{2}^{i}-2.6)_{2}(CO)_{2}(PMe_{2}Ph)_{2}]$ 4 [d(W-Se) 2.506(1) and 2.583(1); d(W-C) 1.942(8) and 1.943(8); d(W-P) 2.467(2) and 2.471(2) Å]. The physical properties of 1-4 and the structures of 1, 3 and 4 are discussed in terms of their distortions from regular octahedral or trigonal-prismatic geometries. A method of classifying such structures is proposed.

In a continuation of our studies of thiolato- or selenolatohydride complexes of molybdenum and tungsten,¹ we report here the reaction of carbon monoxide gas with the fiveco-ordinate complex [MoH(SC₆H₂Prⁱ₃-2,4,6)₃(PMePh₂)] and the six-co-ordinate complexes [WH(SC₆H₂Me₃-2,4,6)₃(PMe₂Ph)₂] and [WH(SeC₆H₃Prⁱ₂-2,6)₃(PMe₂Ph)₂]. Both reactions result in the loss of thiol or selenol with reduction of the metal to give the new carbonyl complexes described below. The products of the reactions are distorted sixco-ordinate, d⁴ complexes. Hoffmann and co-workers²⁻⁴ have classified such structures in terms of the variation of the angles between *cis*-donor and *cis*-acceptor ligands in the equatorial plane of the idealised octahedron. The compounds we have prepared provide further examples of the types of distortions analysed by Hoffmann and co-workers²⁻⁴ and our compounds are conveniently separated into three classes.

Results and Discussion

Preparation and Structure of the Molybdenum Complexes.— The hydride complex $[MoH(SC_6H_2Pri_3-2,4,6)_3(PMePh_2)]^1$ was treated in thf (tetrahydrofuran) solution with carbon monoxide gas giving an immediate change from green to red. Addition of cold methanol afforded a mixture of dark red rectangular prisms and a minority of bright red plates, in a ratio of 4:1. The two sets of crystals were separated manually. The dark red prisms were characterised as mer- $[Mo(SC_6H_2Pri_3-2,4,6)_2(CO)_3(PMePh_2)]$ 1 and the red plates as $[Mo-(SC_6H_2Pri_3-2,4,6)_2(CO)_2(PMePh_2)_2]$ 2 as follows.

The attack of the strong π -acid carbonyls results in the

Scheme 1 $R = C_6 H_2 Pr^i_{3-2,4,6.}(i) CO + PMePh_2 - HSR$

reductive elimination of thiol from the five-co-ordinate hydride to give the tricarbonyl 1 as the main product (Scheme 1). However, the presence of free phosphine in the reaction solution results in the formation of a small amount of the dicarbonylbis(phosphine) complex 2. This complex becomes the dominant product when 1 equivalent of PMePh₂ is provided in the reaction solution (see Experimental section). It is not known at this stage whether 2 is produced by reaction of 1 with PMePh₂ or by reaction of a precursor to 1.

mer- $[Mo(SC_6H_2Pr^{i}_{3}-2,4,6)_2(CO)_3(PMePh_2)]$ 1. The molecular structure of complex 1 is shown in Fig. 1 and the crystallographic results are in Tables 1 and 2. Selected spectroscopic properties of this and the other complexes described in this paper are in Table 3.

Complex 1 has a distorted octahedral geometry with meridional carbonyls. The *trans* arrangement of the phosphine ligand, P(6), and the benzenethiolate ligand, S(2), is distorted from the vertical axis of an ideal octahedron with a P(6)-Mo-S(2) angle of 157.6°. The P(6)-Mo-C(5) [79.1(1)°] and S(1)-Mo-S(2) [116.0°] angles serve to classify the distortion, which is primarily electronic in orgin, as class 1 (see

[†] Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Atom	x	у	z	Atom	x	У	z
Мо	983.2(1)	-275.9(3)	3645.8(2)	C(262)	-451(3)	-2302(10)	1705(5)
S(1)	1944.5(4)	374(1)	4041.0(5)	C(263)	- 505(3)	-4251(7)	2340(6)
C(11)	2138(2)	475(4)	5015(2)	C(3)	820(2)	-528(4)	4665(3)
C(12)	2266(2)	1634(3)	5328(2)	O(3)	690(2)	-752(3)	5208(2)
C(121)	2327(2)	2752(3)	4871(2)	C(4)	1135(2)	199(4)	2614(2)
C(122)	2884(2)	2742(5)	4586(3)	O(4)	1215(2)	-163(3)	2035(2)
C(123)	2272(2)	3951(4)	5255(3)	C(5)	102(2)	- 352(4)	3365(3)
C(13)	2372(2)	1711(4)	6082(2)	O(5)	-383(1)	-453(3)	3266(2)
C(14)	2371(2)	716(4)	6527(2)	P(6)	737.5(4)	1986(1)	3487.7(6)
C(141)	2451(2)	869(4)	7346(2)	C(61a)	746(2)	2953(4)	4285(2)
C(142)	2839(3)	-77(5)	7752(3)	C(62a)	717(2)	4210(4)	4219(3)
C(143)	1884(3)	909(8)	7592(3)	C(63a)	710(2)	4937(4)	4819(3)
C(15)	2285(2)	-416(4)	6207(2)	C(64a)	725(2)	4431(5)	5492(3)
C(16)	2178(2)	- 567(3)	5453(2)	C(65a)	749(2)	3197(5)	5562(3)
C(161)	2167(2)	- 1843(4)	5145(2)	C(66a)	758(2)	2459(4)	4966(2)
C(162)	1861(2)	-2757(4)	5547(3)	C(61b)	29(2)	2278(4)	2946(2)
C(163)	2772(3)	-2243(5)	5138(3)	C(62b)	-439(2)	2497(4)	3265(3)
S(2)	840.7(4)	-2403(1)	3539.6(5)	C(63b)	-976(2)	2638(5)	2846(3)
C(21)	935(2)	- 3083(3)	2693(2)	C(64b)	- 1045(2)	2557(5)	2116(3)
C(22)	1482(2)	-3371(4)	2567(2)	C(65b)	- 591(2)	2332(5)	1779(3)
C(221)	2028(2)	- 3069(4)	3097(2)	C(66b)	-50(2)	2189(5)	2199(3)
C(222)	2441(3)	-2346(7)	2748(3)	C(67)	1212(2)	2787(4)	2983(2)
C(223)	2301(3)	-4224(6)	3437(4)			•	
C(23)	1527(2)	- 3996(4)	1934(2)	The disorder	red solvent molecu	le	
C(24)	1060(2)	-4341(4)	1428(2)	C(70)*	5116(19)	4638(40)	5615(19)
C(241)	1135(2)	- 5054(4)	753(2)	C(71)*	4528(16)	4234(35)	4729(21)
C(242)	921(3)	-6342(5)	786(3)	C(74)*	4961(13)	3843(25)	5175(16)
C(243)	854(3)	- 4420(6)	59(3)	C(75)*	4947(54)	3989(87)	4695(57)
C(25)	527(2)	-4045(4)	1567(2)	C(76)*	5731(29)	4652(83)	5099(45)
C(26)	446(2)	-3421(4)	2187(2)	C(77)*	5533(26)	5538(47)	4732(29)
C(261)	-159(2)	- 3127(5)	2291(3)	C(78)*	5384(21)	4381(36)	5301(21)

Table 1 Final atomic coordinates (fractional $\times 10^4$) for mer-[Mo(SC₆H₂Prⁱ₃-2,4,6)₂(CO)₃(PMePh₂)]-0.5thf 1 with estimated standard deviations (e.s.d.s) in parentheses

* Site occupancy factor 0.5.

Fig. 1 Molecular structure of $[Mo(SC_6H_2Pr^i_3-2,4,6)_2(CO)_3(PMe-Ph_2)]$ 1

below). The complex cis-[Mo(SBu^t)₂(CNBu^t)₄] 5⁴ has a very similar geometry with corresponding angles for C-Mo-C [73.7(4)°] and S-Mo-S [115(3)°].

In complex 1 the two metal-thiolate bond distances, [2.380(1) and 2.366(1) Å] are in the range observed in other six-co-ordinate molybdenum(II) thiolate complexes,^{5,6} e.g. [Mo(SBuⁿ)₂(Ph₂PCH₂CH₂PPh₂)₂]⁶ has d(Mo-S) 2.361(1) Å and cis-[Mo(SBu^t)₂(CNBu^t)₄]⁴ has d(Mo-S) 2.374(3) and 2.372(3) Å. The carbonyl bond distances are as expected for a molybdenum(II) complex.⁵ There are few examples of tricarbonyl thiolate complexes. The molybdenum(II) tricarbonyl complex $[Mo(CO)_3(C_5H_4NS)_2]$,⁷ the compound $[Mo(CO)_3(S_2CNMe_2)_2]$,⁸ and the complexes $[W(CO)_3(S_2CNMe_2)(C_5H_5)]$ and $[Mo-(CO)_2(S_2CNMe_2)(C_5H_5)]$ ⁹ have been prepared but have not been characterised by X-ray crystallography. The tricarbonyl species $[PPh_4][Mo(CO)_3(SC_6H_2Pr_{3}^{i}-2,4,6)_3]$ is known to exist at saturation pressures of carbon monoxide, but has not been isolated due to the equilibrium being much more in favour of the dicarbonyl species $[PPh_4][Mo(CO)_2(SC_6H_2Pr_{3}^{i}-2,4,6)_3]$.¹⁰

The dark red crystals of complex 1 showed three CO stretching bands at 2040, 1990 and 1917 cm^{-1} in their infrared spectrum, the band at lowest wavenumber being the most intense. This is characteristic of a meridional tricarbonyl geometry.

The ¹H NMR spectrum of the complex shows two sets of overlapping methine septets in the range δ 3-4, corresponding to the isopropyl methine groups of two inequivalent triisopropylbenzenethiolate ligands, and the ³¹P-{¹H} NMR spectrum shows the expected single resonance at δ -127.7. The proton-coupled spectrum is also a singlet, precluding the presence of a hydride ligand.

The absence of a hydride stretching frequency in the infrared spectrum or any proton coupling in the phosphorus NMR spectrum indicates the product is not hydride-containing. The hydride ligand in the starting material must therefore have been lost in the reaction by reductive elimination of thiol to produce a diamagnetic molybdenum(II) complex, this being a typical reaction of thiolatohydride complexes.⁵

 $[Mo(SC_6H_2Pr_{i_3}^i-2,4,6)_2(CO)_2(PMePh_2)_2]$ 2. The minor product of the reaction (Scheme 1) of $[MoH(SC_6H_2Pr_{i_3}^i-2,4,6)_3(PMePh_2)]$ with carbon monoxide was isolated as bright red crystals. Elemental microanalysis of the product is consistent with the formulation $[Mo(SC_6H_2Pr_{i_3}^i-2,4,6)_2-$ **Table 2** Selected molecular dimensions (lengths in Å, angles in °) in *mer*- $[Mo(SC_6H_2Pr^i_3-2,4,6)_2(CO)_3(PMePh_2)]$ -0.5thf 1 with e.s.d.s in parentheses

(a) About the Mo atom			
Mo-S(1)	2.380(1)	Mo - C(4)	2.026(4)
Mo-S(2)	2.366(1)	Mo – C(5)	2.066(5)
Mo-C(3)	2.030(5)	Mo – P(6)	2.561(1)
S(1)-Mo-S(2)	116.0*	C(3)-Mo-C(5)	83.0(2)
S(1)-Mo-C(3)	94.8(1)	C(4)-Mo-C(5)	96.0(2)
S(2)-Mo-C(3)	84.0(1)	S(1)-Mo-C(5)	86.0*
S(1)-Mo-C(4)	87.7(1)	S(2)-Mo-P(6)	157.6*
S(2)-Mo-C(4)	90.5(1)	C(3)-Mo-P(6)	99.4(1)
C(3)-Mo-C(4)	174.5(2)	C(4)-Mo-P(6)	85.7(1)
S(1)-Mo-C(5)	164.3(1)	C(5)-Mo-P(6)	79.1(1)
S(2)-Mo-C(5)	79.4(1)		
(b) In the thiolate ligands			
S(1)-C(11)	1.799(4)	Mo-S(1)-C(11)	112.9(1)
S(2)-C(21)	1.800(4)	Mo-S(2)-C(21)	116.5(1)
(c) In the carbonyl ligands			
C(3)-O(3)	1.139(6)	Mo-C(3)-O(3)	173.3(4)
C(4) - O(4)	1.132(6)	Mo-C(4)-O(4)	179.3(4)
C(5) - O(5)	1.140(6)	Mo-C(5)-O(5)	173.8(4)
(d) In the phosphine ligand			
P(6)-C(61a)	1.828(4)	P(6)-C(67)	1.822(5)
P(6)-C(61b)	1.831(4)		
Mo-P(6)-C(61a)	120.1(1)	Mo-P(6)-C(67)	112.3(2)
Mo-P(6)-C(61b)	113.7(1)	C(61a) - P(6) - C(67)	103.0(2)
C(61a) - P(6) - C(61b)	103.0(2)	C(61b)-P(6)-C(67)	102.8(2)
* E.s.d. is less than 0.05°.			

Table 3 Spectroscopic properties of the carbonyl complexes

Complex	³¹ P NMR ^{<i>a</i>}	⁷⁷ Se NMR ^b	$\tilde{v}(CO)/cm^{-1}$
1	-127.7 (s)		2040m ^c
			1990m
			1917s
2	-121.3 (s)		1935s °
			1852s
3	-157.7 (d, ${}^{2}J_{PP}$ 7.3,		1940s ^a
	$^{1}J_{PW}$ 205)		1866s
	-162.4 (d, $^{2}J_{\rm PP}$ 7.5,		
	$^{1}J_{\rm WP}$ 142)		
4	-138.5 (s, ${}^{1}J_{PW}$	425 (br)	1918s ^c
	107)	590 (br)	1830s

^{*a*} δ in ppm relative to P(OMe)₃, *J* in Hz. ^{*b*} δ in ppm relative to SeMe₂. ^{*c*} In KBr disc. ^{*d*} In cyclohexane solution.

 $(CO)_2(PMePh_2)_2$] 2. The infrared spectrum of this complex showed two strong CO stretching bands at 1935 and 1852 cm⁻¹ corresponding to a *cis*-dicarbonyl product. The ¹H NMR spectrum shows four overlapping methine resonances in the region δ 2–4. These signals are due to two inequivalent sets of isopropyl groups in two inequivalent environments and therefore correspond to *cis*-triisopropylbenzenethiolate ligands. The ³¹P NMR spectrum is a singlet resonance at δ – 121.3. No ¹³C carbonyl resonances could be detected.

The spectroscopic data for complex 2 show a striking similarity to those for the analogous complexes $[M(SC_6H_2Pr_{3}^{-2}, 2, 4, 6)_2(CO)_2(PMe_2Ph)_2]$ 6 (M = Mo or W), formed by reductive elimination of thiol from the six-co-ordinate hydride complexes $[MH(SC_6H_2Pr_{3}^{-2}, 2, 4, 6)_3(PMe_2Ph)_2]$ by carbon monoxide.⁵ Thus 6 (M = Mo) exhibits two carbonyl stretches in its infrared spectrum (KBr disc) at 1935 and 1850 cm⁻¹ and a singlet in the ³¹P NMR spectrum at δ – 107.9. The similarities

between 2 and 6 (M = Mo or W) extend to the ¹H NMR spectrum in which the methine region shows two broad resonances which resolve at reduced temperature to four overlapping multiplets corresponding to two *cis*-triisopropyl-benzenethiolate ligands.

The crystal structures of red complexes 6 revealed ⁵ identical distorted trigonal-prismatic geometries for both complexes. The two thiolate ligands occupy one edge (the ridge) of the prism; in the approximately rectangular base plane (formed from the other two edges), the two carbonyl ligands are at opposite corners, with the two phosphines in the other pair of opposite corners. The core of compounds 6 is shown in Fig. 2, which emphasises the angles important in the classification of the distortion as class 3 trigonal prismatic (*TPR*) (see below). It is very likely that complex 2 shows the same core geometry.

Preparation and Structures of the Tungsten Complexes.—The reaction of the hydride complexes $[WH(ER)_3(PMe_2Ph)_2]^{11}$ with carbon monoxide resulted in the reductive elimination of HER and formation of $[W(CO)_2(ER)_2(PMe_2Ph)_2]$ (ER = $SC_6H_2Me_3$ -2,4,6 3 or $SeC_6H_3Pr_2^i$ -2,6 4), reaction (1). In the

$$[WH(ER)_{3}(PMe_{2}Ph)_{2}] + 2CO \longrightarrow$$
$$[W(ER)_{2}(CO)_{2}(PMe_{2}Ph)_{2}] + HER \quad (1)$$

case of the selenolate complex, this reaction had to be carefully monitored by ³¹P NMR spectroscopy in order to judge when to halt it, by flushing with N₂, to prevent the formation of the complex [W(CO)₄(PMe₂Ph)₂] (δ_P – 165.7)¹² via the competing reaction (2). The dicarbonyl species was produced before the

$$[WH(SeC_6H_3Pr_{2})_3(PMe_2Ph)_2] + 4CO \longrightarrow$$

$$[W(CO)_4(PMe_2Ph)_2] + HSeC_6H_3Pr_{2}^{i} + (SeC_6H_3Pr_{2})_2 (2)$$

tetracarbonyl species; thus the yield of the side product could be minimised.

The products from reaction (1) had properties that were dependent on the ligand used. With the more bulky isopropylcontaining ligand, the products were red, whereas with 2,4,6trimethylbenzenethiolate, the product was green. This reflects the different structures found for these complexes.

 $[W(SC_6H_2Me_3-2,4,6)_2(CO)_2(PMe_2Ph)_2]$ 3. In a previous publication⁵ we discussed the possible structures of the green complexes $[M(SC_6H_2Me_3-2,4,6)_2(CO)_2(PMe_2Ph)_2]$ 3 (M = Mo or W) on the basis of their spectroscopic properties. We proposed that their structures have C_1 symmetry so that only one of five possible octahedral isomers or two of eleven trigonal-prismatic isomers are possible candidates for the structure in the absence of distortion.

The actual structure which we now report for 3 (M = W) (Fig. 3 and Tables 4 and 5) has the predicted C_1 symmetry and lies between octahedral and *TPR*. The two triangles P(1),O(2), S(2) and P(2),O(1),S(1) (Fig. 4) are twisted away from the eclipsed *TPR* stereochemistry by an average twist angle^{2,13} (θ) of 35° toward the regular octahedral twist angle of 60° (see Figs. 5 and 6 and discussion below). The W–S distances are equal at 2.379(2) and 2.385(2) Å, in contrast to the corresponding distances in the red isomers [M(SC₆H₂Prⁱ₃-2,4,6)₂(CO)₂-(PMe₂Ph)₂] **6** [M = Mo, 2.464(1) and 2.395(1); M = W, 2.460(2) and 2.395(2) Å].⁵ The W–P distances are greater for 3 [2.556(2) and 2.507(2) Å] than for **6** [M = Mo, 2.459(2) and 2.463(2); M = W, 2.472(2) and 2.470(2) Å]. The W–C bond lengths are similar to those of the red isomers **6**. The angles at the metal, particularly the C(1)–W–C(2) angle [102.5(3)°], define the structural distortion as class 2 (see below).

 $[W(SeC_6H_3Pr^i_2-2,6)_2(CO)_2(PMe_2Ph)_2]$ 4. This compound forms burgundy crystals whose crystal structure is shown in Fig. 7. Crystallographic details are listed in Tables 6 and 7. The structure is very similar to that of the red isomers 6, being close to *TPR*. Complex 4 as well as the red isomers has the same average twist angle of 12° (see Fig. 6) where each of the two triangles defining the twist contains one S (or Se), one P and one O atom of a carbonyl. The only difference in bond distances is, as expected, in the W-Se bonds [2.506(1) and 2.583(1) Å] compared to M-S distances in the range 2.380-2.464 Å for 3 and 6.

Complex 4 has two CO absorptions in the infrared as would be expected regardless of the geometry (Table 3). The ${}^{31}P-{}^{1}H$ NMR spectrum is a singlet at $\delta - 138.5$, whereas the ⁷⁷Se NMR spectrum shows two broad resonances at δ 425 and 590 which can be explained by a rapid interconversion of two conformations of the complex. The conformations must have similar ³¹P frequencies, to allow averaging, but well separated ⁷⁷Se frequencies; clearly the ⁷⁷Se resonances are guite different in this complex (Table 3). The ¹H NMR spectrum of 4 is as expected for fluxionality; for example, the methine protons show a single septet at δ 3.65. A variable-temperature ¹Ĥ NMR study of compounds 6 showed them to be fluxional as well.⁵

The Six-co-ordinate, d⁴, Complexes.-Kubácek and Hoffmann³ undertook a general theoretical analysis of deformations in d^4 six-co-ordinate complexes with C_{2v} geometry. By considering subunits of the molecule, the effects could be subdivided. The carbonyl ligands are preferentially cis because their strong π acidity makes the *trans* arrangement unfavourable. Calculations of the energy of compounds having a cis carbonyl pair, as shown in Fig. 5, indicate that there is a double minimum in energy, with α either less than 90° (class 1) or

S(4)

C(41)

Mo

C(5)

P(2)

C(31)

S(3)

O(5) Fig. 2 Core structure of $[Mo(SC_6H_2Pr^i_3-2,4,6)_2(CO)_2(PMe_2Ph)_2]$ 6 $(M = Mo)^5$

O(6)

C(6)

greater than 90° (class 2 or 3). When a *cis* group of π -donor ligands is *trans* to the carbonyls, and α is less than 90°, then β will be close to 90°, whereas if α is greater than 90°, then β will be less than 90°. Last, considering a set of σ -donor ligands (neither strongly π -accepting nor -donating) trans to the carbonyls, if α is less than 90°, γ will be about 180°, but if α is greater than 90°, then γ will be less than 180° (see Fig. 5).

Kubácek and Hoffmann³ considered two classes of distortions retaining the C_{2v} symmetry from a regular octahedron, but we have grouped our structures (which do not have that symmetry) with α greater than 90° either into class 2 structures, which are distorted about half-way between octahedral and TPR, or into class 3 structures, which are distorted almost all the way to TPR. Therefore the class 2 structure has an average twist angle θ of *ca*. 30° while the class 3 structures have an average twist angle close to 0°.

Fig. 6 provides examples of these classes of distorted six-coordinate complexes. The angle α for deep red complex 1 is defined as P(6)-Mo-C(5) [79.1(1)°] so that the π -donating thiolate groups are in the equatorial plane according to the model in Fig. 5. Therefore 1 is a distorted, octahedral, class 1 complex very similar to the green complex cis-[Mo(SBu^t)₂-(CNBu')₄] 5, which has an angle of 73.7(4)° between the

Fig. 3 Molecular structure of $[W(SC_6H_2Me_3-2,4,6)_2(CO)_2(PMe_2 Ph)_2$] 3

Fig. 4 Core structure of [W(SC₆H₂Me₃-2,4,6)₂(CO)₂(PMe₂Ph)₂] 3, emphasising the atoms used to define the two triangles which are related by a twist angle $\theta = 35^{\circ}$

Table 4 Final atomic coordinates (fractional $\times 10^4$) for [W(SC₆H₂Me₃-2,4,6)₂(CO)₂(PMe₂Ph)₂]-C₆H₅Me 3 with e.s.d.s in parentheses

Atom	x	у	Ζ	Atom	x	у	Ζ
w	6500(1)	5699(1)	6972(1)	C(28)	4228(6)	7759(4)	8770(4)
S(1)	7317(1)	5166(1)	7608(1)	C(29)	4608(5)	7148(4)	6924(3)
S(2)	6469(1)	6854(1)	7035(1)	C(31)	8332(4)	5230(4)	6173(3)
$\tilde{\mathbf{P}(1)}$	7916(1)	5885(1)	6569(1)	C(32)	8286(7)	5226(5)	5648(3)
P(2)	5942(1)	4636(1)	6651(1)	C(33)	8565(8)	4718(7)	5366(4)
O	4824(3)	5631(3)	7555(2)	C(34)	8903(8)	4175(7)	5630(6)
O(2)	5993(4)	6041(3)	5836(2)	C(35)	8978(6)	4176(5)	6147(5)
C(1)	5446(5)	5649(3)	7342(2)	C(36)	8687(5)	4694(4)	6418(4)
C(2)	6147(5)	5909(4)	6257(3)	C(37)	8744(5)	6043(4)	7019(3)
C(1)	6821(4)	4694(3)	8085(3)	C(38)	7967(5)	6594(4)	6151(3)
C(12)	6975(5)	4013(4)	8103(3)	C(41)	5061(5)	4674(4)	6215(3)
C(13)	6569(6)	3638(4)	8461(3)	C(42)	4313(6)	4872(5)	6391(4)
C(14)	6019(6)	3895(4)	8810(3)	C(43)	3630(6)	4888(7)	6078(4)
C(15)	5909(5)	4563(4)	8814(3)	C(44)	3684(7)	4683(6)	5593(4)
C(16)	6312(4)	4969(3)	8462(3)	C(45)	4421(8)	4479(6)	5400(4)
C(17)	7600(6)	3713(4)	7749(4)	C(46)	5101(6)	4470(4)	5715(3)
C(18)	5532(7)	3472(5)	9181(4)	C(47)	5539(5)	4098(3)	7149(3)
C(19)	6219(5)	5691(3)	8526(3)	C(48)	6665(5)	4118(4)	6312(3)
C(21)	5818(4)	7124(3)	7542(3)	C(1S)	8532(6)	7981(4)	5197(3)
C(22)	6146(4)	7244(3)	8034(3)	C(2S)	9062(5)	7502(5)	5014(4)
C(23)	5619(5)	7440(3)	8424(3)	C(3S)	8746(7)	6957(5)	4767(4)
C(24)	4785(5)	7532(3)	8337(3)	C(4S)	7900(8)	6890(5)	4702(4)
C(25)	4480(5)	7431(3)	7850(3)	C(5S)	7371(5)	7369(6)	4885(4)
C(26)	4986(4)	7229(3)	7449(3)	C(6S)	7687(6)	7914(5)	5132(4)
C(27)	7052(5)	7183(4)	8141(3)	C(7S)	8878(10)	8577(5)	5468(5)

Table 5 Selected molecular dimensions (lengths in Å, angles in °) in $[W(SC_6H_2Me_3-2,4,6)_2(CO)_2(PMe_2Ph)_2]$ -C₆H₅Me 3 with e.s.d.s in parentheses

(a) About the W ato	m		
W-S(1)	2.385(2)	WC(2)	1.991(8)
W-S(2)	2.379(2)	W-P(1)	2.556(2)
W-C(1)	1.967(7)	W-P(2)	2.507(2)
S(1)-W-S(2)	115.02(6)	S(2)-W-P(2)	152.06(7)
S(1)-W-C(1)	97.0(2)	C(1)-W-C(2)	102.5(3)
S(1)-W-C(2)	154.9(2)	C(1)-W-P(1)	172.7(2)
S(1)-W-P(1)	81.46(6)	C(1)-W-P(2)	78.6(2)
S(1) - W - P(2)	91.83(6)	C(2)-W-P(1)	81.1(2)
S(2)-W-C(1)	90.0(2)	C(2)-W-P(2)	76.9(2)
S(2)-W-C(2)	80.9(2)	P(1)-W-P(2)	108.63(6)
S(2)W-P(1)	84.17(6)		
(b) In the thiolate lig	ands		
S(1)-C(11)	1.767(7)	C(11)-S(1)-W	118.9(2)
S(2)-C(21)	1.777(7)	C(21)-S(2)-W	112.0(2)
(c) In the carbonyl li	gands		
O(1)-C(1)	1.152(8)	O(1)-C(1)-W	178.7(6)
O(2) - C(2)	1.152(8)	O(2)-C(2)-W	175.7(7)
(d) In the phosphine	ligands		
P(1)-C(31)	1.821(7)	P(2)-C(41)	1.826(8)
P(1) - C(37)	1.811(7)	P(2) - C(47)	1.823(7)
P(1)-C(38)	1.817(7)	P(2)-C(48)	1.813(7)
W-P(1)-C(31)	117.0(2)	W-P(2)-C(41)	116.9(2)
W-P(1)-C(37)	115.5(3)	W-P(2)-C(47)	114.9(2)
W-P(1)-C(38)	113.9(3)	W-P(2)-C(48)	115.9(3)
C(31)-P(1)-C(37)	102.8(4)	C(41)-P(2)-C(47)	100.7(4)
C(31)-P(1)-C(38)	103.8(4)	C(41)-P(2)-C(48)	103.4(4)
C(37)-P(1)-C(38)	102.0(4)	C(47)-P(2)-C(48)	102.8(4)

equatorial π -acid isocyanide ligands.⁴ Both these complexes have π -acid ligands in the axial positions with a *trans* angle of approximately 174°, near to the expected angle of 180°. Both have π -basic thiolate ligands with angles β [116.0(1) and 115.3(1)°] which are larger than the expected angle of 90°. A calculation on [Mo(SH)₂(CNH)₄] gave a predicted angle β of

rig. 5 Angles used to classify the molecular distortions

102.5°, closer to the observed angle for 5.⁴ As an alternative to the angles shown in Fig. 6, we could have chosen α as C(3)-Mo-C(5) [83.0(2)°], the smaller angle between *cis*-CO groups. This would give a β angle S(1)-Mo-C(4) of 87.7(1)°, which is close to the expected value of 90°. However, the γ angle S(2)-Mo-P(6) is then only 157.6°. Hence we prefer the orientation of 1 shown in Fig. 6. As expected from their similar geometries, 1 and 5 have similar θ values (48° and 50°, respectively; see Fig. 6). In the calculation of the twist angle each triangle always contained one sulfur atom.

The green complex 3 is a distorted octahedral complex of class 2 with an angle α of greater than 90° and an average twist angle θ of 35°. The related green molybdenum complex [Mo(SC₆H₂Me₃-2,4,6)₂(CO)₂(PMe₂Ph)₂] is also likely to have this structure.

The burgundy complex 4 is structurally similar to the red complexes 6^5 as noted above. All of these complexes have wide C-M-C angles α and are rare examples of complexes with monodentate ligands which have nearly trigonal-prismatic stereochemistry. They are all of class 3 (Fig. 6).

All the complexes discussed and classified in Fig. 6 are formally 16-electron species. If the metal centre is to supplement its electron count, it could undergo donation of unpaired electrons from the thiolate lone-pairs. Such $p\pi$ -d π donation to the metal is indicated by a shortening of the M-S bond length

Atom	x	У	z	Atom	x	у	Z
W	2529(1)	1993(1)	1349(1)	C(31)	1203(7)	2346(4)	-320(3
Se(1)	1717(1)	2821(1)	466(1)	C(32)	1915(8)	2494(5)	- 789(4
Se(2)	2787(1)	3290(1)	1889(1)	C(33)	1515(12)	2208(7)	- 1358(4
P(1)	1611(2)	1583(1)	2248(1)	C(34)	485(14)	1779(7)	-1478(5
P(2)	3834(2)	1245(1)	758(1)	C(35)	-224(10)	1644(6)	- 1033(5
O (1)	4754(5)	1548(3)	2326(3)	CÌ3Ó	106(8)	1934(5)	-436(4
O(2)	923(6)	594(3)	916(3)	C(37)	3031(8)	3001(5)	- 685(4
C(1)	3902(8)	1693(4)	1950(4)	C(38)	4094(10)	2762(6)	- 1028(5
C(2)	1526(7)	1123(5)	1070(4)	C(39)	2672(10)	3820(5)	-831(5
C(11)	-23(7)	1786(4)	2164(4)	C(40)	-783(8)	1864(5)	24(5
C(12)	-475(10)	2405(7)	1886(7)	C(41)	-1693(9)	2511(6)	- 56(5
C(13)	- 1698(10)	2605(7)	1848(7)	C(42)	- 1474(9)	1123(6)	6(5
C(14)	- 2506(9)	2159(6)	2060(5)	C(51)	2765(7)	4159(4)	1346(3
C(15)	-2080(10)	1514(7)	2321(5)	C(52)	1681(7)	4588(4)	1193(3
C(16)	-859(9)	1318(6)	2374(5)	C(53)	1756(7)	5263(4)	879(4
C(17)	1731(8)	576(5)	2423(4)	C(54)	2840(8)	5497(5)	698(4
C(18)	2157(9)	2009(5)	2979(4)	C(55)	3863(8)	5055(4)	831(4
C(21)	4621(9)	424(5)	1133(4)	C(56)	3845(7)	4378(4)	1139(3
C(22)	3917(11)	-174(5)	1276(5)	C(57)	459(7)	4356(5)	1356(4
C(23)	4470(16)	-816(7)	1552(7)	C(58)	54(9)	4839(8)	1849(5
C(24)	5707(18)	- 852(8)	1692(7)	C(59)	- 548(8)	4360(6)	809(4
C(25)	6404(14)	- 268(8)	1557(6)	C(60)	5049(7)	3932(4)	1276(4
C(26)	5876(10)	371(6)	1277(5)	C(61)	5731(8)	3892(5)	727(4
C(27)	3176(9)	838(5)	34(4)	C(62)	5845(9)	4257(6)	1832(4
C(28)	5066(8)	1821(5)	547(4)	· /			-(-,
		. ,					

Table 6	Final atomic coordinates (fraction	al × 104) fo	for [W(SeC ₆ H ₃ Pr ⁱ 2	2-2,6)2	$(CO)_2(PMe_2)$	$_{2}$ Ph) ₂] 4 w	ith e.s.d.s in p	arentheses
---------	------------------------------------	--------------	--	---------	-----------------	-------------------------------	------------------	------------

Table 7Selected molecular dimensions (lengths in Å, angles in °) in $[W(SeC_6H_3Pr_2^i-2,6)_2(CO)_2(PMe_2Ph)_2]$, 4 with e.s.d.s in parentheses

(a) About the W ato	m		
W-Se(1)	2.506(1)	W-P(2)	2.467(2)
W-Se(2)	2.583(1)	W-C(1)	1.942(8)
W-P(1)	2.471(2)	W-C(2)	1.943(8)
Se(1)-W-Se(2)	81.2(1)	Se(2)-W-C(2)	150.5(3)
Se(1)-W-P(1)	131.4(1)	P(1)-W-C(1)	74.5(3)
Se(1)-W-P(2)	93.8(1)	P(1)-W-C(2)	75.2(3)
Se(1)-W-C(1)	148.5(3)	P(1)W-P(2)	127.6(1)
Se(1)-W-C(2)	95.2(2)	P(2)-W-C(1)	76.3(3)
Se(2)-W-P(1)	85.2(1)	P(2)-W-C(2)	75.7(3)
Se(2)-W-P(2)	133.6(1)	C(1)-W-C(2)	110.7(3)
Se(2)-W-C(1)	84.3(2)		
(b) In the selenolate	ligands		
Se(1)-C(31)	1.945(8)	W-Se(1)-C(31)	118.3(2)
Se(2)-C(51)	1.950(7)	W-Se(2)-C(51)	114.9(2)
(c) In the carbonyl li	gands		
O(1)-C(1)	1.191(10)	W-C(1)-O(1)	176.5(7)
O(2) - C(2)	1.169(10)	W-C(2)-O(2)	178.5(8)
(d) In the phosphine	ligands		
P(1)-C(11)	1.819(8)	P(2)-C(21)	1.829(9)
P(1)-C(17)	1.823(9)	P(2)-C(27)	1.813(9)
P(1) - C(18)	1.812(8)	P(2)-C(28)	1.811(9)
W-P(1)-C(11)	111.9(3)	W-P(2)-C(21)	117.2(3)
W-P(1)-C(17)	115.7(3)	W-P(2)-C(27)	119.6(3)
W-P(1)-C(18)	118.6(3)	W-P(2)-C(28)	110.6(3)
C(11)-P(1)-C(17)	104.7(4)	C(21)-P(2)-C(27)	101.1(4)
C(11)-P(1)-C(18)	101.9(4)	C(21)-P(2)-C(28)	103.9(4)
C(17)-P(1)-C(18)	102.2(4)	C(27)-P(2)-C(28)	102.4(4)

and the opening up of the M-S-C angle.¹⁴ This is not easily demonstrated in the presence of considerable steric effects within complexes such as the present ones. The essentially trigonal-prismatic complexes 6 have unequal M-S bond lengths, with the longer one at approximately 2.46 Å being associated with a smaller M-S-C angle of about 117°, while the

shorter M–S distance of 2.395(1) Å goes with a larger angle of $121-123^{\circ}$. Complex 4 shows the same trend, with a shorter W–Se(1) at 2.506(1) Å having a W–Se(1)–C(31) angle of $118.3(2)^{\circ}$, whilst the longer W–Se(2) at 2.583(1) Å has the smaller angle W–Se(2)–C(51) of $114.9(2)^{\circ}$. However, although complex 1 shows this trend, complexes 2 and 3 have fairly equal Mo–S or W–S bond lengths with quite different angles. Therefore it is not certain that the opening of the M–S–C angle is entirely electronic in origin; it would in fact be rather surprising if these angles were unaffected by the steric bulk of the thiolate ligands.

As pointed out by Hoffman and co-workers,²⁻⁴ the distortions we have classified in Fig. 6 are a consequence of the d⁴ configuration of 1–6 and their analogues. It is known that complexes of this general formulation having a d⁶ configuration display essentially regular octahedral geometry, *e.g.* in *trans*,*trans*,*trans*-[Os(SC₆F₅)₂(CO)₂(PEt₂Ph)₂].¹⁵

Conclusion

We have shown that reaction of the unsaturated thiolatohydrides $[MoH(SC_6H_2Pr_{3}^{i}-2,4,6)_3(PMePh_2)_2]$ and $[WH(ER)_3-(PMe_2Ph)_2]$ (ER = SC₆H₂Me₃-2,4,6 or SeC₆H₃Pr₂ⁱ-2,6) with carbon monoxide results in the reductive elimination of thiol (or selenol) and formation of the new six-co-ordinate, d⁴, carbonyl species *mer*- $[Mo(SC_6H_2Pr_{3}^{i}-2,4,6)_2(CO)_3(PMePh_2)]$ 1, $[Mo(SC_6H_2Pr_{3}^{i}-2,4,6)_2(CO)_2(PMePh_2)_2]$ 2, $[W(SC_6H_2Me_{3}^{i}-2,4,6)_2(CO)_2(PMe_2Ph)_2]$ 3 and $[W(SeC_6H_3Pr_{2}^{i}-2,6)_2(CO)_2(PMe_2Ph)_2]$ 4. Their structures show distortions from regular octahedral or trigonal-prismatic geometries which are predominantly electronic in origin, and can be conveniently classified into three general types by analysis of the angular properties of subunits of their structures.

Experimental

All operations were performed under an atmosphere of dinitrogen. The carbonyl complexes in both the solution and solid-state were not very sensitive to exposure to air. All solvents were dried and degassed before use. The molybdenum-phosphine starting materials,¹⁶⁻¹⁸ the tungsten starting materials,^{1,5,11} complex 3⁵ and the thiols¹⁰ were prepared by literature methods. Spectroscopic measurements were made

A1 2

(c)

6. θ ≈ 11

125.7

W CO 110.7

θ = 30

Fig. 6 Examples of molecules within the three classes of distortion: (a) class 1, (b) class 2, (c) class 3; angles in °

4. θ ≈ 12

Fig. 7 Molecular structure of $[W(SeC_6H_3Pr^i_2-2,6)_2(CO)_2(PMe_2Ph)_2]$ 4

with JEOL GX270 (NMR), Perkin-Elmer SP3-200 (IR), Nicolet 5DX (FTIR) and VG70-250S [fast atom bombardment (FAB) mass spectra] instruments. Matrices used for the FAB mass spectra were o-nitrophenyl octyl ether (npoe), m-nitrobenzyl alcohol (nba) or benzene-nba. The largest peak of the isotopic envelope is reported. Microanalyses were determined by Mr. C. J. Macdonald of the Nitrogen Fixation Laboratory or by Canadian Microanalytical Services, Delta, B.C.

regular trigonal prism, $\theta = 0$

All ¹H NMR spectra were recorded in [²H₆]benzene unless otherwise specified. The ³¹P NMR spectra were referenced to $P(OMe)_3 (1\% v/v)$ in [²H₆]benzene sealed in coaxial capillaries. The ⁷⁷Se NMR spectra were referenced to SeMe₂ (1% v/v) in [²H₆]benzene or [²H₆]acetone, sealed in coaxial capillaries.

Preparations.—mer-Tricarbonyl(methyldiphenylphosphine)bis(2,4,6-triisopropylbenzenethiolato)molybdenum(II) 1. Dry carbon monoxide gas was bubbled through a cold, stirred solution of $[MoH(SC_6H_2Pri_3-2,4,6)_3(PMePh_2)]$ in thf under dinitrogen to produce an instant change from green to red. After stirring for 30 min the volume of the reaction solution was reduced to a minimum in a vacuum. Slow precipitation of the product with cold methanol afforded a mixture of red *crystals* in a ratio of 4:1 which were then collected by filtration and washed with methanol. The major product was separated by hand (60% yield) (Found: C, 64.1; H, 7.1; S, 7.3. C₄₆H₅₉-MoO₃PS₂ requires: C, 64.9; H, 6.9; S, 7.5%).

Dicarbonylbis(methyldiphenylphosphine)bis(2,4,6-triisopropylbenzenethiolato)molybdenum(II) **2**. The compounds $[MoH_4-(PMePh_2)_4]$ (0.42 g, 0.44 mmol) and $HSC_6H_2Pr^i_{3}$ -2,4,6 (0.3 cm³) were reacted in cold thf solution (30 cm³) for 4 h to produce $[MoH(SC_6H_2Pr^i_{3}$ -2,4,6)₃(PMePh₂)]. Carbon monoxide gas was then bubbled through this reaction mixture for

	1		4
Empirical formula	C46H59M003PS2-0.5C4H60	C ₃₆ H ₄₄ O ₂ P ₂ S ₂ W·C ₇ H ₈	C42H ₅₆ O2P ₂ Se ₂ W
Crystal colour, size/mm	Lark red-brown prism, $0.14 \times 0.24 \times 0.32$	Green neeale, u.23 × u.33 × u.30	Burgunay block, U.20 × U.13 × U.18 Scoled in concurrencia
Urystal mounting M	In glass capillary 887 1	Sealed III Spoxy Issui 910.76	Searcu III epoxy result 996.6
Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_{1/n}$ (equiv. to no. 14)	P2 ₁ 2 ₁ 2 ₁ (no. 19)	$P2_1/n$ (equiv. to no. 14)
alA	23.747(3)	16.245(2)	11.018(1)
b/Å	10.998(1)	20.544(2)	17.677(4)
c/Å	18.694(3)	25.956(2)	22.193(4)
3/°	100.303(10)	90.00	98.26(1)
U/Å ³	4803.3(11)	8662.5(15)	4277(2)
Z	4	8	4
$D_{\rm c}/{\rm g~cm^{-3}}$	1.227	1.397	1.547
F(000)	1872	3696	1984
μ(Mo-Kα)/mm ⁻¹	0.42	2.870	4.509
o scan width/o	$0.7 + 0.35 \tan \theta$	$0.60 + 0.35 \tan \theta$	$0.70 + 0.35 \tan \theta$
0 range/°	$1.5-23 (h,k,\pm l)$	1.57-26.98(h,k,l)	$1.15-25.0 (\pm h,k,l)$
Absorption correction: min, max. transmission	0.99, 1.00	0.3747, 0.8089	0.4091, 0.7184
Total no. of reflections recorded	7677	9429	8079
No. of unique reflections	6656	9429	7512
Rint	0.031	ł	0.094
No. of 'observed' reflections	$4457 (I > 2\sigma_I)$	$5156 (I > 2\sigma_I)$	$4549 (I > 3\sigma_I)$
No. of reflections used in refinement	6656	9429	4549
Refinement method	Large-block-matrix least-squares on F	Full-matrix least-squares on F^2	Full-matrix least-squares on F
Final R indices ^a	R = 0.067, R' = 0.048 (all data)	R = 0.116, wR2 = 0.115 (all data) ^b	$R = 0.034, R' = 0.041 (I > 3\sigma_I)$
Weighting scheme	$w = (\sigma_F^2 + 0.000\ 20F^2)^{-1}$	$w = 1/[\sigma^2(F_o) + (0.0472P)^2 + 18.0331P]^c$	$w = 1/[\sigma^2(F_o) + 0.0008(F_o)^2]$
Largest, mean Δ/σ	0.54, 0.02	0.09, 0.02	0.01, 0.00
Parameters refined	682	402	327
Max., min. electron density in final difference map/e $Å^{-3}$	0.45, -0.50	1.03, -0.52	0.72, -0.55
^a Definition of indices: $R = \Sigma(F_o - F_o)/\Sigma F_o; R' = [\Sigma w(F_o -$	$-F_{\rm c})^{2}/\Sigma w(F_{\rm o})^{2}]^{\frac{1}{2}}; wR2 = [\Sigma w(F_{\rm o}^{2} - F_{\rm c}^{2})^{2}/\Sigma w(F_{\rm o})^{2}]^{\frac{1}{2}}$	2) ²] ⁴ . ^b For observed data only: $R = 0.037$, wR2 =	= 0.091. ° Where $P = (F_o^2 + 2F_c^2)/3$.

30 min, producing a red solution. Reduction of the reaction solution volume followed by slow precipitation of the product with cold methanol yielded red *crystals* (0.08 g, 17%) (Found: C, 67.0; H, 7.6; S, 5.7. $C_{58}H_{72}MoO_2P_2S_2$ requires: C, 68.0; H, 7.1; S, 6.3%).

Dicarbonylbis(2,6-diisopropylbenzeneselenolato)bis(dimethylphenylphosphine)tungsten(II) 4. The complex $[WH(SeC_6H_3 Pr_{2}^{2}-2,6_{3}(PMe_{2}Ph)_{2}$ (0.430 g, 0.363 mmol) was dissolved in toluene (10 cm³). The mixture was then flushed with CO by three evacuate-backfill cycles. The Schlenk flask (total volume of about 50 cm³) was sealed off and the solution was left stirring. Within minutes, the solution had turned redder and after 1 h the solution was deep red. The flask was purged with argon by two evacuate-backfill cycles and left stirring for 2 h. The toluene was removed in vacuo, the residue taken up in toluene (ca. 2 cm³), layered with methanol (10 cm³) and stored at -30 °C for 20 h. The burgundy microcrystalline powder was filtered off, washed with methanol and dried in vacuo. Yield: 0.162 g (16.2%). NMR: ¹H δ (fluxional) 7.52 (m, 6 H, $\operatorname{SeC}_6H_3\operatorname{Pr}^i_2$, $\operatorname{PMe}_2\operatorname{Ph}$), 7.2 (m, 10 H, $\operatorname{SeC}_6H_3\operatorname{Pr}^i_2$, $\operatorname{PMe}_2\operatorname{Ph}$), 3.65 [sept, 4 H, SeC₆H₃(CHMe₂)₂], 1.65 (d, 12 H, PMe₂Ph), 1.2 [overlapping, 24 H, SeC₆H₃(CHMe₂)₂]; ³¹P-{¹H} δ -138.5 (s, ¹J_{PW} = 107, ²J_{SeP} not observed); ⁷⁷Se-{¹H} δ 425 (br), 590 (br). FAB mass spectrum: m/z 996 (M⁺), 968 (M⁺ CO), 858 (M^+ – PMe₂Ph), 830 (M^+ – CO – PMe₂Ph), 802 (M^- – 2CO – PMe₂Ph), 757 (M^+ – SeC₆H₃Prⁱ₂), 699 (M^+ – SeC₆H₃Prⁱ₂ – 2CO), 561 (M^+ – SeC₆H₃Prⁱ₂ – 2CO – PMe₂Ph), 479 (Prⁱ₂H₃C₆SeSeC₆H₃Prⁱ₂) (Found: C, 50.9; H, 5.6. C₄₂H₅₆O₂P₂Se₂W requires C, 50.6; H, 5.7%).

Crystal Structure Analyses.—Crystal data and experimental details are summarised in Table 8.

Following very similar procedures, intensity measurements were recorded on Enraf-Nonius CAD4 diffractometers with monochromated Mo-K α radiation ($\lambda = 0.710$ 69 Å) at room temperature. An ω - θ or ω - 2θ scan technique was used, with variable scan speeds. There was little or no crystal deterioration noted from the measurements of the intensity control reflections.

Diffraction intensities were corrected for Lorentz-polarisation effects, slight deterioration (in 1 only), absorption (by semi-empirical ψ scan methods) and (for 1) to eliminate negative net intensities (by Bayesian statistical methods). For the three structures, the metal atoms were located by the Patterson method, and remaining non-hydrogen atoms were located in successive Fourier and Fourier-difference syntheses. All nonhydrogen atoms (except those in the solvent molecules in 1 and 3) were refined with anisotropic thermal parameters. Hydrogen atoms of phenyl and methine groups were included in idealised positions, riding on the parent carbon atoms; those in methyl groups were refined with geometrical constraints. In 1, a thf molecule is disordered (and not fully resolved) about a centre of symmetry; in 3, a toluene molecule was included as a rigid group with fixed geometry. Refinement was by least-squares methods, details of which are in Table 8.

Scattering factor curves for neutral atoms were from ref. 19. Computer programs used in the analyses include SHELX²⁰ and others listed in ref. 21 (using a DEC MicroVAX II computer) and SHELXTL PC²² and SHELXL 93²³ (on a 486-66 personal computer).

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We acknowledge the support of a NATO collaborative research grant (to R. H. M. and R. L. R.), an NSERC operating grant to R. H. M. and a SERC studentship (to M. J. M.).

References

- 1 T. E. Burrow, A. Hills, D. L. Hughes, J. D. Lane, R. H. Morris and R. L. Richards, J. Chem. Soc., Dalton Trans., 1991, 1813.
- 2 R. Hoffmann, J. M. Howell and A. R. Rossi, J. Am. Chem. Soc., 1976, 98, 2484.
- 3 P. Kubácek and R. Hoffmann, J. Am. Chem. Soc., 1981, 103, 4320.
- 4 M. Kamata, K. Hirotsu, T. Higuchi, K. Tatsumi, R. Hoffmann, T. Yoshida and S. Otsuka, J. Am. Chem. Soc., 1981, 103, 5772.
- 5 T. E. Burrow, A. J. Lough, R. H. Morris, A. Hills, D. L. Hughes, J. D. Lane and R. L. Richards, J. Chem. Soc., Dalton Trans., 1991, 2519.
- 6 C. A. Shortman, D. Povey and R. L. Richards, *Polyhedron*, 1986, 5, 369.
- 7 A. J. Deeming, M. Karim and N. I. Powell, J. Chem. Soc., Dalton Trans., 1990, 2321.
- 8 M. G. B. Drew, I. B. Tomkins and R. Colton, Aust. J. Chem., 1970, 23, 2517.
- 9 P. Mathur and B. H. S. Thimappa, Inorg. Chim. Acta, 1988, 148, 119.
- 10 P. J. Blower, J. R. Dilworth, J. P. Hutchinson and J. Zubieta,
- J. Chem. Soc., Dalton Trans., 1985, 1533.
- 11 T. E. Burrow, Ph.D. Thesis, University of Toronto, 1993.
- 12 M. L. Boyles, D. V. Brown, D. A. Drake, C. K. Hostetler, C. K. Maves and J. A. Mosbo, *Inorg. Chem.*, 1985, 24, 3126.
- 13 T. E. Burrow, R. H. Morris, D. L. Hughes and R. L. Richards, Acta Crystallogr., Sect. C, 1993, 49, 1591.
- 14 D. Sellmann, F. Grasser, F. Knoch and M. Moll, Angew. Chem., Int. Ed. Engl., 1991, 30, 1311.
- 15 D. Cruz-Garritz, P. Sosa, H. Torrens, A. Hills, D. L. Hughes and R. L. Richards, J. Chem. Soc., Dalton Trans., 1989, 419.
- 16 F. Penella, Chem. Commun., 1971, 158.
- 17 T. E. Burrow, J. D. Lane, N. J. Lazarowych, R. H. Morris and R. L. Richards, *Polyhedron*, 1989, **8**, 1701.
- 18 D. L. Hughes, N. J. Lazarowych, M. J. Maguire, R. H. Morris and R. L. Richards, J. Chem. Soc., Dalton Trans., 1995, 5.
- International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, pp. 99 and 149.
 G. M. Sheldrick, SHELX 76, Program for Crystal Structure
- 20 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976; also, an extended version SHELXN, 1977.
- 21 S. N. Anderson, R. L. Richards and D. L. Hughes, J. Chem. Soc., Dalton Trans., 1986, 245.
- 22 G. M. Sheldrick, SHELXTL PC, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1991.
- 23 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.

Received 18th November 1994; Paper 4/07045C