Homo- and Hetero-dinuclear Complexes of Palladium and Platinum containing Phosphinoacetylene and/or Chloride as Bridging Ligands \dagger

Juan Forniés,**a Elena Lalinde, ${ }^{*, b}$ Antonio Martín, ${ }^{a}$ M. Teresa Moreno ${ }^{b}$ and Alan J. Welch ${ }^{\boldsymbol{c}}$
${ }^{a}$ Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-Consejo Superior de Investigaciones Científicas, 50009 Zaragoza, Spain
${ }^{b}$ Departamento de Química, Universidad de La Rioja, 26001 Logroño, Spain
${ }^{c}$ Department of Chemistry, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Reactions between the diphenylacetylenephosphine complexes cis- $\left[\mathrm{M}^{\prime} \mathrm{Cl}_{2}\left(\mathrm{PPh} \mathrm{C}_{2} \mathrm{C}=\mathrm{CR}\right)_{2}\right]\left(\mathrm{M}^{\prime}=\mathrm{Pt}\right.$ or Pd , $R=P h$ or $\left.\mathrm{Bu}^{\mathrm{t}}\right)$ and cis $-\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\text { thf })_{2}\right](M=P t$ or Pd ; thf = tetrahydrofuran $)$ in a $1: 1$ molar ratio have been studied. Three types of products have been obtained: (a) asymmetric homo- and hetero-dinuclear complexes gem- $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}(\mu-\mathrm{Cl})_{2} \mathrm{M}^{\prime}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]$, (b) symmetric trans-palladium derivatives $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)\right\}_{2}\right]$ and (c) the unusual chloride and diphenyl(phenylethynyl) phosphine bridged dinuclear compounds $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh} \mathrm{C}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{M}^{\prime} \mathrm{Cl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right]$. The complexes have been characterised by microanalysis, IR and NMR spectroscopy and the molecular structure of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$. The NMR spectral data (${ }^{1} \mathrm{H} .{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$) indicate that, in solution, mixtures of isomers $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{M}^{\prime}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]$ and $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\right.$ -$\left.\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{M}^{\prime} \mathrm{Cl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right]$ are present.

Phosphinoacetylene ligands, $\mathbf{P R}_{2} \mathbf{C} \equiv \mathrm{CR}^{\prime}\left(\mathbf{R}=\mathrm{R}^{\prime}=\right.$ alkyl or aryl), have received considerable attention in recent years. ${ }^{1,2}$ These molecules can behave as simple P-donors, ${ }^{3}$ as disubstituted acetylenes ${ }^{4}$ or as polydentate ligands ($\mathbf{P}+2 \pi^{5}$ or $\mathbf{P}+4 \pi^{2 d, 4,6}$), as well as undergo interesting and potentially useful transformations. ${ }^{2}$ Thus, the cleavage of the $\mathrm{P}-\mathrm{C}$ (alkyne) bond induced by thermolysis, ${ }^{1 d .7}$ photolysis ${ }^{1 a, b}$ or by chemical activation using $\mathrm{Me}_{3} \mathrm{NO},{ }^{1 e, 8}$ to yield phosphido PR_{2} and $\mathrm{C} \equiv \mathrm{CR}^{\prime}$ bridging fragments, seems to be a common feature of reactions involving phosphinoacetylenes and metal carbonyls. Although the detailed mechanism of P-C bond cleavage is unknown, it has been suggested ${ }^{1 a, b, 8}$ that it proceeds through the formation of an intermediate with the acetylene π-interacting, followed by oxidative insertion into the P-C alkyne bond. On the other hand, activation of the unco-ordinated alkyne function, for example in cis-[$\left.\mathrm{MX}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]$ ($\mathbf{M}=\mathbf{P d}$ or $\mathbf{P t} ; \mathbf{X}=$ halide, $\mathbf{R}=$ alkyl or aryl), towards such reactions as hydration, ${ }^{9}$ hydrogen halide ${ }^{10}$ or secondary phosphine ${ }^{11}$ addition and intramolecular acetylene coupling ${ }^{12}$ has also been observed.

Considering that cis-[$\left.\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \quad(\mathrm{M}=\mathrm{Pt}$ or Pd ; thf $=$ tetrahydrofuran) has been shown to be an excellent precursor for the preparation of simple $\operatorname{bis}\left(\eta^{2}\right.$-alkyne) complexes, ${ }^{13}$ as well as acetylide-bridged polynuclear complexes, ${ }^{14}$ we thought it worthwhile to investigate its reactions with cis- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CR}\right)_{2}\right] \quad(\mathrm{M}=\mathrm{Pt}$ or Pd$)$ derivatives. These reactions could be an alternative route for obtaining platinum acetylide complexes or could allow the synthesis of homo- and hetero-dinuclear derivatives with halide and/or phosphinoalkynyl bridges.
In this paper we report the results of this study which have enabled us to prepare three different types of binuclear derivatives: (a) the asymmetric homo- and hetero-dinuclear complexes gem- $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}(\mu-\mathrm{Cl})_{2} \mathrm{M}^{\prime}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right] \quad \mathbf{1 a}-\mathbf{6 a}$,

[^0](b) the symmetric trans-palladium compounds $[\{\mathbf{P d}(\mu-\mathrm{Cl})$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)\right\}_{2}\right] \mathbf{1 b}$ and $\mathbf{2 b}$ and (c) the unusual chloride and diphenyl(phenylethynyl)phosphine bridged dinuclear derivatives $\quad\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{M}^{\prime} \mathrm{Cl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right]$ ($\mathrm{M}^{\prime}=\mathrm{Pd} 7 \mathrm{c}$ or Pt 8 c). The structure of $\mathbf{8 c} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$ has been established by single-crystal X-ray diffraction. The NMR data (${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$) indicate that complexes $6 \mathrm{a}\left(\mathrm{M}=\mathrm{M}^{\prime}=\mathrm{Pt}\right.$, $\mathrm{R}=\mathrm{Bu}^{1}$), $\mathbf{7 c}$ and 8 c exist in solution ($6 \mathrm{a}, \mathrm{CDCl}_{3} ; 7 \mathrm{c}$ and 8 c , $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) as a mixture of both isomers (a and \mathbf{c}).

Results and Discussion

Reactions with cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$. -The complexes cis$\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]\left(\mathrm{M}=\mathrm{Pt}\right.$ or $\mathrm{Pd}, \mathrm{R}=\mathrm{Ph}$ or $\left.\mathrm{Bu}^{1}\right)$ react with cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (molar ratio 1:1) under mild conditions (room temperature, 15 min of stirring for $\mathbf{R}=$ Ph or 30 min for $\mathrm{R}=\mathrm{Bu}^{1}$) to give the corresponding homo- and hetero-dinuclear asymmetric gem derivatives $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu\right.$ $\mathrm{Cl})_{2} \mathrm{M}^{\prime}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}$] 1a-4a in good yields. Under these conditions the reactions proceed with retention of the original configuration around the metal centres and no rearrangement of ligands is observed. However, if the reactions between the palladium derivatives cis- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]$ and cis$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ are carried out at room temperature in CHCl_{3} for a longer reaction time (1 d), redistribution of ligands occurs and the respective geometrical isomers sym-trans-[\{Pd-$\left.\left.(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)\right\}_{2}\right]$ ($\mathrm{R}=\mathrm{Ph} \mathbf{1 b}$ or $\mathrm{Bu}^{1} \mathbf{2 b}$) are obtained in moderate yield.
The NMR spectra reveal that complexes $\mathbf{1 a}$ and $\mathbf{2 a}$ isomerise slowly ($\approx 1 \mathrm{~d}$) but cleanly to $\mathbf{1 b}$ and $\mathbf{2 b}$ indicating that the gem derivatives are the kinetic products of the reaction and the sym-trans ones the thermodynamic products.
The structural characterisation of complexes 1a-4a, 1b and $\mathbf{2 b}$ is based on elemental analysis and spectroscopic methods (mass spectrometry, IR and ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR) (data are collected in Tables 1 and 2). The most useful information is obtained from the IR spectra. Thus, all complexes show only one (1a, 1b, 3a derivatives with $\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}$) or two (2a, 2b, 4a

	M	M^{\prime}	R
13	Pd	Pd	Ph
2a	Pd	Pd	Bu^{1}
3a	Pd	Pt	Ph
4a	Pd	Pt	$\mathrm{Bu}^{\text {t }}$
5a	Pt	Pd	$\mathrm{Bu}^{\text {t }}$
6	Pt	P	$\mathrm{Bu}^{\text {t }}$

derivatives with $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$) strong bands in the region $2166-2214 \mathrm{~cm}^{-1}$ assignable to $v(\mathrm{C} \equiv \mathrm{C})$ of the phosphinoacetylene ligands which indicates that these molecules are only acting as P -donor ligands. On the other hand, they show typical absorptions for the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups around $1500,1050,950$ and $790 \mathrm{~cm}^{-1}$; the latter, which is attributed to the X -sensitive mode of the $C_{6} F_{5}$ groups ${ }^{15}$ and usually gives structural information, is obscured in the case of complexes $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{4 a}$ by an internal absorption of cis- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{l}}\right)_{2}\right]$. However, the gem derivatives 1a and 3a exhibit two bands (1a, 797, 783; 3a, 799, $787 \mathrm{~cm}^{-1}$) indicating the presence of a cis $-\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ moiety in the respective complexes, while 1 lb shows only one absorption ($798 \mathrm{~cm}^{-1}, \mathrm{~B}_{\mathrm{u}}$) in good agreement with that expected for a compound of $C_{2 h}$ symmetry. Complexes $\mathbf{1 b}$ and $\mathbf{2 b}$ show two bands ($2 \mathrm{~B}_{\mathrm{u}}$) [1b, $300 \mathrm{~m}, 279 \mathrm{~m} ; 2 \mathrm{~b}, 286 \mathrm{~s}, 275$ (sh) $\left.\mathrm{cm}^{-1}\right]$ associated with bridging $v(\mathrm{Pd}-\mathrm{Cl})$ stretching vibrations, while the gem derivatives 1a-4a show a more complex pattern of bands assignable to $v(M-C l)$ vibrations of $\mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{M}$ fragments (see Table 1).

The NMR spectra of complexes $1-4$ indicate that both the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups and the two phosphinoacetylene ligands are equivalent. Moreover, the ${ }^{31} \mathrm{P}$ NMR spectra of 3 a and 4 a show signals with platinum satellites [3a, $\delta-11.45(\mathrm{~s}),{ }^{1} J(\mathrm{Pt}-\mathrm{P})=$ 4067 ; 4a, $\delta-13.06(\mathrm{~s}),{ }^{1} J(\mathrm{Pt}-\mathrm{P})=3946 \mathrm{~Hz}$, while the ${ }^{19} \mathrm{~F}$ NMR spectra of these complexes show that signals due to o-fluorine atoms of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups do not present platinum satellites. These facts necessarily imply that both phosphine ligands are bonded to the platinum while the two $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are bonded to palladium centres: i.e. the reactions are stereospecific and no ligand rearrangement has taken place.

Interestingly, while for the gem derivatives 1a and 2a the ${ }^{31} \mathrm{P}$ NMR single resonance of the $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}$ ligands is only slightly deshielded (1a, $\delta 10.70 ; 2 \mathrm{a}, \delta \mathrm{9.52}$) with respect to the corresponding one in the starting cis- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]$
derivatives $\left(\mathrm{R}=\mathrm{Ph}, \delta 7.85 ; \mathrm{Bu}^{\mathrm{t}}, \delta 7.27\right)$ the resonance observed for the isomers sym-trans $\mathbf{1 b}$ and $\mathbf{2 b}$ is considerably shielded ($\mathbf{1 b}$, $\delta 4.59 ; 2 \mathrm{~b}, \delta 3.03$).

Reactions with cis- $\left[\mathrm{Pt}_{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \text {.-The reactions of }}\right.$ cis- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]$ with cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right] \quad$ were carried out in toluene since the insolubility of the resulting products in this solvent precludes the isomerization processes which take place in solution (see below). The complexes cis$\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]\left(\mathrm{M}=\mathrm{Pd}\right.$ or $\mathrm{Pt}, \mathrm{R}=\mathrm{Bu}^{\dagger}$ or Ph$)$ react with cis- $\left[\mathrm{Pt}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ in toluene (molar ratio $1: 1$) yielding neutral homo- (6a, 8c) and hetero-dinuclear derivatives (5a, 7c) the nature of which is alkynylphosphine dependent. Thus, the reaction of cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ with suspensions of cis$\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right)_{2}\right]$ in toluene results in the formation of doubly chloride-bridged complexes 5a and 6a. However, suspensions of diphenyl(phenylethynyl)phosphine complexes cis- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ give the unusual and sparingly soluble dinuclear species with $\mu-\mathrm{Cl}$ and $\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}$, 7c and 8c. The structural assignment is based on elemental analysis, IR and ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy (see Tables 1 and 2) and the crystal structure of 8 c (see below).

Complexes 5a and 6a display very similar IR spectra to those of the gem derivatives $2 \mathbf{a}$ and 4a, thus suggesting that they have an analogous structure; the most relevant data are the two absorptions observed at 2206 and 2164 for $5 a$ and at 2206 and $2167 \mathrm{~cm}^{-1}$ for $6 a$ typical of a terminal P-co-ordinated alkynylphosphine, $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}$. By contrast, the IR spectra of 7 c and 8c show two strong absorptions assignable to $\mathrm{C} \equiv \mathrm{C}$ groups; the band at $2175 \mathrm{~cm}^{-1}$ (in both cases) is indicative of a terminal P-co-ordinated alkynylphosphine, as observed in the spectra of the dinuclear derivatives $1-6$, while a second absorption at 1949 (7c) or $1957 \mathrm{~cm}^{-1}$ (8c) clearly suggests co-ordination of the acetylene fragment to an adjacent metal atom. ${ }^{5}$ Furthermore both complexes show two IR absorptions in the $809-797 \mathrm{~cm}^{-1}$ region due to the X -sensitive mode of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, indicating that the cis geometry of the $\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ moiety is retained after the reaction. ${ }^{15}$

The ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2}\right.$ $\left.\mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{l}\right)_{2}\right] 5 \mathrm{a}$, which is in fact a geometrical isomer of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{t}\right)_{2}\right] 4 \mathrm{a}$, are in good agreement with the proposed structure. Thus, the ${ }^{31} \mathrm{P}$ NMR spectrum shows a sharp singlet resonance [$\delta(\mathrm{P}) 7.87$] without platinum satellites indicating that both alkynylphosphine ligands are bound to palladium. The ${ }^{19} \mathrm{~F}$ NMR spectrum exhibits the usual pattern of three signals (ratio 2:1:2) indicating that both $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are equivalent but, as expected, the downfield resonance ($\delta-119.1$) due to the o fluorine atoms shows platinum satellites [${ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{F}_{o}\right)=520$ Hz], unequivocally showing that both $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are bonded to the platinum centre.
The NMR (${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$) spectra of complex 6 a recorded immediately after dissolving the solid sample in CDCl_{3} show that the isomers 6 a and $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)\right.$ $\left.\mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{l}}\right)\right] \quad 6 \mathrm{c}$ are present in solution in an approximately $1: 1.2$ ratio. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits, besides multiplets ($\delta 7.76,7.40$ and $8.3-8.1$) due to the phenyl protons, a singlet at $\delta 1.00$ due to the equivalent Bu^{1} groups of 6 a and two additional singlet resonances of the same intensity at δ 0.89 and 0.79 which can readily be attributed to the expected two inequivalent Bu^{t} groups of $\mathbf{6 c}$. In accord the ${ }^{\mathbf{3 1}} \mathbf{P}$ NMR spectrum shows the expected resonances for both isomers: a single resonance at $\delta-14.34$ which appear as a pseudo-triplet $(1: 4: 1)$ because of coupling with ${ }^{195} \mathrm{Pt}\left[{ }^{1} J(\mathrm{Pt}-\mathrm{P})=3991 \mathrm{~Hz}\right]$ due to 6 a and two doublets $\left[\delta(\mathrm{P}) 12.37,{ }^{1} J(\mathrm{Pt}-\mathrm{P})=3675\right.$, $-19.96,{ }^{1} J(\mathrm{Pt}-\mathrm{P})=3990 \mathrm{~Hz}$] with a ${ }^{2} J(\mathrm{P}-\mathrm{P})$ of 13.3 Hz as expected for the two inequivalent $\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}$ units (terminal and bridging) of 6 c . The presence of $\mathbf{6 c}$ in solution is also confirmed by IR spectroscopy. Thus the spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows, besides the absorptions at 2209 and $2167 \mathrm{~cm}^{-1}$ due to

Table 1 Elemental analyses, yields, relevant IR absorptions and mass spectral data for the complexes

Compound	Analysis (\%) ${ }^{\text {a }}$		Yield(\%)	IR (cm^{-1})			m / z
	C	H		$v(\mathrm{C} \equiv \mathrm{C})$	$v\left(C_{6} F_{5}\right)^{\text {b }}$	$v(\mathrm{M}-\mathrm{Cl})$	
$\begin{aligned} & \text { 1a }\left[(\mathrm { C } _ { 6 } \mathrm { F } _ { 5 }) _ { 2 } \mathrm { Pd } (\mu - \mathrm { Cl }) _ { 2 } \mathrm { Pd } \left(\mathrm{PPh}_{2}-\right.\right. \\ & \left.\mathrm{C} \equiv \mathrm{CPh})_{2}\right] \end{aligned}$	$\begin{gathered} 52.00 \\ (52.45) \end{gathered}$	$\begin{gathered} 2.55 \\ (2.55) \end{gathered}$	82	2171vs	$\begin{aligned} & \text { 797s, } \\ & 783 \mathrm{~s} \end{aligned}$	311 m , 284m, 277m	$\begin{aligned} & { }^{c} 1309\left(\left[M-\mathrm{C}_{6} \mathrm{~F}_{5}+\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right]^{+}, 12\right), \\ & 1023\left(\left[M-\mathrm{C}_{6} \mathrm{~F}_{5}\right]^{+}, 9\right), \\ & 713\left\{\left[\mathrm{PdCl}\left(\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right)_{2}\right]^{+}, 37 \%\right\} \end{aligned}$
1b $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right\}_{2}\right]$	$\begin{gathered} 52.05 \\ (52.45) \end{gathered}$	$\begin{gathered} 2.30 \\ (2.55) \end{gathered}$	53	2176vs	798s	$\begin{aligned} & 300 \mathrm{~m}, \\ & 279 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1192\left([M+2 \mathrm{H}]^{+}, 3.7\right), \\ & 453\left\{\left[\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}, 100 \%\right\} \end{aligned}$
2a $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}{ }^{-}\right.\right.$	47.85	3.10	66	$2211 \mathrm{~s}$	$796 \mathrm{~s},$		${ }^{c} 1249\left(\left[M-\mathrm{C}_{6} \mathrm{~F}_{5}+\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right]^{+}, 13\right) \text {, }$
$\left.\left.\mathrm{C} \equiv \mathrm{CBu}^{\text { }}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	(47.65)	(3.25)		2166vs	$782 \mathrm{vs}$	$\begin{aligned} & 285 \mathrm{~s}, \\ & 276 \text { (sh) } \end{aligned}$	$\begin{aligned} & 675\left\{\left[\mathrm{PdCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}+2 \mathrm{H}\right]^{+}, 32\right\}, \\ & 638\left\{\left[\mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right)_{2}\right]^{+}, 14 \%\right\} \end{aligned}$
2b $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2}{ }^{-}\right.\right.\right.$	47.50	2.95	45	2214s,	795vs,	286s,	$\left.{ }^{c} 433\left\{\left[\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right]^{+}, 100 \%\right\}$
$\left.\left.\left.\mathrm{C} \equiv \mathrm{CBu}^{\prime}\right)\right\}_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$	(47.65)	(3.25)		2172 vs	781 vs	275 (sh)	
3a $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2}-\right.\right.$	48.75	2.45	54	2173vs	799s,	309w,	${ }^{\text {c }} 1243$ ($\left[M-\mathrm{Cl}^{+}, 8\right)$,
$\left.\mathrm{C}=\mathrm{CPh})_{2}\right]$	(48.85)	(2.35)			787s	$389 \mathrm{w},$	
						$\begin{aligned} & 279 w, \\ & 266 w \end{aligned}$	$803\left\{\left[\mathrm{PtCl}\left(\mathrm{PPh}{ }_{2} \mathrm{C}=\mathrm{CPh}\right)_{2}\right]^{+}, 100 \%\right\}$
						248w	
$4 \mathrm{a}\left[(\mathrm { C } _ { 6 } \mathrm { F } _ { 5 }) _ { 2 } \mathrm { Pd } (\mu - \mathrm { Cl }) _ { 2 } \mathrm { Pt } \left(\mathrm{PPh}_{2}-\right.\right.$	46.40	2.90	84	2214s,	$797 \mathrm{~s},$	313 (sh),	
$\left.\mathrm{C} \equiv\left(B u^{\prime}\right)_{2}\right]$	(46.55)	(3.10)		$2170 \mathrm{vs}$	784vs	$\begin{aligned} & 303 \mathrm{~m} \\ & 277 \mathrm{~m} \end{aligned}$	$726\left\{\left[\mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}-\mathrm{H}\right]^{+}, 57 \%\right\}$
5a $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2}-\right.\right.$	46.45	2.85	82	2206m,	809vs,	286w,	$1238\left([M]^{+}, 5 \%\right)$
$\left.\mathrm{C} \equiv \mathrm{CBu}^{\text {) }}{ }_{2}\right]$	(46.55)	(3.10)		2164s	$\begin{aligned} & \text { 798vs, } \\ & \text { 784s } \end{aligned}$	$\begin{aligned} & 279 w, \\ & 270 w \end{aligned}$	
6a $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2}{ }^{-}\right.\right.$	43.15	3.00	91	2206s,	811 vs ,	308m,	$1331\left([M+3 H]^{+}, 8\right)$,
$\left.\mathrm{C} \equiv\left(\mathrm{CBu}^{\prime}\right)_{2}\right]$	(43.40)	(2.90)		2167 vs	800vs,	285 m ,	$764\left\{\left[\mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right)_{2}\right]^{+}, 100 \%\right\}$
					784vs	$\begin{aligned} & 278 \mathrm{~m}, \\ & 270 \mathrm{~m} \end{aligned}$	
$7 \mathrm{c}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right)-\right.$	48.30	2.25	65	2175 vs ,	806vs,	325 m ,	$1278\left([M]^{+}, 7\right)$,
$\left.\mathrm{PdCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right]$	(48.85)	(2.35)		1949vs	797vs	304m	1243 ([M-Cl] ${ }^{+}$, 8\%)
$8 \mathrm{Cc}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right)-\right.$	44.95	2.15	91	2175 vs ,	809vs,	334m,	
$\left.\mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right]$	(45.65)	(2.20)		1957vs	798vs	279s	

${ }^{a}$ Calculated values in parentheses. ${ }^{b}$ X-Sensitive mode; an internal absorption of cis-[$\left.\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{1}\right)_{2}\right]$ precludes an unambiguous assignment of these bands. For complexes $2 a$ and $4 a$ the band of very strong intensity could be the result of overlapping of one of the X -sensitive modes of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups, IR active, and this internal absorption. For complexes $2 \mathrm{~b}, 5 \mathrm{a}$ and 6 a an additional band is observed. ${ }^{c}$ Molecular peak not observed.
terminal P-co-ordinated alkynylphosphine ligands in both isomers 6 a and 6 c , a medium-intensity absorption at $1984 \mathrm{~cm}^{-1}$ which can be attributed to $v(\mathrm{C} \equiv \mathrm{C})$ for the $\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}$ ' ligand in $6 c$. On standing the proportion of 6 c increases and after 24 h the two isomers are observed in approximately the intensity ratio 1:1.8. The isomerisation of 6 a to 6 c is slow in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ and thus the NMR spectrum of 6 a obtained just after dissolving it in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ (see Table 2) only shows small additional signals due to the presence of 6 c in very low concentration (molar ratio $6 \mathrm{a}: 6 \mathrm{c} \approx 5: 1$). However after 4 h both isomers ($6 a, 6 c$) are present, in approximately $2: 1$ ratio.
Similarly, although complexes 7 c and 8 c are sparingly soluble in common organic solvents they are soluble enough in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, immediately giving a mixture of the isomers $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2^{-}}\right.$ $\left.\mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right] \quad 7 \mathrm{a}$ and $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv\right.\right.$ $\left.\mathrm{CPh}) \mathrm{PdCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] 7 \mathrm{c}$ in $1: 1.2$ molar ratio and 8 a and 8 c in 1:3.5 molar ratio respectively, as observed by ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopy (see Table 2).
The ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra at room temperature in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ obtained for complex 7 c are shown in Fig. 1. As can be seen three phosphorus resonances without platinum satellites are observed. The more intense signal ($\delta 10.13$) can be assigned to the two equivalent alkynylphosphine ligands bound to palladium in 7a and the two others to phosphorus atoms of the two inequivalent alkynylphosphine ligands (terminal and bridging) in 7c. The ${ }^{19} \mathrm{~F}$ NMR spectrum also shows the expected pattern of three types of $\mathbf{C}_{6} \mathbf{F}_{5}$ groups as is clearly reflected by the presence of three triplets due to p-fluorine resonances; two triplets of the same intensity at $\delta-161.4$ and -162.6 assigned to the two inequivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups of the major isomer 7 c and a triplet at $\delta-164.6$ which can be attributed to the two equivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups of the minor isomer 7a.

Structure of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{PtCl}-\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$.-Suitable crystals for an X-ray diffraction study were obtained by slow diffusion of hexane into a saturated tetrahydrofuran solution of complex 8 c . Fig. 2 shows a view of the molecule; selected bond distances and angles are listed in Table 3 and atomic coordinates in Table 4.
The most interesting feature of this complex is the simultaneous presence of a diphenyl(phenylethynyl)phosphine ligand and a chloride bridging two different platinum fragments $c i s-\mathrm{Pt}(1)\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}$ and $c i s-\mathrm{Pt}(2) \mathrm{Cl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)$. The phosphine bridge acts as a four-electron donor with the phosphorus atom bonded to $\mathrm{Pt}(2)$ and the triple bond to $\mathrm{Pt}(1)$. This indicates that the reaction between cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right]$ and cis$\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ proceeds with retention of the original configuration about the platinum centres. However, it should be noted that the formation of this compound is rather unexpected since complexes containing phosphinoacetylene bridging ligands are very rare. ${ }^{5}$ Indeed the only examples known to us in which the phosphinoacetylene acts as a four-electron donor ($\mathrm{P}+2 \pi$) are the dinuclear carbonyl complexes $\left[\mathrm{Ni}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{1}\right)_{2}\right]^{5 a}$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv\right.\right.$ $\left.\mathrm{CPh})_{2}\right]^{5 a}$ in which both metal atoms are co-ordinated to the phosphorus atom of one phosphinoacetylene and the triple bond of the second phosphinoacetylene, and $\left[(\mathrm{OC})_{4} \mathrm{Fe}\left(\mathrm{PPh}_{2}-\right.\right.$ $\left.\left.\mathrm{C} \equiv \mathrm{CBu}^{1}\right) \mathrm{Fe}(\mathrm{CO})_{4}\right]$. ${ }^{5 b}$ On the other hand it has been shown that the mutually cis phosphines in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ adopt a configuration which places the less-demanding $\mathrm{C} \equiv \mathrm{CPh}$ substituents 'across' one another (see A); ${ }^{12}$ thus it is also noteworthy that the formation of complex 8c requires a significant reorientation of one phosphinoalkynyl ligand, since the dinuclear doubly bridging chloride complex $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\right.$ -$\left.(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ 8a could have been expected.

Table 2 Fluorine-19, ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR data ${ }^{a}$ for the complexes

	${ }^{19} \mathrm{~F}$			${ }^{31} \mathrm{P}$		${ }^{1} \mathrm{H}$	
Compound	$\mathrm{F}_{0}{ }^{\text {b }}$	F_{p}	F_{m}	$\delta(\mathrm{P})$	${ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right)$	$\delta(\mathrm{Ph})$	$\delta\left(\mathrm{Bu}^{\prime}\right)$
1a	-115.7 (d)	$-162.7(\mathrm{t})$	-165.4 (m)	10.70	-	-	-
1b	-118.8 (dd)	-159.9 (t)	- 162.8 (m)	4.59	---	-	-
2a	-115.4 (dd)	-162.6 (t)	-165.2 (m)	9.52	-	7.72 (m, 8 H$), 7.48(\mathrm{~m}, 12 \mathrm{H})^{\mathrm{c}}$	1.01 (s, 18 H)
2b	-118.8 (dd)	-160.4 (t)	-163.3 (m)	3.03	-	$7.76(\mathrm{~m}, 8 \mathrm{H}), 7.42(\mathrm{~m}, 12 \mathrm{H})^{\text {c }}$	1.16 (s, 18 H)
3a	-116.0 (dd)	-162.3 (t)	-165.3 (m)	-11.45	4067	-	-
4 a	-115.7 (d)	-162.3 (t)	-165.1 (m)	-13.06	3946	7.75 (m, 8 H), 7.46 (m, 12 H)	0.99 (s, 18 H)
5a	$\begin{gathered} -119.1(\mathrm{~d}, \\ 520) \end{gathered}$	-164.3 (t)	- 166.4 (m)	7.87	--	7.78 (m, 8 H$), 7.50$ (m, 12 H$)$	1.02 (s, 18 H)
$6 \mathbf{a}^{\text {d }}$	$\begin{aligned} & -117.9(\mathrm{~d}, \\ & 518) \end{aligned}$	-164.1 (t)	-166.3 (m)	-8.24	3973	7.90 (m, 8 H), 7.63 (m, 12 H$)$	1.07 (s, 18 H)
$6 \mathrm{a}^{e}$	$\begin{aligned} & -119.4 \\ & (6 a+6 c) \end{aligned}$	$\begin{aligned} & -161.0(\mathrm{t}), \\ & -161.4(\mathrm{t}) \mathbf{6 c} \\ & -163.96 \mathrm{a} \end{aligned}$	$\begin{array}{r} -164.6(\mathrm{~m}) \\ -166.3(\mathrm{~m}) \\ (6 \mathbf{a}+\mathbf{6 c}) \end{array}$	12.37 (d) ${ }^{f}$	$3675 \text { \}6c }$	$\begin{aligned} & 8.3-8.1(\mathrm{vbr}), 7.76(\mathrm{~m}), \\ & 7.40(\mathrm{~m})(6 \mathrm{a}+\mathbf{6 c}) \end{aligned}$	$0.89(\mathrm{~s})\} .$
				$-19.96(\mathrm{~d})^{f}$	3990		$0.79 \text { (s) }$
	$\begin{aligned} & -119.0(\mathrm{~d}, \\ & 396) \\ & -119.6(\mathrm{~d}, \\ & 404) \\ & -119.7(\mathrm{~d}) \end{aligned}$			-14.34 (s)	3991 6a		1.00 (s) 6a
$7 c^{g}\left\{\begin{array}{l} 7 c \\ 7 a \end{array}\right.$		$\begin{aligned} & -161.4(\mathrm{t}), \\ & -162.6(\mathrm{t}) \end{aligned}$	$\begin{aligned} & -165.1(\mathrm{~m}), \\ & -165.7(\mathrm{~m}) \end{aligned}$	$\begin{gathered} 35.65(\mathrm{~s}) \\ 4.21(\mathrm{~s}) \end{gathered}$	-	-	-
		-164.6 (t)	$-166.8(\mathrm{~m})$	10.13 (s)	-		
$8 c^{h}$	$\begin{aligned} & -119.5(\mathrm{~m}) \\ & -120.0(\mathrm{~d}) \\ & \quad(\mathbf{8 c}+\mathbf{8 a})^{i} \end{aligned}$	$\begin{aligned} & -161.3 \text { (t), } \\ & -162.6 \text { (t) } 8 \mathbf{c} \\ & -164.2 \text { (t) } 8 \mathbf{a} \end{aligned}$	$\begin{aligned} & -164.9(\mathrm{~m}), \\ & -165.7(\mathrm{~m}) 8 \mathrm{c} \\ & -166.7(\mathrm{~m}) \mathbf{8 a} \end{aligned}$	17.94 (d) ${ }^{j}$	$3630\} 8 c$	-	--
				$\begin{aligned} & -17.35(\mathrm{~d})^{j} \\ & -12.08(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 4037 \\ & 39848 \mathbf{8 a} \end{aligned}$		

${ }^{a}$ In CDCl_{3} at $20^{\circ} \mathrm{C}$, chemical shifts are reported relative to $\mathrm{CFCl}_{3}, \mathrm{H}_{3} \mathrm{PO}_{4}$ (85%) and SiMe_{3} (as external references) respectively. ${ }^{b}{ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{F}_{o}\right)$ in parentheses. ${ }^{c} \delta 5.30\left(\mathrm{~s}, 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{d} \mathrm{In} \mathrm{CD}_{3} \mathrm{COCD}_{3}$, the spectra showed small additional signals due to the presence of complex $\mathbf{6 c}$ in low concentration (ratio $6 \mathrm{a}: 6 \mathrm{c} \approx 5: 1$); after 4 h in acetone, both isomers 6 a and $\mathbf{6 c}$ are observed in a molar ratio of ca. 2:1.e The complex dissolves in CDCl_{3} giving immediately a mixture of 6 a and 6 c in $c a .1: 1.2 \mathrm{~mol}$ ratio; after 24 h the ratio $6 \mathrm{a}: \mathbf{6 c}$ was $1: 1.8$. ${ }^{f}{ }^{2} J(\mathrm{P}-\mathrm{P})=13.3 \mathrm{~Hz}$. ${ }^{g} \mathrm{The}$ complex is slightly soluble in CDCl_{3} or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ giving immediately a mixture of 7 a and 7 c in solution, NMR in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(7 \mathrm{a}: 7 \mathrm{c}$ ratio observed $1: 1.25)$. ${ }^{n}$ The complex dissolves in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ yielding a mixture of 8 a and 8 c in a $1: 3.5$ molar ratio. ${ }^{i}$ Platinum satellites are also observed but it is not possible to calculate individual ${ }^{3} J\left({ }^{195} \mathrm{Pt}-\mathrm{F}_{o}\right)$ constants. ${ }^{j} J(\mathrm{P}-\mathrm{P})$ are not well resolved.

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\right.$ -$\left.(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$

$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	$2.380(4)$	$\mathrm{Pt}(1)-\mathrm{C}(1)$	$1.971(15)$
$\mathrm{Pt}(1)-\mathrm{C}(7)$	$2.046(11)$	$\mathrm{Pt}(1)-\mathrm{C}(13)$	$2.150(12)$
$\mathrm{Pt}(1)-\mathrm{C}(14)$	$2.200(12)$	$\mathrm{Pt}(2)-\mathrm{Cl}(1)$	$2.387(3)$
$\mathrm{Pt}(2)-\mathrm{Cl}(2)$	$2.320(4)$	$\mathrm{Pt}(2)-\mathrm{P}(1)$	$2.241(4)$
$\mathrm{Pt}(2)-\mathrm{P}(2)$	$2.227(4)$	$\mathrm{P}(1)-\mathrm{C}(13)$	$1.759(15)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$1.786(15)$	$\mathrm{P}(1)-\mathrm{C}(27)$	$1.825(12)$
$\mathrm{P}(2)-\mathrm{C}(33)$	$1.751(15)$	$\mathrm{P}(2)-\mathrm{C}(41)$	$1.798(13)$
$\mathrm{P}(2)-\mathrm{C}(47)$	$1.810(15)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.261(21)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.396(21)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.163(21)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.478(20)$		
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(1)$	$174.4(3)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(7)$	$85.8(4)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(7)$	$88.9(5)$	$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(13)$	$84.0(4)$
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(13)$	$100.9(5)$	$\mathrm{C}(7)-\mathrm{Pt}(1)-\mathrm{C}(13)$	$164.3(6)$
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{C}(14)$	$99.5(4)$	$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}(14)$	$86.1(5)$
$\mathrm{C}(7)-\mathrm{Pt}(1)-\mathrm{C}(14)$	$161.4(6)$	$\mathrm{Cl}(1)-\mathrm{Pt}(2)-\mathrm{Cl}(2)$	$85.7(1)$
$\mathrm{Cl}(1)-\mathrm{Pt}(2)-\mathrm{P}(1)$	$91.4(1)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{P}(1)$	$176.3(1)$
$\mathrm{Cl}(1)-\mathrm{Pt}(2)-\mathrm{P}(2)$	$173.7(1)$	$\mathrm{Cl}(2)-\mathrm{Pt}(2)-\mathrm{P}(2)$	$88.2(1)$
$\mathrm{P}(1)-\mathrm{Pt}(2)-\mathrm{P}(2)$	$94.7(1)$	$\mathrm{Pt}(1)-\mathrm{Cl}(1)-\mathrm{Pt}(2)$	$115.6(1)$
$\mathrm{Pt}(2)-\mathrm{P}(1)-\mathrm{C}(13)$	$108.8(4)$	$\mathrm{Pt}(2)-\mathrm{P}(1)-\mathrm{C}(21)$	$117.3(5)$
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(21)$	$105.7(7)$	$\mathrm{Pt}(2)-\mathrm{P}(1)-\mathrm{C}(27)$	$114.2(5)$
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(27)$	$101.7(6)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(27)$	$107.7(6)$
$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(33)$	$115.4(6)$	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(41)$	$112.8(5)$
$\mathrm{C}(33)-\mathrm{P}(2)-\mathrm{C}(41)$	$105.0(6)$	$\mathrm{Pt}(2)-\mathrm{P}(2)-\mathrm{C}(47)$	$114.9(4)$
$\mathrm{C}(33)-\mathrm{P}(2)-\mathrm{C}(47)$	$101.3(7)$	$\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(47)$	$106.1(7)$
$\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$151.6(13)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$157.9(12)$
$\mathrm{P}(2)-\mathrm{C}(33)-\mathrm{C}(34)$	$176.8(17)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$177.8(19)$

Both platinum centres are located in distorted square-planar environments, with a cis arrangement of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups at $\mathrm{Pt}(1)$ and the chloride ligands (terminal and bridging) at $\mathrm{Pt}(2)$. The $\mathrm{Pt}-\mathrm{Cl}(\mu)$ bridging $[\mathrm{Pt}(2)-\mathrm{Cl}(1) \quad 2.387(3), \quad \mathrm{Pt}(1)-\mathrm{Cl}(1)$
$2.380(4) \AA]$ and the $\mathrm{Pt}-\mathrm{Cl}$ terminal $[\mathrm{Pt}(2)-\mathrm{Cl}(2) 2.320(4) \AA]$ distances are similar to those of dinuclear $\left[\{\mathrm{PtCl}(\mu-\mathrm{Cl}) \mathrm{L}\}_{2}\right]$ complexes. ${ }^{16}$ The $\mathrm{Pt}-\mathrm{P}$ distances are almost identical within experimental error $[\mathrm{Pt}(2)-\mathrm{P}(1) 2.241(4), \mathrm{Pt}(2)-\mathrm{P}(2) 2.227(4) \AA]$ and similar to those in the mononuclear complex cis- $\left[\mathrm{PtCl}_{2}\right.$ $\left.\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right] \cdot 2 \mathrm{MeCN}{ }^{12} \quad[2.235(2)$ and $2.237(2) \AA]$. The $\mathrm{Pt}(1)-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$ distances are perceptibly different $[\mathrm{Pt}(1)-\mathrm{C}(1)$ $1.971(15)$ and $\mathrm{Pt}(1)-\mathrm{C}(7) 2.046(11) \AA]$ reflecting the presence of different trans ligands.

Both phosphinoacetylene ligands have comparable $\mathrm{P}-\mathrm{C}$ (alkyne) bond distances $[\mathrm{P}(1)-\mathrm{C}(13) 1.759(15), \mathrm{P}(2)-\mathrm{C}(33)$ $1.751(15) \AA]$ and angles at the phosphorus atoms, but the $\mathrm{C}-\mathrm{C}$ distances and angles at the acetylenic carbons differ markedly following the usual pattern observed for co-ordinated/uncoordinated alkynes. ${ }^{17}$ Thus, as expected, co-ordination of the $\mathrm{C}(13)-\mathrm{C}(14)$ triple bond to $\mathrm{Pt}(1)$ has a perceptible effect both on the bond length and on the linearity of the acetylenic group $[\mathrm{C}(13)-\mathrm{C}(14) \quad 1.261(21)$ versus $\mathrm{C}(33)-\mathrm{C}(34) \quad 1.163(21) \quad \AA$; $\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(14) 151.6(13)$ and $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15) 157.9(12)$ versus $\mathrm{P}(2)-\mathrm{C}(33)-\mathrm{C}(34) \quad 176.8(17)$ and $\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$ $\left.177.8(19)^{\circ}\right]$. It should be noted that the $\mathrm{C} \equiv \mathrm{C}$ bond length and angles at the acetylenic carbons of the phosphinoacetylene bridging ligand $\left[\mathrm{P}(1) \mathrm{PPh}_{2} \mathrm{C}(13) \equiv \mathrm{C}(14) \mathrm{Ph}\right]$ are rather similar to the corresponding parameters in the phosphine-stabilised low-valent metal complexes $\left[\mathrm{Ni}_{2}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{1}\right)_{2}\right]$, ${ }^{5 a}$ $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]^{5 a}$ and $\left[\mathrm{Fe}_{2}(\mathrm{CO})_{8}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{t}\right)\right]^{5 b}$ respectively for which a considerable distortion of the coordinated acetylenic fragment has been suggested. This fact suggests that the $\mathrm{Pt}(1)-\pi($ acetylene $)$ interaction is strong and accordingly the $\mathrm{Pt}(1)-\mathrm{C}($ alkyne $)$ bond distances $[\mathrm{Pt}(1)-\mathrm{C}(13)$ $2.150(12), \mathrm{Pt}(1)-\mathrm{C}(14) 2.200(12) \AA]$ are considerably shorter than the corresponding $\mathrm{Pt}-\mathrm{C}$ (alkyne) bond lengths found by us

Fig. 1 Phosphorus-31 (a) and ${ }^{19} \mathrm{~F}(b)$ NMR spectra at room temperature of a sample of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\eta^{3}-\mathrm{PPh} \mathbf{2}_{2} \mathrm{C}=\mathrm{CPh}\right) \mathrm{PdCl}\left(\mathrm{PPh}{ }_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right]$ 7 c in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ showing the mixture of isomers $7 \mathrm{c}(\odot)$ and $7 \mathrm{a}(\star)$ in solution
in the mononuclear bis $\left(\eta^{2}\right.$-alkyne $)$ complex cis- $\left[\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$$\left.(\mathrm{PhC} \equiv \mathrm{CPh})_{2}\right]^{13}$ as well as in the doubly alkynyl-bridged diplatinum derivatives $\left[(\right.$ dppe $\left.) \mathrm{Pt}(\mathrm{C} \equiv \mathrm{CPh})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$ (dppe $\left.=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)$ and $\left[\mathrm{PMePh}_{3}\right]_{2}\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{C} \equiv\right.$ $\left.\mathrm{CPh})_{2} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]$. ${ }^{14 a}$ As usual for platinum(II)-acetylene interactions the $\mathrm{C}=\mathrm{C}$ vector is oriented essentially perpendicular to the local co-ordination plane of $\mathrm{Pt}(1)$ [the angle formed by the vector defined by $\mathrm{Pt}(1)$ and the midpoint of the $\mathrm{C} \equiv \mathrm{C}$ bond and the $\mathrm{C}(13)-\mathrm{C}(14)$ vector is $\left.88.8(9)^{\circ}\right]$ and is inclined by $27.7(8)^{\circ}$ to the normal of this plane. As a consequence the central core is not planar and the best least-squares planes around $\mathrm{Pt}(1)$ and $\mathrm{Pt}(2)$ form a dihedral angle of $31.2(2)^{\circ}$.

The steric requirements of the bridging phosphinoacetylene ligand could be responsible for the large $\mathrm{Pt}(1)-\mathrm{Cl}(1)-\mathrm{Pt}(2)$ angle $\left[115.6(1)^{\circ}\right]^{16.18}$ and the long distance between the platinum atoms $[4.033(2) \AA]$.

Experimental

All manipulations were carried out under a nitrogen atmosphere. The C and H analyses and IR spectra were obtained as described elsewhere. ${ }^{14}$ Proton, ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on either a Varian Unity 300 or a Bruker ARX 300 instrument and the chemical shifts (ppm) are reported relative to $\mathrm{SiMe}_{3}, \mathrm{CFCl}_{3}$ and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (as external references) respectively. Literature methods were used to prepare cis- $\left[\mathrm{MCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CR}\right)_{2}\right]^{3 d, f, 12 a}$ and cis- $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$ (thf $\left.)_{2}\right]^{19}(\mathrm{M}=\mathrm{Pt}$ or Pd$)$.

$$
\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right] \text { 1a.-To a yellow }
$$

solution of cis- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](0.100 \mathrm{~g}, 0.133 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.078 \mathrm{~g}$, 0.133 mmol) and the mixture stirred at room temperature for 15 min . The resulting solution was evaporated to dryness, and the addition of diethyl ether to the oily residue caused the separation of la as a deep yellow solid.
$\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right\}_{2}\right] \quad 1 \mathrm{~b}$.-The complex cis$\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.078 \mathrm{~g}, 0.133 \mathrm{mmol})$ was added to a yellow solution of cis-[PdCl $\mathbf{2 P P h}_{2}\left(\mathrm{PPCPh}_{2}\right](0.100 \mathrm{~g}, 0.133 \mathrm{mmol})$ in chloroform ($20 \mathrm{~cm}^{3}$) and the mixture stirred at room temperature for 24 h . Concentration of the resulting dark orange solution (ca. $5 \mathrm{~cm}^{3}$) produced complex 1 b as a very pale yellow solid.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\mathrm{t}}\right)_{2}\right] \quad$ 2a- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. -To a solution of cis-[$\left.\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CBu}^{\mathrm{t}}\right)_{2}\right](0.100 \mathrm{~g}, 0.141 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.082 \mathrm{~g}$, 0.141 mmol) and the mixture was stirred at room temperature for 30 min . The resulting solution was filtered and the filtrate evaporated to $\approx 5 \mathrm{~cm}^{3}$. Addition of hexane $\left(\approx 1 \mathrm{~cm}^{3}\right)$ produced 2a as a pale yellow solid.
$\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right\}_{2}\right] \quad\right.$ 2b. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. -The synthesis was performed as described for complex 1 b starting from cis- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{t}\right)_{2}\right](0.100 \mathrm{~g}, 0.141 \mathrm{mmol})$ and cis$\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.082 \mathrm{~g}, 0.141 \mathrm{mmol})$. In this case the resulting solution was treated with charcoal, filtered through Kieslguhr and then concentrated to $\approx 5 \mathrm{~cm}^{3}$. Then, addition of

Fig. 2 Molecular structure of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\eta^{3}-\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] \cdot \mathrm{OC}_{4} \mathrm{H}_{8}\left(8 \mathrm{C} \cdot \mathrm{OC}_{4} \mathrm{H}_{8}\right)$ (non-hydrogen atoms only) showing the atom numbering scheme. The solvent of crystallisation is not shown

a few drops of hexane and cooling to $-30^{\circ} \mathrm{C}$ overnight gave $\mathbf{2 b}$ as a yellow solid.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ 3a.-To a colourless solution of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right](0.100 \mathrm{~g}, 0.119 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added cis- $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.070 \mathrm{~g}$, 0.119 mmol). The solution immediately turned deep yellow, and after stirring for $c a .15 \mathrm{~min}$ it was concentrated to $\approx 5 \mathrm{~cm}^{3}$. Then addition of a few drops of hexane and standing at $-30^{\circ} \mathrm{C}(2 \mathrm{~d})$ precipitated 3a as a pale yellow solid.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}^{(}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right)_{2}\right] 4 \mathrm{a}$. - To a colourless solution of $c i s-\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CBu}^{\mathrm{l}}\right)_{2}\right](0.100 \mathrm{~g}, 0.125 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added cis- $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.073 \mathrm{~g}$, 0.125 mmol) and the mixture stirred at room temperature for 30 min . The resulting yellow solution was concentrated until precipitation of 4 a as a pale yellow solid ($c a .5 \mathrm{~cm}^{3}$) and then hexane was added to complete the precipitation.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pd}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{1}\right)_{2}\right]$ 5a.-A yellow suspension of cis-[$\left.\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{1}\right)_{2}\right](0.100 \mathrm{~g}, 0.141 \mathrm{mmol})$ in toluene ($25 \mathrm{~cm}^{3}$) was treated with cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.095$ $\mathrm{g}, 0.141 \mathrm{mmol}$). Immediate dissolution of the suspension took place yielding an orange-red solution, and after $c a .2-3 \mathrm{~min}$ an orange-yellow solid began to precipitate. The mixture was stirred for 1 h and then the orange-yellow solid 5 a which separated was filtered off.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})_{2} \mathrm{Pt}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CBu}^{\prime}\right)_{2}\right] \mathbf{6 a}$. -The complex cis$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.084 \mathrm{~g}, 0.125 \mathrm{mmol})$ was added to a stirred suspension of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CBu}^{1}\right)_{2}\right](0.100 \mathrm{~g}, 0.125 \mathrm{mmol})$ in toluene ($30 \mathrm{~cm}^{3}$). Immediately part of the initial suspension dissolved, but after a few (1-2) minutes a white product precipitated. The mixture was stirred for 1 h and then the white solid formed (6a) was filtered off.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{PdCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] 7 \mathrm{c}$. To a stirred yellow suspension of cis- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right]$ ($0.100 \mathrm{~g}, 0.133 \mathrm{mmol}$) in toluene ($20 \mathrm{~cm}^{3}$) was added cis$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{thf})_{2}\right](0.090 \mathrm{~g}, 0.133 \mathrm{mmol})$ giving immediately an orange solution. After 15 min of stirring at room temperature a deep yellow solid began to precipitate. The mixture was stirred for 1 h and the resulting yellow solid (7c) was filtered off.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] \quad \mathbf{8 c}$. To a stirred suspension of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{2} \mathrm{C}=\mathrm{CPh}\right)_{2}\right](0.100 \mathrm{~g}$, $0.119 \mathrm{mmol})$ in toluene ($20 \mathrm{~cm}^{3}$) was added cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ (thf) $)_{2}$] $0.080 \mathrm{~g}, 0.119 \mathrm{mmol}$) giving immediately a yellow solution. After a few (1-2) minutes a pale yellow solid was formed. The mixture was stirred for 1 h and then the solid (8c) was filtered off.

Crystal Structure Determination of $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\right.$ -$\left.\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$.-Crystal data. $\mathrm{C}_{56} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~F}_{10} \mathrm{OP}_{2} \mathrm{Pt}_{2}, M 1439.9$, monoclinic, space group $P 2_{1} / n, \quad a=14.251(7), \quad b=20.526(5), \quad c=19.214(11) \quad \AA$, $\beta=110.66(4)^{\circ}, U=5259(4) \AA^{3}, Z=4, D_{\mathrm{c}}=1.82 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA, \mu=55.5 \mathrm{~cm}^{-1}, \quad F(000)=2768$, $T=293 \pm 1 \mathrm{~K}$, crystal dimensions $0.3 \times 0.3 \times 0.25 \mathrm{~mm}$.
Crystallographic data were collected on a CADY diffractometer, $3<2 \theta<44^{\circ}$; 6433 independent reflections, 4592 with $I>3 \sigma(I)$ were used for all calculations. Cell constants were refined from 2θ values of 25 reflections including Friedel

Table 4 Atomic coordinates $\left(\times 10^{4}\right)$ for $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}(\mu-\mathrm{Cl})\left(\mu-\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right) \mathrm{PtCl}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right)\right] \cdot \mathrm{OC}_{4} \mathrm{H}_{8}$

Atom	x	y	z	Atom	x	y	z
Pt(1)	1394(1)	2094(1)	2815(1)	C(22)	-254(11)	73(8)	2626(9)
$\mathrm{Pt}(2)$	-647(1)	1444(1)	3665(1)	C(23)	-15(15)	-475(10)	2392(13)
$\mathrm{Cl}(1)$	911(2)	1985(2)	3875(2)	C(24)	-82(17)	-574(11)	1653(15)
$\mathrm{Cl}(2)$	-325(3)	1608(2)	4922(2)	C(25)	-420(16)	- 106(11)	1197(12)
P(1)	-919(3)	1350(2)	2447(2)	C(26)	-692(12)	512(9)	1407(9)
$\mathbf{P}(2)$	-2091(3)	978(2)	3591(2)	C(27)	-2176(10)	1590(8)	1844(7)
C(1)	1923(9)	2150(6)	1997(7)	C(28)	-2828(10)	1169(8)	1315(8)
C(2)	2582(10)	2627(7)	1945(7)	C(29)	-3756(14)	1396(11)	894(10)
C(3)	2996(10)	2673(8)	1391(8)	C(30)	-4047(14)	2018(12)	990(11)
C(4)	2735(13)	2221(9)	850(9)	C(31)	-3422(13)	2429(1)	1515(11)
C(5)	2088(11)	1737(7)	859(8)	C(32)	-2478(12)	2228(7)	1947(8)
C(6)	1727(10)	1733(8)	1429(9)	C(33)	-2491(11)	340(7)	2948(8)
F(2)	2867(6)	3120(4)	2461(4)	C(34)	-2788(11)	-92(8)	2537(8)
F(3)	3627(7)	3155(5)	1382(5)	C(35)	-3203(11)	-638(7)	2018(7)
F(4)	3130(7)	2251(5)	297(5)	C(36)	-3905(12)	-1016(8)	2125(9)
F(5)	1860(8)	1295(5)	321(5)	C(37)	-4357(14)	- 1529(8)	1638(10)
F(6)	1132(7)	1204(5)	1410(5)	C(38)	-4098(14)	-1605(8)	1027(10)
C(7)	2836(9)	2034(7)	3550(7)	C(39)	-3383(17)	-1239(10)	938(10)
C(8)	3294(10)	2526(7)	4012(8)	C(40)	- 2944(13)	-714(8)	1404(9)
C(9)	4243(13)	2506(9)	4511(9)	C(41)	-3121(10)	1542(6)	3337(7)
C(10)	4803(11)	1955(10)	4585(9)	C(42)	-4053(10)	1375(9)	2866(8)
C(11)	4404(12)	1443(10)	4139(9)	C(43)	-4828(11)	1818(9)	2705(9)
C(12)	3376(11)	1483(9)	3610(8)	C(44)	-4660(12)	2440(11)	2991(10)
F(8)	2778(7)	3093(5)	3990(6)	C(45)	-3744(12)	2617(9)	3454(9)
F(9)	4655(8)	2994(6)	4994(6)	C(46)	-2964(11)	2185(8)	3609(8)
F(10)	5707(7)	1889(6)	5084(6)	C(47)	-2083(9)	584(7)	4436(7)
F(11)	4917(7)	883(6)	4185(6)	C(48)	-2591(10)	829(8)	4852(8)
F(12)	3047(6)	960(4)	3166(5)	C(49)	-2580(13)	515(9)	5495(9)
C(13)	-170(9)	1923(7)	2204(7)	C(50)	- 1994(15)	-37(10)	5711(10)
C(14)	-9(10)	2489(7)	2018(7)	C(51)	- 1481(13)	-266(9)	5313(10)
C(15)	-197(11)	3071(8)	1615(8)	C(52)	- 1517(10)	22(8)	4679(9)
C(16)	- 1077(13)	3170(9)	1044(9)	0	3545(21)	182(14)	1725(14)
C(17)	-1336(19)	3725(12)	680(11)	C(53)	4124(26)	394(18)	1284(21)
C(18)	-680(20)	4250(14)	879(15)	C(54)	3878(27)	-75(20)	617(20)
C(19)	219(17)	4190(9)	1449(12)	C(55)	2884(27)	-366(19)	623(20)
C(20)	480(12)	3593(8)	1814(9)	C(56)	2757(25)	-283(18)	1393(21)
C(21)	-645(10)	582(7)	2124(8)				

pairs (24>20>22 $)$. An empirical absorption correction (DIFABS ${ }^{20}$) was applied. Two standard reflections were measured every 500 but showed no decay. The structure was solved by direct methods and refined on $\left|F_{\mathrm{o}}\right|$ to $R=0.039$ and $R^{\prime}=0.054$ for 630 variables [weighting scheme $w^{-1}=\sigma^{2}\left(F_{0}\right)$ $+0.0007 F_{\mathrm{o}}{ }^{2}$] using the SHELXTL PLUS ${ }^{21}$ package. Highest shift : error ratio $0.001: 1$. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in calculated positions and refined as riding atoms ($\mathrm{C}-\mathrm{H} 0.96 \AA$ and $U=$ $\left.0.0885 \AA^{2}\right)$. In the final stages of the refinement the presence of a molecule of tetrahydrofuran as crystallisation solvent was discovered. In this molecule the distances $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ were fixed at 1.54 and $1.46 \AA$ respectively and the five atoms of the molecule were refined with a common thermal parameter. A difference map following convergence showed two peaks higher than $1 \mathrm{e} \AA^{-3}$ (maximum, minimum difference density 1.25 , $-0.81 \mathrm{e} \AA^{-3}$) near the heavy atoms.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (Spain) (Project PB92-0364) for financial support. M. T. Moreno thanks the Universidad de La Rioja for financial support.

References

1 (a) A. J. Carty, Pure Appl. Chem., 1982, 54, 113; (b) A. J. Carty, Adv. Chem. Ser., 1982, 196, 163; (c) S. A. MacLaughlin, N. J. Taylor and
A. J. Carty, Organometallics, 1984, 3, 392; (d) S. A. MacLaughlin, N. J. Taylor and A. J. Carty, Organometallics, 1983, 2, 1194; (e) D. Nucciarone, S. A. MacLaughlin, N. J. Taylor and A. J. Carty, Organometallics, 1988, 7, 106; (f) F. V. Gastel, S. A. MacLaughlin, M. Lynch, A. J. Carty, E. Sappa, A. Tiripicchio and M. Tiripicchio Camellini, J. Organomet. Chem., 1987, 326, C65.
2 (a) E. Sappa, G. Pasquinelli, A. Tiripicchio and M. Tiripicchio Camellini, J. Chem. Soc., Dalton Trans., 1989, 601; (b) J. Suades, F. Dahan and R. Mathieu, Organometallics, 1989, 8, 842; (c) D. Montlo, J. Suades, F. Dahan and R. Mathieu, Organometallics, 1990, 9, 2933; (d) M. H. A. Benvenutti, M. D. Vargas, D. Braga, F. Grepioni, B. E. Mann and S. Naylor, Organometallics, 1993, 12, 2947; (e) M. H. A. Benvenutti, M. D. Vargas, D. Braga, F. Grepioni, E. Parisini and B. E. Mann, Organometallics, 1993, 12, 2955.
3 (a) A. J. Carty and A. Efraty, Inorg. Chem., 1969, 8, 543; (b) A. J. Carty, A. Efraty, T. W. Ngand T. Birchall, Inorg. Chem., 1970,9, 1263; (c) G. Beran, A. J. Carty, P. C. Chiech and H. A. Patel, J. Chem. Soc., Dalton Trans., 1973, 488; (d) Y. S. Wong, S. E. Jacobson, P. C. Chieh and A. J. Carty, Inorg. Chem., 1974, 13, 284; (e) H. D. Empsall, E. M. Hyde, E. Mentzer and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1977, 2285; (f) R. T. Simpson and A. J. Carty, J. Coord. Chem., 1973, 2, 207; (g) E. Sappa, M. Valle, G. Predieri and A. Tiripicchio, Inorg. Chim. Acta, 1984, 88, L23; (h) A. J. Carty, S. A. MacLaughlin and N. J. Taylor, J. Organomet. Chem., 1981, 204, C27.
4 H. A. Patel, A. J. Carty and N. K. Hota, J. Organomet. Chem., 1973, 50,247 ; A. J. Carty, H. N. Paik and T. W. Ng, J. Organomet. Chem., 1974, 74, 279.
5 (a) H. N. Paik, A. J. Carty, K. Dymock and G. J. Palenik, J. Organomet. Chem., 1974, 70, C17; (b) A. J. Carty, W. F. Smith and N. J. Taylor, J. Organomet. Chem., 1978, 146, C1.

6 E. Sappa, G. Predieri, A. Tiripicchio and M. Tiripicchio Camellini, J. Organomet. Chem., 1985, 297, 103.

7 W. F. Smith, J. E. Yule, N. J. Taylor, H. N. Park and A. J. Carty, Inorg. Chem., 1977, 16, 1593.
8 A. A. Cherkas, L. H. Randall, S. A. MacLaughlin, G. N. Mott, N. J. Taylor and A. J. Carty, Organometallics, 1988, 7, 969.

9 A. J. Carty, S. E. Jacobson, R. T. Simpson and N. J. Taylor, J. Am. Chem. Soc., 1975, 97, 7254.
10 N. J. Taylor, S. E. Jacobson and A. J. Carty, Inorg. Chem., 1975, 14, 2648.

11 A. J. Carty, D. K. Johnson and S. E. Jacobson, J. Am. Chem. Soc., 1979, 101, 5612.
12 (a) A. J. Carty, N. J. Taylor and D. K. Johnson, J. Am. Chem. Soc., 1979, 101, 5422; (b) D. K. Johnson, T. Rukachaisirikul, Y. Sun, N. J. Taylor, A. J. Canty and A. J. Carty, Inorg. Chem., 1993, 32, 5544.

13 R. Usón, J. Forniés, M. Tomás, B. Menjón and A. J. Welch, J. Organomet. Chem., 1986, 304, C24; R. Usón, J. Forniés, M. Tomás, B. Menjón, C. Fortuño, A. J. Welch and D. E. Smith, J. Chem. Soc., Dalton Trans., 1993, 275.
14 (a) J. Forniés, M. A. Gómez-Saso, E. Lalinde, F. Martínez and M. T. Moreno, Organometallics, 1992, 11, 2873; (b) J. R. Berenguer, L. R. Falvello, J. Forniés, E. Lalinde and M. Tomás, Organometallics,

1993, 12, 7; (c) J. Forniés, E. Lalinde, A. Martín and M. T. Moreno, J. Chem. Soc., Dalton Trans., 1994, 135.

15 E. Maslowsky, jun., Vibrational Spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437.
16 V. Y. Kukushkin, V. K. Belsky, V. E. Konovalov, R. R. Shifrina, A. I. Moiseev and R. A. Vlasova, Inorg. Chim. Acta, 1991, 183, 57 and refs. therein.
17 E. Sappa, A Tiripicchio and P. Braunstein, Chem. Rev., 1983, 83, 203.
18 V. K. Jain, R. P. Pabel and K. Venkatasubramanian, Polyhedron, 1991, 10, 851.
19 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 1985, 4, 1912.
20 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
21 SHELXTL PLUS, Software Package for the Determination of Crystal Structures, Release 4.21/v, Siemens Analytical X-ray Instruments, Madison, WI, 1990.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

