Dalton Communications

Synthesis of Novel Mixed-metal Clusters of Mercury and Osmium; Crystal and Molecular Structures of cis-$\left[\mathrm{Os}(\mathrm{CO})_{4}\left\{(\mu-\mathrm{Hg}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\right\}_{2}\right]$ and $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right]$

Yat-Kun Au and Wing-Tak Wong*
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

Reaction of $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}\right]$ with $\mathrm{Hg}(\mathrm{C}=\mathrm{CPh})_{2}$ afforded the novel mixed-metal clusters cis- $\left[\mathrm{Os}(\mathrm{CO})_{4}{ }^{-}\right.$ $\left.\left\{(\mu-\mathrm{Hg}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\right\}_{2}\right] 1$ and $\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] 2$ in moderate yield, the crystal structures of which have been determined; 1 converts into 2 via $\mathrm{Hg}-\mathrm{Os}$ bond cleavage under ambient conditions.

Organomercury fragments which readily attach to a variety of transition metals have been used as building blocks in heterometallic clusters as well as in the synthesis of highnuclearity clusters. ${ }^{1-6}$ Recently, with the help of the ${ }^{13} \mathrm{C}$ NMR technique, the fluxional behaviour of mercury-containing clusters in solution has been investigated extensively. One remarkable conclusion drawn from these studies is that a $\mu-\mathrm{Hg}$ moiety has about the same mobility in these clusters as has a μ-hydride ligand. ${ }^{7}$ Furthermore, the photochemical reactivity of some high-nuclearity clusters has also revealed that it is possible to open up new synthetic routes to chemical species and metal-framework structures which are inaccessible under thermal conditions. ${ }^{8,9}$ Herein, we report some preliminary work on triosmium-mercury metal clusters containing a new mixed-metal framework.
We have found that treatment of the highly reactive cluster [$\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}$] with 1 equivalent of the organomercury species $\mathrm{Hg}(\mathrm{C} \equiv \mathrm{CPh})_{2}$ at room temperature for 3 h afforded two new osmium-mercury clusters: red-orange cis- $\left[\mathrm{Os}(\mathrm{CO})_{4}\{(\mu-\mathrm{Hg})\right.$ -$\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}\right.$ - $\left.\left.\left.\mathrm{CH}=\mathrm{CHPh}\right)\right\}_{2}\right] 1$ and reddish violet $\left[\left\{\mathrm{Os}_{3}-\right.\right.$ (CO) $\left.\left.{ }_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right] 2$ in 30 and 20% yield respectively. A small amount of the known non-mercury cluster $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)\right]^{10}(5 \%)$ and metallic mercury have also been isolated (confirmed by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy). Both clusters 1 and 2 were isolated as air-stable solids \dagger resulting from $\mathrm{Hg}-\mathrm{C}$ bond cleavage in $\mathrm{Hg}(\mathrm{C} \equiv \mathrm{CPh})_{2}$. Compound 1 undergoes $\mathrm{Hg}-\mathrm{Os}$ bond cleavage and is converted into 2 with extrusion of a $\mathrm{HgOs}(\mathrm{CO})_{4}$ fragment under ambient conditions over a period of $3 \mathbf{d}$ (Scheme 1). However, the conversion rate can be much reduced by lowering the temperature to $-20^{\circ} \mathrm{C}$. As shown by IR and ${ }^{1} \mathrm{H}$ NMR spectroscopy, both of the $\mathrm{C} \equiv \mathrm{C}$ bonds of the ligand moieties have been partially hydrogenated to become $\mathrm{C}=\mathrm{C}$ bonds by rearrangement of the two bridging hydrides of $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}\right]$. To establish the geometries of $\mathbf{1}$ and 2, their crystal structures have been determined. \ddagger
The molecular structure of compound 1 is depicted in Fig. 1. The molecule possesses a C_{2} idealized symmetry and comprises

[^0]a central $\mathrm{Os}(\mathrm{CO})_{4}$ fragment with two cis-co-ordinated $(\mu-\mathrm{Hg}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\mathrm{CHPh}\right)$ units. The central $\mathrm{Hg}(1)-\mathrm{Os}(1)$ and $\mathrm{Hg}\left(1^{*}\right)-\mathrm{Os}(1)$ bond distances [2.683(1) \AA] are significantly shorter than the two asymmetric mercury-osmium bonds, $\mathrm{Hg}(1)-\mathrm{Os}(2) 2.856(1) \AA$ and $\mathrm{Hg}(1)-\mathrm{Os}(3) 2.803(1) \AA$. The $\mathrm{Hg}(1)-\mathrm{Os}(1)-\mathrm{Hg}\left(1^{*}\right)$ angle $\left[87.09(6)^{\circ}\right]$ and the intramolecular $\mathrm{Hg} \cdots \mathrm{Hg}$ distance $(3.70 \AA)$ both indicate very weak interaction between the two cis $-(\mu-\mathrm{Hg}) \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mu-\eta^{2}-\mathrm{CH}=\right.$ CHPh) fragments. A similar observation was made in cis-$\left[\mathrm{Ru}(\mathrm{CO})_{4}\left\{(\mu-\mathrm{Hg}) \mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C} \equiv \mathrm{CCMe}_{3}\right)\right\}_{2}\right]^{12}(\mathrm{Hg}-\mathrm{Ru}-\mathrm{Hg}$ $84^{\circ}, \mathrm{Hg} \cdots \mathrm{Hg} 3.55 \AA$). The geometry around the $\mathrm{Hg}(1)$ or $\mathrm{Hg}\left(1^{*}\right)$ atoms is triangular, involving three osmium atoms. Atoms $\mathrm{Os}(1), \mathrm{Hg}(1), \mathrm{Os}(2)$ and $\mathrm{Os}(3)$ are almost coplanar (maximum deviation of $0.004 \AA$ from their least-squares plane). Within the osmium triangle, the variation in metal-metal bond distances is significant: $\mathrm{Os}(2)-\mathrm{Os}(3) \quad 2.901(1), \mathrm{Os}(2)-\mathrm{Os}(4)$ $2.842(1)$ and $\mathrm{Os}(3)-\mathrm{Os}(4) 2.927(1) \AA$. Also, the unsupported $\mathrm{Os}(3)-\mathrm{Os}(4)$ bonding edge is substantially elongated being even longer than the mercury-bridged $\mathrm{Os}(2)-\mathrm{Os}(3)$ edge. This elongation can be explained in terms of electronic effects since electron counting at each osmium atoms suggests that $\mathrm{Os}(3)$ is the most electron rich.

The molecular structure of compound 2 is depicted in Fig. 2. The complex consists of a C_{2} axis passing through the central Hg atom with two butterfly osmium-mercury clusters sharing a common wingtip. In the butterflies the dihedral angles between the wings are 125.8 and 124.2° which are slightly larger than
\ddagger Crystal data: 1, $\mathrm{C}_{40} \mathrm{H}_{14} \mathrm{Hg}_{2} \mathrm{O}_{24} \mathrm{Os}_{7} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \quad M=2647.14$, monoclinic, space group $C 2 / c$ (no. 15), $a=13.612(1), b=13.766(1)$, $c=29.734(3) \AA, \beta=93.25(2)^{\circ}, U=5562.9(7) \AA^{3}, Z=4, D_{\mathrm{c}}=3.162$ $\mathrm{g} \mathrm{cm}^{-3}, F(000)=4632$, Mo-K α radiation $(\lambda=0.71073 \AA), \mu(\mathrm{Mo}-\mathrm{K} \alpha)-$ $=215.19 \mathrm{~cm}^{-1}$, dimensions $0.24 \times 0.42 \times 0.44 \mathrm{~mm}, 2493$ observed diffractometer data $[I>3 \sigma(I)], \psi$ scan absorption correction, structure solved by direct methods (SIR 88) ${ }^{11}$ and Fourier-difference techniques, refined by full-matrix least-squares analysis (Os and Hg anisotropic) to $R=0.041, R^{\prime}=0.051, w=4 F_{0}^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right) ; 2, \mathrm{C}_{36} \mathrm{H}_{14}-$ $\mathrm{O}_{20} \mathrm{Os}_{6} \mathrm{Hg}, M=2108.28$, triclinic space group $P \bar{T}^{\circ}$ (no. 2), $a=$ 13.988(2), $b=16.864(7), c=9.735(1) \AA, \alpha=96.56(2), \beta=105.93(1)$, $\gamma=92.21(2)^{\circ}, U=2188(1) \AA^{3}, Z=2, D_{\mathrm{c}}=3.201 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ 1852, Mo-K α radiation $(\lambda=0.71073 \AA), \mu(\mathrm{Mo}-\mathrm{K} \alpha)=209.48 \mathrm{~cm}^{-1}$, dimensions $0.28 \times 0.33 \times 0.41 \mathrm{~mm}, 4262$ observed diffractometer data [$I>3 \sigma(I)], \psi$ scan absorption correction, structure solved and refined as for 1 to $R=0.034, R^{\prime}=0.039$. Atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Scheme 1 (i) $\mathrm{Hg}(\mathrm{C} \equiv \mathrm{CPh})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 3 h ; (ii) acetone, room temperature, 3 d

Fig. 1 Molecular structure of compound 1 showing the atomic numbering scheme. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$: $\mathrm{Hg}(1)-\mathrm{Os}(1) 2.683(1), \mathrm{Hg}(1)-\mathrm{Os}(2) 2.856(1), \mathrm{Hg}(1)-\mathrm{Os}(3) 2.803(1)$, $\mathrm{Os}(2)-\mathrm{Os}(3) \quad 2.901(1), \mathrm{Os}(2)-\mathrm{Os}(4) \quad 2.842(1), \mathrm{Os}(3)-\mathrm{Os}(4) 2.927(1)$, $\mathrm{Os}(2)-\mathrm{C}(13)$ 2.09(2), $\mathrm{Os}(3)-\mathrm{C}(13)$ 2.29(2), $\mathrm{Os}(3)-\mathrm{C}(14) 2.41(2)$ and $\mathrm{C}(13)-\mathrm{C}(14) 1.43(3) ; \mathrm{Hg}(1)-\mathrm{Os}(1)-\mathrm{Hg}\left(1^{*}\right) 87.09(6), \mathrm{Os}(1)-\mathrm{Hg}(1)-\mathrm{Os}(2)$ $134.09(4), \mathrm{Os}(1)-\mathrm{Hg}(1)-\mathrm{Os}(3) 164.23(5), \mathrm{Os}(2)-\mathrm{Hg}(1)-\mathrm{Os}(3) 61.63(3)$, $\mathrm{Os}(2)-\mathrm{Os}(3)-\mathrm{Os}(4) 58.38(3), \mathrm{Os}(2)-\mathrm{Os}(4)-\mathrm{Os}(3) 60.37(3), \mathrm{Os}(3)-\mathrm{Os}(2)-$ $\mathrm{Os}(4) \quad 61.25(3), \quad \mathrm{Hg}(1)-\mathrm{Os}(2)-\mathrm{Os}(3) \quad 58.27(30), \quad \mathrm{Hg}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ 60.05(3), $\mathrm{Os}(3)-\mathrm{C}(13)-\mathrm{C}(14) 76(1)$ and $\mathrm{Os}(3)-\mathrm{C}(14)-\mathrm{C}(13) 67(1)$
the average value in $\left[\left\{\mathrm{Os}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{S}\right)\right\}_{2}\left(\mu_{4}-\mathrm{Hg}\right)\right]\left(114^{\circ}\right)^{7}$ and similar to that in $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{C} \equiv \mathrm{CCMe}_{3}\right)\right\}\left(\mu_{4}-\mathrm{Hg}\right)\right]$ $\left(125^{\circ}\right){ }^{13}$ The geometry around the central mercury atom is tetrahedrally distorted with a dihedral angle of 52.3° between the $\mathrm{Hg}-\mathrm{Os}(2)-\mathrm{Os}(3)$ and $\mathrm{Hg}-\mathrm{Os}(4)-\mathrm{Os}(5)$ planes. As in 1, the unsupported $\mathrm{Os}(1)-\mathrm{Os}(3) 2.922(1) \AA \AA$ and $\mathrm{Os}(4)-\mathrm{Os}(6) 2.915(1)$ \AA edges are substantially elongated.
The organic moieties $\mathrm{CH}=\mathrm{CHPh}$ in compounds 1 and 2 are co-ordinated to the trinuclear framework in the usual $\mu-\eta^{2}$ bonding mode. This is also reflected in the rather large differences in the chemical shifts (2.72 ppm) of the two trans-vinyl protons in their ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{10}$ The trans configuration of the two vinyl protons is reflected in their coupling constants, $\approx 14 \mathrm{~Hz}$. All the bond distances and angles in the ligand moieties in 1 and 2 are similar to those in $\left[\mathrm{Os}_{3}(\mu-\mathrm{H})\left(\mu-\eta^{2}-\right.\right.$ $\mathrm{CH}=\mathrm{CHEt})] .{ }^{14}$ The formation of 1 is not well understood. The origin of the central $\mathrm{Os}(\mathrm{CO})_{4}$ fragment most probably results from degradation of the $\mathrm{Os}_{3}(\mathrm{CO})_{10}$ metal core of the starting cluster, $\left[\mathrm{Os}_{3} \mathrm{H}_{2}(\mathrm{CO})_{10}\right.$]. The formation of 2 from 1, which involves $\mathrm{Hg}-\mathrm{Os}$ bond cleavage, extrusion of a $\mathrm{HgOs}(\mathrm{CO})_{4}$ fragment and rotation of each Os_{3} unit, is also not clear. Nevertheless, 1 represents a previously unobserved mercury-osmium mixed-metal framework. Further investigations concerning the above questions, the fluxional behaviour of $\mathbf{1}$ and $\mathbf{2}$ and the fate of the extruded $\mathrm{HgOs}(\mathrm{CO})_{4}$ fragment are in progress.

Acknowledgements

W.-T. W. acknowledges financial support from the Research Grants Council and The University of Hong Kong. Y.-K. A. acknowledges the receipt of a postgraduate studentship, administered by The University of Hong Kong.

Fig. 2 Molecular structure of compound 2 showing the atomic numbering scheme. Selected bond distances (\AA) and angles (${ }^{\circ}$): $\mathrm{Hg}-\mathrm{Os}(2) 2.895(1), \mathrm{Hg}-\mathrm{Os}(3) 2.823(1), \mathrm{Hg}-\mathrm{Os}(5) 2.887(1), \mathrm{Hg}-\mathrm{Os}(6)$ 2.824(1), Os(2)-Os(3) 2.888(1), Os(5)-Os(6) 2.89(1), Os(1)-Os(2) $2.866(1)$, $\mathrm{Os}(1)-\mathrm{Os}(3) \quad 2.922(1), \mathrm{Os}(4)-\mathrm{Os}(5) 2.860(1)$, $\mathrm{Os}(4)-\mathrm{Os}(6)$ $2.915(1), \mathrm{Os}(2)-\mathrm{C}(21) 2.10(2), \mathrm{Os}(3)-\mathrm{C}(21) 2.28(2), \mathrm{Os}(3)-\mathrm{C}(22) 2.48(2)$, $\mathrm{Os}(5)-\mathrm{C}(29) 2.10(2), \mathrm{Os}(6)-\mathrm{C}(29) 2.24(2)$ and $\mathrm{Os}(6)-\mathrm{C}(30) 2.48(2)$; $\mathrm{Os}(2)-\mathrm{Hg}-\mathrm{Os}(3) 60.66(3), \mathrm{Os}(5)-\mathrm{Hg}-\mathrm{Os}(6) 60.81(3), \mathrm{Hg}-\mathrm{Os}(2)-\mathrm{Os}(3)$ $58.43(2), \mathrm{Hg}-\mathrm{Os}(3)-\mathrm{Os}(2) \mathbf{6 0 . 9 1}(3), \mathrm{Hg}-\mathrm{Os}(5)-\mathrm{Os}(6) 58.51(3), \mathrm{Hg}-$ $\mathrm{Os}(6)-\mathrm{Os}(5) 60.68(3)$, $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3) 61.04(3)$, $\mathrm{Os}(1)-\mathrm{Os}(3)-\mathrm{Os}(2)$ $59.11(3), \mathrm{Os}(2)-\mathrm{Os}(1)-\mathrm{Os}(3) \quad 59.86(3), \mathrm{Os}(4)-\mathrm{Os}(5)-\mathrm{Os}(6) \quad 60.90(3)$, $\mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(5) 59.02(3)$ and $\mathrm{Os}(5)-\mathrm{Os}(4)-\mathrm{Os}(6) 60.08(3)$

References

1 L. H. Gade, Angew. Chem., Int. Ed. Engl., 1993, 32, 24.
2 Y. Yamamoto and H. Yamazaki, Inorg. Chim. Acta, 1994, 217, 121.
3 B. F. G. Johnson, W. L. Kwik, J. Lewis, P. R. Raithby, V. P. Saharan and H. R. Powell, J. Chem. Soc., Dalton Trans., 1991, 1037.
4 S. R. Drake, K. Henrick, B. F. G. Johnson, J. Lewis, M. McPartlin and J. Morris, J. Chem. Soc., Chem. Commun., 1986, 928.
5 P. J. Bailey, B. F. G. Johnson, J. Lewis, M. McPartlin and H. R. Powell, J. Chem. Soc., Chem. Commun., 1989, 1513.

6 L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin and H. R. Powell, J. Chem. Soc., Chem. Commun., 1990, 110.

7 E. Rosenberg, K. I. Hardcastle, M. W. Day, R. Gobetto, S. Hajela and R. Muftikian, Organometallics, 1991, 10, 203.
8 E. Charalambous, L. H. Gade, B. F. G. Johnson, T. Kotch, A. J. Lees, J. Lewis and M. McPartlin, Angew. Chem., Int. Ed. Engl., 1990, 29, 1137.

9 L. H. Gade, B. F. G. Johnson, J. Lewis, M. McPartlin, T. Kotch and A. J. Lees, J. Am. Chem. Soc., 1991, 113, 8698.

10 A. J. Deeming, S. Hasso and M. Underhill, J. Chem. Soc., Dalton Trans., 1975, 1614.
11 M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 1989, 22, 389.

12 E. Rosenberg, D. Ryckman, I.-N. Hsu and R. W. Gellert, Inorg. Chem., 1986, 25, 194.
13 S. Ermer, K. King, K. I. Hardcastle, E. Rosenberg, A. M. M. Lanfredi, A. Tiripicchio and M. T. Camellini, Inorg. Chem., 1983, 22, 1339.
14 J. J. Guy, B. E. Reichert and G. M. Sheldrick, Acta Crystallogr., Sect. B, 1976, 32, 3319.

Received 24th January 1995; Communication 5/00408J

[^0]: \dagger Spectroscopic data: 1, IR $v(\mathrm{CO})\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2095 \mathrm{~s}, 2072 \mathrm{~m}, 2047 \mathrm{vs}$, $2011 \mathrm{~s}, 1997 \mathrm{~s}, 1980 \mathrm{~m}$ and $1950 \mathrm{w} \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 8.40$ (d, $2 \mathrm{H}, J=14$, vinyl H), $7.46(\mathrm{~m}, 10 \mathrm{H}$, phenyl H) and $5.68(\mathrm{~d}, 2 \mathrm{H}, J=14$ Hz , vinyl H); FAB mass $m / z 2612$ (calc. 2612); 2, IR v(CO) 2104 m , 2091s, 2050vs, 2008s and $1974 \mathrm{~m} \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 8.33(\mathrm{~d}, J=14,2 \mathrm{H}$, vinyl H), $7.47(\mathrm{~m}, 10 \mathrm{H}$, phenyl H) and $5.85(\mathrm{~d}, 2 \mathrm{H}, J=14 \mathrm{~Hz}$, vinyl H); FAB mass $m / z 2108$ (calc. 2108).

