Carbon-13 Nuclear Magnetic Resonance Studies of the Redox Reactions of Aurothiomalates with Selenocyanate in Aqueous Solution

Anvarhusein A. Isab,* M. Naseem Akhtar and Abdul Rahman Al-Arfaj

Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

The interactions of SCN⁻ and SeCN⁻ with aurothiomalate $[Au(tm)]_n$ in aqueous solution were studied by ¹³C NMR spectroscopy. The $[Au(tm)]_n$ is further polymerized in the presence of SCN⁻, however, SeCN⁻ binds to $[Au(tm)]_n$ forming monomeric $[Au(SeCN)(tm)]^-$. This complex initially disproportionates to give $[Au(SeCN)_2]^-$ and $[Au(tm)_2]^-$. The $[Au(SeCN)_2]^-$ eventually decomposed to give $[Au(CN)_2]^-$ and metallic selenium. The free tm⁻ released from $[Au(tm)]_n$ is oxidized to the thiomalic disulfide $(tm)_2$. When the bis complex $[Au(tm)_2]^-$ reacted with SeCN⁻ it did not form $[Au(SeCN)(tm)]^-$, but instead gave $(tm)_{2'}$, $[Au(CN)_2]^-$ and Se_2^{2-} .

Gold(1) thiolates have been used successfully over many years in the treatment of rheumatoid arthritis¹⁻³ and such compounds, *e.g.* aurothiomalate 'Myochrysin' [Au(tm)], aurothioglucose, *etc.* are formulated as simple monomers. Gold(1) usually forms linear two-co-ordinate complexes but not in the case of gold(1) thiolates. In order to attain a linear coordination, these drugs exist as polymers.¹⁻³ The polymerization of [Au(tm)]_n has been identified using various physical techniques²⁻⁶ and the extent of polymerization is reported to be dependent on the concentrations of the [Au(tm)]_n, salts and pH of the solution.⁷

In the presence of thiols (HSR) and thiones (L) these drugs bind to form bis complexes, *e.g.* $[Au(SR)_2]^-$ and $[AuL-(SR)].^{8-11}$ The binding of selenopropionate with $[Au(tm)]_n$ has also been studied ¹² and a bis(selenopropionato)gold complex is formed. Although the redox reactions of gold(I)-gold(III) with polyselenide have been studied extensively,¹³⁻¹⁵ very little work has been done concerning the interaction of these gold drugs with selenium-containing ligands.

The reactions of CN^- and SCN^- with gold(I) thiolates are important since it has been reported that chrysotherapy patients who are tobacco smokers accumulate gold in their red blood cells from gold-based drugs, while non-smokers do not.¹⁶⁻¹⁸ This was attributed to cyanide from the inhaled smoke which alters the metabolism of the gold-containing drugs, because it binds with gold(1) to form $[Au(CN)_2]^-$. The log β_2 value for $[Au(CN)_2]^-$ is reported to be 36.6.¹⁹ The CN⁻ is known to undergo two reactions: reversible binding to methaemoglobin and irreversible oxidation to thiocyanate.²⁰ If the CN⁻ generated by smokers in the red blood cells is oxidized to thiocyanate, it is important to know whether an interaction between $[Au(tm)]_n$ and SCN^- occurs or not and as such we have investigated the interaction of KSCN with [Au(tm)]_n. Comparative reactions between KSeCN and $[Au(tm)]_n$ and ¹³C between $KSe^{13}CN$ and $[Au(tm)_2]^-$ using ${}^{13}C$ NMR spectroscopy have also been studied. To the best of our knowledge this is the first study in which the disproportionation and redox reactions of [Au(SeCN)(tm)]⁻ are reported.

Experimental

Chemicals.—The compounds KSCN, KSeCN and $[Au(tm)]_n$ were obtained from ICN K and K Labs, Plainview, New York, 99.7% D₂O, 40% NaOD in D₂O and 35% DCl in D₂O from Fluka and KSe¹³CN from Merck, Sharp and Dohme, Canada. The $[Au(tm)]_n$ was analysed as [Au(tm)]-0.33 glycerol·H₂O.⁷

NMR Measurements.—The ¹³C NMR spectra were measured at 50.3 MHz on a Varian XL-200 spectrometer operating in the pulsed Fourier-transform mode. The measurements were made with coherent off-resonance ¹H decoupling or with broad-band ¹H decoupling. Chemical shifts were measured relative to the CH₂ resonance of internal glycerol (g₂) at δ 63.33 from SiMe₄. The probe temperature was 20 °C.

pH Measurements.—All pH measurements were made at 22 °C with a model 620 Fisher Accumet pH meter equipped with a Fisher microprobe combination pH electrode; pH* is used to indicate the actual meter reading for D_2O solutions without correction for deuterium isotope effects.

Resonance Assignments.—The ¹³C NMR resonance assignments of the gold(1) thiomalate complexes $[Au(tm)]_n$ and $[Au(tm)_2]^-$, the thiomalic disulfide $(tm)_2$ and $[Au(SeCN)-(tm)]^-$ and their chemical shifts are given in Table 1.

Results

Experiment 1.—Fig. 1(*a*) shows the ¹³C NMR spectrum of 0.20 mol dm⁻³ [Au(tm)]_n in D₂O (2.0 cm³) at pH* 7.40. The solution was pale yellow and the chemical shifts of various resonances are summarized in Tables 1 and 2. When 0.20 mol dm⁻³ KSCN was added as a solid (not shown in Fig. 1) no change in the spectrum was observed. The concentration of KSCN was then increased to 0.60 mol dm⁻³ and as shown in Fig. 1(*b*) (pH* 7.40), one resonance, labelled as p₁ at δ 49.0 appeared and a slight shift of a₁ (δ 47.9 to 47.4) was observed. In the low-field region there was no change in the chemical shifts

Table 1 Carbon-13 NMR chemical shifts and assignments

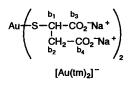

δ (resonance assignment)
47.9 $(a_1 \text{ and } a_2)$, 182.2 (a_3) , 179.6 (a_4)
43.3 (b ₁), 47.7 (b ₂), 184.7 (b ₃), 184.8 (b ₄)
54.3 and 54.0 (d ₁), 41.1 (d ₂), 180.0 (d ₃),
179.1 (d ₄)
42.0 (s_2) , 52.8 (s_1) ; s_3 and s_4 overlapping
with d_3 and d_4
121.1
154.0

Table 2 Carbon-13 NMR chemical shifts (δ) of 0.20 mol dm⁻³ [Au(tm)]_n and in the presence of KSCN as shown in Fig. 1; concentrations in mol dm⁻³

Fig.	[Au(tm)],:KSCN	a 1	a2	a ₃	a ₄	SCN ⁻	p 1	p_2
1(a)	0.20:0.00	47.9	47.9	182.2	179.6			
Not shown	0.20:0.20	47.9	47.9	182.2	179.6	133.4		
1(<i>b</i>)	0.20:0.60	47.4	47.9	182.2	179.6	134.2	49.0	180.8
1(c)	0.00:0.20					133.4		

$$\begin{bmatrix} a_{1} & a_{3} \\ Au - S - CH - CO_{2} Na^{+} \\ CH_{2} - CO_{2} Na^{+} \\ CH_{2} - CO_{2} Na^{+} \\ a_{2} & a_{4} \end{bmatrix}_{n}$$

 $[Au(tm)]_n$ (tm⁻ = Thiomalate)

$$\begin{pmatrix} d_1 & d_3 \\ S - CH - CO_2 Na^+ \\ I \\ CH_2 - CO_2 Na^+ \\ d_2 & d_4 \end{pmatrix}_2$$

$$(tm)_2$$

(NCSe)-Au-S-CH-CO2⁻Na⁺ CH2-CO2⁻Na⁺ ^{S2} S4

[Au(SeCN)(tm)]

Glycerol

observed for resonances a_3 and a_4 , however, a new resonance p_2 appeared ⁷ at δ 180.8. The free SCN⁻ resonances appeared at δ 133.4 while in the presence of Au(tm): SCN⁻ (1:3) it appeared at δ 134.2. The solution remained pale yellow throughout the experiment. Note that resonances a_1 , a_2 , a_3 and a_4 are assigned to [Au(tm)]_n only. Once the tm⁻ binds to the *trans* side of [Au(tm)]_n then a_1 , a_2 , a_3 and a_4 are denoted by b_1 , b_2 , b_3 and b_4 . The assignment of these resonances are described elsewhere.⁷⁻⁹

Experiment 2.—Fig. 2(*a*) is similar to Fig. 1(*a*) {0.20 mol dm⁻³ [Au(tm)]_n in D₂O} and all the conditions are the same. When 0.0144 g (equivalent to 0.050 mol dm⁻³) of SeCN⁻ was added as a solid to the [Au(tm)]_n solution under N₂ gas {0.25:1 SeCN⁻ : [Au(tm)]_n equivalent ratio}, the solution changed to orange. The chemical shifts of various resonances are summarized in Tables 1 and 3. Note that two new resonances, d₂ at δ 41.1 and d₁ at δ 54.3 and 54.0, appeared. The two peaks for d₁ are attributed to the diastereotopic CH carbons of two *biomalic disulfide diastereoisomers. The disulfide resonation are summarized to the assigned by oxidizing free thiomalate (Htm) with O₂ at pH*7.40.

The complex $[Au(SeCN)(tm)]^-$ also gave two resonances in the high-field region due to the CH (s₁) and CH₂ (s₂) groups at δ 52.8 and 42.0 respectively. The resonance for free SeCN⁻ in D₂O (pH* 7.50) was also observed at δ 121.1. When the concentration of SeCN⁻ was increased to 0.10 mol

When the concentration of SeCN⁻ was increased to 0.10 mol dm⁻³ {0.5:1 SeCN⁻:[Au(tm)]_n equivalent ratio}, the solution

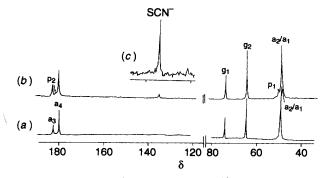


Fig. 1 The 50 MHz ¹H noise-decoupled ¹³C NMR spectra (at pH* 7.40) of: (a) 0.20 mol dm⁻³ [Au(tm)]_n, (b) 0.20 mol dm⁻³ [Au(tm)]_n: 0.60 mol dm⁻³ KSCN and (c) 0.00 mol dm⁻³ [Au(tm)]_n: 0.20 mol dm⁻³ KSCN

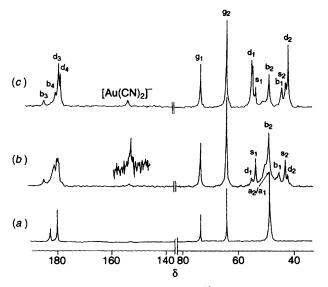


Fig. 2 The 50 MHz ¹H noise-decoupled ¹³C NMR spectra (at pH* 7.40) of: (a) 0.20 mol dm⁻³ [Au(tm)]_n, (b) 0.20 mol dm⁻³ [Au(tm)]_n: 0.05 mol dm⁻³ KSeCN and (c) 0.20 mol dm⁻³ [Au(tm)]_n: 0.10 mol dm⁻³ KSeCN

became dark orange. The spectrum was recorded after overnight FID (free-induction decay) accumulation. The mixture contained some dark red precipitates (which is a characteristic of metallic selenium) and some metallic gold on the side of the NMR tube. As shown in Fig. 2(c), resonances d_2 and d_1 increased in intensity, while the opposite was observed for resonances s_2 , s_1 , b_2 and b_1 . The precipitation of selenium and the deposition of metallic gold is explained by equations (1) and (2).

$$[Au(tm)] + SeCN^{-} \longrightarrow [Au(SeCN)(tm)]^{-} \quad (1)$$

$$2[Au(SeCN)(tm)]^{-} + [Au(tm)_{2}]^{-} + [Au(SeCN)_{2}]^{-} + 2Se^{0} + 2Se^{0} + 2Se^{0} + 2CN^{-} \qquad (2)$$

Table 3 Carbon-13 NMR chemical shifts (δ) of 0.20 mol dm⁻³ [Au(tm)], and in the presence of KSeCN as shown in Fig. 2; concentrations in mol dm⁻³

Fig.	[Au(tm)],:KSeCN	b _i	b ₂	b ₃	b4	s ₁	s ₂	d ₁	d ₂	d3	d₄	$[Au(CN)_2]^-$
2(a)	0.20:0.00	Chem	ical shifts	are same a	as in Tabl	e 2, Fig.	1(a)					
2(b)	0.20:0.05	43.3	47.9	185.0	181.0	52.8	42.0	54.3 54.0	41.1	180.0	179.1	155.3
2(<i>c</i>)	0.20:0.10		hemical s		arious re	sonances	remained		ged in Fi	g. 2(b) an	nd 2(c), 1	nowever, their

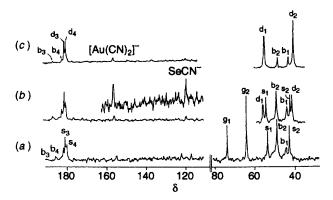


Fig. 3 The 50 MHz ¹H noise-decoupled ¹³C NMR spectra (at pH* 7.40) of 0.20 mol dm⁻³ [Au(tm)]_n: 0.20 mol dm⁻³ KSeCN: (a) after 6 h, (b) after 12 h and (c) after 24 h

Experiment 3.—In order to follow the time-dependent disproportionation of the unstable complex $[Au(SeCN)(tm)]^-$ the following experiment was carried out.

Dinitrogen gas was passed through a 0.20 mol dm^{-3} [Au(tm)]_n solution in D₂O, pH* 7.40, and 1 equivalent of solid SeCN⁻ was added. The solution was slightly brown and no precipitates were observed. The spectrum shown in Fig. 3(a) was recorded after 6 h. Resonances b₄, b₃, b₂, b₁, s₄, s₃, s₂ and s₁ appeared and their chemical shifts are given in Table 4. It should be noted that there are no signs of resonances of the thiomalic disulfide $(tm)_2$ in this spectrum. The spectrum in Fig. 3(b) was recorded after 12 h; the solution was dark brown and some precipitates were observed, due to metallic gold and selenium. This time resonances from $(tm)_2 (d_2 \text{ and } d_1)$ were also present in the spectrum. The resonances at δ 155.3 is presumably due to $[Au(^{13}CN)_2]^-$ as described in equation (2) while that at δ 121.2 is due to free SeCN⁻. Fig. 3(c) was recorded after 24 h; the solution was still dark brown and more precipitates of metallic gold and selenium appeared. The resonances s_2 and s_1 disappeared completely and d_2 and d_1 increased in intensity relative to g_2 of glycerol.

Fig. 4 shows the approximate percentage intensity of resonances b_1 , d_1 and s_1 from the spectra of Fig. 3(a)-(c). The values are measured relative to g_2 . The T_1 values of these resonances were not measured owing to the instability of $[Au(SeCN)(tm)]^-$. However, the percentage values show how the disproportionation or decomposition of $[Au(SeCN)(tm)]^-$ proceeds with time.

Experiment 4.—In order to assign the resonance at δ 153.18, the following experiment was carried out. A 0.20 mol dm⁻³ [Au(tm)]_n solution was prepared in D₂O (1 cm³) under N₂ gas and 1 equivalent of KSe¹³CN (0.0290 g KSe¹³CN) was added. A broad resonance at δ 153.18 and a sharp resonance at δ 121.16 due to unreacted Se¹³CN⁻ appeared. Since the Se¹³CN⁻ used was labelled, the higher-field resonances were very weak. Two separate resonances due to [Au(SeCN)₂]⁻ and [Au(SeCN)-

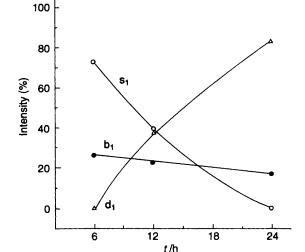


Fig. 4 The (%) intensity of the CH resonance of tm⁻ as a function of time (for resonance assignment see text)

(tm)]⁻ were anticipated, however, only one broad resonance at δ 153.18 was observed. This may be due to the exchange between these two species. However, as shown in equation (2) both species eventually decomposed to give [Au(CN)₂]⁻. Therefore the resonance at δ 153.18 must be due to [Au(CN)₂]⁻ because it did not disappear even after 24 h of NMR data accumulation.

Experiment 5.—To confirm the assignment of resonances s_1 and s₂, the following experiment was carried out. A 0.20 mol dm⁻³ [Au(tm)]_n solution (pH* 7.40) was prepared in D₂O (1 cm^3) under N₂ gas and 0.75 equivalent of tm⁻ (0.0225 g Htm) was added. The solution was pale yellow. The Au: tm⁻ ratio was 1:1.75, and the tm⁻ concentration was kept at less than two per gold because [Au(tm)], itself contains about 10% tm as a free ligand and as such the actual species would be $[Au(tm)_2]^-$ in aqueous solution.²¹ As shown in Fig. 5(a), no free tm⁻ resonances appeared. The resonance assignments are given in Tables 1 and 5. One equivalent of KSe¹³CN (0.0290 g KSe¹³CN) was added to the solution. The colour did not change immediately, but after 12 h of NMR data accumulation it changed to dark brown. The spectrum is shown in Fig. 5(b). It should be noted that no s_1 or s_2 resonances appeared in the spectrum, only d_1 and d_2 . A sharp resonance appeared at δ 154.06, due to $[Au(CN)_2]^-$ and a resonance at δ 121.13 due to free Se¹³CN⁻ is also observed. Another spectrum was recorded after 24 h of accumulation [Fig. 5(c)]. Note that compared to g_2 , the resonances d_1 , d_2 increased in intensity and b_1 , b_2 decreased in intensity.

Discussion

Experiment 1 involved the interaction between SCN^- and $[Au(tm)]_n$. The extra peaks p_1 and p_2 appeared in the presence

of SCN⁻. Similar peaks were observed when NaCl or Na₂SO₄ was added to $[Au(tm)]_n$ solution, which shows that SCN⁻ is acting as a salt and is further polymerizing the $[Au(tm)]_n$ solution as described earlier.⁷

The results of experiment 2 indicate that the reaction of SeCN⁻ with $[Au(tm)]_n$ generates $[Au(SeCN)(tm)]^-$ in aqueous solution as shown in equation (1). The assignments of resonances b_1 , b_2 , b_3 and b_4 have been described previously.⁸ The assignments of d_1 , d_2 , d_3 and d_4 were confirmed by dissolving Htm in D_2O at pH* 7.4 and oxidizing it with air. The resonances d_2 and d_1 were assigned by off-resonance decoupling and s_1 and s_2 , which appeared after the addition of SeCN⁻ to the $[Au(tm)]_n$ solution, must be from $[Au(SeCN)(tm)]^-$ as described in equation (1). As reported in the literature,²² most SeCN⁻-containing complexes decompose in aqueous solution in the presence of a majority of metal ions. The resonances s_3 and s_4 of $[Au(SeCN)(tm)]^-$ were observed, but overlapping with d_3 and d_4 .

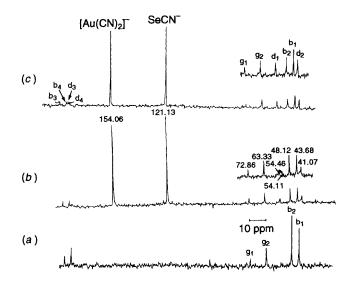
The attempt to generate $[Au(SeCN)_2]^-$ by reducing gold(III) to gold(I) in aqueous solution and then adding SeCN⁻ failed and only brown precipitates with gold(I) were observed.

The disproportionation of asymmetric linear gold(I) complexes is known, $^{23-26}$ for example as shown in equation (3) (where RS⁻ = thiomalate, thioglucose, glutathione *etc.*).

$$2[\operatorname{Au}(\operatorname{CN})(\operatorname{RS})]^{-} \rightleftharpoons [\operatorname{Au}(\operatorname{RS})_{2}]^{-} + [\operatorname{Au}(\operatorname{CN})_{2}]^{-} \quad (3)$$

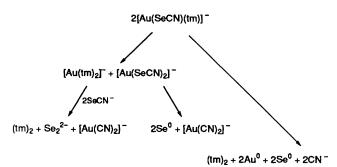
Scrambling reactions of cyano(trialkylphosphine)gold(I) complexes, similar to equation (3), have also been revealed by ${}^{13}C$, ${}^{15}N$ and ${}^{31}P$ NMR spectroscopy, ${}^{27-29}$ equation (4) (where R = methyl, ethyl, phenyl *etc.*).

$$2[\operatorname{Au}(\operatorname{CN})(\operatorname{PR}_3)] \rightleftharpoons [\operatorname{Au}(\operatorname{PR}_3)_2]^+ + [\operatorname{Au}(\operatorname{CN})_2]^- \quad (4)$$


However, the asymmetric complex $[Au(SeCN)(tm)]^-$ does not disproportionate according to the reaction described in equation (3) because, if it did, an increase in intensity of resonance b₁ and a decrease in intensity of s₁ should have been observed. However, as shown in Figs. 3 and 4 and described in experiments 3 and 4 the intensity of resonance b₁ does not change, but s₁ transforms directly to d₁. Moreover the intensity of resonance b₁ of $[Au(tm)_2]^-$ did not change significantly indicating that $[Au(tm)_2]^-$ is stable over a 6–24 h period.

Recently a study on the exchange reactions of $[Au(tm)]_n$ with selenopropionate in water was reported.¹² At a 1:2 ratio of $[Au(tm)]_n$:selenopropionate the bis(selenopropionato)gold complex is formed. The Htm was ejected as a free ligand and unlike in the present study, it did not oxidize to $(tm)_2$. This observation suggests that selenol simply binds to gold(1) and no redox reaction takes place. Similar reactions were observed with other selenols.³⁰ However when $[Au(tm)]_n$ was treated with thiourea a ternary complex was formed. When selenourea was added to $[Au(tm)]_n$, a redox reaction converting the gold(I) to metallic gold and thiomalic acid to the thiomalic disulfide $(tm)_2$ was observed.³¹

The resonances s_1 and s_2 were confirmed (experiment 5) by reacting Se¹³CN⁻ with [Au(tm)₂]⁻ in which the intermediate species [Au(SeCN)(tm)]⁻ was not generated because the gold(1) is blocked on both sides by tm⁻, however, only the disulfide resonances of (tm)₂ appeared as shown in Fig. 5. The sharp resonance at δ 154.06 in Fig. 5(c) is due to [Au(¹³CN)₂]^{-.23-25} This is simply because no [Au(SeCN)(tm)]⁻ was generated and [Au(Se¹³CN)₂]⁻ is unstable and could not be observed even after 24 h as shown in Fig. 5(c). The [Au(¹³CN)₂]⁻ species may be generated as shown in equation (2). The resonance for [Au(¹³CN)₂]⁻ was observed at δ 154.00 in various studies of gold(1) drugs with CN⁻ interactions.²²⁻²⁵


In all our studies we observed an orange solution, which may be due to the generation of the $\text{Se}_2^{2^-}$ species which is known to be orange.¹³⁻¹⁵

The reaction between $[Au(tm)_2]^-$ and SeCN⁻ without the formation of the intermediate species $[Au(SeCN)(tm)]^-$ is

Fig. 5 The 50 MHz ¹H noise-decoupled ¹³C NMR spectra (at pH* 7.40) of: (a) 0.20 mol dm⁻³ [Au(tm)]_n:0.15 mol dm⁻³ Htm; (b) as (a) + 0.20 mol dm⁻³ KSe¹³CN, spectrum recorded after 12 h, and (c) as (b) but after 24 h of accumulation

Fig.	<i>t</i> /h	b_1	b_2	b3	b4	s_1	s ₂	S ₃	s ₄	d,	d ₂	d	3	d4	[Au(CN) ₂
a)	6	43.7	47.9	185.0	181.0	52.8	42.0	180.	0 179	.1 —					
)	12	43.7	47.9	185.0	181.0	52.8	42.0	180.	0 179	.1 54. 54.	-	.1 1	80.0	179.1	155.3
c)	24	43.7	47.9	185.0	181.0	_				54. 54.		.1 1	80.0	179.1	155.3
		on-13 NM	R chemic	cal shifts (ð	5) of 0.20) mol dn	n ⁻³ [Au(ti	m) ₂] ⁻ an	d in the p	resence (of KSe ¹³	CN as sł	nown ir	n Fig. 5; c	oncentratio
ol drr	-3	n-13 NM $n)_2]^-: KS$,) mol dn b ₂	n ⁻³ [Au(tr b₃	m) ₂] an b ₄	d in the p d ₁	resence o	of KSe ¹³	CN as st d₄		n Fig. 5; c 1(CN) ₂] ⁻	concentratio Se ¹³ CN
ol drr g.	-3	n) ₂] ⁻ : KS		<i>t/</i> h 1	b ₁		Ľ	/23						0	
able 5 ol dm g. a) b)	-3 [Au(tr	n) ₂] ⁻ : KS .00		<i>t/</i> h 1	b ₁	b ₂	b ₃	b ₄	d ₁	d ₂				ı(CN)₂]⁻	Se ¹³ CN ⁻ 121.13

Scheme 1

explained by equation (5). The $[Au(CN)_2]^-$ and Se_2^{2-} species

$$[\operatorname{Au}(\operatorname{tm})_2]^- + 2\operatorname{SeCN}^- \rightleftharpoons (\operatorname{tm})_2 + \operatorname{Se_2}^{2^-} + [\operatorname{Au}(\operatorname{CN})_2]^-$$
(5)

generated explain the orange solution as well as a sharp resonance [Fig. 5(b) and (c)] at δ 154.00 which is clearly due to $[Au(CN)_2]^{-24-27}$

Reactions (2)–(5) are summarized in Scheme 1. The final products lead to $(tm)_2$, $[Au(CN)_2]^-$, an orange colouration solution due to $Se_2^{2^-}$, metallic gold, metallic selenium and free CN^- . This free CN^- , which may be generated in small concentrations may exchange further with $[Au(CN)_2]^-$. This exchange reaction will lead to a slight shift of the $[Au(CN)_2]^-$ resonance between δ 153.0 and 155.0 together with broadening of the resonance.²⁴⁻²⁶

Conclusion

The present study shows that SCN^- increases the polymerization of $[Au(tm)]_n$. However, $SeCN^-$ oxidizes thiomalic acid to the thiomalic disulfide and reduces gold(I) to metallic gold for both $[Au(tm)]_n$ and $[Au(tm)_2]^-$. Similar observations were made ³¹ when $[Au(tm)]_n$ was treated with thio- and seleno-urea. Therefore it can be concluded that selenium is essential for these redox reactions.

Acknowledgements

This research was supported by the King Fahd University of Petroleum and Minerals Research Committee under project No. CY/DRUG/124.

- 1 P. J. Sadler, Struct. Bonding (Berlin), 1976, 29, 171.
- 2 C. F. Shaw III, Inorg. Perspect. Biol. Med., 1979, 2, 287.
- 3 D. H. Brown and W. E. Smith, Chem. Soc. Rev., 1980, 9, 217.
- 4 D. H. Brown, G. McKlinley and W. E. Smith, J. Chem. Soc., Dalton Trans., 1977, 1874.
- 5 L. F. Larkworthy and D. Sattari, J. Inorg. Nucl. Chem., 1980, 42, 551.
- 6 D. T. Hill, B. M. Sutton, A. A. Isab, T. Razi, P. J. Sadler, J. M. Trooster and G. H. M. Callis, *Inorg. Chem.*, 1983, **22**, 2936.
- 7 A. A. Isab and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1981, 1657.
- 8 A. A. Isab and P. J. Sadler, J. Chem. Soc., Chem. Commun., 1976, 1051.
- 9 A. A. Isab and P. J. Sadler, J. Chem. Soc., Dalton Trans., 1982, 135.
 10 C. F. Shaw III, J. Eldridge and M. P. Cancaro, J. Inorg. Biochem., 1981, 14, 267.
- 11 A. A. Isab, J. Inorg. Biochem., 1987, 30, 69.
- 12 A. A. Isab and A. P. Arnold, J. Coord. Chem., 1989, 20, 95.
- 13 Y. Park and M. G. Kanatzidis, Angew. Chem., Int. Ed. Engl., 1990, 29, 914.
- 14 M. G. Kanatzidis, Comments Inorg. Chem., 1990, 10, 161.
- 15 S. P. Haung and M. G. Kanatzidis, Inorg. Chem., 1991, 30, 3572.
- 16 G. G. Graham, T. M. Haavisto, P. J. McNaught, C. D. Browne and G. D. Champion, J. Rheum., 1982, 9, 527.
- 17 D. W. James, N. W. Ludvigsen, L. G. Clelend and S. C. Milazzo, J. Rheum., 1982, 9, 532.
- 18 G. G. Graham, T. M. Haavisto, H. M. Jones and G. D. Champion, Biochem. Pharmacol., 1984, 33, 1257.
- 19 R. D. Hancock, N. P. Finklestein and A. J. Avers, J. Inorg. Nucl. Chem., 1972, 34, 3747.
- 20 A. R. Pettitgrew and G. S. Fell, Clin. Chem., 1973, 19, 466.
- 21 M. C. Grootveld, M. T. Razi and P. J. Sadler, *Clin. Rheum.*, 1984, 3 (Suppl. 1), 5.
- 22 V. V. Skopenko, G. V. Tsintsadze and E. I. Ivanova, *Russ. Chem. Rev.*, 1982, **51**, 21.
- 23 G. G. Graham, J. R. Bales, M. C. Grootveld and P. J. Sadler, J. Inorg. Biochem., 1985, 25, 163.
- 24 G. Lewis and C. F. Shaw III, Inorg. Chem., 1986, 25, 58.
- 25 A. A. Isab, J. Inorg. Biochem., 1992, 46, 145.
- 26 A. A. Isab, I. H. Gazi and A. Al-Arfaj, J. Chem. Soc., Dalton Trans., 1993, 841.
- 27 A. L. Hormann-Arendt and C. F. Shaw III, *Inorg. Chem.*, 1990, 29, 4683.
- 28 A. A. Isab, A. L. Hormann, M. T. Coffer and C. F. Shaw III, J. Am. Chem. Soc., 1988, 110, 3278.
- 29 A. A. Isab, I. H. Gazi, M. I. M. Wazeer and H. Perzanowski, J. Inorg. Biochem., 1993, 50, 299.
- 30 A. A. Isab, Transition Met. Chem., 1994, 19, 495.
- 31 A. A. Isab, A. R. Al-Arfaj and M. N. Akhtar, J. Coord. Chem., 1994, 33, 287.

Received 18th November 1994; Paper 4/07051H