Dalton Communications

The Synthesis of the First Examples of Water-soluble Seven-co-ordinate Complexes of Tungsten(II)

Paul K. Baker,^{*,a} Alyn E. Jenkins,^a Aidan J. Lavery,^{*,b} David J. Muldoon^a and Andrew Shawcross^b

^a Department of Chemistry, University of Wales, Bangor, Gwynedd LL57 2UW, UK ^b ZENECA Specialities, PO Box 42, Hexagon House, Blackley, Manchester M9 3DA, UK

Reaction of the seven-co-ordinate complex $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of $4-HO_2CC_5H_4N$ in methanol at room temperature gave the bis(pyridine-4-carboxylic acid) complex $[WI_2(CO)_3(4-HO_2C-C_5H_4N)_2]$ 1 in good yield, which, upon treatment with two equivalents of NaOH in ethanol, afforded the completely water-soluble complex $[WI_2(CO)_3(4-NaO_2CC_5H_4N)_2]$ 2 in good yield; reaction of the latter with an equimolar amount of $3-NaO_3SC_5H_4N$ yielded $[WI_2(CO)_3(4-NaO_2CC_5H_4N)(3-NaO_3SC_5H_4N)]$, which represents the first room-temperature ligand-substitution reaction in water of a metal carbonyl complex.

Since the report in 1958 by Chatt and co-workers¹ of the first water-soluble phosphine, namely sodium 3-(diphenylphosphino)benzenesulfonate, the importance of such compounds and their transition-metal complexes has become very important in catalytic processes.^{2,3} Although a number of water-soluble organotransition-metal complexes have been prepared,⁴ very few molybdenum and tungsten complexes have been described. In 1991, Darensbourg et al.⁵ reported the preparation and characterisation of the zero-valent tungsten complex $[W(CO)_{5}{P(C_{6}H_{4}SO_{3}Na-3)_{3}}]$. In 1993,⁶ they extended this work to the molybdenum analogue [Mo(CO)₅- $\{P(C_6H_4SO_3Na-3)_3\}$ and the water-soluble bis(ligand) complexes $cis-[M(CO)_4 \{P(C_6H_4SO_3Na-3)_3\}_2]$ (M = Mo or W). Owing to the difficulties in preparing these water-soluble phosphines,⁴ we considered the possibility that the easily prepared sodium salts of pyridine-4-carboxylate (4-NaO₂C- C_5H_4N) and pyridine-3-sulfonate (3-NaO₃SC₅H₄N) when co-ordinated to an organotransition-metal centre might induce water solubility in these complexes. The only ligand of this type to have been previously used to prepare water-soluble metal carbonyl complexes is sodium 2-(2'-pyridyl)pyridine-5sulfonate described by Herrmann and co-workers.^{7,8} In this communication we describe the synthesis of the first examples of completely water-soluble seven-co-ordinate complexes, $[WI_2(CO)_3(4-NaO_2CC_5H_4N)_2] \text{ and } [WI_2(CO)_3(4-NaO_2C-C_5H_4N)(3-NaO_3SC_5H_4N)].$

The starting material $[WI_2(CO)_3(NCMe)_2]$ was prepared by treating the zero-valent complex fac- $[W(CO)_3(NCMe)_3]$ (prepared *in situ*) with an equimolar amount of I₂ at 0 °C.⁹ Reaction of $[WI_2(CO)_3(NCMe)_2]$ with two equivalents of 4-HO₂CC₅H₄N in methanol at room temperature gave the seven-co-ordinate complex $[WI_2(CO)_3(4-HO_2CC_5H_4N)_2]$ 1 in 39% yield.[†] Complex 1 is soluble in acetone and dimethyl sulfoxide, but only sparingly soluble in chlorinated solvents such as CH₂Cl₂ and CHCl₃. The complex was also only slightly soluble in water, however upon addition of alkali to the aqueous solution complex 2 was generated and observed to be completely soluble at a pH > 7.

In order to increase the water solubility of 1, the complex was suspended in ethanol and two equivalents of NaOH were added to afford the completely water-soluble complex $[WI_2(CO)_3$ - $(4-NaO_2CC_5H_4N)_2]$ 2 in 61% yield.[‡] This complex is the first example of a completely water-soluble seven-co-ordinate complex of tungsten(II). It has as expected three v(C=O) bands (KBr disc) at 2064, 2009 and 1920 cm⁻¹, and a band due to the carboxy group at 1730 cm⁻¹. The ¹H NMR spectrum (25 °C, D₂O) showed the expected two doublets at δ 8.77 and 8.12 for the pyridine protons. In view of these observations a weak acid (complex 1)-strong base (NaOH) titration was carried out, and a typical plot was obtained by monitoring the pH change on addition of NaOH.

The reaction of complex 2 with one equivalent of 3-NaO₃-SC₅H₄N in water at room temperature gave the pale green ligand-exchanged complex $[WI_2(CO)_3(4-NaO_2CC_5H_4N)-(3-NaO_3SC_5H_4N)]$ 3 in 85% yield.§ We believe this to be the first example of a room-temperature ligand-substitution reaction of a metal carbonyl derivative carried out in water. Complex 3 is completely soluble in water, and reasonably airstable in solution and in the solid state. Many unsuccessful attempts have been made to grow single crystals for X-ray structural studies of complexes 1–3, however, since the majority of seven-co-ordinate complexes of the type $[MX_2(CO)_3L_2]$ have capped-octahedral geometries, $1^{0,11}$ it is likely that these complexes have similar configurations.

We are currently exploring the wider applicability of the easily prepared water-soluble ligands $4-NaO_2CC_5H_4N$, 3-

[†] Complex 1 (Found: C, 23.1; H, 1.7; N, 3.6. $C_{15}H_{10}I_2N_2O_7W$ requires C, 23.4; H, 1.3; N, 3.6%). IR (KBr): v(C≡O) 2069s, 2006s, 1910s; v(C=O) 1733s cm⁻¹. ¹H NMR [25 °C, (CD₃)₂CO]: δ 9.32 (d, J = 8.33, 4 H, C₅H₄N), 8.13 (d, J = 6.67 Hz, 4 H, C₅H₄N), 5.75 (s, 2 H, CO₂H).

[‡] Complex 2 (Found: C, 21.9; H, 1.5; N, 3.4. $C_{15}H_8I_2N_2Na_2O_7W$ requires C, 22.1; H, 1.0; N, 3.4%). IR (KBr): v(C=O) 2064s, 2009m, 1920s (br); v(C=O) 1730s (br) cm⁻¹. ¹H NMR (25 °C, D₂O): δ , 8.77 (d, J = 4.61, 4 H, C_5H_4N), 8.12 (d, J = 5.00 Hz, 4 H, C_5H_4N).

[§] Complex 3 (Found: C, 19.2; H, 1.2; N, 3.3. $C_{14}H_8I_2N_2Na_2O_8SW$ requires C, 19.8; H, 1.0; N, 3.3%). IR (KBr): v(C=O) 2066m, 1922s, 1894s; v(C=O) 1718s; v(S=O) 1229 cm⁻¹. ¹H NMR (25 °C, D_2O): δ 8.76 (br m, 4 H, 4-NaO₂CC₅H₄N, 4-NaO₃SC₅H₄N), 8.11 (s, 2 H, 4-NaO₂C-C₅H₄N), 7.83 (d, J = 5.00 Hz, 2 H, 4-NaO₃SC₅H₄N).

NaO₂CC₅H₄N and 3-NaO₃SC₅H₄N for attachment to other transition-metal centres and the potential catalytic activity of these complexes.

Acknowledgements

D. J. M. thanks ZENECA Specialities and the SERC for a CASE Studentship.

References

- S. Ahrland, J. Chatt, N. R. Davies and A. A. Williams, J. Chem. Soc., 1 1958, 264.
- 2 E. G. Kuntz, Chemtech., 1987, 17, 570.
- 3 A. F. Borowski, D. J. Cole-Hamilton and G. Wilkinson, *New J. Chem.*, 1978, **2**, 137.

- 4 M. Barton and J. D. Atwood, J. Coord. Chem., 1991, 24, 43 and refs. therein.
- 5 D. J. Darensbourg, C. J. Bischoff and J. H. Reibenspies, Inorg. Chem., 1991, 30, 1144.
- 6 D. J. Darensbourg and C. J. Bischoff, Inorg. Chem., 1993, 32, 47.
- 7 W. A. Herrmann, W. R. Thiel and J. G. Kuchler, Chem. Ber., 1990, 123, 1953.
- 8 W. A. Herrmann, W. R. Thiel, J. G. Kuchler, J. Behm and E. Herdtweck, *Chem. Ber.*, 1990, **123**, 1963.
- 9 P.K. Baker, S.G. Fraser and E. M. Keys, J. Organomet. Chem., 1986, 309, 319.
- 10 M. G. B. Drew, Prog. Inorg. Chem., 1977, 23, 67, and refs. therein. 11 C. W. Haigh and P. K. Baker, Polyhedron, 1994, 13, 417, and refs. therein.

Received 21st February 1995; Communication 5/01040C