Arylimido Complexes of Chromium-(vi), -(v) and -(iv) \dagger

Andreas A. Danopoulos, ${ }^{a}$ Geoffrey Wilkinson, ${ }^{*, a}$ Tracy K. N. Sweet ${ }^{\boldsymbol{b}}$ and Michael B. Hursthouse ${ }^{*, b}$
a Johnson Matthey Laboratory, Chemistry Department, Imperial College, London SW7 2AY, UK
${ }^{b}$ Department of Chemistry, University of Wales Cardiff, PO Box 912, Cardiff CF1 3TB, UK

Abstract

The first arylimido compounds of chromium (VI), $\mathrm{CrCl}_{2}(\mathrm{NR})_{2}\left(\mathrm{R}=2,4,6-\mathrm{Me}_{3} \mathrm{H}_{2} \mathrm{C}_{6}\right.$ or $2,6-\mathrm{Me}_{2} \mathrm{H}_{3} \mathrm{C}_{6}$), have been made by interaction of $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{t}\right)_{2}$ with the aryl isocyanates. Similar interaction with 2,6$\operatorname{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NCO}$ gave a dimeric chromium(v) compound $\left[\mathrm{CrCl}\left(\mu-\mathrm{NBu}^{+}\right)\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}{ }_{2}-2,6\right)\right]_{2}$. The chloride $\mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}$ formed adducts with Lewis bases, e.g. $\mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\right.$ (terpy) $]\left[\mathrm{BF}_{4}\right]_{2}$ (terpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine) was obtained with AgBF_{4}. Substitution of Cl atoms occurred with NaR^{\prime} ($\mathrm{R}^{\prime}=\mathrm{OSiMe}_{3}, \mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6, \mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6, \mathrm{SC}_{6} \mathrm{~F}_{5}$ or $\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Pr}_{3}-2,4,6$) and with Grignard reagents, $\mathrm{MgR}{ }^{\prime \prime} \mathrm{Br}\left(\mathrm{R}^{\prime \prime}=\mathrm{CH}_{2} \mathrm{CMe}_{3}, \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right.$ or $\mathrm{CH}_{2} \mathrm{Ph}$) giving in all cases compounds of the type $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} \mathrm{R}_{2}$ or $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} \mathrm{R}^{\prime \prime}{ }_{2}$. The alkyl compounds underwent insertion with $\mathrm{Bu}^{\top} \mathrm{NC}$, or $2,6-\mathrm{Me}_{2} \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{NC}$ to give η^{2}-iminoacyl compounds of $\mathrm{Cr}^{\mathrm{VI}}$ and reduction by PMe_{3} on heating to give the chromium(IV) dimer $\left[\mathrm{Cr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right.\right.$ 2.4.6) $\left.\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{PMe}_{3}\right)\right]_{2}$. The interaction of $\mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}$ with the Grignard reagent derived from 4-tert-butylbenzyl chloride gave not a dialkyl but an amidochromium (IV) dimer $\left.\left\{\mathrm{CrCl}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left[\mathrm{N}^{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{ \pm}-4\right)\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\right]\right\}_{2}$, while on interaction with MgEtBr in the presence of PMe_{3} it gave the dichromium (v) compound ($2,4,6-\mathrm{Me}_{3} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{~N}$) $\operatorname{BrCr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-\right.$ $2,4,6)_{2} \mathrm{CrBr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{PMe}_{3}\right)$. The crystal structures of seven compounds have been determined, in six of which the Cr atoms have slightly distorted tetrahedral geometry, while in the remaining compound one atom is tetrahedral and the other five-co-ordinate. The geometries of the $\mathrm{Cr}_{2} \mathrm{~N}_{2}$ rings in four of the compounds are indicative of some direct $\mathrm{Cr} \ldots \mathrm{Cr}$ interaction.

There is a variety of tert-butylimido compounds of chromium in oxidation states vi and v such as $\mathrm{Cr}\left(\mathrm{NBu}^{1}\right)_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$, OSiMe_{3} or $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)$ and $\mathrm{CrCl}_{3}\left(\mathrm{NBu}^{1}\right) \mathrm{L}_{2}(\mathrm{~L}=$ tertiary phosphines and pyridines). ${ }^{1-7}$ We have now synthesised the first arylimido compound, $\mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} 1$ and its 2,6-Me $\mathbf{C}_{6} \mathrm{H}_{3} \mathrm{~N}$ analogue 2. A variety of reactions of the mesityl, 1, have been studied and the principal ones are shown in Scheme 1. Analytical and physical data for the new compounds are given in Table 1.

Results and Discussion

Previous attempts in this laboratory, and elsewhere, ${ }^{5}$ to make arylimidochromium compounds by routes analogous to those used for molybdenum and tungsten compounds ${ }^{7}$ such as interaction of aryl isocyanates, arylsilylamines or arylphosphine imines with CrO_{3} or $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ under a variety of conditions were unsuccessful, presumably due to reduction of the chromium(vi) starting materials.

Since the interaction of $\mathrm{Bu}^{\prime} \mathrm{NCO}$ with $\mathrm{Cr}\left(\mathrm{NBu}^{\prime}\right)_{2}\left(\mathrm{NHBu}^{\prime}\right)_{2}$ led to insertion into the $\mathrm{Cr}-\mathrm{N}$ bond of a $\mathrm{Cr}\left(\mathrm{NHBu}^{1}\right)$ group ${ }^{6}$ it seemed possible that by using $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{1}\right)_{2}$ or other compounds with ligands not susceptible to facile insertion reactions, the reaction with aryl isocyanates could give imido exchange, a reaction established in other cases. ${ }^{8}$ The reaction (1) carried out in refluxing octane gives yields of $75-80 \%$ for
$\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{\prime}\right)_{2}+2 \mathrm{RNCO} \longrightarrow \mathrm{CrCl}_{2}(\mathrm{NR})_{2}+2 \mathrm{Bu}^{\prime} \mathrm{NCO}(1)$
$\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ and $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6$ as compounds $\mathbf{1}$ and $\mathbf{2}$ respectively. The exchange reaction is an example of the Wittiglike $[2+2]$ exchange of multiply bonded ligands (Scheme 2).

[^0]This is the basis of the synthesis of $\mathrm{M}(\mathrm{NR})$ compounds from $\mathrm{M}=0$ species and RNCO. ${ }^{9}$ It is interesting that reaction (1) is irreversible even when $\mathrm{CrCl}_{2}(\mathrm{NR})_{2}$ is heated for 48 h in refluxing neat Bu'NCO. The crystal structures of $\mathbf{1}$, along with that of $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{1}\right)_{2}$ 1a for comparison are shown in Figs. 1 and 2; bond lengths and angles are given in Tables 2 and 3 respectively. The structures exhibit distorted-tetrahedral chromium geometry, with angles ranging from 105.73(7) to 118.81(3) ${ }^{\circ}$ for 1 and $103.2(3)$ to $121.0(1)^{\circ}$ for the tert-butyl analogue. The molecular structures are very similar and contain normal, near-linear imido ligands with $\mathrm{Cr}-\mathrm{N}$ bonds of 1.650(2) \AA and $\mathrm{Cr}-\mathrm{N}-\mathrm{C}$ angles ranging from 157.8(2) to $159.4(2)^{\circ}$ for 1 and $1.597(8)$ to $1.640(9) \AA$ and $159.1(8)$ to $172.5(8)^{\circ}$ for $\mathbf{1 a}$. The distribution of angles in the $\mathrm{CrCl}_{2} \mathrm{~N}_{2}$ tetrahedra shows that the $\mathrm{Cl}-\mathrm{Cr}-\mathrm{Cl}$ angles [average $118.81(3)$ and $120.4(1)^{\circ}$] are $c a$. 8 and 7° larger, respectively, than the $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles [average $110.95(10)^{\circ}$ for 1 and $113.3(4)^{\circ}$ for 1a]. Most structures containing two neighbouring multiply bonded functions, e.g. $\mathrm{M}(\mathrm{NR})_{2}$, exhibit repulsion of the π-electron density of the two bonds, leading to an increase in the angle from idealised values. The small $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles in both compounds are consistent with that found in the previously determined structure ${ }^{2}$ of $\mathrm{Cr}\left(\mathrm{NBu}^{1}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}, 114.5(3)^{\circ}$.
The interaction of $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{1}\right)_{2}$ with $2,6-\mathrm{Pr}^{\mathrm{i}}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NCO}$ in xylene differs from the reaction (1) in giving a low yield (ca. 20%) of the only isolable product found to be the dimeric chromium(v) species $\left[\mathrm{CrCl}\left(\mu-\mathrm{NBu}^{\mathrm{t}}\right)\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)\right]_{2} 3$, even after prolonged reaction with an excess of the isocyanate. The compound is diamagnetic due to spin coupling via the imido bridge (or to a $\mathrm{Cr}-\mathrm{Cr}$ bond). The structure of the molecule is shown in Fig. 3; selected bond lengths and angles are given in Table 4. The structure contains two crystallographically independent, centrosymmetric dimers, in which the $\mathrm{Bu}^{\prime} \mathrm{N}$ groups are bridging and the $\operatorname{Pr}_{2}{ }_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}$ and chloride groups are terminal. The precision of the bond lengths and angles is lower than would be preferred due to the likely effect on the

Scheme 1 Principal reactions of $\mathrm{CrCl}_{2}(\mathrm{NR})_{2}$, where $\mathrm{R}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$. (i) PMe_{3}; (ii) terpyridine, $\mathrm{AgBF}_{4}, \mathrm{MeCN}^{\prime}$; (iii) $\mathrm{MgR}^{\prime} \mathrm{Cl}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}^{\prime}=$ $\mathrm{Me}_{3} \mathrm{CCH}_{2}, \mathrm{Me}_{2} \mathrm{PhCCH}_{2}$ or PhCH_{2}; (iv) $\mathrm{MgEtBr}, \mathrm{PMe}_{3}, \mathrm{Et}_{2} \mathrm{O}$; (v) $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{\prime}-4\right) \mathrm{Cl}, \mathrm{Et}_{2} \mathrm{O}$; (vi) $\mathrm{NaR}^{\prime \prime}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{R}^{\prime \prime}=\mathrm{OSiMe} 3$, OR, SR or $\mathrm{SC}_{6} \mathrm{~F}_{5}$

Table 1 Analytical and physical data for new compounds

Compound	Colour	M.p. ${ }^{\circ} \mathrm{C}$	C	H	N
$1 \mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}$	Red-brown	175-177	55.6 (55.5)	5.9 (5.7)	7.1 (7.2)
$2 \mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}-2,6\right)_{2}$	Brown	165-168	51.8 (53.0)	5.1 (5.0)	7.3 (7.7)
$3\left[\mathrm{CrCl}(\mu-\mathrm{NBu})\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)\right]_{2}$	Red-brown	190-195	57.1 (57.6)	7.5 (7.8)	8.2 (8.4)
$4 \mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}$	Orange	182-185	52.8 (53.3)	7.4 (7.4)	4.9 (5.2)
$5\left[\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}(\right.$ terpy $\left.)\right]\left[\mathrm{BF}_{4}\right]_{2}$	Orange	>240	53.8 (54.4)	4.9 (5.1)	9.6 (9.6)
$6 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{OSiMe}_{3}\right)_{2}$	Red-brown	86-87	57.5 (58.0)	8.0 (8.1)	5.4 (5.6)
$7 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}$	Red-brown	122-123	72.5 (73.5)	7.9 (7.5)	4.4 (4.8)
$8 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}$	Red	111-115	68.7 (69.7)	7.0 (7.0)	4.5 (4.7)
$9 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{SC}_{6} \mathrm{~F}_{5}\right)_{2}$	Red	155-156	50.3 (50.6)	3.1 (3.1)	3.9 (3.9)
$10 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Pr}^{\mathrm{i}}{ }_{3}-2,4,6\right)_{2}$	Red	75-80	72.2 (73.0)	8.6 (8.6)	3.2 (3.5)
$11 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2}$	Yellow	122-125 (decomp.)	71.5 (73.0)	9.4 (9.6)	6.0 (6.1)
$12 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)_{2}$	Yellow	137-138 (decomp.)	77.2 (78.1)	8.0 (8.2)	4.6 (4.8)
$13 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$	Yellow-orange	97-100 (decomp.)	76.3 (76.8)	7.2 (7.2)	5.7 (5.6)
$\begin{aligned} & 14\left\{\mathrm { CrCl } (\mu - \mathrm { NC } _ { 6 } \mathrm { H } _ { 2 } \mathrm { Me } _ { 3 } - 2 , 4 , 6) \left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{t}-4\right)-\right.\right. \\ & \left.\left.\quad\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\right]\right\}_{2} \end{aligned}$	Green-brown	185-190 (decomp.)	70.0 (69.5)	8.2 (7.4)	5.1 (5.6)
$15 \mathrm{Br}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right) \mathrm{Cr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2^{-}}$ $\mathrm{CrBr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{PMe}_{3}\right)$	Red-brown	195-198 (decomp.)	58.0 (60.1)	6.2 (6.6)	7.0 (7.4)
$\begin{array}{r} 16 \mathrm{Cr}\left(\mathrm{Ne}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)- \\ {\left[\left(2,6-\mathrm{Me}_{2} \mathrm{H}_{3} \mathrm{C}_{6}\right) \mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)\right]} \end{array}$	Orange	164166	78.0 (78.9)	7.9 (8.0)	5.9 (5.9)
$17 \mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)-$ [$\mathrm{Bu}{ }^{\prime} \mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)$]	Orange	Oil ${ }^{\text {b }}$			
$18\left[\mathrm{Cr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{PMe}_{3}\right)\right]_{2}$	Green-brown	>220	63.7 (63.9)	7.8 (7.9)	7.1 (7.1)

${ }^{a}$ Calculated values in parentheses; for mass spectra see Experimental section. ${ }^{b}$ Mass spectrum only.

Table 2 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\mathrm{CrCl}_{2}{ }^{-}$ $\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}$ 1, with estimated standard deviations (e.s.d.s) in parentheses

$\mathrm{Cr}-\mathrm{N}(1)$	$1.650(2)$	$\mathrm{Cr}-\mathrm{Cl}(2)$	$2.1908(8)$
$\mathrm{Cr}-\mathrm{N}(2)$	$1.650(2)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.375(3)$
$\mathrm{Cr}-\mathrm{Cl}(1)$	$2.1964(8)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.370(3)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{Cl}(1)$	$107.32(7)$	$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{Cl}(2)$	$107.17(7)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{Cl}(2)$	$106.85(7)$	$\mathrm{Cl}(1)-\mathrm{Cr}-\mathrm{Cl}(2)$	$118.81(3)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}(2)$	$110.95(10)$	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Cr}$	$157.8(2)$
$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{Cl}(1)$	$105.73(7)$	$\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{Cr}$	$159.4(2)$

intensity data of diffraction from the twin components present in the specimen (see Experimental section). Nevertheless, the main features are clear, and the two molecules show reasonably consistent results. Thus the bridges are symmetrical, with $\mathrm{Cr}-\mathrm{N}$ distances of $c a .1 .80 \AA$, and the bond lengths to the terminal imidos are $c a .1 .64 \AA$. The $\mathrm{Cr}-\mathrm{Cl}$ distances of $2.179(6)$ and $2.186(6) \AA$ are very similar to those in 1 and $1 \mathbf{1 a}$ and are consistent with the high oxidation states of the chromium atoms. In the $\mathrm{Cr}_{2} \mathrm{~N}_{2}$ dimer ring, the angles at N are smaller than those at Cr

Table 3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2} \mathbf{1 a}$, with e.s.d.s in parentheses

	Molecule $1, n=1$	Molecule $2, n=2$
$\mathrm{Cr}(n)-\mathrm{N}(n 1)$	$1.640(9)$	$1.630(8)$
$\mathrm{Cr}(n)-\mathrm{N}(n 2)$	$1.623(8)$	$1.597(8)$
$\mathrm{Cr}(n)-\mathrm{Cl}(n 1)$	$2.187(3)$	$2.186(3)$
$\mathrm{Cr}(n)-\mathrm{Cl}(n 2)$	$2.187(3)$	$2.188(3)$
$\mathrm{N}(n)-\mathrm{C}(n 1)$	$1.453(13)$	$1.486(11)$
$\mathrm{N}(n 2)-\mathrm{C}(n 2)$	$1.472(11)$	$1.484(12)$
$\mathrm{N}(n 1)-\mathrm{Cr}(n)-\mathrm{Cl}(n 1)$	$104.7(3)$	$106.5(3)$
$\mathrm{N}(n 1)-\mathrm{Cr}(n)-\mathrm{Cl}(n 2)$	$106.9(4)$	$107.0(3)$
$\mathrm{N}(n 1)-\mathrm{Cr}(n)-\mathrm{N}(n 2)$	$113.6(4)$	$113.0(5)$
$\mathrm{N}(n 2)-\mathrm{Cr}(n)-\mathrm{Cl}(n 1)$	$104.4(4)$	$103.2(3)$
$\mathrm{N}(n 2)-\mathrm{Cr}(n)-\mathrm{Cl}(n 2)$	$106.5(3)$	$107.7(3)$
$\mathrm{Cl}(n 1)-\mathrm{Cr}(n)-\mathrm{Cl}(n 2)$	$121.0(1)$	$119.7(1)$
$\mathrm{C}(n 1)-\mathrm{N}(n 1)-\mathrm{Cr}(n)$	$165.3(8)$	$159.1(8)$
$\mathrm{C}(n 2)-\mathrm{N}(n 2)-\mathrm{Cr}(n)$	$160.3(7)$	$172.5(8)$

[85.6(5), $87.8(7)$ vs. $\left.94.4(5), 92.2(7)^{\circ}\right]$ and are in keeping with the idea of some $\mathrm{Cr} \cdots \mathrm{Cr}$ bonding. The $\mathrm{Cr} \cdots \mathrm{Cr}$ distances average $2.487(7) \AA$.

Scheme 2

Fig. 1 Structure of $\mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} 1$

Fig. 2 Structure of $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2} \mathbf{1 a}$

Reactions of the Mesitylimido Compound 1.-Adducts. Like $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{t}\right)_{2},{ }^{3}$ compound $\mathbf{1}$ forms adducts with Lewis bases; the addition of PMe_{3} or pyridine (py) to solutions in CDCl_{3} causes an immediate change from orange-brown to light orange or red-orange, respectively. The PMe_{3} compound 4 was

Table 4 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $[\mathrm{CrCl}(\mu-$ $\left.\left.\mathrm{NBu}^{\prime}\right)\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)\right]_{2} 3$ with e.s.d.s in parentheses

	Molecule $1, n=1$	Molecule $2, n=2$
$\mathrm{Cr}(n 1) \cdots \mathrm{Cr}\left(n 1^{\prime}\right)$	$2.486(6)$	$2.488(7)$
$\mathrm{Cr}\left(n 1^{\prime}\right)-\mathrm{N}(n 1)$	$1.838(13)$	$1.80(2)$
$\mathrm{Cr}(n 1)-\mathrm{N}(n 1)$	$1.820(14)$	$1.785(14)$
$\mathrm{Cr}(n 1)-\mathrm{N}\left(n 1^{\prime}\right)$	$1.838(13)$	$1.80(2)$
$\mathrm{Cr}(n 1)-\mathrm{N}(n 2)$	$1.64(2)$	$1.638(13)$
$\mathrm{Cr}(n 1)-\mathrm{Cl}(n 1)$	$2.179(6)$	$2.186(6)$
$\mathrm{N}(n 1)-\mathrm{C}(n 1)$	$1.47(2)$	$1.53(2)$
$\mathrm{N}(n 2)-\mathrm{C}(n 2)$	$1.41(2)$	$1.39(2)$
$\mathrm{N}(n 1)-\mathrm{Cr}(n 1)-\mathrm{N}\left(n 1^{\prime}\right)$	$94.4(5)$	$92.2(7)$
$\mathrm{N}(n 1)-\mathrm{Cr}(n 1)-\mathrm{N}(n 2)$	$113.7(6)$	$116.4(7)$
$\mathrm{N}(n)-\mathrm{Cr}(n)-\mathrm{Cl}(n 1)$	$112.5(5)$	$111.1(5)$
$\mathrm{N}\left(n 1^{\prime}\right)-\mathrm{Cr}(n 1)-\mathrm{N}(n 2)$	$111.8(7)$	$111.8(7)$
$\mathrm{N}\left(n 1^{\prime}\right)-\mathrm{Cr}(n 1)-\mathrm{Cl}(n 1)$	$113.6(5)$	$115.9(5)$
$\mathrm{N}(n 2)-\mathrm{Cr}(n 1)-\mathrm{Cl}(n 1)$	$110.1(5)$	$109.0(7)$
$\mathrm{Cr}(n 1)-\mathrm{N}(n 1)-\mathrm{Cr}\left(n 1^{\prime}\right)$	$85.6(5)$	$87.8(7)$
$\mathrm{C}(n 1)-\mathrm{N}(n 1)-\mathrm{Cr}(n 1)$	$139(1)$	$136(1)$
$\mathrm{C}(n 1)-\mathrm{N}(n 1)-\mathrm{Cr}\left(n 1^{\prime}\right)$	$135(1)$	$136(1)$
$\mathrm{C}(n 2)-\mathrm{N}(n 2)-\mathrm{Cr}(n 1)$	$172(1)$	$171(2)$

Primed atoms are related by the symmetry transformations: for dimer 1 , $-x+1,-y+1,-z+2$; for dimer $2,-x,-y,-z+1$.
isolated. The ${ }^{1} \mathrm{H}$ NMR spectra show a shift of mesityl resonances from $\delta 2.25\left(o-\mathrm{CH}_{3}\right)$ and $1.85\left(p-\mathrm{CH}_{3}\right)$ to 2.60 and $2.40\left(\mathrm{t}, J_{\mathrm{P}-\mathrm{H}}=3.3 \mathrm{~Hz}\right)$ with the $p-\mathrm{CH}_{3}$ showing ${ }^{31} \mathrm{P}$ coupling. From these data, integrations and analytical data 4 can be formulated as $\mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}$. The equivalence of the mesityl groups in the ${ }^{1} \mathrm{H}$ NMR spectra and of the PMe_{3} groups in the ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum indicates a symmetrical geometry or fast interconversions in solution. Analogous behaviour observed with pyridine in solution is consistent with the structure $\mathrm{CrCl}_{2}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}(\text { py })_{2}$.

Chloride substitution reactions. The interaction of compound 1 with $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (terpy) and 2 equivalents of AgBF_{4} in refluxing acetonitrile leads, on work-up, to the orange-brown crystalline salt $\left[\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}(\right.$ terpy $\left.)\right]\left[\mathrm{BF}_{4}\right]_{2}$ 5. X-Ray-quality crystals could not be obtained even with other anions but the analytical and spectroscopic data are adequate to formulate the compound as in I. It is diamagnetic and five-co-ordinate with the $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ groups equivalent on the NMR time-scale; it is a $2: 1$ electrolyte in acetonitrile.

Nucleophilic substitution of the $\mathbf{C l}$ atoms of compound $\mathbf{1}$ is facile but sodium reagents rather than lithium ones are preferred since the latter tend to give products more difficult to obtain pure. The dialkoxides with $\mathrm{OSiMe}_{3} 6$ and $\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-$ 2,4,6 7, dithiolates with $\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ 8, $\mathrm{SC}_{6} \mathrm{~F}_{5} 9$ and $\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Pr}^{\prime}{ }_{3}-2,4,610$ have been made by interaction of the appropriate sodium salt in $\mathrm{Et}_{2} \mathrm{O}$. On the basis of ${ }^{1} \mathrm{H}$ NMR data all of these compounds appear to be tetrahedral in solution. Only one type of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ group is observed even at low temperature which indicates these groups to be equivalent on the NMR time-scale

The crystal structure of the compound $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-\right.$ $2,4,6)_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} 7$ was determined. The asymmetric unit was shown to contain two crystallographically independent molecules, and a diagram of molecule 1 is shown in Fig. 4; bond lengths and angles are given in Table 5. The positioning of the O and N atoms was clearly indicated by their thermal parameters in the refinement and their geometry. Thus the $\mathrm{Cr} \cong \mathrm{N}$ bonds are shorter [average $1.655(3) \AA$] and more nearly linear [156.2(3)165.1(3) ${ }^{\circ}$] than the corresponding values for the $\mathrm{Cr}-\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ functions [average Cr-O 1.819(3) \AA, $\mathrm{Cr}-\mathrm{O}-\mathrm{C}$ 125.0(2)-133.2(2) $\left.{ }^{\circ}\right]$. Of particular note are the similarities in the $\mathrm{N}-\mathrm{Cr}-\mathrm{N}, \mathrm{O}-\mathrm{Cr}-\mathrm{O}$ and $\mathrm{N}-\mathrm{Cr}-\mathrm{O}$ angles, which are all within a few degrees of tetrahedral, 106.2(2)-114.9(1) ${ }^{\circ}$, and do not show the large differences found in the dichlorides.

Fig. 3 Structure of the chromium(v) dimer $\left[\mathrm{CrCl}(\mu-\mathrm{NBu})\left(\mathrm{NC}_{6} \mathrm{H}_{3} \operatorname{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)\right]_{2} 3$

I $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$

The unit cell also contains four diethyl ether molecules disordered about centres of symmetry.

Attempts to obtain X-ray-quality crystals of a thiolate were unsuccessful.

It may be noted that while compound $\mathbf{1}$ and $\mathrm{NaOSiMe}_{3}$ in $\mathrm{Et}_{2} \mathrm{O}$ gave 6, this compound could not be obtained by interaction of $\mathrm{Cr}\left(\mathrm{NBu}^{1}\right)_{2}\left(\mathrm{OSiMe}_{3}\right)_{2}$ with $2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NCO}$ in refluxing octane; only intractable mixtures result.

Alkyl substitution in compound 1 is easy using Grignard reagents $\mathrm{MgRCl}\left(\mathrm{R}=\mathrm{CH}_{2} \mathrm{CMe}_{3}, \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right.$ or $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$; the crystalline alkyls $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} \mathrm{R}_{2}$ 11, 12 and 13 , respectively, are all orange-yellow and thermally stable up to the melting point, although 11 and 12 failed to give the molecular ion in electron impact (EI) or chemical ionisation (CI) mass spectra. The only structurally characterised compounds of this type are $\mathrm{Cr}\left(\mathrm{NBu}^{1}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}{ }^{2}$ and $\mathrm{Cr}\left(\mathrm{NBu}^{1}\right)_{2}\left[0-\left(\mathrm{CHSiMe}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right] .{ }^{5}$ Similar alkyls that were oils were characterised spectroscopically. ${ }^{5}$ The ${ }^{1} \mathrm{H}$ NMR spectra and analytical data for 11-13 are all consistent with the formulation but crystals of X-ray quality could not be obtained.
The interaction of compound 1 with the Grignard reagent from 4-tert-butylbenzyl chloride in $\mathrm{Et}_{2} \mathrm{O}$ did not give the expected dialkyl but the green-brown crystalline compound 14 shown in II in which the oxidation state of both Cr atoms is Iv. The structure of the molecule, as determined by X-ray diffraction, is shown in Fig. 5; bond lengths and angles are in Table 6. The molecule lies on a centre of symmetry and there are two disordered diethyl ether molecules per dimer. The bridging imido groups are again symmetrically disposed with bridging $\mathrm{Cr}-\mathrm{N}$ distances of $1.820(4)$ and $1.814(4) \AA$. The $\mathrm{Cr}-\mathrm{Cl}$ distances, $2.211(2) \AA$, are slightly longer than the analogous distances in compound 3 and this is consistent with the change in oxidation state from v in 3 to iv here. The $\mathrm{Cr}-\mathrm{N}$ (amido) distance is almost equal to the distances to the bridging imido groups and this implies a similar degree of multiple-bonding character. The $\mathrm{Cr} \cdots \mathrm{Cr}$ distance is $2.512(2) \AA$, again somewhat longer than

Table 5 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}{ }^{-}\right.$ $2,4,6)_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} \cdot 0.25 \mathrm{Et}_{2} \mathrm{O} 7$ with e.s.d.s in parentheses

	Molecule $1, n=1$	Molecule $2, n=2$
$\mathrm{Cr}(n)-\mathrm{N}(n 1)$	$1.649(4)$	$1.664(3)$
$\mathrm{Cr}(n)-\mathrm{N}(n 2)$	$1.655(3)$	$1.652(3)$
$\mathrm{Cr}(n)-\mathrm{O}(n 1)$	$1.816(3)$	$1.826(3)$
$\mathrm{Cr}(n)-\mathrm{O}(n 2)$	$1.818(3)$	$1.815(3)$
$\mathrm{N}(n 1)-\mathrm{C}(n 11)$	$1.367(5)$	$1.367(4)$
$\mathrm{N}(n 2)-\mathrm{C}(n 21)$	$1.376(5)$	$1.374(4)$
$\mathrm{O}(n 1)-\mathrm{C}(n 31)$	$1.357(5)$	$1.363(4)$
$\mathrm{O}(n 2)-\mathrm{C}(n 41)$	$1.363(5)$	$1.364(5)$
$\mathrm{O}(n 1)-\mathrm{Cr}(n)-\mathrm{O}(n 2)$	$114.3(1)$	$114.9(1)$
$\mathrm{O}(n 1)-\mathrm{Cr}(n)-\mathrm{N}(n 1)$	$108.7(2)$	$107.7(1)$
$\mathrm{O}(n)-\mathrm{Cr}(n)-\mathrm{N}(n 2)$	$106.2(2)$	$106.9(1)$
$\mathrm{O}(n 2)-\mathrm{Cr}(n)-\mathrm{N}(n 1)$	$106.9(2)$	$109.4(1)$
$\mathrm{O}(n 2)-\mathrm{Cr}(n)-\mathrm{N}(n 2)$	$110.1(1)$	$106.8(1)$
$\mathrm{N}(n 1)-\mathrm{Cr}(n)-\mathrm{N}(n 2)$	$110.7(2)$	$111.2(1)$
$\mathrm{Cr}(n)-\mathrm{N}(n 1)-\mathrm{C}(n 11)$	$163.9(3)$	$156.2(3)$
$\mathrm{Cr}(n)-\mathrm{N}(n 2)-\mathrm{C}(n 21)$	$157.3(3)$	$165.1(3)$
$\mathrm{Cr}(n)-\mathrm{O}(n 1)-\mathrm{C}(n 31)$	$130.4(2)$	$129.2(2)$
$\mathrm{Cr}(n)-\mathrm{O}(n 2)-\mathrm{C}(n 41)$	$125.0(2)$	$133.2(2)$

that in the chromium(v) complex 3, in which some $\mathrm{Cr} \cdots \mathrm{Cr}$ bonding interaction is envisaged. We presume there to be similar $\mathrm{Cr} \cdots \mathrm{Cr}$ interaction here, and this is consistent with the $\mathrm{Cr}-\mathrm{N}-\mathrm{Cr}$ and $\mathrm{N}-\mathrm{Cr}-\mathrm{N}$ angles in the $\mathrm{Cr}_{2} \mathrm{~N}_{2}$ ring, where the former, $87.4(2)^{\circ}$, is smaller than the latter, $92.6(2)^{\circ}$.

It is difficult to prove the method of formation of compound 14 but initial substitution to give a monobenzyl species could then be followed by reductive rearrangement of the alkyl III to give the amido intermediate IV that dimerises to produce 14 (Scheme 3). The compound 14 is a rare example of a chromium(IV) dimer though the common tetrahedral coordination about $\mathrm{Cr}^{\text {IV }}$ found in paramagnetic alkyls, ${ }^{10}$ aryls, ${ }^{11}$ dialkylamides and alkoxides ${ }^{12}$ is retained. It is of interest that unisolable amido intermediates of the type IV have been proposed in modelling studies for $\mathrm{C}-\mathrm{N}$ bond formation in acrylonitrile synthesis (ammoxidation) where benzyl radicals were trapped by NR groups in, e.g., $\mathrm{Cr}\left(\mathrm{NBu}^{\prime}\right)_{2}\left(\mathrm{OSiMe}_{3}\right)_{2}{ }^{13}$

The interaction of compound 1 with MgEtBr in the presence of PMe_{3} leads to $\mathbf{1 5}$, as shown in \mathbf{V}. In reactions that involve reduction, dimerisation and halogen exchange, reductions using MgEtBr are, of course, well established. The structure of 15 has been confirmed by X-ray diffraction and is shown in Fig. 6; bond lengths and angles are in Table 7. The unsymmetrical configuration and substitution pattern for this formally dichromium (v) compound produces some interesting geometry differences, some of them not surprising in view of the different

Fig. 4 Co-ordination sphere of $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{OC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} \cdot 0.25 \mathrm{Et}_{2} \mathrm{O} 7$

II $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$
co-ordination numbers. Thus the $\mathrm{Cr}-\mathrm{Br}$ distances show a difference of $0.08 \AA$, the larger one, as expected, involving the five-co-ordinate chromium. Both $\mathrm{Cr}-\mathrm{N}-\mathrm{Cr}$ bridges are unsymmetrical, with longer distances to the five-co-ordinate chromium. Most noteworthy is the very significant trans influence exerted by the phosphine-chromium bond on the $\mathrm{Cr}(2)-\mathrm{N}(2)$ bond, which is $0.07 \AA$ longer than $\mathrm{Cr}(2)-\mathrm{N}(4)$. Even more surprising, however, is the near equivalence of the terminal $\mathrm{Cr}-\mathrm{N}$ (imido) bond lengths, which differ by only 0.007 \AA, and which seem to be normal triple $\mathrm{Cr}=\mathrm{N}$ bonds when compared with the structures above. The $\mathrm{Cr} \cdots \mathrm{Cr}$ distance, 2.530(2) \AA, and the angles within the $\mathrm{Cr}_{2} \mathrm{~N}_{2}$ ring (see Table 7) are consistent with some weak $\mathrm{Cr} \cdots \mathrm{Cr}$ bonding. The crystal structure also contains disordered diethyl ether molecules. Other similar chromium(v) dimers, e.g. $\left[\mathrm{CrCl}\left(\mu-\mathrm{NBu}^{\prime}\right)\left(\mathrm{NBu}^{t}\right)\right]_{2}$, though not structurally characterised by X-ray diffraction are known. ${ }^{3.4 b}$ There are also the species $\left[\operatorname{Cr}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)(\mu\right.$ O) $\left.\mathrm{O}_{2}\right]_{2}{ }^{14 a}$ and $\left[\mathrm{Cr}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mu-\mathrm{NSiMe}_{3}\right)\left(\mathrm{NSiMe}_{3}\right)\right]_{2} .{ }^{14 b}$

Insertion Reactions of the Alkyl Compounds.-Reactions have been described for $\mathrm{M}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2},{ }^{2} \mathrm{M}=\mathrm{Cr}$, Mo or W , with $\mathrm{Bu}^{1} \mathrm{NC}$; the products have a single η^{2}-iminoacyl group as in $\mathrm{Cr}\left(\mathrm{NBu}^{\prime}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left[\left(2,4,6-\mathrm{Me}_{3}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{2}\right) \mathrm{C}=\mathrm{NBu}^{\prime}\right)$] whose structure was determined by X-ray diffraction.

The alkyl compound $\mathbf{1 2}$ behaves similarly with both $\mathrm{Bu}^{\prime} \mathrm{NC}$ and 2,6-xylyl isocyanide to give the iminoacyls $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-\right.$ $2,4,6)_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)\left[\mathrm{RN}=\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)\right] \quad\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{3}-\right.$ $\mathrm{Me}_{2}-2,616$ or $\mathrm{Bu}^{2} 17$). Although crystals of X-ray quality could not be obtained, using 11 and 13, which react similarly to 12, the identities of the compounds were unequivocally confirmed by (NMR, IR and mass) spectroscopic data. Interaction of the alkyls with CS_{2} and isocyanates $\mathrm{RNCO}(\mathrm{R}=$ Bu^{\prime} or Ph) and with CO under pressure at $70^{\circ} \mathrm{C}$ for 2 d led to unidentifiable decomposition products.

Reduction of Alkyl Compounds.-On heating in aromatic solvents at $60-70^{\circ} \mathrm{C}$ in the presence of PMe_{3} for $c a .8 \mathrm{~h}$ reduction of compounds 11-13 occurs to give the chromium(Iv)

Scheme $3 \quad \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$

V $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$
compound $\quad\left[\mathrm{Cr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)\right]_{2}$ 18. The yields are $c a .20-40 \%$ and are highest using 13 in benzene. The chromium(Iv) dimer is diamagnetic and sufficiently soluble to give NMR spectra. In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ the ${ }^{1} \mathrm{H}$ spectrum shows two types of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ groups and the broad ${ }^{31} \mathbf{P}$ signal is at $\delta c a$. 19. $\operatorname{In}\left[{ }^{2} \mathbf{H}_{8}\right]$ tetrahydrofuran there is only one $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$ proton resonance; the ${ }^{31} \mathrm{P}$ chemical shift is at $\delta 36$ with a strong signal due to free PMe_{3} at $\delta-58$, while some solid decomposition product appears after ca. 0.5 h . These results are probably due to partial displacement of PMe_{3} by tetrahydrofuran (thf) and/or breaking of the $\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-$ 2,4,6 bridge since the peak at $\delta+36$ corresponds to a type of monomer $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{PMe}_{3}\right)_{x}(\mathrm{thf})_{3-x}(x=1$ or 2$)$. These findings are reminiscent of the recently reported dynamic behaviour of $\mathrm{Mo}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{PMe}_{3}\right)_{3},{ }^{15}$ but for the chromium case detailed study is difficult due to the dimerisation and decomposition.

The structure of the dimer 18 was determined by X-ray diffraction and is shown in Fig. 7; bond distances and angles are given in Table 8. The dimeric molecule lies on a two-fold axis through the centre of, and perpendicular to, the $\mathrm{Cr}_{2} \mathrm{~N}_{2}$ ring. The $\mathrm{Cr}-\mathrm{N}-\mathrm{Cr}$ bridges show only minor $(0.01 \AA$) asymmetry. The $\mathrm{Cr}-\mathrm{N}$ (imido) distance is slightly longer than in compounds 3 and 15 , as would be expected for the lower oxidation state here (iv), but the $\mathrm{Cr}-\mathrm{P}$ distance is $0.091 \AA$ shorter than in 15 , reflecting, perhaps, some $\mathrm{Cr} \rightarrow \mathbf{P} \pi$-back bonding. The angles at chromium $\left[94.6(1)^{\circ}\right]$ and at the nitrogen $\left[85.3(1)^{\circ}\right]$ in the

Table 6 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\{\mathrm{CrCl}(\mu-$ $\left.\left.\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{\prime}-4\right)\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\right]\right\}_{2} \cdot 2 \mathrm{Et}_{2} \mathrm{O} \quad 14$ with e.s.d.s in parentheses

$\mathrm{Cr} \cdots \mathrm{Cr}^{\prime}$	$2.512(2)$	$\mathrm{Cr}-\mathrm{N}(2)$	$1.820(4)$
$\mathrm{Cr}-\mathrm{Cl}$	$2.211(2)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.433(6)$
$\mathrm{Cr}-\mathrm{N}(1)$	$1.820(4)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.425(5)$
$\mathrm{Cr}-\mathrm{N}\left(1^{\prime}\right)$	$1.814(4)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1.473(8)$
$\mathrm{Cr}-\mathrm{N}(1)$	$1.814(4)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.510(9)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{Cl}$	$111.5(1)$	$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{Cr}^{\prime}$	
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}(2)$	$114.6(2)$	$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{C}(11)$	$87.4(2)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}\left(1^{\prime}\right)$	$92.6(2)$	Cr	$134.9(4)$
$\mathrm{Cl}-\mathrm{Nr}(1)-\mathrm{C}(11)$	$137.6(3)$		
$\mathrm{Cl}-\mathrm{Cr}(2)$	$110.3(1)$	$\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{C}(2)$	$116.8(5)$
$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{N}\left(1^{\prime}\right)$	$114.9(2)$	$\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{Cr}$	$129.9(4)$
	$112.1(2)$	$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{Cr}$	$113.3(4)$
		$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	$114.2(5)$

Primed atoms are related by the symmetry transformation $-x,-y$ $+1,-z$.

Table 7 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for ($2,4,6-$ $\left.\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right) \mathrm{BrCr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2} \mathrm{CrBr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)(\mathrm{P}-$ $\left.\mathrm{Me}_{3}\right) \cdot \mathrm{Et}_{2} \mathrm{O} 15$ with e.s.d.s in parentheses

$\mathrm{Cr}(1) \cdots \mathrm{Cr}(2)$	$2.530(2)$	$\mathrm{Cr}(2)-\mathrm{N}(2)$	$1.963(4)$
$\mathrm{Cr}(1)-\mathrm{Br}(1)$	$2.372(2)$	$\mathrm{Cr}(2)-\mathrm{N}(3)$	$1.648(5)$
$\mathrm{Cr}(1)-\mathrm{N}(1)$	$1.655(5)$	$\mathrm{Cr}(2)-\mathrm{N}(4)$	$1.894(5)$
$\mathrm{Cr}(1)-\mathrm{N}(2)$	$1.756(5)$	$\mathrm{N}(1)-\mathrm{C}(10)$	$1.397(7)$
$\mathrm{Cr}(1)-\mathrm{N}(4)$	$1.793(5)$	$\mathrm{N}(2)-\mathrm{C}(20)$	$1.407(7)$
$\mathrm{Cr}(2)-\mathrm{Br}(2)$	$2.451(2)$	$\mathrm{N}(3)-\mathrm{C}(30)$	$1.373(7)$
$\mathrm{Cr}(2)-\mathrm{P}$	$2.413(2)$	$\mathrm{N}(4)-\mathrm{C}(40)$	$1.403(7)$
$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{N}(2)$	$116.8(2)$	$\mathrm{N}(3)-\mathrm{Cr}(2)-\mathrm{P}$	$86.1(2)$
$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{N}(4)$	$114.5(2)$	$\mathrm{N}(4)-\mathrm{Cr}(2)-\mathrm{Br}(2)$	$132.6(2)$
$\mathrm{N}(1)-\mathrm{Cr}(1)-\mathrm{Br}(1)$	$104.5(2)$	$\mathrm{N}(4)-\mathrm{Cr}(2)-\mathrm{P}$	$92.7(1)$
$\mathrm{N}(2)-\mathrm{Cr}(1)-\mathrm{N}(4)$	$97.8(2)$	$\mathrm{Br}(2)-\mathrm{Cr}(2)-\mathrm{P}$	$87.5(1)$
$\mathrm{N}(2)-\mathrm{Cr}(1)-\mathrm{Br}(1)$	$108.6(2)$	$\mathrm{Cr}(1)-\mathrm{N}(1)-\mathrm{C}(10)$	$177.1(5)$
$\mathrm{N}(4)-\mathrm{Cr}(1)-\mathrm{Br}(1)$	$115.0(2)$	$\mathrm{Cr}(1)-\mathrm{N}(2)-\mathrm{C}(20)$	$137.6(4)$
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{N}(3)$	$105.1(2)$	$\mathrm{Cr}(1)-\mathrm{N}(4)-\mathrm{C}(40)$	$132.1(4)$
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{N}(4)$	$87.8(2)$	$\mathrm{Cr}(2)-\mathrm{N}(2)-\mathrm{C}(20)$	$136.5(4)$
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{Br}(2)$	$88.9(1)$	$\mathrm{Cr}(2)-\mathrm{N}(3)-\mathrm{C}(30)$	$176.0(4)$
$\mathrm{N}(2)-\mathrm{Cr}(2)-\mathrm{P}$	$167.4(2)$	$\mathrm{Cr}(2)-\mathrm{N}(4)-\mathrm{C}(40)$	$138.0(4)$
$\mathrm{N}(3)-\mathrm{Cr}(2)-\mathrm{N}(4)$	$115.4(2)$	$\mathrm{Cr}(1)-\mathrm{N}(2)-\mathrm{Cr}(2)$	$85.5(2)$
$\mathrm{N}(3)-\mathrm{Cr}(2)-\mathrm{Br}(2)$	$11.0(2)$	$\mathrm{Cr}(1)-\mathrm{N}(4)-\mathrm{Cr}(2)$	$86.6(2)$

$\mathrm{Cr}_{2} \mathrm{~N}_{2}$ ring, together with the $\mathrm{Cr} \cdots \mathrm{Cr}$ distance of $2.496(1) \AA$, are consistent with some $\mathrm{Cr} \ldots \mathrm{Cr}$ interaction.

It may be noted that other phosphines $\left[\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PMePh}_{2}\right.$ and $\left(\mathrm{Ph}_{2} \mathrm{PCH}_{2}\right)_{2}$] give only intractable products. The reduction of the alkyls 11-13 in toluene containing an excess of PMe_{3} by $\mathrm{Na} / \mathrm{Hg}$ yields after $c a .8 \mathrm{~h}$ an olive-green, very air-sensitive solution but no crystalline product could be isolated. Attempts to follow the reduction in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ by ${ }^{31} \mathrm{P}$ NMR spectra showed at room temperature a peak at $\delta c a .20$ assignable to 18 and a very broad peak at $\delta c a$. 54 . The latter sharpens on cooling to $-80^{\circ} \mathrm{C}$ and this process is reversible and possibly attributable to a fluxional, monomeric species such as $\mathrm{Cr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)_{2}\left(\mathrm{PMe}_{3}\right)_{3}$ but isolation is not possible. By contrast to the above, reduction of 1 with $\mathrm{Na} / \mathrm{Hg}$ in toluene and thf in the presence of PMe_{3} gives a brown mixture possibly of chromium (v) dimers that we have been unable to isolate.

Experimental

Analyses were by the Imperial College and Medac analytical laboratories. General techniques have been described. ${ }^{16}$ The NMR data were obtained on a JEOL-EX-270 spectrometer at $270 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and referenced to residual H impurity in the solvent ($\delta 7.15, \mathrm{C}_{6} \mathrm{D}_{6} ; 7.26, \mathrm{CDCl}_{3}$). Mass spectra (EI) were taken on a VG-7070E spectrometer. Commercial chemicals were from Aldrich, Avocado, Fluka and Janssen. Aryl isocyanates were made by the interaction of a toluene solution of COCl_{2} with the amine in the presence of $\mathrm{NEt}_{3} .{ }^{17}$ Literature

Table 8 Selected bond lengths (\AA) and angles (${ }^{\circ}$) for $\left[\mathrm{Cr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-\right.\right.$ $\left.2,4,6)\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{PMe}_{3}\right)\right]_{2} 18$ with e.s.d.s in parentheses

$\mathrm{Cr} \cdots \mathrm{Cr}^{\prime}$	$2.496(1)$	$\mathrm{Cr}-\mathrm{P}$	$2.322(1)$
$\mathrm{Cr}-\mathrm{N}(1)$	$1.680(2)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.375(4)$
$\mathrm{Cr}-\mathrm{N}(2)$	$1.848(2)$	$\mathrm{N}(2)-\mathrm{C}(21)$	$1.410(4)$
$\mathrm{Cr}-\mathrm{N}\left(2^{\prime}\right)$	$1.836(2)$		
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}(2)$	$125.4(1)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{Cr}-\mathrm{P}$	$114.4(1)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{N}\left(2^{\prime}\right)$	$122.8(1)$	$\mathrm{Cr}-\mathrm{N}(1)-\mathrm{C}(11)$	$177.0(2)$
$\mathrm{N}(1)-\mathrm{Cr}-\mathrm{P}$	$90.3(1)$	$\mathrm{Cr}-\mathrm{N}(2)-\mathrm{C}(21)$	$135.7(2)$
$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{N}\left(2^{\prime}\right)$	$94.6(1)$	$\mathrm{Cr}-\mathrm{N}(2)-\mathrm{C}(21)$	$135.2(2)$
$\mathrm{N}(2)-\mathrm{Cr}-\mathrm{P}$	$110.2(1)$	$\mathrm{Cr}-\mathrm{N}(2)-\mathrm{Cr}^{\prime}$	$85.3(1)$

Primed atoms are related by the symmetry transformation $-x+\frac{3}{2}, y$, $-z+\frac{3}{2}$.

Fig. 5 Co-ordination sphere of $\left\{\mathrm{CrCl}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{\mathrm{t}}-4\right)\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\right]\right\}$. $2 \mathrm{Et}_{2} \mathrm{O}$ 14. One conformation of the disordered tert-butyl group is shown

Fig. 6 Co-ordination sphere of $\left(2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}\right) \mathrm{BrCr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right){ }_{2} \mathrm{CrBr}\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{PMe}_{3}\right) \cdot \mathrm{Et}_{2} \mathrm{O} 15$

Fig. 7 Structure of $\left[\mathrm{Cr}\left(\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)\left(\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6\right)-\right.$ $\left.\left(\mathrm{PMe}_{3}\right)\right]_{2} 18$
procedures were used for $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{\mathrm{l}}\right)_{2},{ }^{3} \mathrm{NaOSiMe}_{3}{ }^{18}$ and $2,4,6-\mathrm{Pr}^{\mathrm{i}}{ }_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{SH} .{ }^{19}$ Sodium salts of alkoxides and thiols were made in diethyl ether by interaction with Na . Solvents were dried and degassed by standard methods. The light petroleum used had b.p. $40-60^{\circ} \mathrm{C}$. All operations were carried out under purified N_{2} or Ar , under vacuum or in a Vacuum Atmospheres box.

Dichlorobis(2,4,6-trimethylphenylimido)chromium(vI) 1.-A mixture of $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2}(7.35 \mathrm{~g}, 0.028 \mathrm{~mol})$ and $2,4,6-$ trimethylphenyl isocyanate $(9.8 \mathrm{~g}, 0.061 \mathrm{~mol})$ in octane $(c a .70$ cm^{3}) was refluxed for 12 h . After cooling, the precipitated microcrystalline solid was collected, washed with light
petroleum ($2 \times 10 \mathrm{~cm}^{3}$) and extracted (Soxhlet) with diethyl ether ($100 \mathrm{~cm}^{3}$) until the extracts were colourless. After concentration and cooling ($-20^{\circ} \mathrm{C}$) of the extracts, red-brown prisms were obtained. Yield: 8.2 g ($\mathrm{ca} .75 \%$). Mass spectrum (EI): $m / z 388\left(M^{+}\right), 353\left(M^{+}-\mathrm{Cl}\right)$ and $318\left(M^{+}-2 \mathrm{Cl}\right)$. IR (cm^{-1}): 1280, $1265\left(\mathrm{Cr}=\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right.$); 851, 725 (aromatic); 391 ($\mathrm{Cr}-\mathrm{Cl}$). NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}, \delta 6.23\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right.$), 2.25 (s , $12 \mathrm{H}, o-\mathrm{Me}$ of $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$) and $1.85\left(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{Me}\right.$ of $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 165.0$ (ipso-C of $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 142.9, 138.5, 129.4 (aromatic), 22.0 ($p-\mathrm{Me}$) and 19.0 ($o-\mathrm{Me}$).

Dichlorobis(2,6-dimethylphenylimido)chromium(vi) 2.-The procedure was similar to that described for the mesityl analogue. A mixture of $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{\mathrm{t}}\right)_{2}(2 \mathrm{~g}, 7.5 \mathrm{mmol})$ and 2,6dimethylphenyl isocyanate ($2.22 \mathrm{~g}, 15 \mathrm{mmol}$) was refluxed in octane ($30 \mathrm{~cm}^{3}$) for $c a .8 \mathrm{~h}$. After cooling to room temperature the supernatant was discarded and the residue extracted with $\mathrm{Et}_{2} \mathrm{O}$ until the extracts were almost colourless. Concentration of the extracts and cooling $\left(-20^{\circ} \mathrm{C}\right)$ gave red-brown crystals. Yield: $2.0 \mathrm{~g}\left(\mathrm{ca} .80 \%\right.$). Mass spectrum (EI): $m / z 360\left(\mathrm{M}^{+}\right), 325$ $\left(M^{+}-\mathrm{Cl}\right)$ and $290\left(M^{+}-2 \mathrm{Cl}\right)$. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta 6.8-7.0$ ($\mathrm{m}, 6 \mathrm{H}$, aromatic) and $2.19(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 139.5$ (ipso-C of $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}$), 132.7, 131.9, 130.9, 128.9 (aromatic) and 19.0 (o-Me). IR (cm^{-1}): 1285, $1250\left(\mathrm{Cr}=\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right) ; 900,920$ (aromatic $\mathrm{C}-\mathrm{H}) ; 400(\mathrm{Cr}-\mathrm{Cl})$.

Bis[(μ-tert-butylimido)chloro(2,6-diisopropylphenylimido)chromium (v)] 3.-A mixture of $\mathrm{CrCl}_{2}\left(\mathrm{NBu}^{\mathrm{l}}\right)_{2}(1 \mathrm{~g}, 3.78 \mathrm{mmol})$ and 2,6 -diisopropylphenyl isocyanate $(0.79 \mathrm{~g}, 3.9 \mathrm{mmol})$ in xylene ($20 \mathrm{~cm}^{3}$) was refluxed for 12 h . After cooling the reaction mixture to room temperature, addition of light petroleum (70 cm^{3}) and cooling $\left(-78^{\circ} \mathrm{C}\right)$ gave rhomboidal prisms. Yield: 0.25 $\mathrm{g}, c a .20 \%$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}, \delta 7.1-6.8(\mathrm{~m}, 6 \mathrm{H}$, aromatic), 3.5 (spt, $4 \mathrm{H}, \mathrm{C} H \mathrm{Me}_{2}$) $1.70\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Bu}^{\mathrm{t}}\right)$ and $1.25(\mathrm{~d}, 24 \mathrm{H}$, $\mathrm{CHMe})_{2}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 148.0$ (ipso-C of $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}$), 129.0, 124.2 (aromatic, not all observed), $79.8\left(\mathrm{NCMe}_{3}\right), 34.5\left(\mathrm{Me} e_{3} \mathrm{CN}\right)$, $29.5\left(\mathrm{Me}_{2} \mathrm{CH}\right)$ and $24.5\left(\mathrm{Me}_{2} \mathrm{CH}\right)$.

Dichlorobis(2,4,6-trimethylphenylimido)bis(trimethylphosphine)chromium(VI) 4.-To a solution of compound 1 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(0.2 \mathrm{~g}, 0.5 \mathrm{mmol}\right.$ in $\left.10 \mathrm{~cm}^{3}\right)$ was added PMe_{3} ($0.2 \mathrm{~cm}^{3}$, excess). The solution changed immediately to orange. After stirring for 5 min the volatiles were removed under reduced pressure, the residue was washed with diethyl ether ($2 \times 5 \mathrm{~cm}^{3}$) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and reprecipitated as an orange microcrystalline powder after addition of ether. Yield: $0.2 \mathrm{~g}, c a .80 \%$. NMR $\left(\mathrm{CDCl}_{3}\right):{ }^{1} \mathrm{H}, \delta 6.9(\mathrm{~s}, 4 \mathrm{H}$, aromatic), 2.58
$(\mathrm{s}, 12 \mathrm{H}, o-\mathrm{Me}), 2.40(\mathrm{t}, 6 \mathrm{H}, p-\mathrm{Me})$ and 1.60 (filled-in triplet, 18 $\left.\mathrm{H}, \mathrm{PMe}_{3}\right) ;{ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 26.8$.

(2,2': $6^{\prime}, 2^{\prime \prime}-$ Terpyridine) bis(2,4,6-trimethylphenylimido)chro-

 mium(VI) Bis(tetrafluoroborate) 5.-A mixture of compound 1 $(0.5 \mathrm{~g}, 1.3 \mathrm{mmol}), \mathrm{AgBF}_{4}(0.51 \mathrm{~g}, 2.6 \mathrm{mmol})$ and terpy $(0.3 \mathrm{~g}, 1.3$ mmol) in acetonitrile ($40 \mathrm{~cm}^{3}$) was refluxed for 1 h . After cooling to room temperature, filtration and removal of volatiles under reduced pressure, the red-brown residue was washed with ether, extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ and layered with ether. After 1 week red-brown needles of 5 appeared. Yield: $0.65 \mathrm{~g}, c a$. 70% NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 8.9-7.5(\mathrm{~m}, 11 \mathrm{H}$, terpy), $6.82(\mathrm{~s}, 4$ $\left.\mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right), 2.4(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{Me})$ and $2.3(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me}) ;{ }^{19} \mathrm{~F}$, $\delta 178 ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta \quad 164.2,155.0,154.8,153.7,149.9,148.2$, $145.5,144.8,130.7,129.8,127.3,126.0$ (aromatic, not assigned), 22.9 ($p-\mathrm{Me}$) and 19.6 ($o-\mathrm{Me}$).Bis(2,4,6-trimethylphenylimido)bis(trimethylsiloxo)chromium (vI) 6.-To a solution of compound $1(0.3 \mathrm{~g}, 0.8$ $\mathrm{mmol})$ in ether $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added a solution of $\mathrm{NaOSiMe}_{3}(0.18 \mathrm{~g}, 1.6 \mathrm{mmol})$ in ether ($20 \mathrm{~cm}^{3}$). After warming to room temperature the reaction mixture was stirred for 12 h . Evaporation of volatiles under vacuum, extraction of the residue with light petroleum $\left(2 \times 20 \mathrm{~cm}^{3}\right)$, filtration and evaporation of the petroleum extracts under vacuum gave a red-brown oil which crystallised on standing at room temperature for 12 h . Yield: 0.25 g , ca. 62%. Mass spectrum (EI): $m / z 496\left(M^{+}\right), 406\left(M^{+}-\mathrm{OSiMe}_{3}\right)$ and $316\left(M^{+}-2 \mathrm{OSiMe}_{3}\right) . \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta 6.46$ (s, 4 H , $\left.\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right), 2.35(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me}), 1.98(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{Me})$ and $0.37(\mathrm{~s}$, $18 \mathrm{H}, \mathrm{OSiMe}_{3}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 162.7$ (ipso- C of $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 136.9, 136.2, 133.5 (aromatic), $21.4(p-\mathrm{Me}), 19.0(o-\mathrm{Me})$ and 3.2 $\left(\mathrm{OSiMe}_{3}\right)$.

Bis(2,4,6-trimethylphenoxo)bis(2,4,6-trimethylphenylimido)-chromium(VI)-Diethyl Ether (1/0.25) 7.-To a solution of compound $1(0.3 \mathrm{~g}, 0.8 \mathrm{mmol})$ in ether $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added a solution of $\mathrm{NaOC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6(0.27 \mathrm{~g}$, 1.7 mmol) in ether ($20 \mathrm{~cm}^{3}$). After warming to room temperature the reaction mixture was stirred for 12 h . Evaporation of volatiles under vacuum, extraction of the residue with light petroleum ($3 \times 20 \mathrm{~cm}^{3}$), filtration, concentration to ca. $10 \mathrm{~cm}^{3}$ and cooling $\left(-20^{\circ} \mathrm{C}\right)$ gave red-brown prisms. Yield: $0.29 \mathrm{~g}, ~ c a .67 \%$. Mass spectrum (EI): m / z $588\left(M^{+}\right), 453\left(M^{+}-\mathrm{Me}_{3} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{O}\right)$ and $318\left(M^{+}-\right.$ $2 \mathrm{Me}_{3} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{O}$). NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}, \delta 6.79$ (s, $4 \mathrm{H}, \mathrm{Me}_{3} \mathrm{OC}_{6} \mathrm{H}_{2}$), 6.35 (s, $4 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), $2.63(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me}), 2.29(\mathrm{~s}, 12 \mathrm{H}$, $o-\mathrm{Me})$ and 2.16 and $1.90(\mathrm{~s}, 12 \mathrm{H}, p-\mathrm{Me}) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 162.8$ and 164.2 (ipso-C of $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$, not assigned), 139.6, 137.3, 131.9, 129.9 (aromatic), 21.8 and 21.6 ($p-\mathrm{Me}$, not assigned), 19.0 and 18.8 (o-Me).

Bis(2,4,6-trimethylbenzenethiolato)bis(2,4,6-trimethylphenylimido) chromium(vI) 8.-To a solution of compound $1(0.3 \mathrm{~g}$, $0.8 \mathrm{mmol})$ in ether $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added via cannula a suspension of $\mathrm{NaSC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6(0.29 \mathrm{~g}, 1.7 \mathrm{mmol})$ in ether ($50 \mathrm{~cm}^{3}$). After warming to room temperature the red-purple reaction mixture was stirred for 12 h when the volatiles were removed under reduced pressure. The residue was extracted with light petroleum ($2 \times 20 \mathrm{~cm}^{3}$) and the extracts evaporated leaving a red oil which was crystallised on standing for 2-3 d. Yield: 0.16 g, ca. 35%. Mass spectrum (EI): $m / z 620\left(M^{+}\right), 469$ $\left(M^{+}-\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right), 334\left(M^{+}-\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{2}{ }^{-}\right.$ Me_{3}) and $302\left(M^{+}-\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-\mathrm{S}\right)$. ${ }^{1} \mathrm{H}$, NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.79\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right.$), $6.38(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), $2.72\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me}\right.$ of $\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), $2.24(\mathrm{~s}, 12 \mathrm{H}$, $o-\mathrm{Me}$ of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), $2.07\left(\mathrm{~s}, 6 \mathrm{H}, p\right.$-Me of $\mathrm{SC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), $1.88(\mathrm{~s}$, $6 \mathrm{H}, p-\mathrm{Me}$ of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$).

Bis(pentafluorobenzenethiolato)bis(2,4,6-trimethylphenylimi-

 do) chromium (VI) 9.-To a solution of compound $1(0.3 \mathrm{~g}, 0.8$mmol) in ether ($30 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ was added via cannula a suspension of $\mathrm{NaSC}_{6} \mathrm{~F}_{5}(0.38 \mathrm{~g}, 1.7 \mathrm{mmol})$ in ether $\left(50 \mathrm{~cm}^{3}\right)$. After warming to room temperature the red-purple reaction mixture was stirred for 12 h . Removal of volatiles under reduced pressure, extraction of the residue with light petroleum ($3 \times 20 \mathrm{~cm}^{3}$), filtration, concentration of the extracts to $c a .40$ cm^{3} when crystallisation started, and cooling ($-20^{\circ} \mathrm{C}$) for 8 h gave red-brown crystals. Yield: $0.67 \mathrm{~g}, c a .85 \%$. Mass spectrum (EI): $m / z 716\left(M^{+}\right), 517\left(M^{+}-\mathrm{SC}_{6} \mathrm{~F}_{5}\right)$ and $317\left(M^{+}-\right.$ $2 \mathrm{SC}_{6} \mathrm{~F}_{5}$). NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}, \delta 6.26\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right), 2.21$ ($\mathrm{s}, 12 \mathrm{H}, o-\mathrm{Me}$ of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), and $1.82(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{Me}$ of $\left.\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}\right) ;{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 162.0,142.0,138.5,130.1,129.6$ (aromatic), $22.0(p-\mathrm{Me})$ and $19.0(o-\mathrm{Me}) ;{ }^{19} \mathrm{~F}, \delta-130(\mathrm{~d})$, $-156(t)$ and $-163(t)$.

Bis(2,4,6-triisopropylbenzenethiolato)bis(2,4,6-trimethylphenylimido) chromium (VI) 10.-This was prepared as for compound 8 from $1(0.6 \mathrm{~g}, 1.6 \mathrm{mmol})$ and $\mathrm{NaSC}_{6} \mathrm{H}_{2} \mathrm{Pr}^{\mathrm{i}}{ }_{3}-2,4,6(0.82$ $\mathrm{g}, 3.2 \mathrm{mmol}$). After evaporating the light petroleum extracts to dryness a red microcrystalline powder, pure according to NMR spectroscopy, was obtained. Yield: $0.9 \mathrm{~g}, 75 \%$. Mass spectrum (FAB): $m / z 789\left(M^{+}\right)$and $554\left(M^{+}-\mathrm{SC}_{6} \mathrm{H}_{2} \operatorname{Pr}^{\mathrm{i}}{ }_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.11$ and 6.52 ($\mathrm{s}, 4 \mathrm{H}$ each, aromatic), 4.50 and 2.80 (spt, 4 H and $2 \mathrm{H}, o-$ and $p-\mathrm{CHMe}{ }_{2}$, respectively), 2.31 $(\mathrm{s}, 12 \mathrm{H}, o-\mathrm{Me}), 2.01(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{Me}), 1.50$ and $1.35(\mathrm{~d}, 24 \mathrm{H}$ and $12 \mathrm{H}, o$ - and $p-\mathrm{CHMe} \mathrm{C}_{2}$)

Bis(neopentyl)bis(2,4,6-trimethylphenylimido)chromium(vi)

 11.-To a solution of compound $1(0.25 \mathrm{~g}, 0.65 \mathrm{mmol})$ in ether $\left(30 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ was added neopentylmagnesium chloride in ether ($1.5 \mathrm{~cm}^{3}$ of a $0.9 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 1.3 mmol). The redbrown colour immediately changed to green-brown and after warming to room temperature to yellow-brown. Stirring at room temperature for 2 h followed by evaporation under vacuum, extraction of the residue with light petroleum (2×20 cm^{3}), filtration and evaporation left a yellow-brown oil. This oil was pure according to NMR spectroscopy and crystallised on standing at room temperature for $2-3 \mathrm{~d}$. Yield: $0.15 \mathrm{~g}, c a .50 \%$. Mass spectrum (EI): $m / z 388\left(M^{+}-\mathrm{CMe}_{4}\right)$ and $255\left(M^{+}-\right.$ $\mathrm{CMe}_{4}-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}-2,4,6$). NMR (C $\mathrm{C}_{6} \mathrm{D}_{6}$): ${ }^{1} \mathrm{H}, \delta 6.6(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), $2.45\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe}_{3}\right), 2.31(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me})$, $2.01(\mathrm{~s}, 6 \mathrm{H}, p-\mathrm{Me})$ and $1.30\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe} 3\right.$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$, $\delta 145.0$ (ipso-C of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 136.4, 135.3, 129.4 (aromatic), $93.5\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right), 35.7\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right), 33.9\left(\mathrm{CH}_{2} \mathrm{CMe} 3\right), 21.8$ (p-Me) and 19.6 ($o-\mathrm{Me}$).Bis(2-methyl-2-phenylpropyl)bis(2,4,6-trimethylphenylimido)chromium (VI) 12.-To a solution of compound $1(0.7 \mathrm{~g}, 1.8$ mmol) in ether ($50 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ was added (2-methyl-2phenylpropyl)magnesium chloride ($7.7 \mathrm{~cm}^{3}$ of a $0.48 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution, 3.7 mmol) in ether. The reaction mixture was allowed to warm to room temperature and stirred for 2 h when the volatiles were removed under reduced pressure. Extraction of the residue with light petroleum ($3 \times 30 \mathrm{~cm}^{3}$), filtration, concentration and cooling of the extracts $\left(-20^{\circ} \mathrm{C}\right)$ gave yellow crystals. Yield: $0.53 \mathrm{~g}, c a .50 \%$ in two crops. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}$, $\delta 7.44$ and $7.17\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{C}_{6} H_{5}\right), 6.57(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), $2.17\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), $2.15(\mathrm{~s}, 12 \mathrm{H}, o-$ $\mathrm{Me}), 2.03\left(\mathrm{~s}, 6 \mathrm{H}, p\right.$-Me) and $1.58\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$; ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 163.9$ (ipso-C of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 152.2, (ipso-C of $\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}$), 136.4, 136.3, 129.3, 127.3, 126.4 (aromatic), 92.8 $\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, $42.0\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 32.7\left(\mathrm{CH}_{2} \mathrm{CMe} 2^{-}\right.$ $\mathrm{C}_{6} \mathrm{H}_{5}$), $21.8(p-\mathrm{Me})$ and $19.5(o-\mathrm{Me})$.

Bis(benzyl)bis(2,4,6-trimethylphenylimido)chromium(vi) 13.-To a solution of compound $1(0.4 \mathrm{~g}, 1 \mathrm{mmol})$ in ether (50 cm^{3}) at $-78^{\circ} \mathrm{C}$ was added freshly prepared benzylmagnesium chloride in ether $\left(5.4 \mathrm{~cm}^{3}\right.$ of a $0.38 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution, 2.1 mmol). The red-brown solution was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then allowed to warm. After stirring at room temperature for 2 h the volatiles were evaporated under reduced

pressure. Extraction of the residue with light petroleum (3×30 cm^{3}), filtration, concentration to $c a .10 \mathrm{~cm}^{3}$ and cooling $\left(-20^{\circ} \mathrm{C}\right)$ gave orange-brown crystals. Yield: $0.27 \mathrm{~g}, c a .55 \%$. Mass spectrum (EI): $m / z 500\left(M^{+}\right), 408\left(M^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right)$ and $316\left(M^{+}-2 \mathrm{CH}_{2} \mathrm{Ph}\right)$. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta 7.08-6.95(\mathrm{~m}, 10$ $\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$), 6.58 (s, $4 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 3.04 (s, 4 H , $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$), $2.29\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me}\right.$ of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$) and 2.03 ($\mathrm{s}, 6 \mathrm{H}$, p-Me of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 158.5$ (ipso-C of NC_{6} $\mathrm{H}_{2} \mathrm{Me}_{3}$), 139.4 (ipso-C of $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 135.8, 135.3, 131.5, $128.7,128.4,127.3,126.0$ (aromatic, not assigned), 52.1 $\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 21.0\left(p-\mathrm{Me}\right.$ of $\left.\mathrm{NC}_{6} \mathrm{H}_{\mathbf{2}} \mathrm{Me}_{3}\right)$ and $18.8(o-\mathrm{Me}$ of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$).

Bis $\{[(4-$ tert-butylbenzyl)(2,4,6-trimethylphenyl)amido]chloro(μ-2,4,6-trimethylphenylimido) chromium(IV) \}-DiethylEther(1/2) 14.-To a solution of compound 1 in ether $(0.35 \mathrm{~g}, 0.9 \mathrm{mmol}$ in $50 \mathrm{~cm}^{3}$) was added a solution of 4-tert-butylbenzylmagnesium chloride ($5.2 \mathrm{~cm}^{3}$ of a $0.35 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution, 1.8 mmol) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min and then allowed to reach room temperature and stirred for 2 h . After

Table 10 Fractional atomic coordinates ($\times 10^{4}$) for compound 1 with e.s.d.s in parentheses

Atom	l $l$$\quad$$l$ Cr	$1535(1)$	$7447(1)$
$\mathrm{Cl}(1)$	$3280(1)$	$7685(1)$	$2044(1)$
$\mathrm{Cl}(2)$	$-921(1)$	$7126(1)$	$2369(1)$
$\mathrm{N}(1)$	$1490(2)$	$8421(1)$	$3626(1)$
$\mathrm{N}(2)$	$2203(2)$	$6528(1)$	$3682(1)$
$\mathrm{C}(11)$	$1755(3)$	$8994(2)$	$4355(2)$
$\mathrm{C}(12)$	$2604(3)$	$9851(2)$	$4338(2)$
$\mathrm{C}(13)$	$2889(3)$	$10426(2)$	$5072(2)$
$\mathrm{C}(14)$	$2346(3)$	$10194(2)$	$5808(2)$
$\mathrm{C}(15)$	$1506(3)$	$9344(2)$	$5803(2)$
$\mathrm{C}(16)$	$1198(3)$	$8732(2)$	$5099(2)$
$\mathrm{C}(21)$	$2686(3)$	$5999(2)$	$4430(2)$
$\mathrm{C}(22)$	$3935(3)$	$6306(2)$	$5123(2)$
$\mathrm{C}(23)$	$4352(3)$	$5727(2)$	$5852(2)$
$\mathrm{C}(24)$	$3577(3)$	$4873(2)$	$5921(2)$
$\mathrm{C}(25)$	$2357(3)$	$4587(2)$	$5220(2)$
$\mathrm{C}(26)$	$1884(3)$	$5124(2)$	$4469(2)$
$\mathrm{C}(121)$	$3197(3)$	$10111(2)$	$3546(2)$
$\mathrm{C}(141)$	$2670(3)$	$10834(2)$	$6600(2)$
$\mathrm{C}(161)$	$322(3)$	$7810(2)$	$5129(2)$
$\mathrm{C}(221)$	$4789(3)$	$7235(2)$	$5077(2)$
$\mathrm{C}(241)$	$4063(3)$	$4269(2)$	$6731(2)$
$\mathrm{C}(261)$	$592(3)$	$4809(2)$	$3713(2)$

removal of the volatiles under vacuum, the residue was extracted with light petroleum ($3 \times 50 \mathrm{~cm}^{3}$) and the filtered extracts were concentrated to $c a .10 \mathrm{~cm}^{3}$ and cooled ($-20^{\circ} \mathrm{C}$) to give green-brown prisms. X-Ray-quality crystals were obtained by slowly cooling saturated light petroleum solutions. Yield: $0.18 \mathrm{~g}, c a .40 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.1-6.4(\mathrm{~m}, 6 \mathrm{H}$, aromatic), 3.9 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{\prime}$), $2.20(\mathrm{~s}, 6 \mathrm{H}, p$ - Me in $\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 2.1 (s, $12 \mathrm{H}, o$-Me in $\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 1.60 (s , $12 \mathrm{H}, o-\mathrm{Me}$ in $\mathrm{Me}_{3} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{1}$), 1.80 (s, $6 \mathrm{H}, p$-Me in $\mathrm{Me}_{3} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{NCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Bu}^{\prime}$) and 1.05 (s, $18 \mathrm{H}, \mathrm{Bu}^{\prime}$).

Dibromo- $1 \kappa \mathrm{Br}, 2 \kappa \mathrm{Br}$-bis(μ-2,4,6-trimethylphenylimido)bis(2,-4,6-trimethylphenylimido) $-1 \mathrm{kN}, 2 \mathrm{kN}$-(trimethylphosphine- 1 kP)-dichromium(v)-Diethyl Ether (1/1) 15.--To a solution of compound $1(0.2 \mathrm{~g}, 0.5 \mathrm{mmol})$ and $\mathrm{PMe}_{3}\left(0.3 \mathrm{~cm}^{3}\right)$ in $\mathrm{Et}_{2} \mathrm{O}$ $\left(30 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{MgEtBr}\left(0.8 \mathrm{~cm}^{3}\right.$ of a 1.3 mol dm^{-3} solution in ether, $c a .1 \mathrm{mmol}$). After warming to room temperature the mixture was stirred for 3 h when it changed

Table 11 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for compound $1 \mathbf{1 a}$ with e.s.d.s in parentheses

Atom		y	z
$\mathrm{Cr}(1)$	$3493(2)$	$1627(1)$	$5699(2)$
$\mathrm{Cr}(2)$	$8434(2)$	$-3337(1)$	$5833(2)$
$\mathrm{Cl}(11)$	$3671(3)$	$2438(3)$	$7417(2)$
$\mathrm{Cl}(12)$	$3158(3)$	$2666(3)$	$4071(2)$
$\mathrm{Cl}(21)$	$9251(2)$	$-2201(2)$	$7411(2)$
$\mathrm{Cl}(22)$	$7970(3)$	$-2635(3)$	$4008(2)$
$\mathrm{N}(11)$	$2224(8)$	$745(8)$	$5385(8)$
$\mathrm{N}(12)$	$4902(8)$	$970(7)$	$5997(8)$
$\mathrm{N}(21)$	$7057(8)$	$-3865(8)$	$5874(8)$
$\mathrm{N}(22)$	$9567(8)$	$-4292(7)$	$6063(8)$
$\mathrm{C}(11)$	$1357(11)$	$-260(9)$	$5134(10)$
$\mathrm{C}(12)$	$5876(9)$	$30(7)$	$6192(9)$
$\mathrm{C}(21)$	$6116(10)$	$-4723(8)$	$6036(9)$
$\mathrm{C}(22)$	$10535(10)$	$-5259(9)$	$6373(10)$
$\mathrm{C}(111)$	$663(11)$	$165(10)$	$5217(10)$
$\mathrm{C}(112)$	$2013(11)$	$-1166(11)$	$6103(11)$
$\mathrm{C}(113)$	$1151(11)$	$-727(12)$	$3849(10)$
$\mathrm{C}(121)$	$6155(9)$	$-510(7)$	$7425(7)$
$\mathrm{C}(122)$	$5259(11)$	$-887(10)$	$5166(11)$
$\mathrm{C}(123)$	$7127(10)$	$590(10)$	$6115(10)$
$\mathrm{C}(211)$	$4767(11)$	$-4439(10)$	$5145(10)$
$\mathrm{C}(212)$	$6209(11)$	$-4520(9)$	$7397(9)$
$\mathrm{C}(213)$	$6616(12)$	$-5928(11)$	$5940(11)$
$\mathrm{C}(221)$	$10783(10)$	$-5649(10)$	$7666(10)$
$\mathrm{C}(222)$	$9964(13)$	$-6258(10)$	$5441(12)$
$\mathrm{C}(223)$	$11827(11)$	$-4789(10)$	$6284(10)$

Table 12 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for compound 3 with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Cr}(11)$	$4615(3)$	$4339(3)$	$9583(2)$	$\mathrm{C}(24)$	$-2802(30)$	$5496(23)$	$5009(15)$
$\mathrm{Cr}(21)$	$99(4)$	$982(3)$	$4674(2)$	$\mathrm{C}(25)$	$-3556(30)$	$5533(22)$	$5735(13)$
$\mathrm{Cl}(11)$	$4851(6)$	$4403(4)$	$8296(3)$	$\mathrm{C}(26)$	$-3375(23)$	$4416(19)$	$6210(12)$
$\mathrm{Cl}(21)$	$1646(6)$	$1197(5)$	$3702(3)$	$\mathrm{C}(27)$	$-2555(20)$	$3306(17)$	$5953(14)$
$\mathrm{N}(12)$	$3879(16)$	$3275(11)$	$9927(8)$	$\mathrm{C}(21)$	$2323(21)$	$-96(17)$	$60031(11)$
$\mathrm{N}(11)$	$3633(14)$	$5803(12)$	$9915(8)$	$\mathrm{C}(211)$	$3710(22)$	$-981(19)$	$5692(14)$
$\mathrm{N}(22)$	$-920(18)$	$2316(12)$	$4897(9)$	$\mathrm{C}(212)$	$1889(25)$	$-558(19)$	$68846(12)$
$\mathrm{N}(21)$	$1055(15)$	$-38(11)$	$5475(9)$	$\mathrm{C}(213)$	$2560(22)$	$1121(14)$	$6000(14)$
$\mathrm{C}(12)$	$3238(21)$	$2424(15)$	$10330(11)$	$\mathrm{C}(131)$	$3417(19)$	$1667(14)$	$8963(10)$
$\mathrm{C}(13)$	$3017(18)$	$1569(16)$	$9829(11)$	$\mathrm{C}(132)$	$3758(23)$	$479(16)$	$8572(12)$
$\mathrm{C}(14)$	$2389(22)$	$744(19)$	$10183(11)$	$\mathrm{C}(133)$	$2120(25)$	$2637(17)$	$8480(12)$
$\mathrm{C}(15)$	$2003(22)$	$682(19)$	$10935(11)$	$\mathrm{C}(171)$	$3253(19)$	$3234(15)$	$11639(11)$
$\mathrm{C}(16)$	$2242(19)$	$1482(17)$	$11433(10)$	$\mathrm{C}(172)$	$4271(22)$	$2601(17)$	$12303(10)$
$\mathrm{C}(17)$	$2839(18)$	$2391(14)$	$11129(11)$	$\mathrm{C}(173)$	$1795(21)$	$4128(17)$	$11958(12)$
$\mathrm{C}(11)$	$2199(19)$	$6754(16)$	$9797(11)$	$\mathrm{C}(231)$	$-1206(22)$	$4449(16)$	$3911(10)$
$\mathrm{C}(111)$	$1013(19)$	$6131(16)$	$9668(11)$	$\mathrm{C}(232)$	$-2063(20)$	$4143(14)$	$3301(11)$
$\mathrm{C}(112)$	$2360(22)$	$7575(14)$	$9045(12)$	$\mathrm{C}(233)$	$-867(23)$	$5624(18)$	$3620(12)$
$\mathrm{C}(113)$	$1875(20)$	$7430(17)$	$10501(11)$	$\mathrm{C}(271)$	$-2397(24)$	$2136(16)$	$6466(11)$
$\mathrm{C}(22)$	$-1861(23)$	$3352(19)$	$5183(11)$	$\mathrm{C}(272)$	$-3969(26)$	$2000(20)$	$6636(15)$
$\mathrm{C}(23)$	$-1989(26)$	$4443(19)$	$4727(10)$	$\mathrm{C}(273)$	$-1635(27)$	$2132(21)$	$7238(12)$

Table 13 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for compound 7 with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Cr}(1)$	249(1)	$7888(1)$	899(1)	$\mathrm{Cr}(2)$	2 275(1)	$9019(1)$	3 424(1)
$\mathrm{O}(11)$	179(1)	7 090(1)	1216 (1)	$\mathrm{O}(21)$	2 479(1)	9610 (1)	$3871(1)$
O(12)	-351(1)	8 107(1)	563(1)	O (22)	2806 (1)	$8852(1)$	$3011(1)$
N(11)	775(1)	$7806(1)$	554(1)	N(21)	1723 (1)	$9357(1)$	$3175(1)$
$\mathrm{N}(12)$	370(1)	$8511(1)$	1 267(1)	N (22)	2 127(1)	8 265(1)	3 659(1)
C(111)	1280 (1)	$7853(2)$	354(1)	C(211)	$1183(1)$	$9389(2)$	$3045(1)$
C(112)	$1519(1)$	7230 (2)	182(1)	C(212)	868(2)	9 985(2)	$3134(1)$
C(113)	$1192(2)$	$6561(2)$	202(1)	C(213)	$1119(2)$	10 594(2)	3 377(2)
C(114)	$2035(2)$	7 260(2)	0 (1)	C(214)	325(2)	$9996(2)$	2 998(2)
C(115)	2336 (2)	$7869(2)$	-18(1)	C(215)	77(2)	$9451(2)$	$2776(1)$
C(116)	$2915(2)$	$7877(2)$	-202(2)	C(216)	- 524(2)	9480 (2)	2 632(2)
C(117)	2091 (2)	$8469(2)$	137(1)	C(217)	397(2)	8873 (2)	2 688(1)
C(118)	$1568(1)$	8 488(2)	321(1)	C(218)	940(1)	8823 (2)	$2815(1)$
C(119)	$1325(2)$	9 162(2)	483(1)	C(219)	$1277(1)$	8 188(2)	$2708(1)$
C(121)	659(1)	$9032(2)$	$1476(1)$	C(221)	$1882(1)$	$7655(2)$	$3791(1)$
C(122)	1 204(1)	8 930(2)	$1625(1)$	C(222)	1350 (1)	7 654(2)	3 977(1)
C(123)	$1487(1)$	8 247(2)	$1552(1)$	C(223)	$1018(2)$	$8311(2)$	$4009(1)$
C(124)	1466 (2)	9479 (2)	$1834(1)$	C(224)	$1143(2)$	7 018(2)	$4123(1)$
C(125)	$1217(2)$	$10119(2)$	$1892(1)$	C(225)	$1435(2)$	6 404(2)	4 089(1)
C(126)	$1525(2)$	$10712(2)$	$2125(2)$	C(226)	1 197(2)	5730 (2)	4 260(1)
C(127)	687(2)	10 201(2)	1743 (2)	C(227)	$1956(2)$	$6416(2)$	$3898(1)$
C(128)	397(2)	9 675(2)	$1535(1)$	C(228)	2 187(1)	$7032(2)$	3750 (1)
C(129)	-182(2)	9773 (2)	$1359(2)$	C(229)	2761 (2)	$7027(2)$	3 548(1)
C(131)	229(2)	6971 (2)	1 660(1)	C(231)	2 621(1)	$9461(2)$	4 299(1)
C(132)	701(2)	$6608(2)$	$1806(1)$	C(232)	$3102(1)$	$9082(2)$	$4392(1)$
C(133)	1125(2)	6371 (2)	$1477(2)$	C(233)	3 474(1)	$8821(2)$	4021 (1)
C(134)	759(2)	6493 (2)	2 260(2)	C(234)	3233 (2)	$8961(2)$	$4837(2)$
C(135)	378(2)	$6705(2)$	2 564(2)	C(235)	2910 (2)	9 192(2)	$5186(1)$
C(136)	480(2)	$6609(3)$	$3062(2)$	C(236)	$3055(2)$	$9033(2)$	5 670(2)
C(137)	-89(2)	7 045(2)	2 412(2)	C(237)	2 445(2)	9 581(2)	$5075(1)$
C(138)	-176(2)	7 184(2)	$1965(1)$	C(238)	2 295(2)	9720 (2)	4 645(1)
C(139)	-685(2)	7 562(2)	$1802(1)$	C(239)	$1784(2)$	10130 (2)	4 535(1)
C(141)	-425(1)	7 920(2)	130(1)	C(241)	2861 (1)	$9026(2)$	2573 (1)
C(142)	-573(2)	7 233(2)	25(1)	C(242)	2890 (1)	$8487(2)$	2 257(1)
C(143)	-659(2)	6712(2)	391(1)	C(243)	2846 (2)	7743 (2)	2396 (1)
C(144)	-659(2)	7 073(2)	-425(2)	C(244)	$2965(2)$	$8695(3)$	$1813(2)$
C(145)	-607(2)	7547 (3)	-761(2)	C(245)	3010 (2)	9367 (3)	1 683(2)
C(146)	-697(2)	7344 (3)	-1250(2)	C(246)	3069 (2)	9 533(3)	$1182(2)$
C(147)	-462(2)	$8221(2)$	-652(2)	C(247)	2 985(2)	$9879(3)$	$1998(2)$
C(148)	-375(1)	$8415(2)$	-208(1)	C(248)	2 919(2)	$9721(2)$	2 447(1)
C(149)	-244(2)	9161 (2)	--85(2)	C(249)	2 913(2)	10 297(2)	$2798(2)$
The disordered diethyl ether molecule ${ }^{\text {a }}$							
O	$5000^{\text {b }}$	$10000^{\text {b }}$	$0^{\text {b }}$	C(3)	4774 (7)	9 949(7)	769(6)
C(1)	$5120(4)$	9 767(4)	345(3)	C(4)	4 423(13)	9 894(15)	549(11)
$\mathrm{C}(2)$	4 677(4)	10 037(5)	532(4)	C(5)	4 848(5)	9 693(6)	943(4)

${ }^{a}$ The occupancies for atoms $\mathrm{O}, \mathrm{C}(1)-\mathrm{C}(5)$ are $0.5,0.6,0.41,0.4,0.14$ and $0.45 .{ }^{b}$ Invariant parameter.
from orange-brown to yellow-brown. Evaporation under vacuum, extraction of the residue with light petroleum (3×20 cm^{3}), filtration, concentration of the petroleum extracts to $c a .5$ cm^{3} and cooling ($-20^{\circ} \mathrm{C}$) for 12 h gave brown crystals. Yield: $0.05 \mathrm{~g}, c a .23 \%$. NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta 6.9-6.2(\mathrm{~m}, 8 \mathrm{H}$, aromatic), 2.65 and 2.20 (s, 12 H and $6 \mathrm{H}, o$ - and p - Me in $\mu-\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 2.4-2.2 (filled-in triplet, $9 \mathrm{H}, \mathrm{PMe}_{3}$), 1.90 and $1.82(\mathrm{~s}, 6 \mathrm{H}$ and $12 \mathrm{H}, p$ - and $o-\mathrm{Me}$ in $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 3.22$.
[1-(2,6-Dimethylphenylimino)-3-methyl-3-phenylbutyl](2-methyl-2-phenylpropyl)bis(2,4,6-trimethylphenylimido)chromium(vi) 16.-To a solution of compound 12 in light petroleum $\left(0.1 \mathrm{~g}, 0.19 \mathrm{mmol}\right.$, in $10 \mathrm{~cm}^{3}$) at room temperature was added a solution of 2,6-dimethylphenyl isocyanide $(0.03 \mathrm{~g}$, ca. 0.2 mmol). The colour changed immediately from yellow to orange. After stirring at room temperature for 0.5 h the solution was filtered, concentrated to $c a .2 \mathrm{~cm}^{3}$ and cooled $\left(-20^{\circ} \mathrm{C}\right)$ for 12 h to give orange prisms. Yield: 0.11 g, ca. 85%. Mass spectrum (EI): $m / z 715\left(M^{+}\right), 596\left(M^{+}-\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right), 582\left(M^{+}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}\right)$ and $449\left(M^{+}-\mathrm{Me}_{3} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{NCH}_{2} \mathrm{NC}_{6}-\right.$ $\mathrm{H}_{3} \mathrm{Me}_{2}$). IR (cm^{-1}): 1658, $1602(\mathrm{C}=\mathrm{N}) ; 1588,1285(\mathrm{Cr}=\mathrm{N})$;

851,776 and 698 (aromatic). NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):{ }^{1} \mathrm{H}, \delta 7.48-6.6$ (m, 17 H , aromatic), $3.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Me}_{2} \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{NCCH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right.$), 3.22 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}$), $2.44\left(\mathrm{~s}, 12 \mathrm{H}, o-\mathrm{Me}\right.$ of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 2.1 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}$), $1.97\left(\mathrm{~s}, 6 \mathrm{H}, p\right.$ - Me of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 1.45 and 1.44 (s, 6 H each, $\mathrm{CH}_{2} \mathrm{CM} e_{2} \mathrm{Ph}$); ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 159.0$ (ipso-C of $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 156.2 (ipso-C of $\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Me}_{2}$), 149.0, 143.0, $136.1,135.2,131.6,129.4,129.3,126.7,126.4,125.5$ (aromatic, not assigned), $60.9\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)$, $51.4\left(\mathrm{CNCH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right)$, 42.9, 39.1 $\left(\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right), 32.6,30.3\left(\mathrm{CH}_{2} \mathrm{CMe}{ }_{2} \mathrm{Ph}\right), 21.9,20.0$ and 19.2 (aromatic Me).
(1-tert-Butylimino-3-methyl-3-phenylbutyl)(2-methyl-2-phenylpropyl)bis(2,4,6-trimethylphenylimido)chromium(VI) 17.-This was prepared as for compound 16 from $12(0.1 \mathrm{~g}, 0.19$ mmol) and tert-butyl isocyanide (0.1 g , excess) in light petroleum ($10 \mathrm{~cm}^{3}$). Cooling at $-78^{\circ} \mathrm{C}$ for 48 h gave an orange oil which could not be crystallised. Yield: $0.1 \mathrm{~g}, c a .80 \%$. Mass spectrum (EI): $m / z 667\left(M^{+}\right)$and $596\left(M^{+}-\mathrm{NBu}\right)$. IR (cm^{-1}): 1683, $1602(\mathrm{C}=\mathrm{N}) ; 1286,1261(\mathrm{Cr}=\mathrm{N}) ; 852,802$ and 764 ($\mathrm{C}-\mathrm{H}$ aromatic). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.8-6.6(\mathrm{~m}, 14 \mathrm{H}$, aromatic), $3.8\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bu}^{\prime} \mathrm{NCCH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}\right), 3.2(\mathrm{~s}, 2 \mathrm{H}$,

Table 14 Fractional atomic coordinates ($\times 10^{4}$) for compound 14 with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
Cr	0(1)	4527 (1)	702(1)	C(15)	41(8)	8 676(6)	2 089(4)
Cl	-1830(2)	3866(1)	$1258(1)$	C(16)	-383(7)	7 551(5)	$1464(4)$
$\mathrm{N}(1)$	300(5)	$6065(4)$	546(3)	C(21)	2 147(6)	3 436(5)	$1214(4)$
N(2)	1 508(4)	$4306(4)$	1413 (3)	C(22)	$1364(6)$	$2211(5)$	$1041(4)$
C(2)	$2111(9)$	$5151(6)$	2342 (5)	C(23)	$1976(7)$	$1361(5)$	784(4)
C(3)	2 060(7)	4 548(5)	$3166(4)$	C(24)	3 321(7)	1 687(6)	685(5)
C(4)	$3121(7)$	4 261(6)	3 604(4)	C(25)	4 078(6)	2 904(6)	885(4)
C(5)	$3138(9)$	$3789(6)$	4399 (5)	C(26)	3 550(6)	3 798(5)	$1128(4)$
C(6)	1984 (10)	3 547(6)	$4757(5)$	C(61)	$1798(16)$	2 970(10)	$5668(6)$
C(7)	891(10)	$3853(9)$	4 287(6)	C(121)	$3228(6)$	$7659(5)$	$1149(5)$
C(8)	898(9)	4 291(8)	$3485(5)$	C(141)	$1774(7)$	10 663(5)	3066 (5)
C(11)	695(7)	7 222(5)	$1167(4)$	C(161)	-1878(6)	6 767(5)	$1181(4)$
C(12)	2093 (7)	7 999(5)	$1472(5)$	C(221)	-95(6)	$1764(5)$	$1139(5)$
C(13)	2 401(7)	9 105(5)	2 089(5)	C(241)	3 932(7)	$751(5)$	373(5)
C(14)	$1405(8)$	9 469(6)	2 409(5)	C(261)	$4407(6)$	$5086(5)$	$1192(4)$
Disordered $\mathrm{Bu}^{\text {t }}$ group attached to $\mathrm{C}(61)^{a}$							
C(611)	803(11)	1681(10)	5 366(7)	C(614)	672(26)	3 482(23)	$6173(14)$
C(612)	3 300(13)	2769 (10)	6059(7)	C(615)	2 566(27)	4 483(21)	$6551(17)$
C(613)	2566 (38)	3 597(32)	$6317(26)$	C(616)	1 616(45)	3801 (32)	6387 (27)
Disordered diethyl ether molecule							
O	6 565(20)	1960 (17)	$4758(27)$	C(34)	6 639(17)	$1045(19)$	3 905(18)
C(31)	$6868(33)$	$1765(24)$	$5807(15)$	C(35)	7 089(26)	$1258(24)$	$2882(28)$
C(32)	6 072(39)	2346 (29)	4867 (22)	C(36)	7 248(33)	392(25)	$2734(24)$
C(33)	$6223(15)$	$2719(17)$	3 303(13)				

${ }^{a}$ Occupancies for $\mathrm{C}(611)-\mathrm{C}(616)$ are $0.9,0.8,0.4,0.4,0.25$ and 0.25 . ${ }^{b}$ Occupancies for O and $\mathrm{C}(31)-\mathrm{C}(36)$ are 1.0, 0.4, 0.4, 0.9, 0.9, 0.8 and 0.6.

Table 15 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for compound 15 with e.s.d.s in parentheses

Atom	x	y	z	Atom	x	y	z
$\mathrm{Cr}(1)$	2016(1)	2947(1)	1617(1)	C(23)	1755(3)	4532(3)	3922(4)
$\mathrm{Cr}(2)$	2134(1)	2007(1)	2610(1)	C(24)	1348(3)	4206(3)	3325(3)
Br(1)	2792(1)	3448(1)	1685(1)	C(25)	1409(2)	3702(3)	2863(3)
$\mathrm{Br}(2)$	1585(1)	1899(1)	3311(1)	C(26)	2893(2)	3652(3)	3767(4)
P	2082(1)	770(1)	2623(1)	C(27)	1662(3)	5065(3)	4430(4)
N(1)	1548(2)	3360(2)	889(3)	C(28)	952(2)	3365(3)	2213(4)
N(2)	2015(2)	3004(2)	2549(3)	C(30)	3260(2)	1862(3)	3753(4)
N(3)	2751(2)	1910(2)	3214(3)	C(31)	3652(2)	1771(3)	3485(3)
N(4)	1984(2)	2029(2)	1526(3)	C(32)	4158(3)	1729(3)	4054(4)
C(1)	1478(3)	308(3)	2215(4)	C(33)	4289(3)	1753(3)	4858(4)
C(2)	2459(3)	341 (3)	2189(4)	C(34)	3895(2)	1830(3)	5092(4)
C(3)	2374(3)	452(3)	3629(4)	C(35)	3382(2)	1883(3)	4557(4)
$\mathrm{C}(10)$	1142(2)	3716(3)	300(4)	C(36)	3532(3)	1757(3)	2635(4)
$\mathrm{C}(11)$	1005(2)	4378(3)	467(4)	C(37)	4840(3)	1718(4)	5439(5)
C(12)	593(3)	4709(3)	-121(4)	C(38)	2962(3)	1999(3)	4839(4)
C(13)	321(3)	4426(4)	-852(4)	C(40)	1767(3)	1593(3)	871(4)
C(14)	480(3)	3792(4)	-1020(4)	C(41)	1247(3)	1369(3)	632(4)
C(15)	885(3)	3432(3)	-452(4)	C(42)	1042(3)	916(3)	8(4)
$\mathrm{C}(16)$	1330(3)	4727(3)	1236(4)	C(43)	1323(3)	665(4)	-385(4)
$\mathrm{C}(17)$	-121(3)	4811(4)	-1505(4)	C(44)	1810(3)	910(3)	-159(4)
C(18)	1062(3)	2759(3)	-659(4)	C(45)	2046(3)	1373(3)	454(4)
$\mathrm{C}(20)$	1919(2)	3507(3)	3008(3)	C(46)	912(3)	1687(3)	991(4)
$\mathrm{C}(21)$	2348(2)	3835(3)	3609(3)	C(47)	1089(4)	160(4)	- 1067(5)
C(22)	2249(2)	4339(3)	4043(3)	C(48)	2577(3)	1628(3)	651(4)
Disordered diethyl ether molecules							
$\mathrm{O}(1)$	0*	1216(17)	2500*	C(101)	244(10)	1325(22)	3711(33)
$\mathrm{O}(2)$	0*	1512(13)	7500*	C(202)	612(9)	1354(11)	6263(28)
$\mathrm{C}(102)$	593(7)	1239(14)	4892(22)	C(201)	414(13)	1781(12)	7073(15)

* Invariant parameter; occupancies for $O(1)$ and $O(2)=0.5$.
$\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{Ph}$), 2.5 ($\mathrm{s}, 12 \mathrm{H}, o-\mathrm{Me}$), 2.12 ($\mathrm{s}, 6 \mathrm{H}, p-\mathrm{Me}$), 1.72 ($\mathrm{s}, 6$ $\mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe} \mathrm{C}_{2} \mathrm{Ph}$), $1.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CMe} e_{2} \mathrm{Ph}\right.$) and $1.21(\mathrm{~s}, 9 \mathrm{H}$, Bu^{1}). The air sensitivity of the sticky oil precluded microanalysis.

Bis $[(\mu-2,4,6-$ trimethylphenylimido $)(2,4,6-$ trimethylphenyl-
imido)(trimethylphosphine)chromium(iv)] 18.-Compound 11 $(0.7 \mathrm{~g}, 1.4 \mathrm{mmol})$ was dissolved in benzene ($c a .10 \mathrm{~cm}^{3}$) and $\mathrm{PMe}_{3}\left(0.5 \mathrm{~cm}^{3}\right.$, excess) added. The reaction mixture was heated without stirring at $70^{\circ} \mathrm{C}$ for 10 h . The green crystals formed were isolated after removal of solvent with a cannula, washed with light petroleum ($2 \times 5 \mathrm{~cm}^{3}$) and dried for $c a .30 \mathrm{~s}$ under

Table 16 Fractional atomic coordinates $\left(\times 10^{4}\right)$ for compound 18 with e.s.d.s in parentheses

Atom	x	y	z
Cr	$7594(1)$	$565(1)$	$6838(1)$
P	$7618(1)$	$2681(1)$	$6079(1)$
$\mathrm{N}(1)$	$7724(2)$	$-605(3)$	$6137(1)$
$\mathrm{N}(2)$	$6510(2)$	$646(3)$	$7313(1)$
$\mathrm{C}(11)$	$7842(2)$	$-1623(3)$	$5589(2)$
$\mathrm{C}(12)$	$8801(2)$	$-2097(3)$	$5496(2)$
$\mathrm{C}(13)$	$9693(2)$	$-1517(4)$	$5997(2)$
$\mathrm{C}(14)$	$8895(3)$	$-3113(4)$	$4933(2)$
$\mathrm{C}(15)$	$8097(3)$	$-3671(4)$	$4456(2)$
$\mathrm{C}(16)$	$8242(3)$	$-4701(4)$	$3819(2)$
$\mathrm{C}(17)$	$7171(3)$	$-3202(4)$	$4563(2)$
$\mathrm{C}(18)$	$7022(2)$	$-2183(3)$	$5105(2)$
$\mathrm{C}(19)$	$5995(2)$	$-1670(4)$	$5166(2)$
$\mathrm{C}(21)$	$5499(2)$	$329(3)$	$7123(1)$
$\mathrm{C}(22)$	$4792(2)$	$1504(3)$	$7077(2)$
$\mathrm{C}(23)$	$5096(2)$	$3133(4)$	$7219(2)$
$\mathrm{C}(24)$	$3804(2)$	$1130(4)$	$6887(2)$
$\mathrm{C}(25)$	$3484(2)$	$-345(4)$	$6719(2)$
$\mathrm{C}(26)$	$2399(2)$	$-662(4)$	$6473(2)$
$\mathrm{C}(27)$	$4181(2)$	$-1486(4)$	$6780(2)$
$\mathrm{C}(28)$	$5183(2)$	$-1205(3)$	$6986(2)$
$\mathrm{C}(29)$	$5908(2)$	$-2478(4)$	$7074(2)$
$\mathrm{C}(31)$	$7614(2)$	$4588(4)$	$6470(2)$
$\mathrm{C}(32)$	$8681(3)$	$2716(4)$	$5618(2)$
$\mathrm{C}(33)$	$6605(3)$	$2752(4)$	$5327(2)$

vacuum. Yield: $0.2 \mathrm{~g}, c a .40 \%$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):{ }^{1} \mathrm{H}, \delta 6.7$ and 6.6 ($\mathrm{s}, 4 \mathrm{H}$ each, $\mathrm{NC}_{6} \mathrm{H}_{2} \mathrm{Me}_{3}$), 2.16 and 2.04 ($\mathrm{s}, 6 \mathrm{H}$ each, p-Me), 2.11 and 1.99 ($\mathrm{s}, 12 \mathrm{H}$ each, $o-\mathrm{Me}$) and 1.12 (pseudo-triplet, 18 H, PMe_{3}); ${ }^{31} \mathrm{P}-\left\{{ }^{1} \mathrm{H}\right\}, \delta 19.0$.
X-Ray Crystallography.-The X-ray data were collected at either $120(3,7,15$ and 18) or $150 \mathrm{~K}(1,1 \mathrm{a}$ and 14) using a FAST TV area detector diffractometer with Mo-K α radiation ($\lambda=$ $0.71069 \AA$), as previously described. ${ }^{20}$ The structures were solved via applications of direct methods in SHELXS 86. ${ }^{21}$ Refinement was by full-matrix least squares on F^{2} using the program SHELXL $93 .{ }^{22}$ The data for all of the compounds were corrected for absorption using the program DIFABS ${ }^{23}$ with maximum and minimum correction factors quoted in Table 9. Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included in idealised positions, except for the tertiary hydrogens of the mesityl groups of compounds 7 and 18, and the methylene protons of 14, which were experimentally located from the difference map.
The crystals of compound 3 were very small, platey, rhombohedrons. That used for data collection contained a twinned component, as initially found on indexing the reciprocal lattice. However, the cell adopted refined satisfactorily and a weak data set was obtained $(25 \%$ observed reflections). The structure refined without any problems, however the final $w R_{2}$ value is relatively high (0.329 on all data) due to the high proportion of weak reflections. Compounds 7 , 14 and 15 additionally contain disordered diethyl ether molecules within the crystal structure. The carbon atoms of 7 and 14 have been modelled with fractionally occupied sites, as listed in Tables 13 and 14. A complete listing of crystal data and
structure refinement details for compounds 1, 1a, 3, 7, 14, 15 and 18 is given in Table 9.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the EPSRC for support (to A. A. D.) and provision of X-ray facilities.

References

1 W. A. Nugent and R. L. Harlow, Inorg. Chem., 1980, 19, 777.
2 A. C. Sullivan, G. Wilkinson, M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1988, 53.

3 A. A. Danopoulos, W.-H. Leung, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, Polyhedron, 1990, 9, 2625.
4 (a) A. A. Danopoulos, B. Hussain-Bates, M. B. Hursthouse and G. Wilkinson, J. Chem. Soc., Chem. Commun., 1990, 1678; (b) W.-H. Leung, A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1991, 2051.
5 N. Meijboum, G. J. Schaverien and A. G. Orpen, Organometallics, 1990, 9, 774.
6 H.-W. Lam, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1993, 781, 1477.

7 D. E. Wigley, Prog. Inorg. Chem., 1994, 42, 239.
8 M. L. H. Green, G. Hogarth, P. C. Konidaris and P. Mountford, J. Chem. Soc., Dalton Trans., 1990, 3781; G. D. Forster and G. Hogarth, J. Chem. Soc., Dalton Trans., 1993, 2539; G. Hogarth and P. C. Konidaris, J. Organomet. Chem., 1990, 399, 149.
9 W. A. Nugent and J. M. Meyer, Metal-Ligand Multiple Bonds, Wiley, New York, 1988, p. 86.
10 W. Mowat, A. J. Shortland, N. J. Hill and G. Wilkinson, J. Chem. Soc., Dalton Trans., 1973, 770; P. Stavropoulos, P. D. Savage, R. P. Tooze, G. Wilkinson, B. Hussain, M. Motevalli and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1987, 557.
11 S. U. Koschmieder and G. Wilkinson, Polyhedron, 1991, 10, 135.
12 L. F. Larkworthy, K. B. Nolan and P. O'Brien, in Comprehensive Coordination Chemistry, eds. G. Wilkinson, R. D. Gillard and J. A. McCleverty, Pergamon, Oxford, 1987, vol. 3, sect. 35.5.

13 D. M.-T. Chan and W. A. Nugent, Inorg. Chem., 1985, 24, 1424; see also, J. Belgacem, J. Kress and J. A. Osborn, J. Chem. Soc., Chem. Commun., 1993, 1125.
14 (a) M. Helberhold, W. Kremnitz, A. Razoi, H. Schöllhorn and U. Thewalt, Angew. Chem., Int. Ed. Engl., 1985, 24, 601; (b) N. Wiberg, H.-W. Häring and U. Schubert, Z. Naturforsch., Teil B, 1978, 33, 1365.
15 U. Radius, J. Sundermeyer and H. Pritzkow, Chem. Ber, 1994, 127, 1827.

16 A. A. Danopoulos, A. C. C. Wong, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1990, 315.
17 A.-G. Farbenfabriken Bayer, Fr. Demande, 2000 746, 1969; Chem. Abstr., 1970, 72, 111012m.
18 P. A. Belmonte and Z.-Y. Own, J. Am. Chem. Soc., 1984, 106, 7493.
19 R. R. Schrock, M. Wesolek, A. M. Liu, K. C. Wallace and J. C. Dewan, Inorg. Chem., 1988, 27, 2050.

20 A. A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M. B. Hursthouse, J. Chem. Soc., Dalton Trans., 1991, 1855.
21 G. M. Sheldrick, SHELXS 86, Acta Crystallogr., Sect. A, 1990, 46, 467.

22 G. M. Sheldrick, University of Göttingen, 1993.
23 N. P. C. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158 (adapted for FAST geometry by A. Karaulov, University of Wales, Cardiff, 1991).

Received 27th February 1995; Paper 5/01154J

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

