Topologically Different Infinite Co-ordination Structures of $\left[\mathrm{CdNi}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2} \cdot \mathrm{mH}_{2} \mathrm{O}$ Complexes ($n=2-7$ and 9, $\boldsymbol{m}=0-2$) caused by the Catenation Behaviour of the Diamine and the - $\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-$ Moieties \dagger

Hidetaka Yuge, Atsushi Mamada, Miki Asai, Shin-ichi Nishikiori and Toschitake Iwamoto* Department of Chemistry, College of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153, Japan

Abstract

The single-crystal structures have been determined for a tris(en)-chelated complex [Cd(en) $]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ 2a and a series of $\left[\mathrm{CdNi}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2} \cdot m \mathrm{H}_{2} \mathrm{O}$ complexes with $n=2-7$ and 9 and $m=0-2$: $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 2 \mathrm{~b}$ (monoclinic) and 2c (orthorhombic) $(n=2),\left[\mathrm{Cd}(\mathrm{tn})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \quad(n=3) 3$. $\left[\mathrm{Cd}(\text { dabtn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 4 \quad(n=4), \quad\left[\mathrm{Cd}(\text { daptn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} \quad 5 \quad(n=5), \quad\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { dahxn })_{2}\right]-$ $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] 6 \quad(n=6), \quad\left[\mathrm{Cd}(\mathrm{dahpn})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} 7 \quad(n=7)$ and $\left[\mathrm{Cd}(\text { danon })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \quad 9 \quad(n=9)$. Only 2a comprises discrete $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$; the other structures are constructed by the catenation of either $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2}$ or $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$. or both, linking octahedral Cd atoms successively. In 2b and 2c the bis(en)-chelated Cd atoms are spanned by cis- $\left[-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]$ moieties to form a one-dimensional chain (cis-one-dimensional). Each single span of the tn and danon in 3 and 9 links Cd atoms to form a two-dimensional network as a single two-dimensional network builder; a cis-one-dimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety reinforces one of the single th spans in 3 , whereas it bridges the single two-dimensional networks in 9 to build up a three-dimensional framework. Two diamine ligands span the Cd atoms in $4-6$ to form a doubly bridged one-dimensional chain. The chains are spanned by trans- $\left[-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]$ moieties to form a two-dimensional network in 4, whereas the double one-dimensional chain in 5 is additionally reinforced by a cis-one-dimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety to form a triple-span chain. The Cd atom in the double one-dimensional dahxn chain in 6 is co-ordinated by two trans related $\mathrm{H}_{2} \mathrm{O}$ molecules, among whose chains discrete $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ anions are accommodated. Complex 7 shows a complicated structure constructed of a four-fold interpenetrating diamondoid three-dimensional sub-lattice framed by Cd-dahpn-Cd spans which has interconnections through the catenation of cis-one-dimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ at every Cd . The $\mathrm{H}_{2} \mathrm{O}$ molecules in 4, 5 and 7 are accommodated in the void spaces formed in the respective multidimensional structures. These crystal structures are additionally stabilised by hydrogen bonds involving the NH_{2} group of the diamine, the nitrogen end of the $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety and $\mathrm{H}_{2} \mathrm{O}$ molecules. The variations of the multidimensional structures are discussed in terms of the number of methylene units n in the diamines.

A common topology of the three-dimensional framework constructed by a two-dimensional network spanned successively by one-dimensional chains in parallel has been observed for the host structures of the Hofmann diamine-type clathrates $\left[\mathrm{Cd}\left\{\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2}\right\}_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot x \mathrm{G} \quad(n=2-9, \quad x=0.5-2$, $\mathrm{G}=$ aromatic guest), ${ }^{1.2}$ where the network is square-meshed $\left[\mathrm{CdNi}(\mathrm{CN})_{4}\right]_{x}$ and the chain is the catena- μ-diamine-cadmium linkage sharing the Cd atoms with the networks. Although distortions of the three-dimensional framework and cavity structure occur more or less depending on the number of methylene units in the diamine skeleton n, diamines with even n are more favourable than those with odd n in giving well developed crystals of the clathrates suitable for single-crystal Xray experiments. In the course of our investigations related to the Hofmann diamine-type, in particular attempts to prepare clathrates with odd- n diamine hosts, ${ }^{3}$ a number of complexes with general composition $\mathrm{CdNi}(\mathrm{CN})_{4} \cdot 2 \mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2}$. $m \mathrm{H}_{2} \mathrm{O}(n=2-9, m=0-2)$ in which no aromatic guests are involved were obtained from aqueous solutions of the host moieties. The single-crystal structures of these complexes revealed a variety of multidimensional infinite co-ordination structures with different topologies such as one-dimensional chain, two-dimensional network and three-dimensional

[^0]framework, upon change of n, the structural variations of which are due to the various catenation modes of the diamine and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ moieties linking the octahedral Cd atoms. Except for the chelating en (1,2 -diaminoethane, $n=2$), the diamine bridges the Cd atoms in either single or double spans; the resulting catenation gives the three topologies mentioned above. Except for the case of a discrete anion, the $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ plays the role of catena- μ-linkage builder providing a couple of CN groups at either cis or trans positions of the Cd atoms; the catenation increases the order of the lattice dimension by bridging the en-chelated Cd atoms, the cadmium-diamine chains or the cadmium-diamine networks, or reinforces the cadmium-diamine chain in parallel. Water molecules behave as guests in the resulting lattice or as ligands to the Cd atom.

This paper describes the topologically different multidimensional structures of these complexes with $n=2-7$ and 9 , and a tris(en)-chelated complex $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ comprising discrete complex cations and anions. As for the complex involving 1,8-diaminooctane ($n=8$), crystals suitable for X -ray diffraction were unavailable.

Experimental

Preparation of the Complexes.-The complexes listed in Table 1 were obtained as single crystals from aqueous solutions left to stand at $c a .5^{\circ} \mathrm{C}$. Their numbering is in accord with the

Table 1 Analytical data for the complexes

	Analysis (\%)*		
Complex	C	H	N
2a $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$	26.0 (26.4)	5.15 (5.30)	30.1 (30.8)
2b $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$	24.4 (24.3)	4.05 (4.10)	28.3 (28.3)
2c $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$	24.0 (24.3)	4.30 (4.10)	27.9 (28.3)
$3\left[\mathrm{Cd}(\mathrm{tn})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$	28.3 (28.4)	4.70 (4.75)	26.2 (26.5)
$4\left[\mathrm{Cd}(\text { dabtn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	29.4 (29.6)	5.60 (5.80)	23.1 (23.0)
$5\left[\mathrm{Cd}(\text { daptn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	33.5 (33.8)	5.85 (6.10)	22.5 (22.5)
$6\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { dahxn })_{2}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$	35.2 (35.4)	6.55 (6.65)	20.8 (20.6)
$7\left[\mathrm{Cd}(\text { dahpn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$	36.4 (39.0)	6.85 (6.90)	19.6 (20.2)
$9\left[\mathrm{Cd}(\text { danon })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$	44.1 (44.7)	7.20 (7.50)	19.2 (18.9)

* Calculated values in parentheses.
number of methylene units n in the diamine skeleton. The compositions were determined based on the results of the chemical analyses, density measurements and refined crystal structures.
(a) $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ 2a and $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \mathbf{2 b}$ and 2c. From aqueous solutions ($100 \mathrm{~cm}^{3}$) containing $\mathrm{CdCl}_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ $(1.14 \mathrm{~g}, 50 \mathrm{mmol}), \mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}(1.30 \mathrm{~g}, 50 \mathrm{mmol})$ and 10 molar equivalents of $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}$ (en) with respect to Cd , the complexes $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ and $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$ crystallised respectively depending on the pH adjusted with citric acid. When the solution at $\mathrm{pH}>11$ was allowed to stand in a refrigerator at $c a .5^{\circ} \mathrm{C}$ for a few weeks, yellow tetragonally shaped plate-like crystals of $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ 2a were obtained. From the solution adjusted to pH ca. 10 , $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$ crystallised as yellow plates of the monoclinic system $\mathbf{2 b}$ or as yellow needles of the orthorhombic system $2 \mathbf{c}$; either of the crystal types were obtained by chance, even from aliquots prepared and manipulated under conditions adjusted to be as same as possible. From the solution kept at room temperature, or from the solution at $\mathrm{pH}<9$, crystals of $\left[\mathrm{Cd}(\mathrm{en}) \mathrm{Ni}(\mathrm{CN})_{4}\right] 2 \mathrm{~d}^{4.5}$ were obtained.
(b) $\left[\mathrm{Cd}(\mathrm{tn})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$ 3. By using $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$ (1,3diaminopropane, tn) in place of en, yellow plate-like crystals of $\mathbf{3}$ were obtained by a procedure similar to that for $\mathbf{2 b}$
(c) $\left[\mathrm{Cd}(\text { dabtn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 4, \quad\left[\mathrm{Cd}(\text { daptn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot$ $\mathrm{H}_{2} \mathrm{O} \quad 5, \quad\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { dahxn })_{2}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \quad 6, \quad\left[\mathrm{Cd}(\text { dahpn })_{2}-\right.$ $\left.\mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} 7$ and $\left[\mathrm{Cd}(\text { danon })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$ 9. Single crystals were obtained for each of these complexes from aqueous solutions of the host moieties used in the preparation of the Hofmann diamine-type clathrates ${ }^{2.3}$ by ketping the solution in a refrigerator at $c a .5^{\circ} \mathrm{C}$ for a few weeks: as yellow plates for 4 (dabtn $=1,4$-diaminobutane) and 9 (danon $=1,9$-diaminononane), prisms for 5 (daptn $=1,5$-diaminopentane) and 6 (dahxn $=1,6$-diaminohexane), and needles for 7 (dahpn $=$ 1,7-diaminoheptane). These crystals were also obtained from the solutions containing $\mathrm{Cd}^{2+},\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ and diamine in the molar ratio of $1: 1: 1-2$. Attempts to obtain single crystals of analogous complexes ligated by $\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{NH}_{2}$ (1,8-diaminooctane, daotn) were unsuccessful.

Crystallography.-The crystallographic and selected experimental data are listed in Table 4. The cell dimensions were refined using 25 reflections in the range $14 \leqslant \theta \leqslant 20^{\circ}$. During the intensity-data collection three standard reflections were monitored after every 200 for $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}, 5$ and 6, and after every 150 for 3, 4, 7 and 9 : no significant decay was observed. Lorentz polarisation corrections were applied, empirical absorption corrections ${ }^{6}$ for 2a-2c, 3,4 and 9 and extinction corrections for 2a, 3,5 and 7. The positions of Cd and Ni atoms were located by the Patterson method using SHELXS 86. ${ }^{7}$ The structures were solved by the heavy-atom method; successive Fourier and Fourier-difference syntheses and full-matrix least-squares procedures were applied using SHELX 76. ${ }^{8}$ All the non-H

Fig. 1 Perspective view of $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]$ 2a showing 50% probability thermal ellipsoids; interionic hydrogen bonds are shown with broken lines
atoms were refined anisotropically; H atoms except for those of $\mathrm{H}_{2} \mathrm{O}$ were located at calculated positions and included in the final structure-factor calculations. The calculations were carried out on a HITAC M-680H computer at the Institute for Molecular Science, Okazaki; atomic scattering factors including those for real and imaginary anomalous dispersion corrections were taken from ref. 9 for Cd and Ni , and SHELX 76 for O, N, C and H .

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond distances and angles.

Results and Discussion

The refined atomic coordinates are listed in Table 5 for all the complexes. The solved structures are shown in Fig. 1 for 2a, Fig. 2 for $\mathbf{2 b}$ and $\mathbf{2 c}$, and Fig. $3-8$ for 3-9, respectively. Selected interatomic distances and angles are summarised in Table 2.

Description of the Structures.-General. For all the solved structures the bond distances and angles in the diamine skeletons are in expected ranges $(1.46-1.51 \AA$ for $\mathrm{N}-\mathrm{C}$ bonds, $1.47-1.56 \AA$ for $\mathrm{C}-\mathrm{C}$ and $106-125^{\circ}$ for $\mathrm{Cd}-\mathrm{N}-\mathrm{C}, \mathrm{N}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles). The distortion of the co-ordination environment is generally less in the square-planar $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties than in the octahedral CdN_{6} and $\mathrm{CdN}_{4} \mathrm{O}_{2}$. The $\mathrm{Ni}-\mathrm{C}$ distances ($1.85-1.89 \AA$) and $\mathrm{C}-\mathrm{Ni}-\mathrm{C}$ angles ($88.9-91.1^{\circ}$) are almost constant except those angles for complexes 2b, 2c and 3 (86$95^{\circ}$. In $\mathbf{2 b}$ and $\mathbf{2 c}$ the angle between the bridging CN groups is greater than that between the unidentate ones by $c a .9^{\circ}$ to lessen the repulsion between the en chelate rings on the bridged Cd atoms. The distortion of the $\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(4)$ angle in 3, that

Fig. 2 Structures of the monoclinic 2b (left) and orthorhombic 2c (right) modifications of [Cd(en) $\left.{ }_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$ showing 50% probability thermal ellipsoids. Top: projection along the [10I] direction for a couple of the infinite chains in $\mathbf{2 b}$ and that along the a axis for those in $\mathbf{2 c}$. Bottom: the respective views along the b axis. Dotted line for left bottom shows the doubled unit cell ($Z=8$; see text); broken lines show hydrogen bonds
between the bridging and unidentate CN , may be due to hydrogen-bond formation between the nitrogen end of the unidentate CN and the NH_{2} group of the tn .

The $\mathrm{Cd}-\mathrm{N}$ and $\mathrm{Cd}-\mathrm{O}$ distances are distributed in the range 2.31-2.44 \AA as usual in six-co-ordinated CdN_{6} and $\mathrm{CdN}_{4} \mathrm{O}_{2}$. The distortions in the angles are greater in the chelate complexes $\mathbf{2 a -}$ $\mathbf{2 c}\left(75-110^{\circ}\right)$ than in the others $\left(80-100^{\circ}\right)$. As for the linearity of the $\mathrm{Ni}-\mathrm{C}-\mathrm{N}-\mathrm{Cd}$ span, more distortions are seen in the $\mathrm{Cd}-\mathrm{N}-\mathrm{C}$ than in the $\mathrm{Ni}-\mathrm{C}-\mathrm{N}$ angles; the greatest distortion being for the former $\left[144.2(7)^{\circ}\right]$ in 9 and for the latter $\left[172.4(4)^{\circ}\right]$ in $\mathbf{2 b}$. Bending at the N atom of $\mathrm{Cd}-\mathrm{N}-\mathrm{C}$ linkages often occurs to a considerable extent in multidimensional structures comprised of $\mathrm{CdNi}(\mathrm{CN})_{4}$ moieties. ${ }^{2}$

In all the present self-assembled structures, formation of hydrogen bonds was observed among the relevant entities, i.e. the NH_{2} group of the diamine, unbridged nitrogen end of the $\mathrm{Ni}(\mathrm{CN})_{4}$, and the $\mathrm{H}_{2} \mathrm{O}$ ligated and accommodated, which may contribute to stabilisation of the respective crystal packings.

Complex 2a. As is illustrated in Fig. 1, the crystal structure is comprised of the packing of discrete $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ cations and $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ anions; the cations are located on the two-fold axes at $z=\frac{1}{4}$ and $\frac{3}{4}$, and the anions on the inversion centres at $z=0$ and $\frac{1}{2}$. The $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]^{2+}$ cations adopt the pair of absolute configurations $\Delta \delta \delta \delta$ and $\Lambda \lambda \lambda \lambda$ in contrast with $\Delta \lambda \lambda \lambda$ and $\Lambda \delta \delta \delta$ for the $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]^{2+}$ in $\left[\mathrm{Zn}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] \mathbf{2 a}^{\mathbf{a}^{10}}{ }^{\mathbf{0}}$

The structures of complexes $\mathbf{2 a}(C 2 / c)$ and $2 \mathbf{a}^{\prime}\left(P 2_{1} / n\right)$ differ not only in the absolute configuration of $\left[\mathrm{M}(\mathrm{en})_{3}\right]^{2+}$ and the space group but also in the orientation of the $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ anions. In 2a the square-planar anions at $z=0$ and $\frac{1}{2}$ are arranged with an inclination of 30.9° between their molecular planes, the corresponding angle between those at $y=0$ and $\frac{1}{2}$ in $\mathbf{2} \mathbf{a}^{\prime}$ being 82.8°. Those in 2a are arranged nearly in parallel on each plane at $z=0$ and $\frac{1}{2}$, whereas the two crystallographically
independent anions in $2 \mathbf{a}^{\prime}$ are almost perpendicular to each other with a dihedral angle of 88.3° (calculated from the data in ref. 10) between the molecular planes at $y=0$ or $\frac{1}{2}$. The remarkable difference in the inclination angle between $\mathbf{2 a}$ and $\mathbf{2 a} \mathbf{a}^{\prime}$ is due to the difference in size of the octahedral coordination sphere: the $\mathrm{Zn}-\mathrm{N}(\mathrm{en})$ distances $2.22-2.24 \AA$ are shorter than those of $\mathrm{Cd}-\mathrm{N}(\mathrm{en}) 2.38-2.39 \AA$. The smaller coordination sphere decreases the distance between the neighbouring anions and increases the repulsion between them; the $\mathrm{Ni} \cdot . . \mathrm{Ni}$ distances between the neighbouring anions in the same layer are 8.89 and $9.46 \AA$ in 2 a and 7.96 and $8.06 \AA$ in $2 \mathbf{a}^{\prime}$. The hydrogen bonds between the NH_{2} groups and the nitrogen ends of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ stabilise the crystal packings.

Complexes $\mathbf{2 b}$ and $\mathbf{2 c}$. The respective space groups $P 2_{1} / n$ and Pbca for the monoclinic and orthorhombic modifications were uniquely determined from the observed systematic absences. As shown in Fig. 2, there are infinite chains of cis- $\left[\mathrm{Cd}(\mathrm{en})_{2}-c i s-\right.$ $\left.\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]_{\infty}$ catenation in both structures. The bis(en)-chelated Cd is linked successively with $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ which provides two N atoms of the CN groups at cis positions for the catenation; this mode of catenation may be called cis-one-dimensional for the $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety as a catena- μ-linkage builder. The $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties are arranged at cis positions with regard to the Cd atom so that the one-dimensional chain is that of cis-(cis-one-dimensional). The zigzag chain of the cis-one-dimensional catenation is remarkably different from the straight chains in $\left[\mathrm{M}(\mathrm{en})_{2} \mathbf{M}^{\prime}(\mathrm{CN})_{4}\right]\left(\mathbf{M}=\mathrm{Ni}, \mathrm{Cu}\right.$ or $\mathrm{Zn}, \mathrm{M}^{\prime}=$ $\mathrm{Ni} ;{ }^{11} \mathbf{M}=\mathrm{Ni}, \mathbf{M}^{\prime}=\mathrm{Pd}^{12}$) and in the hosts of the aniline clathrates $\left[\mathrm{M}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2}(\mathrm{M}=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}$ or $\mathrm{Cd}),{ }^{13}$ where trans-[-NC- $\left.\mathrm{M}^{\prime}(\mathrm{CN})_{2}-\mathrm{CN}-\right]$ links M at trans positions in the mode of trans-one-dimensional catenation.

For the sake of comparison the monoclinic unit cell of complex $2 \mathbf{b}(Z=4)$ may be doubled to $Z=8$ to be the same as

Fig. 3 Structure of $\left[\mathrm{Cd}(\operatorname{tn})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 3$ showing 50% probability thermal ellipsoids. Top: projection along the [10I] direction. Bottom: projection along the b axis for a two-dimensional network. A single two-dimensional network is shown with solid bonds, hydrogen bonds with broken lines

Fig. 4 A perspective view of $\left[\mathrm{Cd}(\text { dabtn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 4$ showing 50% probability thermal ellipsoids. A double one-dimensional chain is shown with solid bonds, hydrogen bonds with broken lines
that in 2c, with the corresponding parameters $a^{\prime}=a-c=$ 20.493(2), $b^{\prime}=b=9.257(1), c^{\prime}=a+c=15.438(2) \AA$ and $\beta^{\prime}=100.696(7)^{\circ}$; the axial parameters are similar to those of $\mathbf{2 c}$ but with a distortion in β^{\prime} of $c a .10 .7^{\circ}$ from the rectangle in 2c. The cis-(cis-one-dimensional) chains run along the [101] direction in $\mathbf{2 b}$ and parallel to the c axis in $\mathbf{2 c}$. The absolute configurations of the $\mathrm{Cd}(\mathrm{en})_{2}$ moieties are $-\left\{\left[\Delta \lambda \lambda-\mathrm{Cd}(\mathrm{en})_{2}\right]-\right.$ $\left.\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\left[\Lambda \delta \delta-\mathrm{Cd}(\mathrm{en})_{2}\right]-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right\}_{x}$

Fig. 5 A perspective view of $\left[\mathrm{Cd}(\text { daptn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} 5$ along the b axis showing 50% probability thermal ellipsoids. A triple-span chain is shown with solid bonds, hydrogen bonds with broken lines

Fig. 6 A perspective view of $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { dahxn })_{2}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] 6$ showing 50% probability thermal ellipsoids. A double one-dimensional chain is shown with solid bonds, hydrogen bonds with broken lines
along the chain in both structures, the array of both configurations being correlated by the glide planes normal to the b axes. The two modifications differ in the method of chain stacking along the b axis in relation to the array of the two $\mathrm{Cd}(\mathrm{en})_{2}$ moieties differing in absolute configuration. The chains are stacked with the same phase in $\mathbf{2 b}$ correlated by the 2_{1} screw axis at $\frac{1}{4}, y, \frac{1}{4}$, but those in 2c with a shift of a half period correlated by the 2_{1} screw axis at $\frac{1}{4}, \frac{1}{2}, z$. In consequence the arrangement of the chains in $\mathbf{2 b}$ along the $[10 \overline{1}]$ direction is slightly shifted owing to the monoclinic distortion in comparison with that in orthorhombic $\mathbf{2 c}$.

Hydrogen-bond networks are formed between the N atoms of unidentate CN and the NH_{2} of en in both $\mathbf{2 b}$ and $\mathbf{2 c}$, but the modes of linkage are different. The interchain hydrogen bonds along the b axis are $\mathrm{N}(3) \cdots \mathrm{N}(5) 3.207(6)$ and $\mathrm{N}(4) \cdots \mathrm{N}(8)$ $3.246(7) \AA$ in $\mathbf{2 b}$, and $\mathrm{N}(3) \cdots \mathrm{N}(8) 3.299(7), \mathrm{N}(4) \cdots \mathrm{N}(5)$ $3.140(8)$ and $N(4) \cdots N(7) 3.119(8) \AA$ in 2c. Those along the

Fig. 7 Structure of $\left[\mathrm{Cd}(\text { dahpn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ 7. (a) Projection along the a axis, (b) the asymmetric unit, (c) the diamondoid threedimensional Cd-dahpn sub-lattice [with 50% probability thermal ellipsoids for $(a)-(c)]$ and (d) a ball-and-stick illustration of the fourfold interpenetrating diamondoid three-dimensional sub-lattices interconnected by the trans-(cis-one-dimensional) catenation of $\mathrm{Ni}(\mathrm{CN})_{4}$: a couple of the two-fold interpenetrating sub-lattices are given with triple-linked dahpn spans, one connecting open and the other crossed cadmium ellipsoids, which doublet generates the doublet with open dahpn spans with open and crossed Cd, respectively, from the symmetry requirements of the Pnna space group; each Cd is spanned by the trans-(cis-one-dimensional) catenation of $\mathrm{Ni}(\mathrm{CN})_{4}$ with solid bonds to the nearest neighbours. Symmetry operations: I $x+\frac{1}{2}, y,-z ;$ II $x-$ $\frac{1}{2}, y, 1-z$; III $x+\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$, IV $x, \frac{1}{2}-y,-\frac{1}{2}-z ;$ V $x-\frac{1}{2}$, $y,-z-1$; VI $x-1, y, z-1$; VII $-x,-y,-z$; VIII $x-\frac{3}{2}, y,-z$; IX $x-1, \frac{1}{2}-y, \frac{1}{2}-z ; \mathrm{X}-x, y+\frac{1}{2}, z-\frac{1}{2}$

Fig. 8 A perspective view of $\left[\mathrm{Cd}(\text { danon })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 9$ showing 50% probability thermal ellipsoids. The single two-dimensional network along the (101) plane is shown with solid bonds, hydrogen bonds with broken lines
[10̄] direction for $\mathbf{2 b}$ and along the a axis for $\mathbf{2 c}$ are $\mathrm{N}(3) \cdots \mathrm{N}(7) \quad 3.028(7), \quad \mathrm{N}(4) \cdots \mathrm{N}(6) \quad 3.066(6)$ and $\mathrm{N}(4) \cdots \mathrm{N}(7)$ of $3.367(7)$, and $\mathrm{N}(3) \cdots \mathrm{N}(6) 3.054(7)$ and $\mathrm{N}(3) \ldots \mathrm{N}(7) 3.348(7) \AA$ respectively.

Complex 3. The space group $P 2_{1} / n$ was uniquely determined from the systematic absences. As shown in Fig. 3, complex 3 has a two-dimensional network structure: each tn spans a couple of Cd atoms, and each of the Cd atoms is linked by four tn ligands to four other Cd atoms. The catenation behaviour of the tn may be regarded as single two-dimensional network building. In addition, the $\mathrm{Cd}-\mathrm{tn}-\mathrm{Cd}$ span along the [101] direction is reinforced with cis-(cis-one-dimensional) catenation of the $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties. In the $\mathrm{tn}-\mathrm{Ni}(\mathrm{CN})_{4}$ double span the tn skeleton adopts a trans-gauche-trans-trans (tgt_{2}) conformation to adjust the span length to the rigid cis-one-dimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety. The $\mathrm{t}_{2} \mathrm{~g}_{2}$ conformation of the tn in the single span between the double spans along the b axis is appropriate for making the crystal packing dense. Hydrogen-bond formation is suggested in the double span, $\mathrm{N}(3) \cdots \mathrm{N}(5)$ $3.229(8), \mathrm{N}(3) \cdots \mathrm{N}(7) 3.106(8)$, $\mathrm{N}(4) \cdots \mathrm{N}(6) 3.190(7)$ and $\mathrm{N}(4) \cdots \mathrm{N}\left(8^{\text {III }}\right) 3.087(8) \AA$, and between both chains, $\mathrm{N}(4) \cdots \mathrm{N}\left(6^{\left.\mathrm{VV}^{\mathrm{V}}\right)} 3.225(7)\right.$ and $\mathrm{N}(4) \cdots \mathrm{N}\left(8^{\mathrm{V}}\right) 3.201(7) \AA$.

Complex 4. As shown in Fig. 4, the Cd atoms of the origin and equivalent positions in the triclinic $P \mathrm{~T}$ unit cell are doubly spanned along the b axis by a couple of dabtn ligands adopting the skeletal conformation $\mathrm{t}_{2} \mathrm{gt}_{2}$, the catenation mode being double one-dimensional. The chains are bridged by the trans-one-dimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety located at $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ between Cd atoms at $0,0,0$ and $1,1,1$ so that the trans- $[\mathrm{Cd}$-trans-$\left.\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\mathrm{CN}-\right]_{\infty}$ chain runs along the [111] direction. Eventually a two-dimensional network is extended along the (10 $\overline{\mathrm{I}}$) plane. Such a network also occurs in the host structures of $\left[\mathrm{Cd}(\text { diamine })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{G}$ inclusion compounds [diamine $=$ danon, $\mathrm{G}=3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2} ; 1,10$-diaminodecane (daden), $\mathrm{G}=\mathrm{PhNH}_{2}, o-, m$ - or $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ or $2,3-, 3,4-$ or $2,6-$ $\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2}$]..14 The $\mathrm{H}_{2} \mathrm{O}$ molecules are accommodated between the double one-dimensional chains as the guests; hydrogen bonds are suggested to the N atom of the unidentate CN group with distances of $3.049(6) \AA$ and to the N atoms of the dabtn, $3.197(6)$ and $3.298(6) \AA$.

Complex 5. The space group $\mathrm{C} 222_{1}$ was uniquely determined from the observed systematic absences. The absolute structure was confirmed by comparing the two enantiomorphs having R^{\prime}

Table 2 Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

(a) $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] 2 \mathrm{a}^{\text {a }}$			
$\mathrm{Ni}-\mathrm{C}(1)$	1.852(7)	$\mathrm{Cd}-\mathrm{N}($	
$\mathrm{Ni}-\mathrm{C}(2)$	$1.865(7)$	$\mathrm{Cd}-\mathrm{N}$	
$\mathrm{Cd}-\mathrm{N}(3)$	$2.389(6)$	$\mathrm{C}(1)-\mathrm{N}$	
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	89.3(3)	$\mathrm{N}(3)-\mathrm{C}$	
$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}(4)$) 74.9(2)	$\mathrm{N}(4)-\mathrm{C}$	
(b) $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \mathbf{2 b}$ and $2 \mathbf{c}^{\text {b }}$			
		2b	2c
$\mathrm{Ni}-\mathrm{C}(1)$		1.878(5)	$1.870(6)$
$\mathrm{Ni}-\mathrm{C}(2)$		$1.863(4)$	$1.873(6)$
$\mathrm{Ni}-\mathrm{C}(3)$		1.851(5)	$1.862(6)$
$\mathrm{Ni}-\mathrm{C}(4)$		1.858(4)	$1.856(6)$
$\mathrm{Cd}-\mathrm{N}(1)$		2.414(4)	2.391 (5)
$\mathrm{Cd}-\mathrm{N}\left(2^{\text {l.v }}\right.$)		2.359(4)	2.441(5)
$\mathrm{Cd}-\mathrm{N}(5)$		2.352(4)	$2.323(5)$
$\mathrm{Cd}-\mathrm{N}(6)$		$2.350(4)$	2.337 (5)
$\mathrm{Cd}-\mathrm{N}(7)$		2.372(4)	2.384(5)
$\mathrm{Cd}-\mathrm{N}(8)$		2.343(4)	$2.322(5)$
$\mathrm{C}(1)-\mathrm{N}(1)$		1.140(6)	$1.138(7)$
$\mathrm{C}(2)-\mathrm{N}(2)$		$1.158(6)$	$1.156(7)$
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$		95.1(2)	94.6(2)
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(3)$		173.1(2)	170.0(2)
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(4)$		90.1(2)	89.1(3)
$\mathrm{C}(2)-\mathrm{Ni}-\mathrm{C}(3)$		89.6(2)	91.0(2)
$\mathrm{C}(2)-\mathrm{Ni}-\mathrm{C}(4)$		171.2(2)	172.4(3)
$\mathrm{C}(3)-\mathrm{Ni}-\mathrm{C}(4)$		85.9(2)	86.3(2)
$\mathrm{N}(\mathrm{l})-\mathrm{Cd}-\mathrm{N}\left(2^{\text {I.V }}\right.$)		94.9(2)	95.7(2)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(5)$		90.1(2)	89.4(2)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(6)$		166.7(2)	166.9(2)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(7)$		88.5(2)	85.3(2)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(8)$		88.7(2)	86.5(2)
$\mathrm{N}\left(2^{1, \mathrm{~V}}\right)-\mathrm{Cd}-\mathrm{N}(5)$		91.5(2)	90.4(2)
$\mathrm{N}\left(2^{\text {l,v }}\right.$) $-\mathrm{Cd}-\mathrm{N}(6)$		85.5(1)	85.7(2)
$\mathrm{N}\left(2^{\text {I,v }}\right)-\mathrm{Cd}-\mathrm{N}(7)$		170.7(2)	174.1(2)

(c) $\left[\mathrm{Cd}(\mathrm{tn})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 3^{\mathrm{c}}$

$\mathrm{Ni}-\mathrm{C}(1)$	1.854(6)	$\mathrm{Cd}-\mathrm{N}\left(2^{1}\right)$	2.413(5)	$\mathrm{C}(1)-\mathrm{N}(1)$	1.154(7)	$\mathrm{N}(3) \cdots \mathrm{N}\left(7^{\text {III }}\right)$	$3.106(8)$
$\mathrm{Ni}-\mathrm{C}(2)$	1.864(5)	$\mathrm{Cd}-\mathrm{N}(5)$	2.384(5)	$\mathrm{C}(2)-\mathrm{N}(2)$	$1.152(7)$	$\mathrm{N}(4) \cdots \mathrm{N}(6)$	$3.190(7)$
$\mathrm{Ni}-\mathrm{C}(3)$	$1.867(6)$	$\mathrm{Cd}-\mathrm{N}\left(6^{11}\right)$	2.398 (5)	$\mathrm{C}(3)-\mathrm{N}(3)$	$1.143(8)$	$\mathrm{N}(4) \cdots \mathrm{N}\left(6^{\text {IV }}\right.$)	3.225 (7)
$\mathrm{Ni}-\mathrm{C}(4)$	1.851(5)	$\mathrm{Cd}-\mathrm{N}(7)$	2.401(5)	$\mathrm{C}(4)-\mathrm{N}(4)$	1.151(7)	$\mathrm{N}(4) \cdots \mathrm{N}\left(8^{1 \mathrm{lI}}\right)$	3.087(8)
$\mathrm{Cd}-\mathrm{N}(1)$	2.312(5)	$\mathrm{Cd}-\mathrm{N}\left(8^{1}\right)$	$2.350(5)$	$\mathrm{N}(3) \cdots \mathrm{N}\left(5^{\text {III }}\right)$	$3.229(8)$	$\mathrm{N}(4) \cdots \mathrm{N}\left(8^{\mathrm{V}}\right)$	$3.201(7)$
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	91.1(2)	$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(5)$	85.1(2)	$\mathrm{N}\left(2^{\text {I }}\right)-\mathrm{Cd}-\mathrm{N}\left(8^{\text {I }}\right.$)	81.0(2)	$\mathrm{Ni}-\mathrm{C}(3)-\mathrm{N}(3)$	176.1(6)
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(3)$	174.6(3)	$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}\left(6^{11}\right)$	89.2(2)	$\mathrm{N}(5)-\mathrm{Cd}-\mathrm{N}\left(6^{\text {II }}\right.$)	173.1(2)	$\mathrm{Ni}-\mathrm{C}(4)-\mathrm{N}(4)$	174.6(5)
$\mathrm{C}(2)-\mathrm{Ni}-\mathrm{C}(3)$	91.9(2)	$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(7)$	88.3(2)	$\mathrm{N}(5)-\mathrm{Cd}-\mathrm{N}(7)$	89.0(2)	$\mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(1)$	169.3(5)
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(4)$	86.1(2)	$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}\left(8^{1}\right)$	175.8(2)	$\mathrm{N}\left(6^{\text {II }}\right)-\mathrm{Cd}-\mathrm{N}\left(8^{1}\right)$	87.2(2)	$\mathrm{Cd}-\mathrm{N}\left(2^{\mathrm{I}}\right)-\mathrm{C}\left(2^{\text {I }}\right.$)	164.7(5)
$\mathrm{C}(2)-\mathrm{Ni}-\mathrm{C}(4)$	174.3(2)	$\mathrm{N}\left(2^{\boldsymbol{l}}\right)-\mathrm{Cd}-\mathrm{N}(5)$	91.1(2)	$\mathrm{N}(7)-\mathrm{Cd}-\mathrm{N}\left(8^{1}\right)$	94.1(2)	$\mathrm{N}(5)-\mathrm{Cd}-\mathrm{N}\left(8^{1}\right)$	98.3(2)
$\mathrm{C}(3)-\mathrm{Ni}-\mathrm{C}(4)$	90.5(2)	$\mathrm{N}\left(2^{\text {I }}\right)-\mathrm{Cd}-\mathrm{N}\left(6^{\text {II }}\right)$	85.7(2)	$\mathrm{Ni}-\mathrm{C}(1)-\mathrm{N}(1)$	176.0(6)	$\mathrm{N}\left(6^{11}\right)-\mathrm{Cd}-\mathrm{N}(7)$	94.7(2)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}\left(2^{1}\right)$	96.6(2)	$\mathrm{N}\left(2^{1}\right)-\mathrm{Cd}-\mathrm{N}(7)$	175.0(2)	$\mathrm{Ni}-\mathrm{C}(2)-\mathrm{N}(2)$	174.9(5)		
(d) $\left[\mathrm{Cd}(\text { dabtn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 4{ }^{\text {d }}$							
$\mathrm{Ni}-\mathrm{C}(1)$	1.860 (3)	$\mathrm{Cd}-\mathrm{N}(3)$	2.387(3)	$\mathrm{C}(2)-\mathrm{N}(2)$	1.154(4)	$\mathrm{N}(3) \cdots \mathrm{O}^{111}$	3.298(6)
$\mathrm{Ni}-\mathrm{C}(2)$	1.861(3)	$\mathrm{Cd}-\mathrm{N}\left(4^{\text {l }}\right.$)	2.365(3)	$N(2) \cdots N\left(3^{1}\right)$	3.253(5)	$\mathrm{N}(4) \cdots \mathrm{O}^{\text {IV }}$	$3.197(6)$
$\mathrm{Cd}-\mathrm{N}(1)$	2.347(3)	$\mathrm{C}(1)-\mathrm{N}(1)$	1.137(4)	$\mathrm{N}(2) \cdots \mathrm{O}^{\text {II }}$	3.049(6)		
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	91.1(1)	$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}\left(4^{1}\right)$	92.9(1)	$\mathrm{Ni}-\mathrm{C}(1)-\mathrm{N}(1)$	178.9(3)	$\mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(1)$	160.0(3)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(3)$	92.1(1)	$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}\left(4^{1}\right)$	92.0(1)	$\mathrm{Ni}-\mathrm{C}(2)-\mathrm{N}(2)$	175.4(3)		
(e) $\left[\mathrm{Cd}(\text { daptn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} 5^{\text {e }}$							
$\mathrm{Ni}-\mathrm{C}(1)$	1.871(4)	$\mathrm{Cd}-\mathrm{N}(3)$	2.383(4)	$\mathrm{C}(2)-\mathrm{N}(2)$	1.155(7)	$\mathrm{N}(2) \cdots \mathrm{O}^{\text {IV }}$	3.004(7)
$\mathrm{Ni}-\mathrm{C}(2)$	1.851(5)	$\mathrm{Cd}-\mathrm{N}\left(4^{\text {l }}\right.$)	2.353(5)	$N(2) \cdots N\left(3^{\text {II }}\right)$	$3.373(7)$	$\mathrm{N}(4) \cdots \mathrm{O}^{\text {I }}$	$3.192(7)$
$\mathrm{Cd}-\mathrm{N}(1)$	2.383(4)	$\mathrm{C}(1)-\mathrm{N}(1)$	1.137(6)	$\mathrm{N}(2) \cdots \mathrm{N}\left(4^{1 \mathrm{II}}\right)$	3.309(7)		
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	88.9(2)	$\mathrm{Ni}-\mathrm{C}(1)-\mathrm{N}(1)$	178.4(4)	$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}\left(4^{\text {I }}\right.$)	89.2(2)	$\mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(1)$	169.4(4)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}\left(4^{1}\right)$	91.3(2)	$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(3)$	100.1(2)	$\mathrm{Ni}-\mathrm{C}(2)-\mathrm{N}(2)$	179.6(4)		
(f) $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { dahxn })_{2}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] 6^{\text {f }}$							
$\mathrm{Ni}-\mathrm{C}(1)$	1.867(5)	$\mathrm{Cd}-\mathrm{N}\left(4^{1}\right)$	2.354(5)	$\mathrm{C}(2)-\mathrm{N}(2)$	1.146(7)	$N(2) \cdots N\left(3^{\text {lit }}\right)$	3.192(8)
$\mathrm{Ni}-\mathrm{C}(2)$	$1.867(5)$	$\mathrm{Cd}-\mathrm{O}$	2.395(4)	$\mathrm{N}(1) \cdots \mathrm{O}$	2.824(7)	$\mathrm{N}(2) \cdots \mathrm{N}\left(4^{\text {lV }}\right)$	$3.236(8)$
$\mathrm{Cd}-\mathrm{N}(3)$	$2.355(4)$	$\mathrm{C}(1)-\mathrm{N}(1)$	$1.135(6)$	$\mathrm{N}(1) \cdots \mathrm{O}^{11}$	3.015(7)		
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	$91.0(2)$	$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{O}$	94.7(2)	$\mathrm{Ni}-\mathrm{C}(1)-\mathrm{N}(1)$	178.3(6)	$\mathrm{Ni}-\mathrm{C}(2)-\mathrm{N}(2)$	177.4(6)
$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}\left(4^{1}\right)$	88.4(2)	$\mathrm{N}\left(4^{\text {l }}\right.$)-Cd-O	96.8(2)				

Table 2 (Continued)

(g) $\left[\mathrm{Cd}(\text { dahpn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} 7{ }^{4}$							
$\mathrm{Ni}(1)-\mathrm{C}(1)$	1.846(10)	$\mathrm{Cd}(2)-\mathrm{N}(2)$	2.330(8)	$\mathrm{C}(3)-\mathrm{N}(3)$	1.136(13)	$\mathrm{N}(4) \cdots \mathrm{N}\left(21^{\text {IV }}\right.$)	3.246(12)
$\mathrm{Ni}(1)-\mathrm{C}(2)$	1.868(11)	$\mathrm{Cd}(2)-\mathrm{N}(5)$	2.387(8)	$\mathrm{C}(4)-\mathrm{N}(4)$	1.151(13)	$\mathrm{N}(4) \cdots \mathrm{O}\left(1^{v}\right)$	3.008(13)
$\mathrm{Ni}(1)-\mathrm{C}(3)$	1.887(10)	$\mathrm{Cd}(2)-\mathrm{N}\left(17^{\text {l }}\right.$)	2.420(8)	$\mathrm{C}(5)-\mathrm{N}(5)$	1.142(12)	$\mathrm{N}(6) \cdots \mathrm{N}\left(17^{\mathrm{VI}}\right)$	3.281(13)
$\mathrm{Ni}(1)-\mathrm{C}(4)$	1.872(10)	$\mathrm{Cd}(2)-\mathrm{N}\left(27^{\text {II }}\right.$)	2.339(9)	$\mathrm{C}(6)-\mathrm{N}(6)$	1.154(12)	$\mathrm{N}(6) \cdots \mathrm{N}\left(37^{\mathrm{VII}}\right)$	3.173 (12)
$\mathrm{Ni}(2)-\mathrm{C}(5)$	1.845(9)	$\mathrm{Cd}(2)-\mathrm{N}(31)$	2.371 (8)	$\mathrm{N}(3) \cdots \mathrm{N}\left(27^{\mathrm{VIII}}\right)$	3.374(13)	$\mathrm{N}(6) \cdots \mathrm{O}\left(2^{\text {II }}\right.$)	3.022(14)
$\mathrm{Ni}(2)-\mathrm{C}(6)$	1.862(9)	$\mathrm{Cd}(2)-\mathrm{N}\left(37^{\text {III }}\right)$	2.369(8)	$\mathrm{N}(3) \cdots \mathrm{N}\left(31^{\text {Ix }}\right)$	3.123(12)	$\mathrm{N}(11) \cdots \mathrm{O}(1)$	$3.260(13)$
$\mathrm{Cd}(1)-\mathrm{N}(1)$	$2.370(8)$	$\mathrm{C}(1)-\mathrm{N}(1)$	1.155(12)	$\mathrm{N}(3) \cdots \mathrm{O}\left(2^{\text {VIII }}\right)$	3.049(14)	$\mathrm{N}(27) \cdots \mathrm{O}\left(2^{\text {vil }}\right)$	3.188(13)
$\mathrm{Cd}(1)-\mathrm{N}(11)$	2.351(7)	$\mathrm{C}(2)-\mathrm{N}(2)$	1.154(12)	$\mathrm{N}(4) \cdots \mathrm{N}\left(11^{\text {IX }}\right)$	3.175(12)	$\mathrm{N}(37) \cdots \mathrm{O}\left(2^{\mathrm{x}}\right)$	3.188(12)
$\mathrm{Cd}(1)-\mathrm{N}(21)$	2.413(9)						
$\mathrm{C}(1)-\mathrm{Ni}(1)-\mathrm{C}(2)$	90.3(4)	$\mathrm{N}(11)-\mathrm{Cd}(1)-\mathrm{N}(21)$	168.8(3)	$\mathrm{N}(5)-\mathrm{Cd}(2)-\mathrm{N}\left(37^{\text {III }}\right)$	92.7(3)	$\mathrm{Ni}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	176.4(9)
$\mathrm{C}(1)-\mathrm{Ni}(1)-\mathrm{C}(3)$	175.4(5)	$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{N}(5)$	$171.7(3)$	$\mathrm{N}(31)-\mathrm{Cd}(2)-\mathrm{N}\left(17^{1}\right)$	93.0(3)	$\mathrm{Ni}(1)-\mathrm{C}(3)-\mathrm{N}(3)$	177.0(10)
$\mathrm{C}(1)-\mathrm{Ni}(1)-\mathrm{C}(4)$	89.9(4)	$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{N}(31)$	85.2(3)	$\mathrm{N}(31)-\mathrm{Cd}(2)-\mathrm{N}\left(27^{\text {II }}\right)$	87.7(3)	$\mathrm{Ni}(1)-\mathrm{C}(4)-\mathrm{N}(4)$	177.3(10)
$\mathrm{C}(2)-\mathrm{Ni}(1)-\mathrm{C}(3)$	90.3(4)	$\mathrm{N}(5)-\mathrm{Cd}(2)-\mathrm{N}(31)$	89.6(3)	$\mathrm{N}(31)-\mathrm{Cd}(2)-\mathrm{N}\left(37^{\mathrm{III}}\right)$	177.2(3)	$\mathrm{Ni}(2)-\mathrm{C}(5)-\mathrm{N}(5)$	173.4(9)
$\mathrm{C}(2)-\mathrm{Ni}(1)-\mathrm{C}(4)$	175.4(4)	$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{N}\left(17^{\mathrm{I}}\right)$	91.2(3)	$\mathrm{N}\left(17^{\mathrm{I}}\right)-\mathrm{Cd}(2)-\mathrm{N}\left(27^{\mathrm{II}}\right)$	173.5(3)	$\mathrm{Ni}(2)-\mathrm{C}(6)-\mathrm{N}(6)$	178.6(9)
$\mathrm{C}(3)-\mathrm{Ni}(1)-\mathrm{C}(4)$	89.8(4)	$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{N}\left(27^{\text {II }}\right)$	95.3(3)	$\mathrm{N}\left(17^{\mathrm{I}}\right)-\mathrm{Cd}(2)-\mathrm{N}\left(37^{\text {III }}\right)$	88.8(3)	$\mathrm{Cd}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	153.6(9)
$\mathrm{C}(5)-\mathrm{Ni}(2)-\mathrm{C}(6)$	90.3(4)	$\mathrm{N}(2)-\mathrm{Cd}(2)-\mathrm{N}\left(37{ }^{\text {III }}\right.$)	92.7(3)	$\mathrm{N}\left(27^{\text {II }}\right)-\mathrm{Cd}(2)-\mathrm{N}\left(37^{\text {III }}\right)$	90.7(3)	$\mathrm{Cd}(2)-\mathrm{N}(2)-\mathrm{C}(2)$	151.4(8)
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(11)$	97.7(3)	$\mathrm{N}(5)-\mathrm{Cd}(2)-\mathrm{N}\left(17^{\mathrm{l}}\right)$	82.6(3)	$\mathrm{Ni}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	178.0(9)	$\mathrm{Cd}(2)-\mathrm{N}(5)-\mathrm{C}(5)$	146.9(8)
$\mathrm{N}(1)-\mathrm{Cd}(1)-\mathrm{N}(21)$	91.2(3)	$\mathrm{N}(5)-\mathrm{Cd}(2)-\mathrm{N}\left(27^{\text {II }}\right)$	90.9(3)				
(h) $\left[\mathrm{Cd}(\text { danon })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 9^{h}$							
$\mathrm{Ni}-\mathrm{C}(1)$	1.863(10)	$\mathrm{Cd}-\mathrm{N}(3)$	2.399(7)	$\mathrm{C}(1)-\mathrm{N}(1)$	1.113(13)	$\mathrm{N}(2) \cdots \mathrm{N}\left(3^{\text {II }}\right)$	3.066(14)
$\mathrm{Ni}-\mathrm{C}(2)$	1.849(11)	$\mathrm{Cd}-\mathrm{N}\left(4^{\text {I }}\right.$)	2.383(8)	$\mathrm{C}(2)-\mathrm{N}(2)$	1.175(16)	$\mathrm{N}(2) \cdots \mathrm{N}\left(4^{\text {III }}\right)$	3.092(12)
$\mathrm{Cd}-\mathrm{N}(1)$	$2.353(8)$						
$\mathrm{C}(1)-\mathrm{Ni}-\mathrm{C}(2)$	91.0(5)	$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}\left(4^{1}\right)$	89.2(3)	$\mathrm{Ni}-\mathrm{C}(1)-\mathrm{N}(1)$	174.4(8)	$\mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(1)$	144.2(7)
$\mathrm{N}(1)-\mathrm{Cd}-\mathrm{N}(3)$	85.6(3)	$\mathrm{N}(3)-\mathrm{Cd}-\mathrm{N}\left(4^{1}\right)$	86.9(3)	$\mathrm{Ni}-\mathrm{C}(2)-\mathrm{N}(2)$	175.2(10)		

${ }^{a}$ Symmetry operations: I $-x, y, \frac{1}{2}-z$; II $-x,-y,-z$; III $x+\frac{1}{2}, y+\frac{1}{2}, z$; IV $-x+\frac{1}{2}, y+\frac{1}{2}, \frac{1}{2}-z .{ }^{b}$ Symmetry operations: for complex $\mathbf{2 b}$, I $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; II $1-x, 1-y, 1-z$; III $x-\frac{1}{2}, \frac{1}{2}-y, z+\frac{1}{2}$; IV $\frac{1}{2}-x, y+\frac{1}{2}, \frac{1}{2}-z$ for $2 \mathrm{c}, \mathrm{V} x$, $\frac{1}{2}-y, z-\frac{1}{2}$; VI $x-\frac{1}{2}, y$, $\frac{1}{2}-z ;$ VII $\frac{1}{2}-x,-y, z+\frac{1}{2}$; VIII $\frac{1}{2}-x, y-\frac{1}{2}, z$. ${ }^{\text {c }}$ Symmetry operations: I $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$; II $\frac{1}{2}-x, y-\frac{1}{2}$, $\frac{1}{2}-z ;$ III $1-x$, $1-$ $y, 1-z ;$ IV $-x, 1-y, 1-z ; \mathrm{V} x-1, y, z{ }^{d}$ Symmetry operations: I $-x, 1-y,-z ;$ II $x, y+1, z ;$ III $x, y, z-1 ;$ IV $x, y+1, z-1$. ${ }^{e}$ Symmetry operations: I $x, 1-y, 1-z$; II $x+1, y, z$; III $x+1,1-y, 1-z$; IV $x+\frac{1}{2}, y-\frac{1}{2}, z$. ${ }^{f}$ Symmetry operations: I $x, y-1, z-1$; II $1-x,-y,-z$; III $x, y+1, z$ IV $x, y, z-1{ }^{g}$ Symmetry operations: I $x-\frac{1}{2}, y,-z ;$ II $x+\frac{1}{2}, y, 1-z ;$ III $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z ;$ IV $-x-\frac{1}{2},-y, z ; \mathrm{V}-x,-y,-z$; VI $x+\frac{1}{2}, y,-z ;$ VII $x+\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z$; VIII $x-\frac{1}{2}, y, 1-z ;$ IX $x-1, y, z ; \mathbf{X} x+\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}{ }^{h}$ Symmetry operations: $\mathbf{I} x+\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2} ;$ II $x, y+1, z ;$ III $x+\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2}$.
values 0.0454 and 0.0492 for non-H atoms. Similarly to complex 4 , the Cd atoms are spanned by the daptn ligands with a $\mathrm{g}_{2} \mathrm{tgt}_{2}$ conformation in double one-dimensional mode. The chain running along the c axis is reinforced with the cis-onedimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ moiety to form a triple-span chain structure. The cis-one-dimensional moieties are arranged in trans positions with regard to the Cd atoms, extending their unco-ordinated N atoms to within distances of hydrogen-bond formation with the NH_{2} groups of the daptn in the adjacent chain. Including these hydrogen bonds, the triple-span chains are connected by hydrogen bonds to form a two-dimensional layer parallel to the $a c$ plane. The $\mathrm{H}_{2} \mathrm{O}$ molecule located at $\frac{1}{2}$, $0.8014(4), \frac{1}{4}$, being on the indentical two-fold axis with that of the Cd, appears to be linked to $N(4)$ of the daptn and to the free nitrogen end of the cis-one-dimensional moiety in the adjacent layer. Eventually the $\mathrm{H}_{2} \mathrm{O}$ molecule behaves as an additional hydrogen-bond connector between the hydrogen-bonded twodimensional arrays.

Complex 6. The remarkable feature of this structure is the presence of the discrete $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ sandwiched between the double one-dimensional $>\left[\mathrm{Cd}\left\langle(\text { dahxn })_{2}\right\rangle\right]_{\infty}$ chains. The dahxn skeleton adopts a $\mathrm{t}_{2} \mathrm{~g}_{2} \mathrm{t}_{3}$ conformation between the Cd atoms, to which two $\mathrm{H}_{2} \mathrm{O}$ molecules co-ordinate at trans positions. The $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ sandwiched parallel to the $b c$ plane directs a couple of N atoms, $\mathrm{N}(1)$ and its equivalent, toward the aqua ligands with hydrogen-bond distances of 2.824(7) and $3.015(7) \AA$. and $\mathrm{N}(2)$ and its equivalent toward the NH_{2} groups of the adjacent double one-dimensional chains with distances of 3.192 (8) and $3.236(8) \AA$.

Complex 7. The space group Pnna was uniquely determined
from the observed systematic absences. As shown in Fig. 7(a) the three-dimensional structure has a complicated topology. The unit cell contains two crystallographically independent octahedral Cd and square-planar Ni atoms, $\mathrm{Cd}(1)$ and $\mathrm{Cd}(2)$ and $\mathrm{Ni}(1)$ and $\mathrm{Ni}(2)$, and three kinds of dahpn ligands, dahpn(1) in a $t_{7} g$, dahpn(2) in a $g t_{7}$ and dahpn(3) in a $t_{2} g t_{5}$ conformation [Fig. $7(b)$]. Atoms $\mathrm{Cd}(1)$ and $\mathrm{Cd}(2)$, and their equivalents, are arranged with the $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties of $\mathrm{Ni}(1)$ and $\mathrm{Ni}(2)$ along the 2_{1} screw axes at $\frac{1}{4}, y, \frac{1}{4}$ and $\frac{3}{4}, y, \frac{3}{4}$ to give the trans-(cis-one-dimensional) trans-[Cd-cis-NC-Ni(CN) 2^{-} $\mathrm{CN}-]_{\infty}$ chains (abbreviated to $\mathrm{Cd}-\mathrm{Ni}$ chain) parallel to the b axis of crystal. The dahpn ligands span the $\mathrm{Cd}-\mathrm{Ni}$ chains at every Cd atom to form a four-fold interpenetrating subframework structure as follows: by the dahpn bridges connecting the equivalents of $\operatorname{Cd}(1)\left(x=\frac{1}{4}\right.$ or $\left.\frac{3}{4}\right)$ and $\mathrm{Cd}(2)(x=$ 0.75 ± 0.02 or 0.25 ± 0.02) alternately, giving six one-dimensional zigzag chains ($\mathrm{Cd}-\mathrm{dahpn}$ chain) running approximately parallel to the (031) and ($0 \frac{3}{3} 1$) planes of the unit cell; with respect to each cadmium octahedron the four dahpn spans extend in pseudo-tetrahedral directions owing to the twisted $[\mathrm{N}(21)$ and its equivalent at $\mathrm{Cd}(1), \mathrm{N}(17)$ and the $\mathrm{N}(31)$ equivalent at $\mathrm{Cd}(2)]$ and untwisted ends $[\mathrm{N}(11)$ and its equivalent at $C d(1)$, each of the $N(27)$ and $N(37)$ equivalents at $\mathrm{Cd}(2)]$; the (031) and ($0 \overline{3} 1$) Cd-dahpn chains are cross-linked to adjacent chains parallel to one another in the neighbouring unit cells up-and-up and down-and-down the a axis to make an extremely distorted diamondoid three-dimensional sub-framework [Cd-dahpn sub-framework: Fig. 7(c)]; one diamondoid Cd-dahpn sub-framework and another sub-framework interpenetrate each other without direct connections; according to the

Table 3 Structural features of the complexes

Compound	Diamine	$\mathrm{Ni}(\mathrm{CN})_{4}$	$\mathrm{H}_{2} \mathrm{O}$	Dimension
2a	Tris(chelate)	Discrete	None	None
2b	Bis(chelate)	cis-(cis-one-dimensional)	None	One
2c	Bis(chelate)	cis-(cis-one-dimensional)	None	One
3	[double span of tn and $\mathrm{Ni}(\mathrm{CN})_{4}$]			
4	Double one-dimensional	trans-one-dimensional	Guest	Two
5	Double one-dimensional [triple span of daptn and	trans-(cis-one-dimensional) CN) 4$]$	Guest	One
6	Double one-dimensional	Discrete	Ligand	One
7	Single three-dimensional	trans-(cis-one-dimensional)	Guest	Three
9	Single three-dimensional	trans-(cis-one-dimensional)	None	Three

symmetry requirements of the Pnna space group, another set of doubly interpenetrating sub-frameworks is added to build up the four-fold interpenetrating lattice structure [Fig. 7(d)]; each of the single diamondoids is successively interconnected to adjacent ones by the $\mathrm{Cd}-\mathrm{Ni}$ chains.

Both $\mathrm{H}_{2} \mathrm{O}$ molecules at the general positions and the special positions on the two-fold axis parallel to the c axis are captured in the cavities formed between the dahpn chains by the hydrogen bonding to the NH_{2} groups at the untwisted end of the dahpn ligands and to the terminal CN groups

Complex 9. The centrosymmetric space group $C 2 / c$ was applied. The danon ligand extends the single two-dimensional network on the (101) plane with the skeletal $\mathrm{gt}_{7} \mathrm{gt}$ conformation, and is spanned by trans-(cis-one-dimensional) $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties along the c axis to build up the threedimensional framework. This structure is topologically the same as that of the host of the $\left[\mathrm{Cd}(\text { danon })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$ 2 G clathrates $\left(\mathrm{G}=m\right.$-, $p-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \quad o-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$, or 2,4- and $\left.2,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NH}_{2}\right) .{ }^{14}$ The $\mathrm{Cd}-\mathrm{N}(1)-\mathrm{C}(1)$ angle of $144.2(7)^{\circ}$ makes the interlayer space so narrow that any guests are not allowed therein; no $\mathrm{H}_{2} \mathrm{O}$ molecules were found.

The Structural Features.-The structural features of these complexes are summarised in Table 3 based on the mode of ligation for the diamine and $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties, the role of $\mathrm{H}_{2} \mathrm{O}$ and the dimensions of the integrated structure.

As for the structural variations upon the change in methylene chain length of the bridging ligands, the series $\left[\mathrm{Cu}\left\{\mathrm{NC}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{C}\right.\right.$ $\left.\mathrm{N}\}_{2}\right] \mathrm{NO}_{3}(n=2-4)$ forms a precedent. ${ }^{15}$ The succinonitrile ($n=2$) behaves as a double one-dimensional catena- μ-linkage
 network is formed in the glutaronitrile ($n=3$) compound; ${ }^{15 b}$ and a six-fold interpenetrating three-dimensional structure is given by the single span of the adiponitrile $(n=4) .{ }^{15 c}$ The present system of octahedral Cd , square-planar $\mathrm{Ni}(\mathrm{CN})_{4}$ and α, ω-diaminoalkane is more complicated in the way the multidimensional structures are built up.

The chelating behaviour for en to Cd^{2+} is reasonable in aqueous solution: the stability constants, $\log K$ are $c a .5 .5,10.0$ and 12.0 for $\mathrm{Cd}(\mathrm{en}), \mathrm{Cd}(\mathrm{en})_{2}$ and $\mathrm{Cd}(\mathrm{en})_{3}$ species respectively. ${ }^{16}$ The mono- (2d), bis- ($\mathbf{2 b}$ and $\mathbf{2 c}$) and tris-en (2a) complexes crystallise out in a stepwise manner from solution of pH <9 to >11. However, the formation of the two bis(en) modifications, monoclinic $\mathbf{2 b}$ and orthorhombic $\mathbf{2 c}$, by chance at $\mathbf{p H} 10$ is subtle; no significant differences between $\mathbf{2 b}$ and $\mathbf{2 c}$ in the bond distances and angles have been observed to justify one being more stable than the other. The cis-(cis-onedimensional) array of $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties in the present complexes appears to be favourable for stabilising the crystal packings without guests, in comparison with the trans-onedimensional catenation in the aniline-guest inclusion compound $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{PhNH}_{2}{ }^{13}$ and with that in $\left[\mathrm{M}(\mathrm{en})_{2}{ }^{-}\right.$
$\left.\mathrm{Ni}(\mathrm{CN})_{4}\right](\mathrm{M}=\mathrm{Ni}, \mathrm{Cu}$ or Zn$)$ complexes ${ }^{11}$ owing to the bulkier $\mathrm{Cd}(\mathrm{en})_{2}$ moiety.

Increasing n from 2 to 3 , the th does not behave as a chelating ligand in the solid state but as a bridging one to give complex 3 . The stability constants for the $\mathrm{Cd}-\mathrm{tn}$ chelates are somewhat lower than those for the corresponding Cd-en chelates: $\log K$ $c a .4 .5,7.2$ and 8.0 for $\mathrm{Cd}(\mathrm{tn}), \mathrm{Cd}(\mathrm{tn})_{2}$ and $\mathrm{Cd}(\mathrm{tn})_{3} .{ }^{16}$ The sixmembered chelate ring of tn may be too bulky to give a chain structure like that in $\mathbf{2 a}$ or $\mathbf{2 b}$ in the solid state. Crystals of tnchelated complexes might be obtained using counter anions bulkier than $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

The double one-dimensional span of $\mathrm{Cd}\left\langle(\text { dabtn })_{2}\right\rangle \mathrm{Cd}$ in complex 4 becomes too long for the additional spanning of cis-one-dimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ as in 3. Instead the trans-onedimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ spans the double one-dimensional $\rangle\left[\mathrm{Cd}\left\langle(\text { dabtn })_{2}\right\rangle\right]_{\infty}$ chains to produce void space for guest $\mathrm{H}_{2} \mathrm{O}$ molecules between the chains bridged by trans-onedimensional $\mathrm{Ni}(\mathrm{CN})_{4}$. The double one-dimensional Cd $\left\langle(\text { daptn })_{2}\right\rangle \mathrm{Cd}$ span in 5 is again short enough for the trans-(cis-one-dimensional) $\mathrm{Ni}(\mathrm{CN})_{4}$ spanning owing to the increase in flexibility of the daptn skeleton.

However, the double one-dimensional dahxn bridge in 6 appears to be too long even for trans-one-dimensional interchain span of $\mathrm{Ni}(\mathrm{CN})_{4}$, which moiety is not located in the catenation structure but left as a discrete anion in the interchain cavity. The void space between the double one-dimensional chains is filled up by the two co-ordinated $\mathrm{H}_{2} \mathrm{O}$ molecules protruding from the octahedral Cd atoms.

The four-fold interpenetrating three-dimensional structure of complex 7 was not foreseen, although examples of manifold interpenetration have been found for the infinite co-ordination structures involving long bridges such as those of $-\mathrm{NC}-$ $\mathrm{Ag}-\mathrm{CN}-$, $\quad \mathrm{NC}-\mathrm{Ag}-(\mathrm{CN})-\mathrm{Ag}-\mathrm{CN}-$ in our laboratory ${ }^{17}$ besides the case of adiponitrile. ${ }^{15 c}$ From the observations that no well defined structures are yet available for analogous daotn ($n=8$) complexes and that 9 gives a well ordered structure, a methylene chain length of 8 appears to be critical.

Two- and three-dimensional host clathrate structures with composition [$\left.\mathrm{Cd}\left\{\mathrm{H}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{n} \mathrm{NH}_{2}\right\}_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{G}$ have been found only for $n=9$ and $10 .{ }^{14}$ The diamine skeletons with $n<9$ in double-one- or single-two-dimensional catenation mode are too short to build up a two- or three-dimensional host together with cis- or trans-one-dimensional $\mathrm{Ni}(\mathrm{CN})_{4}$ moieties for aromatic guest molecules. Without a guest or with the less bulky $\mathrm{H}_{2} \mathrm{O}$ molecule, the multidimensional structures 3-7 are obtained; missing 8,9 gives the guest-free host structure of $\left[\mathrm{Cd}(\text { diamine })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right]$. The present crystals were grown spontaneously from aqueous solutions containing the respective constituents; no special procedures have been applied. It is well known that the process of crystal growth under ambient conditions is self-assembling; of importance is what self-assemblies are allowed under the specified conditions

Compound	2 a	2b	2 c	3	4	5	6	7	9
Formula	$\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{CdN}_{10} \mathrm{Ni}$	$\mathrm{C}_{88} \mathrm{H}_{16} \mathrm{CdN}_{8} \mathrm{Ni}$	$\mathrm{C}_{88} \mathrm{H}_{16} \mathrm{CdN}_{8} \mathrm{Ni}$	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{CdN}_{8} \mathrm{Ni}$	$\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{CdN}_{8} \mathrm{NiO}_{2}$	$\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{CdN}_{8} \mathrm{NiO}$	$\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{CdN}_{8} \mathrm{NiO}_{2}$	$\mathrm{C}_{88} \mathrm{H}_{38} \mathrm{CdN}_{8} \mathrm{NiO}$	$\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{CdN}_{8} \mathrm{Ni}$
M	455.47	395.37	395.37	423.43	487.51	497.55	543.62	553.66	591.75
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Triclinic	Orthorhombic	Triclinic	Orthorhombic	Monoclinic
Space group	$C_{2} / \mathrm{C}($ (no. 15)	$P 2, / n$ (no. 14)	Pbca (no.61)	$P 2, / n($ no. 14)	$P^{\text {IT }}$ (no. 2)	C222, (no. 20)	$P^{\overline{1}}$ (no. 2)	Pnna (no. 52)	C2/c (no. 15)
a / \AA	16.699(2)	$11.628(1)$	$20.078(2)$	10.474(2)	8.253(2)	$9.794(2)$	$8.470(2)$	$9.621(4)$	20.839(6)
b / A	8.894(2)	$9.257(1)$	$9.140(2)$	$13.696(4)$	8.527 (1)	$12.961(3)$	9.750 (3)	38.925(6)	9.141 (4)
\cdots A	14.320(2)	13.926(1)	15.655(2)	$11.107(2)$	7.921(2)	$16.049(3)$	8.1143)	19.953(4)	15.206(4)
$\alpha{ }^{\circ}$					97.84(2)		111.59(2)		
$\beta 1{ }^{\circ}$	117.351(9)	106.285(7)		92.90(2)	107.48(2)		$106.68(2)$		105.58(2)
$\gamma{ }^{\circ}$					104.39(1)		71.53(2)		
$U /{ }^{3}{ }^{3}$	1889.11(6)	1439.0(2)	2872.9(6)	$1591.2(6)$	$501.4(2)$	2037.3(5)	$579.6(3)$	7472(3)	2790(1)
7	4	4	8	4	1	4	1	12	4
$D_{\mathrm{m}}{ }^{\text {b }} D_{\mathrm{c}} / \mathrm{gcm}{ }^{3}$	1.57(1), 1.60	1.82(1). 1.82	1.79(1), 1.83	1.76(1), 1.77	1.61(1), 1.61	1.61(1), 1.62	1.55(1), 1.56	1.47(1), 1.48	1.41(1), 1.41
$F(000)$	920	784	1568	848	248	1016	280	3432	1232
Diffractometer ${ }^{\text {c }}$	AFC5R	AFCSR	AFCSR	AFCSS	AFCSS	AFCSR	AFCSR	AFC6A	AFCSS
$\mu\left(\mathrm{Mo}-\mathrm{K} \alpha\right.$) $\mathrm{cm}^{\text {a }}$	21.35	27.86	27.91	25.25	20.21	19.88	17.56	$81.44{ }^{\text {d }}$	14.61
Crystal size/mm	$0.30 \times 0.28 \times 0.20$	$0.32 \times 0.32 \times 0.20$	$0.28 \times 0.22 \times 0.20$	$0.25 \times 0.25 \times 0.17$	$0.37 \times 0.37 \times 0.13$	$0.32 \times 0.32 \times 0.26$	$0.25 \times 0.25 \times 0.25$	$0.23 \times 0.23 \times 0.23$	$0.25 \times 0.25 \times 0.08$
	30	30	30	30	30	30	30	60	30
hkil ranges	$\begin{aligned} & 0-23,0-12 \\ & -20 \text { to } 17 \end{aligned}$	$-19 \text { to } 18$ $0-16,0-13$	$\begin{aligned} & 0-28,0-12 \text {, } \\ & 0-22 \end{aligned}$	$0-14,0-19$ $-15 \text { to } 15$	$0-11,-12 \text { to } 11 \text {. }$	$013,018$	$0-11,-13 \text { to } 13 .$	$\begin{aligned} & 0-10,0-43, \\ & 0-22 \end{aligned}$	$\begin{aligned} & 0-29,-12 \text { to } 12, \\ & -21 \text { to } 20 \end{aligned}$
Scan width ${ }^{\circ}$	$0.997+0.3 \tan \theta$	$1.155+0.3 \tan \theta$	$1.207+0.3 \tan \theta$	$0.945+0.3 \tan \theta$	$1.628+0.3 \tan 0$	$1.207+0.3 \tan \theta$	$0.945+0.3 \tan \theta$	$0.638+0.3 \tan \theta$	$0.892+0.3 \tan \theta$
Transmission factors	0.85-1.00	0.83-0.99	0.88-1.00	0.89-1.00	0.861 .00				0.88-1.00
x^{e}	$7.6(11) \times 10^{8}$	-		$1.30(19) \times 10^{7}$		$1.58(12) \times 10^{7}$	-	$9.3(5) \times 10^{8}$	
Reflections measured	3307	4748	4797	5192	3207	3441	3672	6370	8553
Unique reflections	2438	3844	3738	3254	2816	1658	3163	4983	3276
Reflections used, N_{T}	1780	3150	2827	3253	2559	1601	2652	4051	2054
Parameters, N_{p}	103	163	163	182	112	116	130	395	147
	1.0×10^{3}	5.0×10^{4}	1.0×10^{4}	1.0×10^{3}	8.0×10^{4}	5.0×10^{4}	4.0×10^{4}	2.5×10^{3}	5.0×10^{4}
R, R^{\prime}	0.0502, 0.0596	0.0328 .0 .0446	0.0404, 0.0355	$0.0395,0.0507$	0.0237, 0.0387	0.0263, 0.0367	$0.0424,0.0519$	0.0599, 0.0768	$0.0571,0.0583$
Goodness of fit	1.133	1.292	1.402	1.011	1.069	1.195	1.478	1.171	1.190
$(\Delta / \sigma)_{\text {max }}$	0.002	0.017	0.021	0.014	0.001	0.000	0.007	0.013	0.002
	$+0.82,-0.82$	+0.92. -0.58	+0.75, -0.50	+0.62, -0.64	+0.48. ~ 0.34	+0.75. -0.33	+0.94, - 1.12	+1.83, - 1.98	+0.67, -1.34
${ }^{a}$ Details in common $\left[\Sigma \omega\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} /\left(N_{\mathrm{r}}\right.\right.$ $0.70926 \AA$) from a fin	mbient temperature $\left.\left.N_{\mathrm{p}}\right)\right]^{\frac{1}{} .}{ }^{\mathrm{b}}$ Measured by focus sealed tube. Rig	raphite monochroma he flotation method is u AFC6A: $\mathrm{Cu}-\mathrm{K} x$ r	or, $2 \theta-\omega$ scan, reflect a bromoform-mesity ation $(\lambda=1.54184 \AA)$	ns with $\left\|F_{0}\right\|>4 \sigma\left(F_{0}\right)$ ne mixture. ${ }^{`}$ Rigaku from a fine-focus seal	were used, $\omega^{1}=\sigma^{2}$ FC-5R: Mo-K α radia d tube. ${ }^{d} \mu(\mathrm{Cu}-\mathrm{K} \alpha) / \mathrm{cm}$	$\left.)_{0}\right)+g\left(F_{0}\right)^{2}, R=\Sigma\| \| F_{i}$ on $(\lambda=0.70926 \AA$) '. ${ }^{\text {e }}$ Refined extinction	om a rotating anticat parameter according	$\omega\left(\left\|F_{0}\right\|-\mid F_{\mathrm{c}}\right)^{2} / \Sigma \omega \mid F_{\mathrm{o}}{ }^{2}$ ode. Rigaku AFCSS: the equation $F_{\text {corr }}=$	$]^{\frac{1}{2}}$, goodness of fit $=$ Mo- α radiation $(\lambda=$ $\left\{1-\left[x\left(F_{\mathrm{c}}\right)^{2} / \sin \theta\right]\right\}$

Table 5 Refined atomic coordinates for complexes 2a-9

Atom	X/a	Y / b	Z / C	Atom	X / a	Y / b	Z / c
(i) $\left[\mathrm{Cd}(\mathrm{en})_{3}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] 2 \mathbf{2 a}$							
Cd	0	$0.36278(8)$	$\frac{1}{4}$	$\mathrm{N}(5)$	0.024 3(4)	$0.5765(7)$	0.1653 (5)
Ni	$\frac{1}{4}$	$\frac{1}{4}$	0	C(1)	0.1880 (5)	0.377 6(8)	0.0463 (5)
$\mathrm{N}(1)$	0.147 4(4)	0.454 9(8)	0.0723 (5)	C(2)	0.3278 (5)	0.4075 (8)	$0.0118(5)$
N(2)	$0.3751(5)$	0.5031 (8)	$0.0212(6)$	C(3)	0.1408 (6)	0.1340 (9)	0.2366 (6)
N(3)	0.0551 (4)	0.2004 (7)	0.159 5(4)	C(4)	0.199 2(5)	$0.2562(9)$	$0.3149(6)$
N(4)	$0.1517(4)$	$0.3105(7)$	0.373 3(4)	C(5)	0.035 5(6)	0.7131 (9)	0.2298 (7)
(ii) $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \mathbf{2 b}$							
Cd	0.366 48(3)	$0.15126(3)$	$0.18783(2)$	N (8)	0.399 2(4)	$-0.0971(4)$	0.2145 (3)
Ni	0.387 07(4)	0.348 94(6)	0.547 84(4)	C(1)	0.382 2(4)	0.234 5(5)	0.4354 (3)
N(1)	0.3701 (4)	0.1759 (5)	$0.3612(3)$	C(2)	0.553 6(4)	$0.3619(5)$	0.5908 (3)
N(2)	$0.6560(3)$	0.3660 (5)	$0.6279(3)$	C(3)	0.377 7(4)	0.475 2(5)	0.648 4(4)
N(3)	0.365 5(4)	0.557 1(6)	$0.7059(4)$	C(4)	$0.2229(4)$	0.325 5(5)	0.5248 (3)
$\mathrm{N}(4)$	0.123 3(4)	0.312 4(5)	$0.5152(3)$	C(5)	0.3908 (7)	$0.4369(7)$	$0.0768(6)$
N(5)	0.358 8(4)	0.4040 (5)	0.169 9(3)	C(6)	0.3298 (7)	0.339 6(7)	$-0.0056(5)$
N (6)	0.361 1(3)	0.1861 (4)	0.019 5(3)	C(7)	0.606 4(4)	-0.013 9(6)	0.289 2(4)
N (7)	0.5781 (3)	$0.1288(4)$	0.2404 (3)	C(8)	0.527 4(5)	-0.127 6(6)	0.224 9(4)
(iii) $\left[\mathrm{Cd}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 2 \mathrm{c}$							
Cd	0.339 79(2)	$0.15325(4)$	0.078 30(3)	$\mathrm{N}(8)$	0.342 4(3)	-0.095 4(5)	0.1085 (3)
Ni	0.171 46(3)	0.172 86(8)	$0.34575(4)$	C(1)	0.2350 (3)	0.173 8(7)	0.258 4(4)
$\mathrm{N}(1)$	0.267 3(2)	0.1760 (6)	0.1988 (3)	C(2)	0.221 6(3)	0.2909 (7)	0.419 4(4)
N(2)	0.2513 (2)	0.352 4(6)	0.4714 (3)	C(3)	0.098 1(3)	0.184 4(7)	0.418 2(4)
N (3)	0.050 8(2)	0.187 2(6)	0.4576 (3)	C(4)	0.122 4(3)	0.0371 (7)	0.2840 (4)
N(4)	0.0913 (3)	-0.049 7(7)	0.249 8(4)	C(5)	$0.4060(4)$	$0.4398(8)$	0.019 0(5)
N(5)	0.344 5(3)	$0.4067(5)$	0.0687 (3)	C(6)	0.4089 (3)	0.347 1(8)	-0.060 4(4)
N(6)	$0.4119(2)$	0.189 2(6)	-0.037 0(3)	C(7)	0.416 6(3)	-0.0111(8)	0.224 2(4)
N (7)	0.426 6(2)	0.1321 (5)	0.1814 (3)	C(8)	0.4047 (3)	-0.1275(7)	0.1581 (4)
(iv) $\left[\mathrm{Cd}(\mathrm{tn})_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 3$							
Cd	$0.40619(4)$	$0.23538(3)$	0.143 91(3)	C(1)	0.4257 (5)	0.3351 (4)	$0.4298(5)$
Ni	0.42601 (6)	$0.40079(5)$	0.575 70(6)	C(2)	0.5893 (5)	0.354 5(4)	$0.6187(5)$
N(1)	0.4183 (5)	0.292 4(4)	0.3401 (4)	C(3)	0.4120 (5)	0.460 6(4)	0.725 5(5)
$\mathrm{N}(2)$	0.6870 (5)	0.3190 (4)	$0.6429(5)$	C(4)	0.258 6(5)	0.433 9(4)	0.532 4(5)
N(3)	0.3997 (7)	0.4927 (4)	0.8192 (5)	$\mathrm{C}(5)$	$0.2139(7)$	0.4250 (5)	0.1420 (6)
N(4)	0.153 2(5)	$0.4469(4)$	0.5025 (5)	C(6)	$0.1768(6)$	0.5323 (5)	0.1141 (6)
N (5)	0.339 6(5)	0.3971 (4)	0.0923 (5)	C(7)	0.042 5(6)	0.5551 (5)	0.1523 (5)
N(6)	0.0401 (5)	0.575 3(4)	0.2823 (4)	$\mathrm{C}(8)$	$0.7084(5)$	$0.2662(5)$	0.235 2(5)
N (7)	0.624 1(4)	0.2857 (3)	$0.1268(4)$	C(9)	0.8414 (5)	0.309 0(5)	0.2281 (5)
N (8)	0.8890 (5)	0.333 6(4)	$0.4500(4)$	C(10)	0.927 4(5)	0.2823 (4)	0.3410 (5)
(v) $\left[\mathrm{Cd}(\text { dabtn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} 4$							
Cd	0	0	0	C(1)	0.321 6(4)	0.3083 (3)	0.3521 (4)
Ni	$\frac{1}{2}$	$\frac{1}{2}$	2	C(2)	$0.3612(4)$	0.6320 (4)	0.4091 (4)
O	$0.3515(6)$	0.020 0(4)	0.6628 (5)	C(3)	$0.1812(5)$	$0.3504(4)$	-0.104 0(5)
$\mathrm{N}(1)$	0.2145 (4)	0.1897 (4)	$0.2618(4)$	C(4)	$0.2364(5)$	0.4541 (4)	-0.229 9(5)
N(2)	0.2842 (5)	$0.7230(4)$	0.3609 (6)	C(5)	$0.3157(4)$	$0.6409(4)$	-0.133 0(5)
N(3)	0.0761 (4)	0.1755 (3)	-0.192 7(4)	C(6)	$0.1676(5)$	0.715 6(4)	-0.132 2(6)
N(4)	0.2278 (4)	0.8858 (3)	-0.023 9(4)				
(vi) $\left[\mathrm{Cd}(\text { daptn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} 5$							
Cd	$\frac{1}{2}$	0.463 05(3)	$\frac{1}{4}$	C(1)	$0.7267(4)$	0.4825 (3)	$0.4185(3)$
Ni	$0.86131(8)$	$\frac{1}{2}$	1	C(2)	0.9927 (6)	0.4838 (3)	0.4181 (3)
O	$\frac{1}{2}$	0.801 4(4)	$\frac{1}{4}$	C(3)	0.3803 (7)	0.243 5(4)	0.343 5(4)
$\mathrm{N}(1)$	0.645 9(5)	0.469 6(4)	0.3687 (3)	C(4)	0.4031 (6)	0.2667 (4)	0.4358 (3)
N(2)	1.0741 (5)	0.4737 (5)	0.3666 (3)	C(5)	0.2658 (5)	0.2857 (4)	$0.4805(4)$
N(3)	$0.3411(5)$	0.335 4(4)	$0.2948(3)$	C(6)	0.2807 (6)	$0.2959(4)$	$0.5757(3)$
$\mathrm{N}(4)$	0.357 4(5)	0.4087 (3)	0.6935 (2)	C(7)	0.368 5(6)	0.3862 (4)	0.602 2(3)
(vii) $\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { dahxn })_{2}\right]\left[\mathrm{Ni}(\mathrm{CN})_{4}\right] 6$							
Cd	0	0	0	C(2)	0.304 4(7)	0.6321 (6)	0.418 4(7)
Ni	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	C(3)	0.1985 (7)	0.1321 (6)	$0.4197(7)$
O	0.282 4(5)	-0.022 3(4)	-0.025 8(6)	C(4)	0.255 4(7)	0.127 2(5)	$0.6151(6)$
$\mathrm{N}(1)$	0.414 8(7)	0.234 4(5)	0.1848 (7)	C(5)	0.3969 (7)	$0.2127(6)$	$0.7218(7)$
N(2)	0.1881 (7)	0.716 6(6)	$0.3687(8)$	C(6)	0.345 3(7)	0.383 2(6)	0.7461 (8)
N(3)	0.0671 (6)	0.045 2(5)	0.3150 (6)	C(7)	0.1971 (7)	0.4730 (6)	0.8447 (8)
N(4)	0.032 3(6)	0.7423 (5)	0.964 6(6)	C(8)	0.174 4(8)	0.641 6(6)	0.8721 (8)
C(1)	0.4461 (7)	0.3363 (6)	0.302 2(7)				

Table 5 (Continued)

Atom	X / a	Y / b	Z/c	Atom	X / a	Y / b	Z/c
(viii) $\left[\mathrm{Cd}(\text { dahpn })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O} 7$							
$\mathrm{Cd}(1)$	$\frac{1}{4}$	0	0.172 24(4)	C(6)	0.739 2(9)	0.234 4(3)	$0.3097(5)$
$\mathrm{Cd}(2)$	$0.22586(6)$	0.171 99(2)	$0.34310(3)$	C(11)	0.350 2(10)	0.057 5(2)	0.059 6(5)
$\mathrm{Ni}(1)$	-0.1341(2)	0.085 24(4)	0.252 60(8)	C(12)	0.455 3(10)	0.0719 (3)	$0.0115(5)$
$\mathrm{Ni}(2)$	0.604 4(2)	$\frac{1}{4}$	$\frac{1}{4}$	C(13)	0.4009 (10)	0.1039 9(3)	-0.025 8(5)
$\mathrm{O}(1)$	$\frac{1}{4}$	0	-0.055 3(6)	C(14)	$0.5169(11)$	0.1205 (3)	-0.068 0(5)
$\mathrm{O}(2)$	0.217 9(11)	$0.1695(2)$	0.5617 (5)	C(15)	$0.4545(10)$	0.148 5(3)	-0.115 6(5)
N (1)	0.098 3(9)	0.047 6(2)	0.184 3(4)	C(16)	0.563 1(11)	0.1641 (3)	-0.1613(5)
N(2)	0.073 4(9)	0.1257 (2)	0.334 4(4)	C(17)	0.4942 (11)	$0.1882(3)$	-0.2113(5)
$\mathrm{N}(3)$	$-0.3675(10)$	0.1171 (3)	0.332 6(5)	C(21)	$-0.0001(15)$	-0.020 0(4)	0.2918 (7)
N(4)	-0.339 8(10)	0.0518 (3)	0.158 5(5)	C(22)	$0.0585(14)$	0.0016 (3)	$0.3451(6)$
N(5)	0.3801 (9)	0.219 9(2)	0.3347 (4)	C(23)	-0.056 2(15)	0.015 9(4)	$0.3907(8)$
N(6)	0.824 1(10)	0.225 5(3)	0.346 6(5)	C(24)	-0.000 7(14)	0.044 0(3)	$0.4378(6)$
N(11)	0.390 4(8)	0.022 7(2)	0.086 6(4)	C(25)	-0.113 3(13)	0.062 1(3)	0.4781 (7)
N(17)	$0.5982(9)$	0.2035 (2)	-0.258 6(4)	C(26)	-0.063 9(11)	0.095 6(3)	$0.5088(6)$
$\mathrm{N}(21)$	$0.1112(10)$	-0.033 7(3)	0.248 5(5)	C(27)	-0.165 6(11)	0.1110 (3)	0.556 6(5)
N(27)	-0.134 3(8)	0.1470 (2)	0.574 4(4)	C(31)	0.4378 (11)	0.1640 (3)	0.2123 (5)
N(31)	0.3608 (8)	0.142 3(2)	0.262 4(4)	C(32)	0.4827 (12)	0.143 8(3)	0.1503 (5)
N(37)	0.5889 (8)	0.3009 (2)	-0.073 7(4)	C(33)	0.577 0(13)	0.1659 (3)	0.1053 (7)
C(1)	$0.0088(9)$	$0.0625(2)$	0.2097 (5)	C(34)	0.5027 (11)	0.195 5(3)	0.069 8(5)
C(2)	-0.005 5(10)	0.1094 (3)	0.3046 (5)	C(35)	0.6023 (11)	0.2157 (3)	0.024 5(5)
C(3)	-0.281 6(10)	0.1054 (3)	0.3010 (5)	C(36)	0.539 3(10)	0.247 9(3)	-0.004 3(5)
C(4)	$-0.2627(10)$	0.0640 (3)	0.195 6(5)	C(37)	0.637 8(10)	0.2661 (3)	$-0.0529(5)$
C(5)	0.466 4(9)	0.2330 (3)	0.3049 (4)				
(ix) $\left[\mathrm{Cd}(\text { danon })_{2} \mathrm{Ni}(\mathrm{CN})_{4}\right] 9$							
Cd	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	C(4)	0.348 2(5)	0.349 2(10)	0.576 6(6)
Ni	2	0.858 6(2)	1	C(5)	0.314 7(5)	0.257 9(10)	0.6363 (7)
N(1)	$0.4604(4)$	0.623 8(10)	$0.3602(5)$	C(6)	0.2863 (5)	0.349 5(10)	0.699 4(6)
N(2)	0.445 6(5)	1.096 9(11)	0.347 4(8)	C(7)	0.2531 (6)	$0.2602(11)$	0.759 9(7)
N(3)	0.4021 (4)	$0.3512(9)$	0.4497 (5)	C(8)	0.2201 (5)	0.349 3(10)	0.8180 (6)
N(4)	0.0541 (4)	0.1718 (8)	0.9261 (5)	C(9)	0.1813 (5)	$0.2603(11)$	0.870 5(7)
C(1)	0.472 2(5)	$0.7112(10)$	0.3159 (5)	$\mathrm{C}(10)$	$0.1465(5)$	$0.3517(11)$	0.927 3(7)
C(2)	0.467 3(5)	$1.0007(13)$	$0.3129(6)$	C(11)	0.1115 (5)	0.2560 (12)	0.986 4(7)
C(3)	0.374 9(5)	0.255 2(10)	0.512 4(7)				

References

1 T. Iwamoto, in Inclusion Compounds, eds. J. L. Atwood, J. E. D Davies and D. D. MacNicol, Academic Press, London, 1984, vol. 1, ch. 2, pp. 29-57; Oxford University Press, Oxford, 1991, vol. 5, ch. 6, pp. 172-212.
2 T. Hasegawa, S. Nishikiori and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., 1983, 1, 365; S. Nishikiori and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., 1984, 2, 341; T Hasegawa, S. Nishikiori and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., 1984, 2, 351; S. Nishikiori and T. Iwamoto, Inorg. Chem., 1986, 25, 788; T. Iwamoto, S. Nishikiori and T. Hasegawa, J. Inclusion Phenom. Mol. Recognit. Chem., 1987, 5, 225; T. Hasegawa and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., 1988, 6, 143, 549: S. Nishikiori, T. Hasegawa and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., 1991, 11, 137; M. Hashimoto, T. Kitazawa, T. Hasegawa and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., 1991, 11, 153.
3 H. Yuge, M. Asai, A. Mamada, S. Nishikiori and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., in the press.

4 G. B. Jameson, W. Bachmann, H. R. Oswald and E. Dubler, Acta Crystallogr., Sect. A, 1981, 37, C88.
5 T. Kitazawa, Y. Mizushima, J. Shiraha, R. Taguchi, A. Katoh, T. Hasegawa, S. Nishikiori and T. Iwamoto, J. Inclusion Phenom. Mol. Recognit. Chem., 1991, 10, 29.
6 A. T. C. North, D. C. Phillips and F. S. Mathews, Acta Crystallogr., Sect. A, 1968, 24, 351.
7 G. M. Sheldrick, SHELXS 86, Program for Crystal Structure Determination, University of Göttingen, 1986.
8 G. M. Sheldrick, SHELX 76, Program for Crystal Structure Determination, University of Cambridge, 1976.

9 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
10 J. Černák, J. Chomič, M. Dunaj-Jurčo and C. Kappenstein, Inorg. Chim. Acta, 1984, 85, 219.
11 J. Černák, J. Chomič, D. Baloghová and M. Dunaj-Jurčo, Acta Crystallogr., Sect. C, 1988, 44, 1902; J. Černák, I. Potočňák, J. Chomič and M. Dunaj-Jurčo, Acta Crystallogr., Sect. C, 1990, 46, 1098; J. Lokaj, K. Gyerová, A. Sopková, J. Sivý, V. Kettmann and V. Vrábel, Acta Crystallogr., Sect. C, 1991, 47, 2447.
12 M. Rüegg and A. Ludi, Theor. Chim. Acta, 1971, 20, 193.
13 H. Yuge and T. Iwamoto, J. Chem. Soc., Dalton Trans., 1994, 1237.
14 M. Hashimoto, T. Hasegawa, H. Ichida and T. Iwamoto, Chem. Lett., 1989, 1387; M. Hashimoto and T. Iwamoto, Chem. Lett., 1990, 1531; M. Hashimoto, Doctoral Thesis, The University of Tokyo, 1990.

15 (a) Y. Kinoshita, I. Matsubara and Y. Saito, Bull. Chem. Soc. Jpn., 1959, 32, 741; (b) Y. Kinoshita, I. Matsubara and Y. Saito, Bull. Chem. Soc. Jpn., 1959, 32, 1216; (c) Y. Kinoshita, I. Matsubara, T. Higuchi and Y. Saito, Bull. Chem. Soc. Jpn., 1959, 32, 1221.

16 Critical Stability Constants, eds. R. M. Smith and A. E. Martell, Plenum, New York and London, 1975, vol. 2.
17 T. Soma and T. Iwamoto, Chem. Lett., 1994, 821; T. Soma, H. Yuge and T. Iwamoto, Angew. Chem., 1994, 106, 1746; Angew. Chem., Int. Ed. Engl., 1994, 33, 1665.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

