Preparation and Characterization of the First Binary Arsenic Azide Species: $As(N_3)_3$ and $[As(N_3)_4][AsF_6]^{\dagger}$

Thomas M. Klapötke^{*,a} and Petra Geissler^b

^a Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK ^b Institut für Anorganische und Analytische Chemie, TU Berlin, D-10 623 Berlin, Germany

Reaction of $AsCl_3$ with activated sodium azide in $CFCl_3$ gave $As(N_3)_3$ in quantitative yield. Reaction of $[AsCl_4][AsF_6]$ in liquid SO_2 led to $[As(N_3)_4][AsF_6]$. The identity of both new compounds was established by ¹⁴N NMR, IR and Raman spectroscopy and in addition for $As(N_3)_3$ by microanalysis and mass spectrometry. The heat of decomposition of $[As(N_3)_4][AsF_6]$ was estimated on the basis of a Born–Haber energy cycle.

We have recently been studying the reactions of various maingroup chlorine compounds with activated sodium azide.^{1,2} It was possible to establish that the high reactivity of activated sodium azide is partly due to the presence of traces of hydrazinium azide, $[N_2H_5][N_3]$, and we have synthesized pure hydrazinium azide on a convenient one-pot high-yield laboratory scale.²

In contrast to the chemistry of halogen azides, which has been extensively explored in the last years, studies on binary Group 15 azide compounds are very limited.¹ To our knowledge the only structurally characterized molecular arsenic azide is the trifluoromethyl derivative $As(CF_3)(N_3)_2$.³ Here we report on the reaction of $AsCl_3$ and $[AsCl_4][AsF_6]$ with activated sodium azide. Reaction of neutral $AsCl_3$ in CFCl₃ results in the formation of the binary arsenic triazide $As(N_3)_3$ [equation (1)]. The arsonium azide cation $[As(N_3)_4]^+$ is

$$\operatorname{AsCl}_{3} + \operatorname{3NaN}_{3} \xrightarrow{\operatorname{CFCl}_{3}, 0 \, {}^{\circ} \mathrm{C}} \operatorname{As}(\mathrm{N}_{3})_{3} + \operatorname{3NaCl} \quad (1)$$

obtained as the salt $[As(N_3)_4][AsF_6]$ from the reaction of $[AsCl_4][AsF_6]$ with activated NaN₃ in liquid sulfur dioxide [equation (2)].

$$[AsCl_4][AsF_6] + 4NaN_3 \xrightarrow{SO_2, 0 \, ^{\circ}C} [As(N_3)_4][AsF_6] + 4NaCl \quad (2)$$

Experimental

CAUTION: $[As(N_3)_4][AsF_6]$ and $As(N_3)_3$ are explosive and can explode on contact with a metal spatula or a metal syringe; $[As(N_3)_4][AsF_6]$ immediately explodes upon exposure to an electrical discharge.

Activated sodium azide was prepared from commercially available NaN₃ (Aldrich) by treatment with hydrazinium hydroxide (Merck) as described previously.⁴ Arsenic trichloride (Aldrich, 99.99%) was used without further purification. The salt [AsCl₄][AsF₆] was prepared from AsCl₃, Cl₂ (Air Products) and AsF₅ by literature methods ⁵ and identified by X-ray crystallography.^{6,7} All solvents were dried [CFCl₃ (Merck), P₄O₁₀; SO₂ (Air Products), CaH₂] and distilled prior to use. All manipulations were performed under an inert atmosphere (Ar). *Preparations.*—As(N₃)₃. Activated sodium azide (1.05 g, 16.15 mmol) was suspended in CFCl₃ (10 cm³) and treated with AsCl₃ (0.50 g, 2.76 mmol) at 0 °C and the slurry stirred for 12 h. The solution was allowed to warm to 15 °C. Filtration through a fine glass frit afforded a colourless solution. This was allowed to warm to room temperature with the CFCl₃ being evaporated off under a stream of argon to leave a light yellowish liquid, As(N₃)₃ (0.51 g, 92%) (Found: N, 61.4; Calc. 62.7%). Electronimpact (EI) mass spectrum (70 eV, 25 °C): m/z = 201 (M⁺). ¹⁴N NMR (28.9 MHz, CDCl₃, relative to MeNO₂, 22 °C): δ – 318.0 (1, Δv 150, N_a), –165.2 (1, Δv 30, N_c), and –131.1 (1, Δv 15 Hz, N_b) IR (KBr, cm⁻¹): 2082vs [v_{asym}(N₃)], 1238s [v_{sym}(N₃)], 561m [γ(N₃)] and 441m [v(As-N)].

[As(N₃)₄][AsF₆]. In a two-bulb vessel a solution of [As(N₃)₄][AsF₆] (1.12 g, 2.75 mmol) in SO₂ (15 cm³) was poured onto activated sodium azide (1.50 g, 23.07 mmol) at -40 °C. The reaction mixture was allowed to warm to 0 °C and stirred at this temperature for 4 h. The resulting colourless supernatant over a white precipitate (unreacted NaN₃, NaCl) was filtered through a fine glass frit and the SO₂ was pumped off leaving a white (**highly explosive**) solid (0.90 g, 76%). ¹⁴N NMR (28.9 MHz, CDCl₃, relative to MeNO₂, 22 °C): δ - 279.8 (1 Δ v 375, N_a), -162.1 (1, Δ v 125, N_c) and -135.4 (1, Δ v 30 Hz, N_b) Raman (λ = 647.09 nm, 25 °C, 10 mW, SO₂ solution): 2127 [1, v_{asym}(N₃)], 1638 (1), 1338 [2, v₃(SO₂)], 1242 [1, v_{sym}(N₃), 1155 [10, v₁(SO₂)], 672 [2, v₁(AsF₆)], 519 [3, v₂(SO₂)], 482 (1), 426 [4, v(As-N)] and 357 (1). IR (KBr, cm⁻¹): 2125s [v_{asym}(N₃)], 1240m [v_{sym}(N₃)], 699vs [v₃(AsF₆)] and 395vs [v₄(AsF₆].

Results

The two new binary arsenic–nitrogen species $As(N_3)_3$ and $[As(N_3)_4]^+$ were prepared according to equations (1) and (2) and identified unequivocally on the basis of their vibrational and ¹⁴N NMR spectra. The azide part of the IR and Raman spectra was assigned by comparing the observed frequencies with those obtained for ClN₃ and BrN₃ (Table 1).^{1,8} For both covalently bound azide species three well resolved resonances have been found in their ¹⁴N NMR spectra and assignment of the individual resonances to N_a, N_b and N_c was made on the basis of the arguments given in early work by Witanowski⁹ and a report on ¹⁴N data of covalent azides given by us¹⁰ (Fig. 1). Presumably as a result of the large quadrupole moment of ¹⁴N spin–spin splitting which has been estimated to be less than 30 Hz was not observed (*cf.* linewidths given in the Experimental section).¹¹

[†] Non-SI units employed: kcal = 4.184 J, Å = 10^{-10} m, eV \approx 1.60 \times 10^{-19} J.

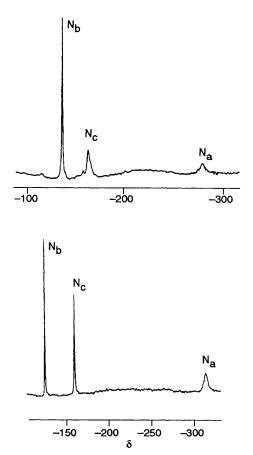
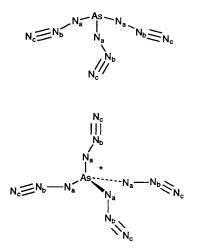



Fig. 1 The ¹⁴N NMR spectra of $[As(N_3)_4]^+$ (top) and $As(N_3)_3$ (bottom) (chemical shifts δ in ppm relative to MeNO₂)

Tetraazidoarsonium hexafluoroarsenate, $[As(N_3)_4][AsF_6]$, which can be handled safely in SO₂ solutions, is very sensitive in the solid state and detonates upon exposure to mechanical stress or a high-frequency discharge. Using a Born-Haber cycle (Scheme 1), the reaction enthalpy for its decomposition was estimated to be -406 kcal mol⁻¹.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (KL 636/4-1 and 5-1) and the University of Glasgow for financial support.

References

- 1 I. C. Tornieporth-Oetting and T. M. Klapötke, Angew. Chem., Int. Ed. Engl., 1995, 34, 511.
- 2 H. Holfter, T. M. Klapötke and A. Schulz, *Propellants, Explos. Pyrotech.*, submitted for publication.

Table 1 Frequencies of $As(N_3)_3$ and $[As(N_3)_4]^+$ in comparison with ClN_3 and BrN_3

$As(N_3)_3*$	$[As(N_3)_4]^{+a}$	ClN ₃ ^{1,8}	BrN ₃ ^{1.8}	Assignment
2082	2126	2075	2058	$v_{asym}(N_3)$
1238	1241	1145	1150	$v_{sym}(N_3)$
561	n.o.	522	n.o.	$\gamma(N_3)$
n.o.	n.o.	719	682	$\delta(N_3)$
n .o.	n.o.	223	n.o.	$\delta(N_3)$
441	426	545	452	$v(X-N_3)$
n.o. = Not observed. * This work.				

 $2 \text{ AsF}_3(l) + 6 \text{ N}_2(g)$ $[As(N_3)_4][AsF_6](s)$ As(N₃)₄⁺ (g) AsFa" (g) $+(4 \times 40)^{4}$ -(4x105)^g -(2x8.5) + As⁺ (g) 4 N₃ (g) AsF₅ (g) F ~ (g) + +80 (5x97) As (g) As (g) + 5 F (g) F (g) 2 AsF₃ (g) -(6x116)[/]

Scheme 1 Energy cycle for the decomposition of $[As(N_3)_4][AsF_6]$. ^{*a*} Crystal lattice energy $(U_L/kcal mol^{-1})$, calculated from the molecular volume $(V_M/Å^3)$ using the linear relationship for $[A]^+[B]^-$ salts:^{12,13} $U_L = 556.3 \ \sqrt[3]{V_M} + 26.3; \ V_M{[As(N_3)_4][AsF_6]}$ was assumed to be equal to $V_M{[AsCl_4][AsF_6]} = 231 \ A^{36.7}$ [cf. $U_L(KCl) \approx U_L(KN_3);$ $U_L(KCl) = 168 \ kcal mol^{-1},^{14} \ U_L(KN_3) = 164 \ kcal mol^{-1},^{14}$] which gives $U_L([AsCl_4][AsF_6]) = U_L{[As(N_3)_4][AsF_6]} = 117 \ kcal mol^{-1}.$ ^b The bond dissociation energy D(As-N) was estimated from 0.5 $[D(As-As) + D(N-N)] = 0.5 \ (42.6 + 37.8) \ kcal mol^{-1},^{14} \ i.e. 40 \ kcal mol^{-1}. \ Classes (K^3-F) = 97 \ kcal mol^{-1}.^{15} \ D(As^{III}-F) = 116 \ kcal mol^{-1}.^{15} \ AD^{\circ}_{f}(N_3, g) = +105 \ kcal mol^{-1}.^{16} \ h D(As^{III}-F) = 116 \ kcal mol^{-1}.^{15} \ Heat of vaporization, <math>\Delta H_{vap}(AsF_3) = 8.5 \ kcal mol^{-1}.^{17}$

- 3 H. G. Ang, W. L. Kwik, Y. W. Lee and H. Oberhammer, *Inorg. Chem.*, 1994, **33**, 4425.
- 4 J. Nelles, Ber. Deutsch. Chem. Ges., 1932, 65, 1345.
- 5 W. Buder and A. Schmidt, Z. Anorg. Allg. Chem., 1975, 415, 263.
- 6 P. Geiβler, Diplomarbeit (Master thesis), TU Berlin, Berlin, 1994.
- 7 R. Minkwitz, J. Nowicki and H. Borrmann, Z. Anorg. Allg. Chem., 1991, 596, 93.
- 8 A. Schulz, I. C. Tornieporth-Oetting and T. M. Klapötke, *Inorg. Chem.*, in the press.
- 9 M. Witanowski, J. Am. Chem. Soc., 1968, 90, 5683.
- 10 P. Geiβler and T. M. Klapötke, Spectrochim. Acta, Part A, 1995, 51, 1075.
- 11 D. Herbison-Evans and R. E. Richards, Mol. Phys., 1964, 7, 515.
- 12 T. E. Mallouk, G. L. Rosenthal, G. Müller, R. Brusasco and N. Bartlett, *Inorg. Chem.*, 1984, 23, 3167.
- 13 T. J. Richardson, F. L. Tarzella and N. Bartlett, J. Am. Chem. Soc., 1986, 108, 4937.
- 14 D. A. Johnson, Some Thermodynamic Aspects of Inorganic Chemistry, Cambridge University Press, Cambridge, 1982, pp. 32, 35.
- 15 T. M. Klapötke and I. C. Tornieporth-Oetting, *Nichtmetallchemie*, VCH, Weinheim, 1994, appendix and refs. therein.
- 16 K. Jones, in *Comprehensive Inorganic Chemistry*, eds. J. C. Bailar, H. J. Emeléus, R. Nyholm and A. F. Trotman-Dickenson, Pergamon, Oxford, 1973, vol. 2, p. 276.
- 17 N. Burford, J. Passmore and J. C. P. Sanders, in *From Atoms to Polymers*, eds. J. F. Liebman and A. Greenberg, VCH, Weinheim, 1989, p. 53.

Received 16th June 1995; Paper 5/03896K