Synthesis, Properties and Molecular Structures of Iron(III), Cobalt(II), Nickel(II), Copper(II), Copper(I) and Zinc(II) Complexes with \mathbf{N}, \mathbf{N}-Bis(pyrazol-1-ylmethyl)benzylamine \dagger

Shiann-Cherng Sheu, Mong-Jong Tien, Ming-Chun Cheng, Tong-Ing Ho,* Shie-Ming Peng* and Yuan-Chuan Lin*
Department of Chemistry, National Taiwan University, Taipei, Taiwan, Republic of China

Abstract

A newly prepared ligand, N, N-bis(pyrazol-1-ylmethyl)benzylamine (L) reacted with metal ions to form $\left[\mathrm{FeLCl}_{3}\right],\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right],\left[\mathrm{MLX}_{2}\right]\left(\mathrm{M}=\mathrm{Co}^{\prime \prime}, \mathrm{Cu}^{\prime \prime}\right.$ or $\mathrm{Zn"}^{\prime \prime}, \mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}$or $\left.\mathrm{NCS}^{-}\right)$and $\left[(\mathrm{CuLI})_{2}\right]$. The crystallographically determined structures of $\left[\mathrm{CoLCl}_{2}\right]$ and $\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right]$ reveal the co-ordination sphere of cobalt(II) to be intermediate between distorted tetrahedral and trigonal bipyramidal. In $\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right]$ the co-ordination sphere of nickel(iI) ion is distorted octahedral while that of copper(11) in $\left[\mathrm{CuLCl}_{2}\right]$ is distorted square pyramidal. The complex $\left[(\mathrm{CuLI})_{2}\right]$ displays distorted tetrahedral geometry around copper(1), and $\left[\mathrm{ZnLBr}_{2}\right]$ shows distorted tetrahedral geometry around zinc(II).

Polyfunctional ligands derived from pyrazole, ${ }^{1-5}$ imidazole ${ }^{6-9}$ and pyridazine ${ }^{10-12}$ form transition-metal complexes in which metal atoms are brought into proximity because of N -donor sites that co-ordinate to metals in the systems. Structural characterizations of these molecules are vigorously pursued in many laboratories because these compounds serve as potential models for biological dimetallic sites. ${ }^{13-15}$ Some dicopper(II) complexes with pyrazolyl ligands are potential models for haemocyanin. ${ }^{16}$

In an effort to develop new polynuclear complexes, we were interested in metal complexation of polyfunctional pyrazole ligands. The previously prepared 4 -methyl-2,6-bis(pyrazol-1ylmethyl)phenol ${ }^{17}$ ligand, reacted with Zn^{11} to give a binuclear complex. 1,3,5-Tri(pyrazol-1-ylmethyl)benzene ${ }^{18}$ reacted with $\mathrm{Cu}^{\text {II }}$ to give polymeric bis(μ-chloro) copper(II) complexes. Other novel ligands, 1,2-bis(pyrazol-1-ylmethyl)benzene ${ }^{19}$ and 5-methyl-1,3-bis(pyrazol-1-ylmethyl)benzene, ${ }^{20}$ were prepared and their abilities to complex with $\mathrm{Cu}^{\text {II }}$ and $\mathrm{Co}^{\text {II }}$ were reported. Here, we report an investigation of complexing properties of the pyrazolyl ligand N, N-bis(pyrazol-1-ylmethyl)benzylamine L, which is a tridentate ligand with two N -donor sites of pyrazolyl rings and one N -donor site of benzylamine. The spectral properties and crystal structures of cobalt(II), nickel(II), copper(II), zinc(II) and copper(I) complexes of N, N-bis(pyrazol-1-ylmethyl)benzylamine are described.

Experimental

Chemicals.-All reagents and solvents were purchased from commercial sources and used as received unless noted otherwise. N-Hydroxymethylpyrazole was prepared according to the literature method. ${ }^{21}$

Physical Methods.-Melting points were obtained in open capillaries with a Thomas-Hoover capillary apparatus and are uncorrected. Proton NMR spectra were recorded on a Bruker AM-300WB instrument at 300 MHz using CDCl_{3} and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ as solvents. EPR spectra were recorded on a Bruker ESP 300 X -band instrument with diphenylpicrylhydrazyl (dpph)

[^0]

L
as standard. Magnetic susceptibilities were measured with the Faraday method on a CAHN 200 instrument with $\mathrm{Hg}[\mathrm{Co}-$ $\left.(\mathrm{SCN})_{4}\right]$ as standard; diamagnetic corrections were made using Pascal's parameters. Infrared spectra were recorded on a Perkin-Elmer 983G and Bomem DA8 FTIR instrument (far-IR spectra) and elemental analyses were obtained using a PerkinElmer 2400 analyser. The ultraviolet spectra were recorded on a Hitachi U-3210 spectrophotometer and solid-state electronic spectra were measured on a Shimadzu UV-2101PC UV/VIS scanning spectrophotometer ($200-800 \mathrm{~nm}$) in the diffusion reflectance mode with BaO as a reference.

Syntheses.-N,N-Bis(pyrazol-1-ylmethyl)benzylamine L. NHydroxymethylpyrazole ($1.96 \mathrm{~g}, 20 \mathrm{mmol}$) and benzylamine $(1.07 \mathrm{~g}, 10 \mathrm{mmol})$ in acetonitrile $\left(50 \mathrm{~cm}^{3}\right)$ were stirred in a closed vessel at room temperature for 4 d . The acetonitrile layer was dried from the water produced by treatment with anhydrous MgSO_{4} and was filtered; the solvent was removed on a rotatory evaporator, yielding a slightly yellow liquid, which was used without further purification. Yield $1.92 \mathrm{~g}(72 \%)$ (Found: C, 67.00; H, 6.30; N, 26.45. Calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{5}$: C, $67.40 ; \mathrm{H}, 6.40 ; \mathrm{N}, 26.20 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$) $\delta 3.71(2 \mathrm{H}, \mathrm{s}$, aryl $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.95\left(4 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 6.25(2 \mathrm{H}, \mathrm{t}, J 2.1$, pyrazolyl $\mathrm{C}^{4} \mathrm{H}$), $7.25-7.29(5 \mathrm{H}, \mathrm{m}, \operatorname{aryl} \mathrm{H}), 7.45(2 \mathrm{H}, \mathrm{d}, J 2.1$, pyrazolyl $\mathrm{C}^{5} \mathrm{H}$) and $7.53\left(2 \mathrm{H}, \mathrm{d}, J 2.1 \mathrm{~Hz}\right.$, pyrazolyl $\left.\mathrm{C}^{3} \mathrm{H}\right)$. IR: $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ $3107 \mathrm{~m}, 3029 \mathrm{~m}, 1596 \mathrm{~m}, 1507 \mathrm{~m}, 1447 \mathrm{~m}, 1390 \mathrm{~s}, 1083 \mathrm{~s}, 1044 \mathrm{~s}$, $961 \mathrm{~m}, 748 \mathrm{~s}, 699 \mathrm{~m}$ and 617 m .
$\left[\mathrm{FeLCl}_{3}\right]$ 1. Iron(III) chloride hexahydrate ($270 \mathrm{mg}, 1 \mathrm{mmol}$) in absolute ethanol $\left(15 \mathrm{~cm}^{3}\right)$ was added to a solution $\left(15 \mathrm{~cm}^{3}\right)$ of L in absolute ethanol ($267 \mathrm{mg}, 1 \mathrm{mmol}$). The yellow precipitate was filtered off, washed successively with ethanol and diethyl ether, and dried in air. Yield $0.36 \mathrm{~g}(82 \%)$, m.p. $158-159^{\circ} \mathrm{C}$ (decomp.) (Found: C, 41.20; H, 4.00; N, 15.70. Calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{FeN}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.05 ; \mathrm{H}, 4.10 ; \mathrm{N}, 15.95 \%$). IR:
$v_{\text {max }} / \mathrm{cm}^{-1} 3414$ (br), $3130 \mathrm{~m}, 1517 \mathrm{~m}, 1456 \mathrm{~m}, 1400 \mathrm{~s}, 1281 \mathrm{~s}, 1068 \mathrm{~s}$, $993 \mathrm{~m}, 769 \mathrm{~m}, 702 \mathrm{~m}$ and 606 m . $\lambda_{\text {max }} / \mathrm{nm}(\mathrm{MeOH}) 355$ ($\varepsilon 3406$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$), 252 (5468) and $209(22336)$.
$\left[\mathrm{CoLCl}_{2}\right]$ 2. Cobalt(II) chloride hexahydrate $(238 \mathrm{mg}, 1$ $\mathrm{mmol})$ in methanol $\left(15 \mathrm{~cm}^{3}\right)$ was added to a methanolic solution ($10 \mathrm{~cm}^{3}$) of L ($267 \mathrm{mg}, 1 \mathrm{mmol}$). The mixture was stirred for 10 \min at room temperature and filtered. The blue crystalline product was obtained by slow diffusion of diethyl ether into the mixture. M.p. $180-181^{\circ} \mathrm{C}$ (Found: C, 45.60 ; H, 4.10; N, 17.20 . Calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{CoN}_{5}$: $\mathrm{C}, 45.35 ; \mathrm{H}, 4.30 ; \mathrm{N}, 17.65 \%$). IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3440$ (br), $3122 \mathrm{~m}, 1507 \mathrm{~m}, 1448 \mathrm{~m}, 1398 \mathrm{~s}, 1354 \mathrm{~m}$, $1277 \mathrm{~m}, 1206 \mathrm{~m}, 1091 \mathrm{~m}, 1062 \mathrm{~s}, 980 \mathrm{~m}, 772 \mathrm{~s}, 754 \mathrm{~s}$ and 645 s . $\lambda_{\text {max }} / \mathrm{nm}(\mathrm{MeOH}) 258\left(\varepsilon 342 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ and 209 (12 497).
$\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right]$ 3. Cobalt(II) nitrate hexahydrate $(291 \mathrm{mg}$, 1 $\mathrm{mmol})$ in methanol $\left(15 \mathrm{~cm}^{3}\right)$ was added to a methanolic solution $\left(10 \mathrm{~cm}^{3}\right)$ of $\mathrm{L}(267 \mathrm{mg}, 1 \mathrm{mmol})$ and a methanolic solution (10 cm^{3}) of $\mathrm{NaSCN}(162 \mathrm{mg}, 2 \mathrm{mmol})$ was added. The mixture was allowed to stand at room temperature. A violet crystalline product was filtered off, washed successively with methanol and diethyl ether and dried in air. Yield $0.27 \mathrm{~g}(61 \%)$. M.p. $186-$ $187^{\circ} \mathrm{C}$ (decomp.) (Found: C, $45.35 ; \mathbf{H}, 3.80 ; \mathrm{N}, 21.80$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{CoN}_{7} \mathrm{~S}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 45.25 ; \mathrm{H}, 4.00 ; \mathrm{N}, 21.75 \%$). IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3123 \mathrm{~m}, 2077 \mathrm{~s}, 2060 \mathrm{~s}, 1519 \mathrm{~m}, 1400 \mathrm{~m}, 1278 \mathrm{~m}, 1066 \mathrm{~m}$ and $764 \mathrm{~m} . \lambda_{\text {max }} / \mathrm{nm}(\mathrm{MeCN}) 579\left(\varepsilon 705 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 323$ (5425) and 225 (11 572).
$\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right]$ 4. The complex was prepared as described for complex 3. A blue crystalline product was filtered off, washed successively with methanol and diethyl ether and dried in air. Yield $0.32 \mathrm{~g}(68 \%)$. M.p. $199-200^{\circ} \mathrm{C}$ (decomp.) (Found: C, 45.60; $\mathrm{H}, 4.50 ; \mathrm{N}, 19.85$. Calc. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{NiOS}_{2}$: $\mathrm{C}, 45.60 ; \mathrm{H}, 4.45 ; \mathrm{N}, 20.70 \%$). IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3334$ (br), 3112 m , $2088 \mathrm{~s}, 1519 \mathrm{~m}, 1446 \mathrm{~m}, 1397 \mathrm{~m}, 1273 \mathrm{~m}, 1202 \mathrm{~m}, 1093 \mathrm{~m}, 1056 \mathrm{~m}$, $977 \mathrm{~m}, 773 \mathrm{~m}, 744 \mathrm{~m}, 702 \mathrm{~m}$ and 651 m . $\lambda_{\text {max }} / \mathrm{nm}(\mathrm{MeCN}) 294$ ($\varepsilon 1332 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) and 219 (12 284).
[$\left.\mathrm{CuLCl}_{2}\right]$ 5. The complex was prepared as described for complex 2. M.p. ${ }^{155-156}{ }^{\circ} \mathrm{C}$ (Found: C, 44.85 ; H, 4.15 ; N, 17.55. Calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{CuN}_{5}: \mathrm{C}, 44.85 ; \mathrm{H}, 4.25 ; \mathrm{N}$, 17.45%). IR: $v_{\max } / \mathrm{cm}^{-1} 3443$ (br), $3125 \mathrm{~m}, 1507 \mathrm{~m}, 1461 \mathrm{~m}, 1410 \mathrm{~s}$, $1397 \mathrm{~s}, 1270 \mathrm{~s}, 1202 \mathrm{~m}, 1140 \mathrm{~m}, 1093 \mathrm{~m}, 1065 \mathrm{~s}, 978 \mathrm{~m}, 763 \mathrm{~m}, 737 \mathrm{~s}$, 703 s and $645 \mathrm{~m} . \lambda_{\text {max }} / \mathrm{nm}(\mathrm{MeOH}) 718\left(\varepsilon 95 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$, 265 (3397) and 209 (18 994).
$\left[(\mathrm{CuLI})_{2}\right]$ 6. Copper (I) iodide ($190 \mathrm{mg}, 1 \mathrm{mmol}$) in acetonitrile ($20 \mathrm{~cm}^{3}$) was bubbled with N_{2} for 10 min and added to an acetonitrile solution ($20 \mathrm{~cm}^{3}$) of $\mathrm{L}(267 \mathrm{mg}, 1 \mathrm{mmol})$. The mixture was allowed to stand at room temperature. Colourless crystals were filtered off, washed successively with acetonitrile and diethyl ether and dried in air. Yield $0.34 \mathrm{~g}(37 \%)$. M.p. 159$160^{\circ} \mathrm{C}$ (decomp.) [Found: C, 39.35; H, 3.55; N, 15.10. Calc. for $\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{CuIN}_{5}\right)_{2}: \mathrm{C}, 39.35 ; \mathrm{H}, 3.70 ; \mathrm{N}, 15.30 \%$]. IR: $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1}$ $3104 \mathrm{~m}, 1508 \mathrm{~m}, 1392 \mathrm{~m}, 1374 \mathrm{~m}, 1241 \mathrm{~s}, 1150 \mathrm{~s}, 1100 \mathrm{~m}, 1085 \mathrm{~s}$, $1053 \mathrm{~s}, 981 \mathrm{~m}, 962 \mathrm{~m}$ and $748 \mathrm{~s} .{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 3.84$ $(2 \mathrm{H}, \mathrm{s}), 5.20(4 \mathrm{H}, \mathrm{s}), 6.44(2 \mathrm{H}, \mathrm{s}), 7.28-7.38(5 \mathrm{H}, \mathrm{m}), 7.75$ $(2 \mathrm{H}, \mathrm{s})$ and $7.88(2 \mathrm{H}, \mathrm{s})$
$\left[\mathrm{ZnLBr}_{2}\right] 7$ and $\left[\mathrm{ZnL}(\mathrm{NCS})_{2}\right]$ 8. These complexes were prepared as described for complex 3, above, with appropriate anions substituted for Br^{-}and NCS^{-}. Colourless crystals were filtered, washed successively with methanol and diethyl ether and dried in air. Yield $0.19 \mathrm{~g}(39 \%)$ for complex 7 (m.p. 176$178^{\circ} \mathrm{C}$) and $0.42 \mathrm{~g}(92 \%)$ for complex 8 (m.p. $149-151^{\circ} \mathrm{C}$) [Found: C, 36.45; H, 3.4; N, 14.65. Calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{Zn}$ (7): C, $36.60 ; \mathrm{H}, 3.50 ; \mathrm{N}, 14.20 \%$]. IR: $v_{\text {max }} / \mathrm{cm}^{-1} 3105 \mathrm{~m}, 1523 \mathrm{~m}$, $1407 \mathrm{~m}, 1381 \mathrm{~m}, 1259 \mathrm{~m}, 1150 \mathrm{~m}, 1072 \mathrm{~s}, 986 \mathrm{~m}, 781 \mathrm{~m}, 755 \mathrm{~m}$ and $612 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 3.72(2 \mathrm{H}, \mathrm{s}), 5.07(4 \mathrm{H}, \mathrm{s}), 6.31$ $(2 \mathrm{H}, \mathrm{s}), 7.20-7.33(5 \mathrm{H}, \mathrm{m}), 7.54(2 \mathrm{H}, \mathrm{s})$ and $7.76(2 \mathrm{H}, \mathrm{s})$. $\lambda_{\max } / \mathrm{nm}(\mathrm{MeCN}) 342\left(\varepsilon 190 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ and 212 (7334) [Found: C, $45.45 ; \mathrm{H}, 3.75 ; \mathrm{N}, 22.20$. Calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{7} \mathrm{~S}_{2} \mathrm{Zn}$ (8): C, $45.50 ; \mathrm{H}, 3.80 ; \mathrm{N}, 21.85 \%$]. IR: $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 3092 \mathrm{~m}, 2083 \mathrm{~s}$, $1523 \mathrm{~m}, 1404 \mathrm{~m}, 1065 \mathrm{~m}, 766 \mathrm{~m}, 706 \mathrm{~m}$ and $614 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 3.71(2 \mathrm{H}, \mathrm{s}), 5.05(4 \mathrm{H}, \mathrm{s}), 6.31(2 \mathrm{H}, \mathrm{s}), 7.22-$ $7.32(5 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{s})$ and $7.76(2 \mathrm{H}, \mathrm{s}) . \lambda_{\text {max }} / \mathrm{nm}(\mathrm{MeCN})$ 342 ($\varepsilon 123 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) and 218 (7928).
$\left[\mathrm{ZnLCl}_{2}\right]$ 9. $\mathrm{Zinc}(\mathrm{II})$ chloride ($136 \mathrm{mg}, 1 \mathrm{mmol}$) in methanol $\left(15 \mathrm{~cm}^{3}\right)$ was added to a solution of $\mathrm{L}(267 \mathrm{mg}, 1 \mathrm{mmol})$ in methanol $\left(15 \mathrm{~cm}^{3}\right)$. The mixture was allowed to stand at room temperature. Colourless crystals were filtered off, washed successively with methanol and diethyl ether and dried in air. Yield $0.36 \mathrm{~g}\left(89 \%\right.$). M.p. $191-192^{\circ} \mathrm{C}$ (Found: C, 44.80 ; H, 4.05; $\mathrm{N}, 17.00$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{Zn}$: C, $44.65 ; \mathrm{H}, 4.25$; N , 17.35%). IR: $v_{\max } / \mathrm{cm}^{-1} 3104 \mathrm{~m}, 1507 \mathrm{~m}, 1402 \mathrm{~s}, 1379 \mathrm{~m}, 1301 \mathrm{~m}$, $1259 \mathrm{~s}, 1149 \mathrm{~s}, 1100 \mathrm{~m}, 1073 \mathrm{~s}, 986 \mathrm{~s}, 931 \mathrm{~m}, 782 \mathrm{~s}$ and $757 \mathrm{~m} .{ }^{1} \mathrm{H}$ NMR [($\left.\left.\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right]: \delta 3.72(2 \mathrm{H}, \mathrm{s}), 5.09(4 \mathrm{H}, \mathrm{s}), 6.31(2 \mathrm{H}, \mathrm{d})$, $7.20-7.30(5 \mathrm{H}, \mathrm{m}), 7.55(2 \mathrm{H}, \mathrm{d})$ and $7.77(2 \mathrm{H}, \mathrm{d})$. $\lambda_{\max } / \mathrm{nm}(\mathrm{MeOH}) 258\left(\varepsilon 400 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ and $208(11550)$.

Structural Determinations.-Suitable crystals of complexes 2-7 were chosen. Intensity data were collected at room temperature on a CAD-4 diffractometer using monochromatic Mo-K α radiation ($\lambda 0.7107 \AA$). The unit-cell parameters were derived from a least-squares refinement of 25 setting reflections for complexes 5 and 7 and 24 setting reflections for complexes 2-4 and 6. The $\theta-2 \theta$ scan technique and a variable scan speed were used to obtain integrated intensities. Three reference reflections were monitored throughout the measurement; the decay of the intensities was less than 2% in all cases. Absorption corrections were applied according to an experimental ψ rotational curve. Other details of crystal data are given in Table 1

The structures were solved by the heavy-atom method; subsequent Fourier syntheses based on the heavy-atoms revealed the positions of all non-hydrogen atoms. Leastsquares refinement including anisotropic thermal parameters for all non-hydrogen atoms was performed; the final results are given Tables 2-7. For these complexes a weighting scheme of the form $1 /\left[\sigma^{2}\left(F_{\mathrm{o}}\right)+k\left(F_{\mathrm{o}}\right)^{2}\right], k=0.00002$ for complex 4 and $k=0$ for complexes 2,3 and $5-7$, was used. All hydrogenatom parameters were calculated according to ideal geometries and were not refined. The structural analyses were made on a Microvax III computer using NRCVAX programs. ${ }^{22}$ Atomic scattering factors were taken from ref. 23.

Additional material available from the Cambridge Crystallographic Data Centre comprises H -atom coordinates, thermal parameters and remaining bond lengths and angles.

Results and Discussion

Synthesis.-The ligand N, N-bis(pyrazol-1-ylmethyl)benzylamine (L), which possesses three nitrogen donor sites, was prepared using a modification of the literature method. ${ }^{21}$ Reactions of metal ions and ligand (L), which possesses two potential nitrogen donor sites from the pyrazolyl rings and one nitrogen donor site from benzylamine, result in the formation of complexes $\left[\mathrm{FeLCl}_{3}\right],\left[\mathrm{CoLCl}_{2}\right],\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right]$, $\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right], \quad\left[\mathrm{CuLCl}_{2}\right], \quad\left[(\mathrm{CuLI})_{2}\right], \quad\left[\mathrm{ZnLBr}_{2}\right]$, $\left[\mathrm{ZnL}(\mathrm{NCS})_{2}\right]$ and $\left[\mathrm{ZnLCl}_{2}\right]$.

Molecular Structures of $\left[\mathrm{CoLCl}_{2}\right] 2$ and $\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right]$ 3.These structures are shown in Figs. 1 and 2; selected bond distances and angles are presented in Table 8.
In complex 2, the cobalt(II) ion is surrounded by two pyrazolyl nitrogen atoms at $\mathrm{Co}-\mathrm{N}(1) 2.014(4) \AA$ and $\mathrm{Co}-\mathrm{N}(3)$ $2.001(3) \AA$, and two chloride ions at $\mathrm{Co}-\mathrm{Cl}(1) 2.320(2) \AA$ and $\mathrm{Co}-\mathrm{Cl}(2) 2.249(2) \AA$. Some angles between co-ordination bonds of cobalt(II), which range from $95.9(1)$ to $123.7(1)^{\circ}$, deviate substantially from ideal tetrahedral angles. Bonding may also occur from Co to the amine N as the $\mathrm{Co}-\mathrm{N}(3)$ distance is $2.510(4) \AA$. While the $\mathrm{Co}-\mathrm{N}$ (amine) distance is longer than that found in $\left[\mathrm{CoL}^{\prime}{ }_{2}\right]\left[\mathrm{NO}_{3}\right]_{2}[2.229(5) \AA]\left[\mathrm{L}^{\prime}=\operatorname{bis}(1\right.$-pyrazolylmethyl)amine], ${ }^{24}$ in which the $\mathrm{Co}-\mathrm{N}$ bond is described as bonding, it is much shorter than that of $\left[\mathrm{Co}(\mathrm{bdmpab}) \mathrm{Cl}_{2}\right]$ $[3.854(2) \AA][b d m p a b=N, N$-bis(3,5-dimethylpyrazol-1-ylmethyl)aminobenzene], ${ }^{5}$ in which the cobalt ion is described as having a distorted tetrahedral configuration. The geometry of
Table 1 Crystallographic data for $\left[\mathrm{CoLCl}_{2}\right] 2,\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right] 3,\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right] 4,[\mathrm{CuLCl}]_{2} 5,\left[(\mathrm{CuLI})_{2}\right] 6$ and $\left[\mathrm{ZnLBr}_{2}\right] 7$
Complex
Crystal size/mm
Crystal size/mm
$P \overline{1}$
2
$7.337(8)$
$9.841(7)$
13.361(4)
$70.35(4)$
71.61(9)
$71.61(9)$
$860.0(12)$
1.11
45.0
-8 to $8,0-15,0-16$

\qquad
6
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{5} \mathrm{Zn}$

Monoclinic
$P_{4} 2_{1} / c$

93.137(20)
1820.9(7)
968
1.797
5.73
-10 to $10,0-11,-17$ to 18
$2(0.80+0.35 \tan \theta)$
4407
3103
0.033
0.024
1.85
vations and N_{v} is the number of variables.
4
5
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{CuN}_{5}$
$401.78 \times 0.30 \times 0.30$
0.20×0.30
Monoclinic
$P 2_{1} / c$
7.921(2)
$32.971(2)$
$7.178(2)$
114.04(2)
1712.0(12)
1.599
1.59
$2(0.60+0.35 \tan \theta)$
2237
H
0
0
O
O

$\mathrm{C}_{30} \mathrm{H}_{34}$
15.57

0.20×0
Triclinic
2
(9) $28 Z^{\circ} 01$
$17.468(6)$
$74.07(5)$
$86.01(5)$
1691.3(17)
1.798
0.68
$0.30 \times 0.30 \times 0.25$
Monoclinic
4
$7.288(2)$
34.899(20)
8.54
99.26(3)
2145.8(19)
\square
468

* $R=\Sigma\left|F_{\mathrm{o}}-F_{\mathrm{o}}\right| / \Sigma\left|F_{\mathrm{o}}\right|, R^{\prime}=\left[\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / \Sigma w F_{\mathrm{o}}{ }^{2}\right]^{\frac{1}{2}}, S=\left[\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{\frac{1}{2}}$, where
45.0
-7 to
$2(0.90$
2237
1816
0.031
0.026
2.01

3
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{CoN}_{7} \mathrm{~S}_{2}$
$442.42 \times 0.25 \times 0.30$
Monoclinic
${ }^{P} 2_{1} / n$
$9.820(5)$
11.896(7)
106.08(4)
(8I) S'266I
908
1.475
$2(0.90+0.35 \tan \theta)$
401
2.07
$R=\Sigma\left|F_{\mathrm{o}}-F_{\mathrm{o}}\right| \Sigma\left|F_{\mathrm{o}}\right|, R=\left[\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} / \Sigma w F_{\mathrm{o}}\right]^{2}, S=\left[\Sigma w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{2}$, where N_{o} is number of observations and N_{v} is the number of

Table 2 Final atomic positional parameters of non-hydrogen atoms for $\left[\mathrm{CoLCl}_{2}\right] 2$

Atom	x	y	z
Co	$0.82481(8)$	$0.93932(7)$	$0.27389(5)$
$\mathrm{Cl}(1)$	$0.63098(16)$	$0.82377(13)$	$0.39033(9)$
$\mathrm{Cl}(2)$	$0.68576(18)$	$1.02161(14)$	$0.10823(9)$
$\mathrm{N}(1)$	$1.0561(5)$	$0.7506(4)$	$0.3047(3)$
$\mathrm{N}(2)$	$1.2306(5)$	$0.7591(4)$	$0.2714(3)$
$\mathrm{N}(3)$	$0.8399(5)$	$1.0780(4)$	$0.35141(25)$
$\mathrm{N}(4)$	$0.9952(5)$	$1.1242(4)$	$0.34911(25)$
$\mathrm{N}(5)$	$1.1054(5)$	$1.0308(4)$	$0.20868(25)$
$\mathrm{C}(1)$	$1.0910(6)$	$0.6078(5)$	$0.3699(3)$
$\mathrm{C}(2)$	$1.2840(7)$	$0.5249(5)$	$0.3781(4)$
$\mathrm{C}(3)$	$1.3686(6)$	$0.6262(5)$	$0.3144(4)$
$\mathrm{C}(4)$	$0.7159(6)$	$1.1540(5)$	$0.4050(3)$
$\mathrm{C}(5)$	$0.7908(7)$	$1.2475(5)$	$0.4363(3)$
$\mathrm{C}(6)$	$0.9710(7)$	$1.2242(5)$	$0.4004(3)$
$\mathrm{C}(7)$	$1.2408(6)$	$0.8986(5)$	$0.1894(3)$
$\mathrm{C}(8)$	$1.1652(6)$	$1.0516(5)$	$0.3021(3)$
$\mathrm{C}(9)$	$1.0828(6)$	$1.16545)$	$0.10888(3)$
$\mathrm{C}(10)$	$0.9723(7)$	$1.3147(5)$	$0.1205(3)$
$\mathrm{C}(11)$	$1.0687(7)$	$1.4080(6)$	$0.1341(3)$
$\mathrm{C}(12)$	$0.9672(11)$	$1.5499(7)$	$0.1390(4)$
$\mathrm{C}(13)$	$0.7717(11)$	$1.5998(6)$	$0.1293(5)$
$\mathrm{C}(14)$	$0.6748(8)$	$1.5083(6)$	$0.1155(4)$
$\mathrm{C}(15)$	$0.7734(7)$	$1.3666(5)$	$0.1107(4)$

Table 3 Final atomic positional parameters of non-hydrogen atoms for $\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right] 3$

Atom	x	y	z
Co	$0.23660(13)$	$0.16313(7)$	$0.07281(10)$
$\mathrm{S}(1)$	$0.1433(3)$	$0.10190(15)$	$0.42918(21)$
$\mathrm{S}(2)$	$0.7214(3)$	$0.21199(16)$	$0.21103(22)$
$\mathrm{N}(1)$	$0.2142(6)$	$0.0927(3)$	$-0.0664(5)$
$\mathrm{N}(2)$	$0.0952(6)$	$0.0994(3)$	$-0.1561(5)$
$\mathrm{N}(3)$	$0.2096(7)$	$0.2725(4)$	$0.0301(5)$
$\mathrm{N}(4)$	$0.0771(7)$	$0.3002(3)$	$-0.0144(5)$
$\mathrm{N}(5)$	$-0.0089(6)$	$0.1751(3)$	$-0.0409(5)$
$\mathrm{N}(6)$	$0.1706(6)$	$0.1366(4)$	$0.2091(5)$
$\mathrm{N}(7)$	$0.4494(7)$	$0.1614(4)$	$0.1364(6)$
$\mathrm{C}(1)$	$0.2820(9)$	$0.0329(5)$	$-0.0905(8)$
$\mathrm{C}(2)$	$0.2074(10)$	$0.0017(5)$	$-0.1948(7)$
$\mathrm{C}(3)$	$0.0926(10)$	$0.0445(5)$	$-0.2336(7)$
$\mathrm{C}(4)$	$0.2941(9)$	$0.3309(5)$	$0.0249(7)$
$\mathrm{C}(5)$	$0.2173(11)$	$0.3938(5)$	$-0.0198(8)$
$\mathrm{C}(6)$	$0.0818(10)$	$0.3731(5)$	$-0.0439(8)$
$\mathrm{C}(7)$	$0.0083(8)$	$0.1645(4)$	$-0.1586(6)$
$\mathrm{C}(8)$	$-0.0436(9)$	$0.2525(4)$	$-0.0171(7)$
$\mathrm{C}(9)$	$-0.1049(8)$	$0.1189(4)$	$-0.0113(6)$
$\mathrm{C}(10)$	$-0.2514(8)$	$0.1143(4)$	$-0.0994(6)$
$\mathrm{C}(11)$	$-0.2825(10)$	$0.0563(5)$	$-0.1771(8)$
$\mathrm{C}(12)$	$-0.4112(11)$	$0.0536(6)$	$-0.2577(8)$
$\mathrm{C}(13)$	$-0.5090(10)$	$0.1086(6)$	$-0.2596(8)$
$\mathrm{C}(14)$	$-0.4802(9)$	$0.1654(6)$	$-0.1817(8)$
$\mathrm{C}(15)$	$-0.3519(8)$	$0.1684(5)$	$-0.1009(7)$
$\mathrm{C}(16)$	$0.1571(8)$	$0.1219(4)$	$0.3007(7)$
$\mathrm{C}(17)$	$0.5636(8)$	$0.1828(5)$	$0.1653(7)$

the cobalt ion environment can thus also be described as intermediate between tetrahedral and trigonal bipyramidal.

The Co-N(pyrazole) distances [2.037(6) \AA and 2.006(6) \AA] of complex 3 are similar to those of complex 2, but the $\mathrm{Co}-\mathrm{N}($ amine $)$ distance $[2.425(6) \AA$] is even smaller than that of complex 2 [2.510(4) \AA] and the Co-N(amine) bonding interaction is thus stronger in complex 3. Some of the angles between co-ordination bonds deviate significantly from ideal tetrahedral angles [range 99.2(3)-122.6(3) ${ }^{\circ}$] and as in complex 2 the geometry of the cobalt(II) environment can be described as intermediate between tetrahedral and trigonal bipyramidal. Two thiocyanate ions are bonded to the cobalt(II) ion [Co-N(6) 1.963(6) $\AA, \mathrm{Co}-\mathrm{N}(7) 2.016(7) \AA$]. The co-ordination angles of

Table 4 Final atomic positional parameters of non-hydrogen atoms for $\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right] 4$

Atom	x	y	z
Ni	0.47916	$0.89657(7)$	0.72123
$\mathrm{~S}(1)$	$0.7430(8)$	$0.81424(17)$	$0.3772(7)$
$\mathrm{S}(2)$	$-0.0661(8)$	$0.94743(25)$	$0.4180(9)$
$\mathrm{N}(1)$	$0.3244(20)$	$0.8482(4)$	$0.7414(18)$
$\mathrm{N}(2)$	$0.4063(19)$	$0.8215(4)$	$0.8354(18)$
$\mathrm{N}(3)$	$0.4136(19)$	$0.9238(5)$	$0.9130(17)$
$\mathrm{N}(4)$	$0.5154(20)$	$0.9147(5)$	$1.0541(19)$
$\mathrm{N}(5)$	$0.6557(19)$	$0.8667(4)$	$0.9296(17)$
$\mathrm{C}(1)$	$0.1874(24)$	$0.8297(6)$	$0.6453(22)$
$\mathrm{C}(2)$	$0.189(3)$	$0.7929(7)$	$0.685(3)$
$\mathrm{C}(3)$	$0.331(3)$	$0.7881(6)$	$0.807(3)$
$\mathrm{C}(4)$	$0.278(3)$	$0.9465(5)$	$0.9579(24)$
$\mathrm{C}(5)$	$0.292(3)$	$0.9495(6)$	$1.121(3)$
$\mathrm{C}(6)$	$0.449(3)$	$0.9291(6)$	$1.1877(22)$
$\mathrm{C}(7)$	$0.5399(24)$	$0.8335(6)$	$0.9759(23)$
$\mathrm{C}(8)$	$0.6830(25)$	$0.8937(5)$	$1.0526(23)$
$\mathrm{C}(9)$	$0.8304(23)$	$0.8509(5)$	$0.8770(21)$
$\mathrm{C}(10)$	$0.9703(24)$	$0.8311(5)$	$1.0113(22)$
$\mathrm{C}(11)$	$0.982(3)$	$0.7930(6)$	$1.0196(24)$
$\mathrm{C}(12)$	$1.112(3)$	$0.7743(7)$	$1.137(3)$
$\mathrm{C}(13)$	$1.223(3)$	$0.7990(6)$	$1.2444(24)$
$\mathrm{C}(14)$	$1.209(3)$	$0.8364(6)$	$1.2350(22)$
$\mathrm{C}(15)$	$1.084(3)$	$0.8541(6)$	$1.123(3)$
$\mathrm{N}(6)$	$0.5949(19)$	$0.8685(5)$	$0.5494(17)$
$\mathrm{C}(16)$	$0.6573(22)$	$0.8452(5)$	$0.4767(20)$
$\mathrm{N}(7)$	$0.2801(23)$	$0.9241(6)$	$0.5732(20)$
$\mathrm{C}(17)$	$0.141(3)$	$0.9330(6)$	$0.5058(21)$
O	$0.6868(18)$	$0.9389(3)$	$0.7083(17)$
$\mathrm{C}(18)$	$0.653(4)$	$0.9754(6)$	$0.716(3)$

Table 5 Final atomic positional parameters of non-hydrogen atoms for $\left[\mathrm{CuLCl}_{2}\right] 5$

Atom			
Cu	$0.02720(8)$	$0.145876(19)$	z
Cu	$0.02825(9)$		
$\mathrm{Cl}(1)$	$0.16681(18)$	$0.20172(4)$	$-0.08887(19)$
$\mathrm{Cl}(2)$	$-0.19276(19)$	$0.11333(5)$	$-0.23392(21)$
$\mathrm{N}(1)$	$-0.1363(6)$	$0.18018(12)$	$0.1075(6)$
$\mathrm{N}(2)$	$-0.0487(5)$	$0.19916(12)$	$0.2877(6)$
$\mathrm{N}(3)$	$0.2352(5)$	$0.10952(12)$	$0.0643(6)$
$\mathrm{N}(4)$	$0.3890(5)$	$0.11698(12)$	$0.2345(6)$
$\mathrm{N}(5)$	$0.1960(5)$	$0.15359(11)$	$0.3534(5)$
$\mathrm{C}(1)$	$-0.3153(7)$	$0.19049(17)$	$0.0430(8)$
$\mathrm{C}(2)$	$-0.3376(7)$	$0.21667(17)$	$0.1810(10)$
$\mathrm{C}(3)$	$-0.1659(8)$	$0.22144(16)$	$0.3359(9)$
$\mathrm{C}(4)$	$0.2753(7)$	$0.07798(16)$	$-0.0231(7)$
$\mathrm{C}(5)$	$0.4546(8)$	$0.06588(18)$	$0.0873(8)$
$\mathrm{C}(6)$	$0.5237(7)$	$0.09105(18)$	$0.2527(8)$
$\mathrm{C}(7)$	$0.1529(6)$	$0.19554(15)$	$0.3902(7)$
$\mathrm{C}(8)$	$0.3853(6)$	$0.15063(15)$	$0.3646(7)$
$\mathrm{C}(9)$	$0.1605(7)$	$0.12569(15)$	$0.4951(7)$
$\mathrm{C}(10)$	$0.1474(7)$	$0.08143(15)$	$0.4344(8)$
$\mathrm{C}(11)$	$0.2927(8)$	$0.05507(18)$	$0.5298(8)$
$\mathrm{C}(12)$	$0.2746(9)$	$0.01476(20)$	$0.4738(11)$
$\mathrm{C}(13)$	$0.1148(11)$	$0.00098(20)$	$0.3193(12)$
$\mathrm{C}(14)$	$-0.0294(9)$	$0.02683(20)$	$0.2240(10)$
$\mathrm{C}(15)$	$-0.0134(7)$	$0.06682(17)$	$0.2816(8)$

the thiocyanates to the metal ion deviates from linearity to a moderate degree [167.7(6) and $\left.159.4(7)^{\circ}\right]$.

Molecular Structure of $\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right]$ 4.-This structure is shown in Fig. 3; selected bond distances and angles are presented in Table 8.

The nickel(II) ion is six-coordinate with the ligand bound in a facial manner $[\mathrm{Ni}-\mathrm{N}(1) 2.052(15), \mathrm{Ni}-\mathrm{N}(3) 2.018(15)$ and $\mathrm{Ni}-\mathrm{N}(5) 2.276(14) \AA]$. Two isocyanate ions [$\mathrm{Ni}-\mathrm{N}(6) 2.056(15)$ and $\mathrm{Ni}-(7) 2.009(15) \AA$] and one oxygen from methanol [$\mathrm{Ni}-\mathrm{O}$ $2.130(13) \AA$] occupy the remaining facial site. Distortion from

Table 6 Final atomic positional parameters of non-hydrogen atoms for $\left[(\mathrm{CuLI})_{2}\right] 6$

Atom	\boldsymbol{x}	y	z	Atom	x	y	z
I(1)	0.591 42(5)	0.975 61(5)	0.133 44(3)	C(14)	1.475 4(8)	0.374 2(8)	$0.1191(5)$
I(2)	0.836 54(5)	$0.78311(6)$	$0.33130(3)$	C(15)	1.4011 (8)	0.494 4(7)	0.096 0(4)
$\mathrm{Cu}(1)$	0.821 34(10)	0.844 18(10)	0.170 59(6)	N(6)	0.4487 (6)	0.759 8(6)	0.348 0(3)
$\mathrm{Cu}(2)$	$0.59510(10)$	$0.89637(10)$	$0.29114(6)$	N(7)	0.3118 (6)	0.776 6(6)	0.344 9(3)
$\mathrm{N}(1)$	0.985 5(5)	0.970 1(6)	0.126 2(3)	N(8)	0.557 3(5)	1.042 8(6)	0.349 9(3)
N(2)	1.102 8(5)	0.949 7(5)	0.080 6(3)	N(9)	0.4419 (6)	$1.1175(6)$	0.355 5(3)
N(3)	0.852 7(5)	0.674 4(6)	0.1337 (3)	N(10)	0.2375 (6)	$1.0154(6)$	$0.3285(3)$
N(4)	0.9713 (5)	0.5978 (5)	0.138 2(3)	C(21)	0.467 6(8)	$0.6359(8)$	0.397 3(4)
N(5)	1.1806 (5)	0.710 8(5)	0.0930 (3)	C(22)	0.342 8(8)	0.575 3(7)	0.424 8(4)
C(1)	$1.0066(8)$	1.0826 (7)	0.1460 (4)	C(23)	$0.2463(8)$	0.667 9(8)	$0.3913(5)$
C(2)	$1.1312(8)$	1.133 3(7)	0.1151 (4)	C(24)	0.633 3(7)	1.073 3(7)	0.399 5(4)
C(3)	1.1903 (7)	1.0466 (7)	0.074 6(4)	C(25)	$0.5667(8)$	1.164 6(8)	0.437 3(4)
C(4)	0.772 9(7)	0.609 9(8)	0.0997 (5)	C(26)	0.4457 (8)	1.192 2(7)	0.407 1(4)
C(5)	0.839 5(8)	0.4997 (9)	$0.0815(5)$	C(27)	$0.2492(7)$	0.9031 (7)	$0.2957(4)$
C(6)	0.965 1(8)	0.4947 (7)	0.1063 (5)	C(28)	0.333 7(7)	1.1203 (7)	0.302 5(4)
C(7)	1.121 6(7)	0.834 4(7)	0.045 7(4)	C(29)	0.1470 (7)	1.009 8(7)	$0.4007(4)$
C(8)	1.090 0(7)	0.643 7(7)	0.163 2(4)	C(30)	$0.0667(7)$	1.1417 (7)	0.395 2(4)
C(9)	$1.3182(7)$	0.723 0(7)	$0.1133(4)$	C(31)	-0.019 0(8)	1.1873 (9)	$0.3357(5)$
$\mathrm{C}(10)$	1.392 8(6)	0.5877 (7)	0.1410 (4)	C(32)	$-0.0865(10)$	1.307 7(10)	0.327 6(6)
C(11)	1.459 9(7)	0.5563 (7)	0.208 5(4)	C(33)	-0.077 5(10)	1.387 4(9)	0.377 4(7)
C(12)	$1.5356(8)$	0.436 4(9)	0.2314 (4)	C(34)	0.0059 (10)	1.337 2(10)	0.438 2(6)
C(13)	1.544 4(8)	$0.3456(8)$	$0.1859(5)$	C(35)	0.078 2(8)	$1.2158(9)$	0.447 2(5)

Table 7 Final atomic positional parameters of non-hydrogen atoms for $\left[\mathrm{ZnLBr}_{2}\right] 7$

Atom	x	y	z
Zn	$0.97060(7)$	$0.24734(4)$	$0.07105(4)$
$\mathrm{Br}(1)$	$0.82921(7)$	$0.39143(4)$	$0.06984(4)$
$\mathrm{Br}(2)$	$0.85416(7)$	$0.13082(4)$	$-0.02297(4)$
$\mathrm{N}(1)$	$0.9653(5)$	$0.1971(3)$	$0.1898(3)$
$\mathrm{N}(2)$	$1.0373(5)$	$0.1174(3)$	$0.21861(24)$
$\mathrm{N}(3)$	$1.1969(4)$	$0.2757(3)$	$0.03100(25)$
$\mathrm{N}(4)$	$1.3231(5)$	$0.2147(3)$	$0.0223(3)$
$\mathrm{N}(5)$	$1.2797(5)$	$0.1140(3)$	$0.13837(25)$
$\mathrm{C}(1)$	$0.8785(6)$	$0.2284(4)$	$0.2532(3)$
$\mathrm{C}(2)$	$0.8921(7)$	$0.1686(4)$	$0.3214(3)$
$\mathrm{C}(3)$	$0.9961(7)$	$0.0985(4)$	$0.2979(3)$
$\mathrm{C}(4)$	$1.2458(6)$	$0.3563(4)$	$-0.0021(3)$
$\mathrm{C}(5)$	$1.4019(7)$	$0.3457(4)$	$-0.0326(4)$
$\mathrm{C}(6)$	$1.4485(6)$	$0.2553(4)$	$-0.0164(3)$
$\mathrm{C}(7)$	$1.1405(6)$	$0.0605(3)$	$0.1640(3)$
$\mathrm{C}(8)$	$1.3080(6)$	$0.1179(3)$	$0.0508(3)$
$\mathrm{C}(9)$	$1.4254(6)$	$0.1225(4)$	$0.1984(3)$
$\mathrm{C}(10)$	$1.5219(6)$	$0.0327(3)$	$0.2133(3)$
$\mathrm{C}(11)$	$1.4860(6)$	$-0.0263(4)$	$0.2771(3)$
$\mathrm{C}(12)$	$1.5713(7)$	$-0.1085(4)$	$0.2905(4)$
$\mathrm{C}(13)$	$1.6975(7)$	$-0.1318(4)$	$0.2407(4)$
$\mathrm{C}(14)$	$1.7367(6)$	$-0.0728(4)$	$0.1770(4)$
$\mathrm{C}(15)$	$1.6498(6)$	$0.0094(4)$	$0.1627(3)$

octahedral symmetry is fairly substantial considering that the relevant angles lie between 76.0(3) and 96.6(7) ${ }^{\circ}$. The $\mathrm{Ni}-\mathrm{N}$ (amine) bond which is trans to the NCS^{-}is longer than that found in $\left[\mathrm{NiL}_{2}{ }_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}[2.182(9) \AA] .{ }^{25}$ The coordination angles of the thiocyanates to the metal ion deviate from linearity [163.4(16) and $\left.162.4(19)^{\circ}\right]$.

Molecular Structure of $\left[\mathrm{CuLCl}_{2}\right] 5$.-This structure is shown in Fig. 4; selected bond distances and angles are presented in Table 8.

In complex 5, the copper(iI) ion is co-ordinated by a benzylamine nitrogen atom at $\mathrm{Cu}-\mathrm{N}(5) 2.182(4) \AA$, and two pyrazolyl nitrogen atoms at $\mathrm{Cu}-\mathrm{N}(1) 1.970(4)$ and $\mathrm{Cu}-\mathrm{N}(3)$ $1.968(4) \AA$, and two chloride ions at $\mathrm{Cu}-\mathrm{Cl}(1) 2.465(2)$ and $\mathrm{Cu}-\mathrm{Cl}(2) 2.248(2) \AA$. Addison et al. ${ }^{26}$ defined the τ parameter ($\tau=0$, square-pyramidal geometry; $\tau=1$, trigonal-bipyramidal geometry) to distinguish between these geometries. The τ value for complex 5 is 0.10 , indicating that the co-ordination

Fig. 1 Molecular structure of $\left[\mathrm{CoLCl}_{2}\right] 2$ with 50% probability ellipsoids for non-hydrogen atoms
sphere of copper(II) is better described as distorted square pyramidal rather than distorted trigonal bipyramidal. The geometry and the $\mathrm{Cu}-\mathrm{N}$ distances are similar to those of $\left[\mathrm{Cu}(\right.$ ddae $\left.) \mathrm{Cl}_{2}\right]$ \{ddae $=$ bis[2-(3,5-dimethylpyrazol-1-yl)ethyl)]ethylamine $\}{ }^{27}$ in which the ligand forms six-membered chelate rings upon co-ordination. The basal plane involves $\mathrm{N}(1), \mathrm{N}(5), \mathrm{N}(3)$ and $\mathrm{Cl}(2)$ while $\mathrm{Cl}(1)$ occupies the apical position; the $\mathrm{Cu}^{1 I}$ ion lies 0.418 (2) \AA above the basal plane.

Molecular Structure of $\left[(\mathrm{CuLI})_{2}\right] 6$.-This structure is shown in Fig. 5; selected bond distances and angles are presented in Table 8.

The copper(I) ion is surrounded by two nitrogen atoms at $\mathrm{Cu}(1)-\mathrm{N}(1) 2.092(6)$ and $\mathrm{Cu}(1)-\mathrm{N}(3) 2.015(6) \AA$ and by two bridging iodide ions at $\mathrm{Cu}(1)-\mathrm{I}(1) 2.604(2)$ and $\mathrm{Cu}(1)-\mathrm{I}(2)$ $2.721(2) \AA$. Two copper(I) ions and two bridging iodide ions form a planar $\mathrm{Cu}_{2} \mathrm{I}_{2}$ four-membered ring. The $\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$ distance at $3.028(2) \AA$, is larger than that in other known

Table 8 Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{CoLCl}_{2}\right]$ 2, $\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right] \mathbf{3},\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right] 4,[\mathrm{CuLCl} 2] 5,\left[(\mathrm{CuLI})_{2}\right] 6$ and $\left[\mathrm{ZnLBr}_{2}\right]$ 7. For the atomic numbering see Figs. 1-6

$\left[\mathrm{CoLCl}_{2}\right]^{2}$				$\left[\mathrm{CuLCl}_{2}\right] 5$			
$\mathrm{Co}-\mathrm{N}(1)$	2.014(4)	$\mathrm{Co}-\mathrm{Cl}(1)$	2.320(2)	$\mathrm{Cu}-\mathrm{N}(1)$	1.970(4)	$\mathrm{Cu}-\mathrm{Cl}(1)$	2.465(2)
$\mathrm{Co}-\mathrm{N}(3)$	2.001(3)	$\mathrm{Co}-\mathrm{Cl}(2)$	2.249(2)	$\mathrm{Cu}-\mathrm{N}(3)$	1.968(4)	$\mathrm{Cu}-\mathrm{Cl}(2)$	2.248(2)
$\mathrm{Co}-\mathrm{N}(5)$	$2.510(4)$			$\mathrm{Cu}-\mathrm{N}(5)$	2.182(4)		
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	113.98(15)	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(3)$	96.02(11)	$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$	157.77(16)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{N}(3)$	91.83(12)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(5)$	74.12(14)	$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(5)$	159.66(9)	$\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(5)$	79.03(15)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{N}(5)$	96.26(10)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(5)$	72.98(23)	$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(1)$	113.36(13)	$\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(5)$	79.52(15)	$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{N}(1)$	98.00(13)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{Cl}(2)$	107.57(8)	$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(3)$	123.74(11)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{Cl}(2)$	111.92(6)	$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{N}(3)$	98.12(12)
$\mathrm{Cl}(1)-\mathrm{Co}-\mathrm{N}(1)$	95.90(12)	$\mathrm{Cl}(2)-\mathrm{Co}-\mathrm{N}(5)$	92.72(10)	$\mathrm{Cl}(1)-\mathrm{Cu}-\mathrm{N}(1)$	96.23(13)	$\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{N}(5)$	151.81(11)
$\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right] 3$				$\left[(\mathrm{CuLI})_{2}\right] 6$			
Co-N(1)	2.037(6)	$\mathrm{Co}-\mathrm{N}(3)$	2.006(6)	$\mathrm{Cu}(1)-\mathrm{N}(1)$	2.092(6)	$\mathrm{Cu}(1)-\mathrm{I}(2)$	2.721(2)
$\mathrm{Co}-\mathrm{N}(5)$	2.425(6)	$\mathrm{Co}-\mathrm{N}(6)$	1.963(6)	$\mathrm{Cu}(1)-\mathrm{N}(3)$	$2.015(6)$	$\mathrm{Cu}(2)-\mathrm{I}(1)$	2.653(2)
$\mathrm{Co}-\mathrm{N}(7)$	2.016(7)			$\mathrm{Cu}(2)-\mathrm{N}(6)$	2.064(6)	$\mathrm{Cu}(2)-\mathrm{I}(2)$	2.650 (2)
				$\mathrm{Cu}(2)-\mathrm{N}(8)$	2.037(6)	$\mathrm{Cu}(1) \cdots \mathrm{Cu}(2)$	3.028(2)
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(3)$	114.3(3)	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(5)$	74.54(22)	$\mathrm{Cu}(1)-\mathrm{I}(1)$	2.604(2)		
$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(6)$	122.6(3)	$\mathrm{N}(1)-\mathrm{Co}-\mathrm{N}(7)$	99.4(3)				
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(5)$	74.49(22)	$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(6)$	113.0(3)	$\mathrm{Cu}(1)-\mathrm{I}(1)-\mathrm{Cu}(2)$	70.34(6)	$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(3)$	109.67(22)
$\mathrm{N}(3)-\mathrm{Co}-\mathrm{N}(7)$	99.2(3)	$\mathrm{N}(5)-\mathrm{Co}-\mathrm{N}(6)$	88.68(23)	$\mathrm{Cu}(1)-\mathrm{I}(2)-\mathrm{Cu}(2)$	68.62(6)	$\mathrm{I}(1)-\mathrm{Cu}(2)-\mathrm{I}(2)$	110.63(6)
$\mathrm{N}(5)-\mathrm{Co}-\mathrm{N}(7)$	167.86(24)	$\mathrm{N}(6)-\mathrm{Co}-\mathrm{N}(7)$	103.4(3)	$\mathrm{I}(1)-\mathrm{Cu}(1)-\mathrm{I}(2)$	109.93(6)	$\mathrm{I}(1)-\mathrm{Cu}(2)-\mathrm{N}(6)$	113.83(16)
$\mathrm{Co}-\mathrm{N}(6)-\mathrm{C}(16)$	167.7(6)	$\mathrm{Co}-\mathrm{N}(7)-\mathrm{C}(17)$	159.4(7)	I(1) $\mathrm{Cu}(1)-\mathrm{N}(1)$	110.54(16)	$\mathrm{I}(2)-\mathrm{Cu}(2)-\mathrm{N}(8)$	116.57(16)
				$\mathrm{I}(1)-\mathrm{Cu}(1)-\mathrm{N}(3)$	114.00(16)	$\mathrm{I}(2)-\mathrm{Cu}(2)-\mathrm{N}(6)$	107.73(16)
$\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{Me}\right.$	H)] 4			$\mathrm{I}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)$	102.31(16)	$\mathrm{I}(2)-\mathrm{Cu}-(2)-\mathrm{N}(8)$	105.61(16)
$\mathrm{Ni}-\mathrm{N}(1)$	2.052(15)	$\mathrm{Ni}-\mathrm{N}(3)$	2.018(15)	$\mathrm{I}(2)-\mathrm{Cu}(1)-\mathrm{N}(3)$	109.75(17)	$\mathrm{N}(6)-\mathrm{Cu}(2)-\mathrm{N}(8)$	101.67(23)
$\mathrm{Ni}-\mathrm{N}(5)$	2.276(14)	$\mathrm{Ni}-\mathrm{N}(6)$	2.056(15)				
$\mathrm{Ni}-\mathrm{N}(7)$	2.009(15)	$\mathrm{Ni}-\mathrm{O}$	2.130 (13)	[ZnLBr_{2}] 7			
				$\mathrm{Zn}-\mathrm{Br}(1)$	2.355(1)	$\mathrm{Zn}-\mathrm{Br}(2)$	2.391(1)
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$	96.5(6)	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(3)$	78.9(6)	Zn -N(1)	2.013(4)	$\mathrm{Zn}-\mathrm{N}$ (3)	2.005(4)
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(6)$	87.8(6)	$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{N}(7)$	95.4(7)	$\mathrm{Zn}-\mathrm{N}(5)$	$3.270(4)$		
$\mathrm{N}(1)-\mathrm{Ni}-\mathrm{O}$	168.3(5)	$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(5)$	76.0(5)				
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(6)$	169.4(5)	$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{N}(7)$	92.6(7)	$\mathrm{Br}(1)-\mathrm{Zn}-\mathrm{Br}(2)$	115.57(4)	$\mathrm{Br}(1)-\mathrm{Zn}-\mathrm{N}(1)$	106.57(11)
$\mathrm{N}(3)-\mathrm{Ni}-\mathrm{O}$	88.8(6)	$\mathrm{N}(5)-\mathrm{Ni}-\mathrm{N}(6)$	95.5(6)	$\mathrm{Br}(1)-\mathrm{Zn}-\mathrm{N}(3)$	105.58(11)	$\mathrm{Br}(2)-\mathrm{Zn}-\mathrm{N}(1)$	107.64(11)
$\mathrm{N}(5)-\mathrm{Ni}-\mathrm{N}(7)$	166.4(6)	$\mathrm{N}(5)-\mathrm{Ni}-\mathrm{O}$	92.4(5)	$\mathrm{Br}(2)-\mathrm{Zn}-\mathrm{N}(3)$	106.15(11)	$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(3)$	115.66(16)
$\mathrm{N}(6)-\mathrm{Ni}-\mathrm{N}(7)$	96.6(7)	$\mathrm{N}(6)-\mathrm{Ni}-\mathrm{O}$	85.2(6)				
$\mathrm{N}(7)-\mathrm{Ni}-\mathrm{O}$	94.8(7)	$\mathrm{Ni}-\mathrm{N}(6)-\mathrm{C}(16)$	163.4(19)				
$\mathrm{Ni}-\mathrm{N}(7)-\mathrm{C}(17)$	162.4(19)						

Fig. 2 Molecular structure of $\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right] 3$ with 50% probability ellipsoids for non-hydrogen atoms
structural examples of isolated planar $\mathrm{Cu}_{2} \mathrm{X}_{2}$ rhombohedra: $\left[\left\{\mathrm{CuI}\left(\mathrm{AsPPh}_{3}\right)(\mathrm{MeCN})_{2}\right\}_{2}\right][2.779(1) \AA]^{28}$ and $\left[\left\{\mathrm{Cu}\left(\mathrm{Pr}^{\mathrm{i}} \mathrm{HN}-\right.\right.\right.$ $\left.\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHPr}^{\mathrm{i}}\right) \mathrm{I}\right\}_{2}\right]\left[2.733(1) \AA{ }^{\AA}\right]^{29}$ but a little smaller than that found in $\left[\left\{\mathrm{CuI}\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}\right)\right\}_{2}\right]\left(\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}=\right.$ quinoline $)$ $[3.364(5) \AA] .{ }^{30}$ The $\mathrm{Cu}(1)-\mathrm{I}(1)-\mathrm{Cu}(2)$ bridging angle is $70.34(6)^{\circ}$ and the $\mathrm{I}(1)-\mathrm{Cu}(1)-\mathrm{I}(2)$ angle is $109.93(6)^{\circ}$. The benzylamine nitrogen-copper distances are 3.950(6) and $3.702(6) \AA$ which are too long to be regarded as bonding. The

Fig. 3 Molecular structure of $\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right] 4$ with 50% probability ellipsoids for non-hydrogen atoms
co-ordination of copper(r) can be described as distorted tetrahedral with angles from $102.31(16)$ to $110.54(16)^{\circ}$ for $\mathrm{Cu}(1)$ and from $101.67(23)$ to $116.57(16)^{\circ}$ for $\mathrm{Cu}(2)$.

The structure of complex 6 is very similar to that of [$\mathrm{Cu}-$ (aebd)I] [aebd $=N, N$-bis(3,5-dimethylpyrazol-1-ylmethyl)aminoethane $]^{31}$ which is mononuclear and complex 6 can be regarded as being formed from two copper(i) moieties like $[\mathrm{Cu}(\mathrm{aebd}) \mathrm{I}]$. However as for $\left[\{\mathrm{Cu}(\mathrm{aebp}) \mathrm{Cl}\}_{2}\right][$ aebp $=N, N-$ bis(pyrazol-1-ylmethyl)aminoethane ${ }^{32}$ formation of a bridge
occurs in complex 6 because there is no ligand steric hindrance in contrast to aebd where methyl groups prevent association of the $[\mathrm{Cu}($ aebd $) I]$ moieties.

Molecular Structure of $\left[\mathrm{ZnLBr}_{2}\right]$ 7.-This structure is shown in Fig. 6; selected bond distances and angles are presented in Table 8.

In complex 7, the zinc(II) ion is surrounded by two pyrazolyl nitrogen atoms at $\mathrm{Zn}-\mathrm{N}(1) 2.013(4)$ and $\mathrm{Zn}-\mathrm{N}(3) 2.005(4) \AA$, and two bromide ions at $\mathrm{Zn}-\mathrm{Br}(1) 2.355(1)$ and $\mathrm{Zn}-\mathrm{Br}(2)$ 2.391 (1) \AA. The benzylamine nitrogen-zinc distance is 3.270 (4) $\AA[\mathrm{Zn}-\mathrm{N}(5)]$ which is too long to be considered as a bonding interaction. The co-ordination sphere of zinc(II) can be described as only slightly distorted from tetrahedral with angles ranging from $105.58(11)$ to $115.66(16)^{\circ}$.

Comparison of the structures of complexes 2-7 indicates that N, N-bis(pyrazol-1-ylmethyl)benzylamine is a flexible ligand. The cobalt(II) (d^{7}) and zinc(II) (d^{10}) ions favour tetrahadral geometry. In complexes 2 and 3 the amine rotates toward the Co ion, but away from the Zn ion in complex 7 . This results in $\mathrm{Co}-\mathrm{N}$ (amine) distances being shorter than that of $\mathrm{Zn}-\mathrm{N}$ (amine). The shorter $\mathrm{Co}-\mathrm{N}$ distances in $\mathbf{2}$ and $\mathbf{3}$ leads to some interaction between Co and N (amine) and to deviation from tetrahedral toward trigonal-bipyramidal geometry. The $\mathrm{Ni}-\mathrm{N}$ (amine) bond in complex 4 can be described as bonding for nickel(II) (d^{8}) which prefers octahedral geometry. In the d^{10} copper(I) and zinc(II) complexes 6 and 7, the metal ion can be regarded as tetrahedral and the ligand is bidentate. For the octahedral

Fig. 4 Molecular structure of $\left[\mathrm{CuLCl}_{2}\right] 5$ with 50% probability ellipsoids for non-hydrogen atoms
nickel(II) complex 4 and square-pyramidal copper(II) in complex 5 the ligand is tridentate and the $\mathrm{M}-\mathrm{N}$ (amine) distances are within the range observed for other complexes. ${ }^{16-20}$ In all the complexes, the pyrazole rings are planar and the methyl carbons are coplanar with the respective pyrazole ring; the pyrazole rings are not mutually coplanar and there is no stacking between the aromatic rings with crystal packing determined by normal van der Waals contacts.

Spectroscopy.-In the IR spectra the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C}=\mathrm{N}$ stretching vibrations of the pyrazolyl groups of the complexes are similar to those of the free ligand at 3107 and $1507 \mathrm{~cm}^{-1}$. There are new strong features at 2077 and $2060 \mathrm{~cm}^{-1}$ (complex 3), $2088 \mathrm{~cm}^{-1}$ (complex 4) and $2083 \mathrm{~cm}^{-1}$ (complex 8) arising from N -coordinated NCS^{-}groups. Complex 4 shows a broad absorption at $3334 \mathrm{~cm}^{-1}$ due to $\mathrm{v}(\mathrm{OH})$ from co-ordinated methanol.

The far-IR spectra of [CoLCl ${ }_{2}$] 2 shows bands at 308 and $278 \mathrm{~cm}^{-1}$ characteristic of $v(\mathrm{Co}-\mathrm{Cl})^{5,33,34}$ while $v(\mathrm{Cu}-\mathrm{Cl})$ in [$\left.\mathrm{CuLCl}_{2}\right] 5$ is located as one strong band at $258 \mathrm{~cm}^{-1}$. The chloro and bromo zinc complexes show very similar IR spectra except for absorptions at 284 and $223 \mathrm{~cm}^{-1}$ due to $\mathrm{v}(\mathrm{Zn}-\mathrm{Cl})$ and $v(\mathrm{Zn}-\mathrm{Br})$ respectively; these values being characteristic for a tetrahedral structure. ${ }^{33}$ The ligand-field spectra of complexes 2-5 are reported in Table 9.

The ${ }^{1} \mathrm{H}$ NMR signals of complex 6 showed a large positive chemical shift of the methylene bridge protons at $\delta 5.20$, pyrazolyl $\mathrm{C}^{5} \mathrm{H}$ at $\delta 7.75$ and pyrazolyl $\mathrm{C}^{3} \mathrm{H}$ at $\delta 7.88$ relative to that of the free ligand ($\delta 4.95,7.45$ and 7.53). The ${ }^{1} \mathrm{H}$ NMR signals of the zinc(II) complexes $7-9$ also showed large positive chemical shifts of the methylene bridge protons at $\delta 5.07,5.05$ and 5.09, pyrazolyl $\mathrm{C}^{5} \mathrm{H}$ at $\delta 7.54,7.53$ and 7.55 , and pyrazolyl $C^{3} \mathrm{H}$ at $\delta 7.76,7.76$ and 7.77 relative to that of the ligand $(\delta 4.95$, 7.45 and 7.53). Upon co-ordination most of the pyrazolyl proton signals were merged and broadened.

Fig. 6 Molecular structure of $\left[\mathrm{ZnLBr}_{2}\right] 7$ with 50% probability ellipsoids for non-hydrogen atoms

Fig. 5 Molecular structure of $\left[(\mathrm{CuLI})_{2}\right] 6$ with 50% probability ellipsoids for non-hydrogen atoms

Table 9 Electronic absorption maxima of co-ordination compounds of L

Compound	Ligand-field bands $\left(\mathrm{cm}^{-1}\right)$
$\left.[\mathrm{CoLCl})_{2}\right]$	17667,16667
$\left[\mathrm{CoL}(\mathrm{NCS})_{2}\right]$	17123
$\left[\mathrm{NiL}(\mathrm{NCS})_{2}(\mathrm{MeOH})\right]$	$27778,13405,12771$
$\left.[\mathrm{CuLCl})_{2}\right]$	$25906,16233,12987$

The X-band EPR spectra and magnetic moments of the polycrystalline complexes were measured at 298 K . The EPR spectrum of complex 5 is similar to that of $[\{\mathrm{Cu}(\mathrm{bmdhp})$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{ClO}_{4}\right)\right\}_{2}\right]^{26}$ [bmdhp $=1,7$-bis $(N$-methylbenzimidazol2 -yl)-2,6-dithiaheptane] and shows an axial signal. ${ }^{35}$ The g values ($g_{\|}=2.243, g_{\perp}=2.130$) of complex 5 are consistent with a square-pyramidal co-ordination sphere for copper(II) and the single unpaired electron is located in an essentially $\mathrm{d}_{x^{2}-y^{2}}$ orbital. The $g_{\text {iso }}$ value is 2.150 in $\mathrm{MeOH}-\mathrm{MeCN}$ solution at 77 K . The EPR spectra of complexes 2 and 3 at 298 K show no signal, but do show broad isotropic signals at 77 K , with g values of 3.307 and 3.552 . The magnetic moments ($\mu_{\text {eff }}$) of complexes 1-5 are $5.98,4.55,4.40,3.19$ and $1.94 \mu_{\mathrm{B}}$, respectively. These values indicate that the octahedral iron(iii) ion (d^{5} configuration) has high spin ($S=\frac{5}{2}$) for complex 1 and the tetrahedral cobalt(II) ion (d^{7} configuration) has high spin ($\left.S=\frac{3}{2}\right)^{36}$ for complexes 2 and 3 .

Acknowledgements

We thank the National Science Council of the Republic of China for support.

References

1 F. S. Keij, R. A. de Graff, J. G. Haasnoot and J. Reedijk, J. Chem. Soc., Dalton Trans., 1984, 2093.
2 R. Prins, P. J. W. L. Birker, J. G. Haasnoot, G. C. Verschoor and J. Reedijk, Inorg. Chem., 1985, 24, 4128.

3 M. Angaroni, G. A. Ardizzoia, T. Beringhelli, G. La Monica, D. Gatteschi, N. Masciocchi and M. Moret, J. Chem. Soc., Dalton Trans., 1990, 3305.
4 F. S. Keij, J. G. Haasnoot, A. J. Oosterling, J. Reedijk, C. J. O'Connor, J. H. Zhang and A. L. Spek, Inorg. Chim. Acta, 1991, 181, 185.
5 E. Bouwman, W. L. Driessen and J. Reedijk, Inorg. Chem., 1985, 24, 4730; H. L. Blonk, W. L. Driessen and J. Reedijk, J. Chem. Soc., Dalton Trans., 1985, 1699; J. B. J. Veldhuis, W. L. Driessen and J. Reedijk, J. Chem. Soc., Dalton Trans., 1986, 537.

6 S. M. Morehouse, A. Polychronopoulou and G. L. B. Williams, Inorg. Chem., 1980, 19, 3558.
7 A. C. van Steenbergen, E. Bouwman, R. A. G. de Graaff, W. L. Driessen, J. Reedijk and P. Zanello, J. Chem. Soc., Dalton Trans., 1990, 3175.
8 E. S. Raper and W. Clegg, Inorg. Chim. Acta, 1991, 180, 239.
9 S. M. Wang, P. J. Huang, H. Chang, C. Y. Cheng, S. L. Wang and N. C. Li, Inorg. Chim. Acta, 1991, 182, 109.

10 M. Hadded, D. N. Hendrickson, J. P. Cannady, R. S. Drago and D. S. Bieksza, J. Am. Chem. Soc., 1979, 101, 898.

11 F. Abraham, M. Lagrenee, S. Sueur, B. Mernari and C. Bremard, J. Chem. Soc., Dalton Trans., 1991, 1443.

12 S. Kitagawa, M. Munakata and T. Tanimura, Inorg. Chem., 1992, 31, 1714.
13 K. D. Karlin, R. W. Cruse and Y. Gultneh, J. Chem. Soc., Chem. Commun., 1987, 599; J. E. Pate, R. W. Cruse, K. D. Karlin and E. I. Solomon, J. Am. Chem. Soc., 1987, 110, 2624; K. D. Karlin, R. W. Cruse, Y. Gultneh, A. Farooq, J. C. Hayes and J. Zubieta, J. Am. Chem. Soc., 1987, 109, 2668; K. D. Karlin, M. S. Haka, R. W. Cruse, G. J. Meyer, A. Farooq, Y. Gultneh, J. C. Hayes and J. Zubieta, J. Am. Chem. Soc., 1988, 109, 1196; N. J. Blackburn, R. W. Strange, A. Farooq, M. S. Haka and K. D. Karlin, J. Am. Chem. Soc., 1988, 110, 4263; K. D. Karlin, P. Ghosh, R. W. Cruse, A. Farooq, Y. Gultneh, R. R. Jacobson, N. J. Blackburn R. W. Strange and J. Zubieta, J. Am. Chem. Soc., 1988, 110, 6769.

14 S. M. Nelson, F. Esho, A. Lavery and M. G. B. Drew, J. Am. Chem. Soc., 1983, 105, 5693.
15 N. Kitajima, T. Koda, S. Hashimoto, T. Kitagawa and Y. Morooka, J. Am. Chem. Soc., 1991, 113, 5664; N. Kitajima, K. Fujisawa, C. Fujimoto, Y. Moro-oka, S. Hashimoto, T. Kitagawa, K. Toriumi, K. Tatsumi and A. Nakamura, J. Am. Chem. Soc., 1992, 114, 1277.

16 T. N. Sorrell, M. L. Garrity and D. J. Ellis, Inorg. Chim. Acta, 1989, 166, 71; T. N. Sorrell and V. A. Vankai, Inorg. Chem., 1990, 29, 1687; T. N. Sorrell, V. A. Vankai and M. L. Garrity, Inorg. Chem., 1991, 30, 207.
17 C. T. Chen, W. K. Chang, S. C. Sheu, G. H. Lee, T. I. Ho, Y. C. Lin and Y. Wang, J. Chem. Soc., Dalton Trans., 1991, 1569.
18 W. K. Chang, S. C. Sheu, G. H. Lee, Y. Wang, T. I. Ho and Y. C. Lin, J. Chem. Soc., Dalton Trans., 1993, 687

19 W. K. Chang, G. H. Lee, Y. Wang, Y. O. Su, T. I. Ho and Y. C. Lin, Inorg. Chim. Acta, 1994, 223, 139.
20 W. K. Chang, Ph.D. Thesis, National Taiwan University, 1994.
21 W. L. Driessen, Recl. Trav. Chim. Pays-Bas, 1982, 101, 41; I. Dvoretzky and G. H. Richter, J. Org. Chem., 1950, 15, 1285.

22 E. J. Gabe, Y. Le Page, P. S. White and F. L. Lee, Acta Crystallogr., Sect. A, 1973, 43, S294
23 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
24 W. L. Driessen, W. G. R. Wiesmeijer, M. Schipper-Zablotskaja, R. A. G. de Graff and J. Reedijk, Inorg. Chim. Acta, 1989, 162, 233.

25 A. L. Spek, A. J. M. Duisenberg, W. L. Driessen and W. G. R. Wiesmeijer, Acta Crystallogr., Sect. C, 1988, 44, 623.
26 A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn and G. C. Verschoor, J. Chem. Soc., Dalton Trans., 1984, 1349.

27 W. L. Driessen, R. A. G. de Graaff, F. J. Parlevliet, J. Reedijk and R. M. de Vos, Inorg. Chim. Acta, 1994, 216, 43.

28 M. R. Churchill and J. R. Missert, Inorg. Chem., 1981, 20, 619
29 N. P. Rath, E. M. Holt and K. Tanimura, J. Chem. Soc., Dalton Trans., 1986, 2303.
30 D. A. Haitko, J. Coord. Chem., 1984, 13, 119.
31 Y. C. M. Pennings, W. L. Driessen and J. Reedijk, Acta Crystallogr., Sect. C, 1988, 44, 2095.
32 Y. C. M. Pennings, W. L. Driessen and J. Reedijk, Polyhedron, 1988, 7, 2583.
33 J. R. Ferraro, Low-Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York, 1971.
34 G. J. van driel, W. L. Driessen and J. Reedijk, Inorg. Chem., 1985, 24, 2919.

35 B. J. Hathaway and D. E. Billing, Coord. Chem. Rev., 1970, 5, 143.
36 B. N. Figgis and R. S. Nyholm, J. Chem. Soc., 1959, 338; B. J. Hathaway and D. G. Holah, J. Chem. Soc., 1964, 2400.

Received 16th June 1995; Paper 5/03919C

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.
 Non-SI unit employed: $\mu_{\mathrm{B}} \approx 9.274 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1}$

