Co-ordination Chemistry of Iodine(I) with Tetraazamacrocycles or Monodentate Ligands. Comparisons with Bromine(I) and with Some d-Block Metals[†]

Wang Shi Hua, Sarah I. Ajiboye, Gordon Haining, Laurence McGhee, Robert D. Peacock, Gordon Peattie, Rana M. Siddique and John M. Winfield* Department of Chemistry, University of Glasgow, Glasgow G12 800, UK

Co-ordination compounds of iodine(1), including those with tetraazamacrocyclic ligands, have been prepared either by direct reaction with the $[I(NCMe)_2]^+$ cation or by the previously reported ligand-induced disproportionation reaction of I_2 . The syntheses and the properties of the iodine complexes so prepared are compared with analogous work involving bromine, iron(11) or copper(11).

The formation of linear, centrosymmetric $[IL_2]^+$, for example L = pyridine (py),¹ thiourea,² hexamethylenetetramine,³ quinuclidine⁴ or MeCN,⁵ is a characteristic feature of iodine(1) chemistry. Bromine(1) has been studied less thoroughly but at least two examples of $[BrL_2]^+$ cations, $L = quinoline^6$ or quinuclidine,⁷ have been characterized structurally. The cations $[IL_2]^+$, L = py or 2,4,6-trimethylpyridine, have attracted attention as selective iodinating and/or cyclization agents for a variety of aromatics and olefins,⁸ in contrast $[BrL_2]^+$, L = quinuclidine, behaves as a mild oxidant rather than a source of electrophilic bromine.9 In many cases the reactions are acid-catalysed suggesting that the active reagent may be [IL]⁺ or [BrL]⁺ (cf. ref. 9) and, consistent with this, several $[IL]^+$, L = MeCN, NH₃, py or ICN, monoligated complexes have been prepared from reactions of [I₃][AsF₆] and L in SO₂.¹⁰

We are currently investigating the behaviour of these types of complex cations as alternatives to I_2 and Br_2 for the selective etching of semiconductor materials in solution and for this reason have become interested in the possibility of preparing complexes of I^1 or Br^1 with other co-ordination geometries. Tetraazamacrocycles were obvious candidates for ligands and the results of our synthetic work are now reported. In order to test the general applicability of one of our proposed synthetic routes, starting from the $[I(NCMe)_2]^+$ cation,⁵ we have also examined the behaviour of the macrocycles 1,4,7,10-tetraaza-cyclododecane, $[12]aneN_4$, and 1,4,8,11-tetraazacyclotetradecane, $[14]aneN_4$, towards acetonitrile-solvated iron(II) and copper(II) cations.

Results and Discussion

Iron and Copper Complexes.—Solvated iron(II) or copper(II) hexafluorophosphate or hexafluorotantalate(v) salts react smoothly with [12]aneN₄ or [14]aneN₄ in MeCN at room temperature to give the corresponding macrocyclemetal(II) cations which are additionally co-ordinated by two or one MeCN ligands (Scheme 1). The macrocyclemetal(II) salts are freely soluble in MeCN whereas the free macrocycles are insoluble, hence solid products are easily isolated. The compound *trans*-[Fe([14]aneN₄)(NCMe)₂][PF₆]₂ has been reported previously from the reaction between [Fe(NC-Me)₆][CF₃SO₃]₂ and [14]aneN₄ in MeCN followed by anion exchange, although attempts to isolate the corresponding 1,4,8,11-tetraazacyclotridecane, [13]aneN₄, salt were unsuccess-

Scheme 1 Preparation of copper(II), iron-(II) and -(III) tetraazamacrocycle complexes in MeCN. (*i*) MF_5 ; (*ii*) Cu^0 ; (*iii*) $MF_5 + L$; (*iv*) L; (*v*) $PF_5 + L$; (*vi*) NOPF₆; (*vii*) PF_5

ful.¹¹ The well known ability of N₄ macrocycles in stabilizing higher oxidation states of d-block elements is further illustrated by the oxidation of [FeL(NCMe)₂]²⁺, L = [12]aneN₄ or [14]aneN₄, to the corresponding iron(III) cations by phosphorus pentafluoride, a weak oxidizing agent in MeCN. Consistent with this, $E_{\frac{1}{2}}$ for Fe^{III}-Fe^{II} was determined by cyclic voltammetry to be +0.325 V vs. Ag⁺-Ag⁰.

Oxidation of iron metal by PF₅, in MeČN and in the presence of the macrocycles, yields iron(III) cations; in their absence only Fe^{II} is accessible in MeCN even when strong oxidizing agents are used.¹² Pre-formation of the iron(II) complexes is necessary to obtain analytically pure solids however, since PF₅ reacts slowly with the free macrocycles to give HF as one product. In contrast, the reaction between [Fe(OH₂)₆]²⁺ and [14]aneN₄ in oxygenated MeCN results in a bimetallic iron(II) complex in which two *trans*-[Fe(N₄)(NCMe)₂] units are bridged by a conjugated C₆ moiety.¹³ Reactions between the macrocycles

[†] Non-SI unit employed: $\mu_B \approx$ 9.27 \times 10^{-24} J $T^{-1}.$

Table 1 Characteristic IR bands (cm⁻¹) for solid tetraazamacrocycle complexes of Cu^{II}, Fe^{II}, Fe^{III} and I^I band

Complex	ν(NH)	$v(C\equiv N) + comb.$	δ(NH)	$v_{3}(MF_{6}^{-})$	$v_4(MF_6$
$[Cu([12]aneN_4)(NCMe)][PF_6]_2$	3470m		1730m		
	3400m	2300w	1675s	840vs	558vs
	3320m				
	3250m	2260m	1610s		
$[Cu([12]aneN_4)(NCMe)][TaF_6]_2$	3520m		1685m		
	3355m	2300w		590s	
	3300m		1620m		
	3130m	2260m	1585m		
$[Cu([14]aneN_4)(NCMe)][PF_6]_2$	3270m	2300w	1675m	840vs	558vs
		2260m			
$[Cu([14]aneN_4)(NCMe)_2][TaF_6]_2$	3270m	2300w	1675m	590s	
		2260m			
$[Fe([12]aneN_4)(NCMe)_2][PF_6]_2$	3480m		1700m		
	3400m	2295w	1650m	840vs	558vs
	3270m	2260m	1620m	0.0.0	00010
$[Fe([14]aneN_4)(NCMe)_2][PF_6]_2$	3290m	2300w	1730m	840vs	558vs
		2260m			
$[Fe([12]aneN_4)(NCMe)_2][PF_6]_3$	3480m		1675s		
	3400m	2290w	1650s	840vs	558vs
	3260m	2260m	1610s		
$[Fe([14]aneN_4)(NCMe)_3][PF_6]_3$	3240m	2300w	1590s	840vs	558vs
		2260m			
$[I([12]aneN_4)][I_3]^a$	3300s (br)		1600m (br)		
$[I([14]]aneN_{4})][I_{3}]^{b}$	3240m		1620m		
	3100m		1570m		
[I([14]aneN ₄)(NCMe)][UF ₄] ^c	3310m	2300w	1730m	520vs	
	3260m	2260m	1610m		
$[I([14]aneN_{4})(NCMe)][PF_{6}]^{c}$	3310m	2300w	1730w	845vs	558vs
	3250m	2260m	1610s		

Table 2	Analytical * and electronic spectral data for	or tetraazamacrocycle complexes of Cu ^{II} , Fe ^{II} and Fe ^{III}
---------	---	--

	Analysis (%)				
Complex	С	Н	N	$\tilde{\nu}_{max}/cm^{-1}$	$\epsilon/dm^3 \ mol^{-1} \ cm^{-1}$
[Cu([12]aneN ₄)(NCMe)][PF ₆] ₂	21.0 (21.2)	3.9 (4.1)	12.4 (12.3)	17 000	85
				33 200	1360
$[Cu([12]aneN_4)(NCMe)][TaF_6]_2$	14.3 (13.9)	2.75 (2.65)	8.2 (8.1)	16 900	135
				36 000	1210
$[Cu([14]aneN_4)(NCMe)][PF_6]_2$	24.2 (24.2)	4.7 (4.6)	11.9 (11.7)	18 900	85
				33 800	2250
$[Cu([14]aneN_4)(NCMe)_2][TaF_6]_2$	17.9 (17.9)	3.2 (3.2)	8.8 (8.9)	19 700	145
				35 300	2250
$[Fe([12]aneN_4)(NCMe)_2][PF_6]_2$	24.3 (24.0)	4.4 (4.3)	14.2 (14.0)	20 000	40
				26 700	80
$[Fe([14]aneN_4)(NCMe)_2][PF_6]_2$	26.7 (26.7)	4.85 (4.8)	13.8 (13.4)	18 500	50
				27 000	95
$[Fe([12]aneN_4)(NCMe)_2][PF_6]_3$	19.8 (19.3)	3.6 (3.5)	11.4 (11.3)	27 900	115
				38 500	300
$[Fe([14]aneN_4)(NCMe)_2][PF_6]_3$	22.9 (22.7)	4.3 (4.0)	10.6 (10.9)	27 700	115
				32 300	295

* Required values are given in parentheses.

and solvated Cu^I in MeCN result in ligand-induced disproportionation; similar behaviour has been encountered for silver(I) in MeCN, particularly if trace water or other impurities are present.¹⁴

Characteristic spectroscopic data for the compounds contained in Scheme 1 are in Tables 1 and 2. Comparisons with previous studies of complexes of Fe^{II} (ref. 11) and Cu^{II 15,16} indicate consistency where similar ligands are compared. There is little doubt from previous spectroscopic and magnetic work¹¹ that low-spin [Fe([14]aneN₄)(NCMe)₂]²⁺ has a *trans* octahedral FeN₆ configuration and it is reasonable to infer that the low-spin iron(III) and the copper(II) analogues are similar, at least in solution. Structures of the [12]aneN₄ complexes are more problematic. The crystal structure of [Cu-(Me₄[12]aneN₄)(H₂O)]²⁺ (Me₄[12]aneN₄ = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclodecane) indicates that Cu^{II} is in a square-pyramidal environment and located 0.5 Å above the macrocycle N₄ plane.¹⁶ A similar environment is possible for the MeCN solvates of $[Cu([12]aneN_4)]^{2+}$ prepared here but the multiple v(N–H) bands observed in their IR spectra suggest, by analogy with previous spectroscopic work on related complexes of Cu^{II} and Ni^{II},^{15,17} that [12]aneN₄ has a folded conformation.

Iodine and Bromine Complexes.—Oxidation of elemental iodine by the strong one-electron oxidizing agent UF_6 in MeCN below room temperature gives pale green $[I(NCMe)_2][UF_6]$ in quantitative yield from which the pale green solid $[I(SMe_2)_2][UF_6]$ or $[I([14]aneN_4)(NCMe)][UF_6]$ are readily accessible by room-temperature ligand-exchange reactions in MeCN. Alternatively I_2 in EtOH, CH_2CI_2 , MeOH or $CHCI_3$, under anhydrous conditions, undergoes disproportionation in the presence of [12]aneN₄ or [14]aneN₄ at room temperature to give orange, sparingly soluble solids formulated from their analyses as [IL][I₃], $L = [12]aneN_4$ or [14]aneN₄. In the presence of an excess of I_2 dark brown solids are obtained. The [12]aneN₄ complex decomposes readily at room temperature but the [I₃]⁻ anion in the [14]aneN₄ complex can be replaced either by oxidation with NOPF₆ or PF₅ or by conversion with an additional equivalent of [14]aneN₄ then [Ag(NC-Me)_2][PF₆] to give yellow [I([14]aneN₄)(NCMe)][PF₆], which is soluble in MeCN. These reactions are summarized in

Scheme 2 Preparation of iodine(1) complexes in MeCN (except where indicated). (i) UF₆; (ii) L; (iii) Me₂S; (iv) EtOH; (v) $[Ag(NCMe)_2][PF_6]; (vi) NOPF_6 \text{ or } PF_5$

Table 3 Proto	on and ¹³ C	NMR	chemical	shifts ((δ)
---------------	------------------------	-----	----------	----------	-----

[I([14]aneN ₄)(NCMe)][PF ₆] ^b ¹ H	$[I([14]aneN_4)][I_3]^b$	[14]aneN4°
1.79 5.64 2.93 3.00	1.83 5.78 2.99 3.00	1.62 β-CH ₂ 2.10 NH 2.59 α-CH ₂ 2.86 α'-CH ₂
¹³ C		
25.7 47.5 50.4	25.7 47.5 50.7	$\begin{array}{c} 29.5 \ \beta \text{-C} \\ 49.4 \\ 50.7 \end{array} \right\}_{\alpha,\alpha'} \text{-C}$

^a Chemical shifts are positive to high frequency of SiMe₄. Spectra recorded at 200 (¹H) or 503 MHz (¹³C). ^b Measured in CD₃CN. ^c Measured in CD₂Cl₂.

T	ab	le 4	1 /	Analy	tical "	data	for	iod	line(1) co	mp	lexes
---	----	------	-----	-------	---------	------	-----	-----	-------	---	------	----	-------

" Required v.

Scheme 2 and characteristic spectroscopic data and analytical data presented in Tables 1, 3 and 4.

Displacement of MeCN from [I(NCMe)₂]⁺ by other ligands appears to be a general route to co-ordination compounds of I¹. Several salts were prepared by this means, from [I(NC-Me)₂][MoF₆]⁵ and Me₂S, tetramethylthiourea (tmtu), 2,2'bipyridyl (bipy), [14]aneN₄ and 1,4,8,12-tetraazacyclopentadecane ([15]aneN₄). Co-ordinated MeCN was never apparent in the cations, unlike the reaction between $[I(NCMe)_2][UF_6]$ with [14]aneN₄ (Scheme 2). The stabilization of I^{I} by these ligands compared with the effect of MeCN is apparent from cyclic voltammetry measurements in this solvent. A quasireversible wave assigned to $I^{1}-I^{0}$ is observed in all cases but E_{4} values with respect to Ag^+ - Ag^0 vary from +0.32 and +0.28 V in $[IL_2]^+$, $L = Me_2S$ and tmtu respectively, through +0.25 V in $[I(bipy)_2]^+$ to +0.12 V for $[IL]^+$, $L = [14]aneN_4$ or $[15]aneN_4$. In contrast, E_4 for $I^{I}-I^0$ in $[I(NCMe)_2]^+$ has been estimated as *ca*. 1.1 V *vs*. Ag⁺-Ag⁰.¹⁸ Although there have been a number of reports describing complex formation between I_2 and macrocylic ligands such as crown ethers¹⁹ or cryptands²⁰ in solution, solid complexes do not appear to have been isolated in previous work. The species in solution have been usually formulated on the basis of their spectra, as [IL] + cations with I^- or $[I_3]^-$ counter anions. The optimum cavity diameter for cryptand ligands appears to be ca. 2.8 Å.²⁰

In the present work a value for the radius of I⁺ was calculated using a double-zeta basis set 21a and the ATOMORB program 21b to construct contour diagrams, and three-dimensional plots of both the Slater wavefunction and electronic charge density for the outermost occupied orbital (5p). This approach, with the covalent radius of I set at 1.33 Å, gave a value for the radius of I^+ of 1.30 Å. The macrocycle [14]aneN₄ in its complexes with Hg²⁺ and Pb²⁺ (ionic radii = 1.1 and 1.2 Å respectively) adopts a folded conformation with the metal cations located above the N₄ plane.²² It is likely that a similar arrangement is obtained in the iodine(I) complexes. Their IR spectra are not inconsistent with this suggestion, however crystals suitable for X-ray structural determinations could not be obtained. The ¹H and ¹³C-{¹H} NMR spectra of $[I([14]aneN_4)(NCMe)]^+$ in CD₃CN are very similar to those of the free macrocycle, although co-ordination is indicated by variation in the NH and, to a lesser extent, the α -CH₂ ¹H chemical shifts (Table 3). Spectra of the $Fe^{II}([14]aneN_4)$ complex were almost identical. In all cases the spectra were invariant down to -50 °C.

Solvated Br^+ is apparently too electrophilic to exist in MeCN,²³ but an orange-yellow solid, sparingly soluble in organic solvents and of stoichiometry *ca*. [14]aneN₄•2Br₂, can be isolated from the components mixed in dry CH₂Cl₂ at room temperature. In contrast to the product obtained from the corresponding reaction with I₂ (Scheme 2), there was no unambiguous evidence that a Br^{I} -containing cation was formed. The adduct loses Br_2 in solution and is very susceptible to trace hydrolysis yielding a protonated [14]aneN₄ derivative as one product. On the evidence obtained we prefer to formulate it as a weakly bound molecular adduct of Br_2 .

	Analysis (%)							
Compound	C	Н	I	N				
$[I([12]aneN_4)][I_3]$	14.4 (14.1)	3.0 (2.9)	74.2 (74.7)	8.2 (8.2)				
$[I([14]]aneN_4)][I_3]$	16.7 (16.9)	3.2 (3.4)	71.7 (71.7)	7.7 (7.9)				
$[I(SMe_2)_2][UF_6]$	7.9 (7.9)	1.9 (1.9)	20.9 (21.0)	b				
$[I([14]aneN_4)(NCMe)][UF_6]$	19.7 (20.0)	3.7 (3.7)	17.4 (17.6)	9.7 (9.7)				
$[I([14]aneN_4)(NCMe)][PF_6]$	28.3 (28.1)	5.0 (5.3)	24.4 (24.8)	13.5 (13.6)				
[14]aneN₄	59.2 (60.2)	12.1 (12.0)	. ,	27.3 (28.0)				
[12]aneN ₄	55.7 (55.8)	11.4 (11.6)		32.3 (32.6)				
dues are given in parentheses b F 187(189)	S 104 (10 5) U	39 6 (37 5)%						

Nevertheless the adduct does show promise as a modifiedbromine reagent for chemomechanical polishing of semiconductor wafers and the results of these studies will be reported elsewhere.

Experimental

Standard Pyrex vacuum-line and glove-box techniques were used throughout. All reactions were carried out in Pyrex double-limb reaction vessels fitted with Pyrex-poly(tetrafluoroethylene) stopcocks (J. Young) and, in those cases where filtration was required, sintered-glass pads. The methods used for preparation of starting materials, for reagent and solvent purification and for spectroscopic measurements have been reported previously.^{5,12,23-25} Tetraazamacrocycles were prepared according to literature methods.²⁶

Preparation of Macrocyclic Ligand Complexes.---(a) From solvated cation, fluoroanion salts. A pale green solution of $[I(NCMe)_2][UF_6]$ (1 mmol) in dry MeCN (5 cm³) was prepared in vacuo in one limb of a flamed-out double-limb Pyrex reaction vessel and was added slowly to solid [14]aneN₄ (1 mmol) contained in the other limb at room temperature. Reaction appeared to be instantaneous and the solution became dark green. Removal of material volatile at room temperature left a green solid identified on the basis of its analysis (Table 4), IR (Table 1) and NIR/VIS spectrum, the latter containing bands characteristic of $[UF_6]^{-,27}$ as $[I([14]aneN_4)(NC-Me)][UF_6]$. The complexes of Fe^{II} and Cu^{II} listed in Tables 1 and 2 were prepared and characterised in an identical manner from iron(II) or copper(II) salts of $[PF_6]^-$ or $[TaF_6]^-$. Addition of PF_5 to solutions of $[Fe([12]aneN_4)][PF_6]_2$ (orange) or [Fe([14]aneN₄)][PF₆]₂ (purple) in MeCN *in vacuo* led to pale yellow solutions and the evolution of PF3. Yellow solids, identified as the corresponding iron(III) complexes (Tables 1 and 2), were isolated after removal of volatile material. Roomtemperature μ_{eff} values were 2.2 and 2.1 μ_B respectively for the [12]aneN₄ and the [14]aneN₄ complexes. Corresponding values for the iron(II) complexes were 4.0 and 0.3 μ_B (cf. ref. 11).

A similar method was used to prepare bis(dimethyl sulfide)iodine(I) hexafluorouranate(v) (Table 4), in this case the sulfide being added by direct distillation, and for a series of iodine(1) hexafluoromolybdate(v) complexes for cyclic voltammetry (CV) measurements. Voltammograms were referenced internally to the MoF_6 -[MoF₆]⁻ and [MoF₆]⁻-Mo^{IV} couples²⁵ and the solid complexes were characterized by their spectra. The CV data have been discussed above.

(b) By direct reaction between halogen and macrocycle. In a glove box [14]aneN₄ (1.0 mmol) was transferred to one limb of a flamed-out, double-limbed Pyrex vessel and resublimed I₂ (2.0 mmol) to the other. The vessel was evacuated and dry ethanol (5 cm³) distilled into each arm. The [14] ane N₄ solution was added slowly to the I₂ solution through a glass sinter pad and a brownyellow solid was obtained on concentrating the solution. This was washed in vacuo with portions of dry EtOH then dry Et₂O to remove traces of I_2 ; the orange solid was then pumped for several hours. It was characterized as $[I([14]aneN_4)][I_3]$ on the basis of its analysis (Table 4) and IR spectrum (Table 1). The [12]aneN₄ analogue was prepared in an identical fashion. Portions of $[I([14]]aneN_4)][I_3]$ (1.25 mmol) and NOPF₆ (1.25 mmol) contained in separate limbs of a reaction vessel reacted rapidly when they were mixed in the presence of MeCN (5 cm³) *in vacuo* at room temperature. Nitric oxide and I_2 were evolved and a pale yellow solid, identified as [I([14]aneN₄)(NC-Me)][PF_6] (Tables 1 and 4), isolated on removal of the volatile material. A spectroscopically identical solid was isolated when $[I([14]aneN_4)][I_3]$ (1.0 mmol) in the presence of MeCN (5 cm³) reacted with solid [14]aneN₄ (1.0 mmol) followed by the addition of a solution of $[Ag(NCMe)_2][PF_6]$ (2.0 mmol) in MeCN (5 cm³) and separation of AgI.

between [14]aneN₄ (1.0 mmol) and Br₂ (2.0 mmol) in CH₂Cl₂ (5 cm^3) was carried out by the procedure described in (b) except that Br₂ was added to the vessel by distillation in vacuo. The yellow-orange solid product was sparingly soluble in CH₂Cl₂ and was recrystallized from this solvent by multiple extractions with aliquots of CH₂Cl₂ in vacuo (Found: C, 21.9; H, 5.0; Br, 57.5; N, 9.4. $C_{10}H_{24}Br_4N_4$ requires C, 23.1; H, 4.7; Br, 61.5; N, 10.8%). The IR spectrum of the solid contained bands attributable to [14] aneN₄, notably 3252 [v(NH)] and 1684, 1622 cm⁻¹ [δ (NH)]. Its electronic spectrum in CH₂Cl₂ comprised bands at $\lambda_{max} = 269$ and 312 nm; the presence of [Br₃]⁻ in solution could not be established unambiguously as Br₂ was liberated slowly on standing. Single crystals grown from Me₂SO solution proved on preliminary X-ray crystallographic examination to be a hydrolysis product containing protonated [14]aneN4. The solid reacted with NOPF6 in MeCN with the liberation of NO and Br₂. The ¹H NMR spectrum was similar to that obtained for [I([14]aneN₄)(NC-Me)][PF₆] but contained additional complex signals; the 19 F and ${}^{31}P$ spectra contained multiplets attributable to $[PF_6]$ and $[PO_3F]^{2-}$, the latter indicating that some HF elimination, and therefore subsequent hydrolysis, had occurred.

Acknowledgements

We thank the EPSRC for support. R. M. S. thanks the Government of Pakistan for a scholarship and W. S. H. the British Council for a visiting scholar award.

References

- 1 O. Hassel and H. Hope, Acta Chem. Scand., 1961, 15, 407; C. H. W. Jones, J. Chem. Phys., 1975, 62, 4343; T. Birchall and R. D. Myers, Adv. Chem. Ser., 1981, 194, 375.
- 2 H. Hope and G. H.-Y. Lin, Chem. Commun., 1970, 169.
- 3 H. Pritzkow, Acta Crystallogr., Sect. B, 1975, 31, 1505.
 4 C. P. Brock, Y. Fu, L. K. Blair, P. Chen and M. Lovell, Acta Crystallogr., Sect. C, 1988, 44, 1582.
- 5 G. M. Anderson and J. M. Winfield, J. Chem. Soc., Dalton Trans., 1986, 337; C. D. Garner, L. McGhee, A. Steel and J. M. Winfield, J. Fluorine Chem., 1994, 69, 73.
- 6 N. W. Alcock and G. B. Robertson, J. Chem. Soc., Dalton Trans., 1975, 2483.
- 7 L. K. Blair, K. D. Parris, P. S. Hii and C. P. Brock, J. Am. Chem. Soc., 1983, 105, 3649.
- 8 R. D. Evans and J. H. Schauble, Synthesis, 1986, 727; 1987, 551; J. Barluenga, J. M. González, P. J. Campos and G. Asensio, Angew. Chem., Int. Ed. Engl., 1988, 27, 1546; R. D. Evans, J. W. Magee and J. H. Schauble, Synthesis, 1988, 862; J. Barluenga, P. J. Campos, J. M. González, J. L. Suánez and G. Asensio, J. Org. Chem., 1991, 56, 2234; J. Barluenga, J. M. González, M. A. García-Martín, P. J. Campos and G. Asensio, *J. Org. Chem.*, 1993, 58, 2058.
- 9 L. K. Blair, K. D. Parris, O. F. D. Lee, K. F. Jenkins, R. C. Feese, T. Belcher, D. Badger, D. Morris and C. Kuhn, J. Org. Chem., 1986, 51, 5454; L. K. Blair, S. Hobbs, N. Bagnoli, L. Husband and N. Badika, J. Org. Chem., 1992, 57, 1600.
- John J., Dornieporth-Oetting, T. Klapötke and J. Passmore, Z. Anorg. Allg. Chem., 1990, 586, 93; I. Tornieporth-Oetting and T. Klapötke, Chem. Ber., 1990, 123, 1343.
- 11 D. D. Watkins, jun., D. P. Riley, J. A. Stone and D. H. Busch, Inorg. Chem., 1976, 15, 387.
- 12 C. J. Barbour, J. H. Cameron and J. M. Winfield, J. Chem. Soc., Dalton Trans., 1980, 2001.
- 13 H. S. Mountford, L. O. Spreer, J. W. Otvos, M. Calvin, K. J. Brewer, M. Richter and B. Scott, Inorg. Chem., 1992, 31, 717.
- 14 I. J. Clark and J. MacB Harrowfield, Inorg. Chem., 1984, 23, 3740.
- 15 M. C. Styka, R. C. Smierciak, E. L. Blinn, R. E. DeSimone and J. V. Passariello, Inorg. Chem., 1978, 17, 82
- 16 R. L. Webb, M. L. Mino, E. L. Blinn and A. A. Pinkerton, Inorg. Chem., 1993, 32, 1396
- 17 R. C. Smierciak, J. V. Passariello and E. L. Blinn, Inorg. Chem., 1977, 16, 2646.
- 18 A. I. Popov and D. H. Geske, J. Am. Chem. Soc., 1958, 80, 1340.
 19 H. P. Hopkins, jun., D. V. Jahagirdar and F. J. Windler III, J. Phys. Chem., 1978, 82, 1254; J. Muchová and V. Holba, Collect.

Czech. Chem. Commun., 1983, **48**, 1158; S. R. Salman and S. M. Al-Marsumi, Spectrochim. Acta, Part A, 1993, **49**, 435.

- 20 P. Labbé, R. Le Goaller, H. Handel, G. Pierre and J.-L. Pierre, *Electrochim. Acta*, 1982, 27, 257; R. Le Goaller, H. Handel, P. Labbé and J.-L. Pierre, J. Am. Chem. Soc., 1984, 106, 1694; P. Labbé, R. Le Goaller, G. Noisillier and J.-L. Pierre, Tetrahedron Lett., 1984, 25, 2223.
- 21(a) At. Data Nucl. Data Tables, 1974, 14, Nos. 3 and 4, 267; (b)
 M. J. Ramos and B. C. Webster, University of Glasgow, 1983.
- 22 N. W. Alcock, N. Herron and P. Moore, J. Chem. Soc., Dalton Trans., 1979, 1486; N. W. Alcock, E. H. Curson, N. Herron and P. Moore, J. Chem. Soc., Dalton Trans., 1979, 1987.
- 23 L. McGhee, D. S. Rycroft and J. M. Winfield, J. Fluorine Chem., 1987, 36, 351.

- 24 A. C. Baxter, J. H. Cameron, A. McAuley, F. M. McLaren and J. M. Winfield, J. Fluorine Chem., 1977, 10, 289.
- 25 G. M. Anderson, J. Iqbal, D. W. A. Sharp, J. M. Winfield, J. H. Cameron and A. G. McLeod, J. Fluorine Chem., 1984, 24, 303.
- 26 J. G. Richman and T. J. Atkins, J. Am. Chem. Soc., 1974, 96, 2268; E. K. Barefield, F. Wagner, A. W. Herlinger and A. R. Dahl, Inorg. Synth., 1976, 16, 220.
- 27 J. A. Berry, R. T. Poole, A. Prescott, D. W. A. Sharp and J. M. Winfield, J. Chem. Soc., Dalton Trans., 1976, 272.

Received 27th July 1995; Paper 5/04996B