# A General Method of generating Agostic Interaction between Ru<sup>II</sup> and C-H Bonds of *tert*-Butyl, Methyl, Aryl, Heterocyclic or Alkenyl Groups using Azine Phosphines

Sarath D. Perera and Bernard L. Shaw\*
School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

Treatment of [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] 2 with the azine phosphine Z.E-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>1</sup>)=N-N=C(Me)Bu<sup>1</sup> 3a, derived from MeC(=0) But, gave the δ-agostic tert-butyl complex mer, trans-[RuCl<sub>2</sub>(PPh<sub>2</sub>){PPh<sub>2</sub>CH<sub>2</sub>-C(Bu')=N-N=C(Me)Bu'}] 4a, in which all nine hydrogens of the tert-butyl group are agostically interacting with ruthenium on the NMR time-scale at 20 °C. The analogous  $\delta$ -agostic tert-butyl complex mer, trans- $[RuCl_2(PPh_3)\{PPh_2CH_2C(Bu^t)=N-N=C(H)Bu^t\}]$  **4b** was also prepared. Treatment of 2 with the symmetrical azine diphosphine Z,Z-PPh,CH,C(But)=N-N=C(But)CH,PPh, 5 gave the δ $agostic \quad \textit{tert-butyl} \quad complex \quad \textit{mer,trans-} [RuCl_2(PPh_3) \{PPh_2CH_2C(Bu^t) = N - N = C(Bu^t)CH_2PPh_2\}] \quad \textbf{6}, \quad in \quad (Bu^t)CH_2PPh_2\} = 0$ which one of the PPh<sub>2</sub> groups is unco-ordinated. Treatment of 2 with the azine phosphine Z.E-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=N-N=C<sub>10</sub>H<sub>16</sub> 7, derived from pinacolone–fenchone mixed azine, gave the δ-agostic methyl complex *mer.trans*-[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=N-N=C<sub>10</sub>H<sub>16</sub>}] 8, in which the methyl group derivative for the methyl group derivat  $(C^{10}H_3)$  in the 1-position of the fenchone residue interacts with ruthenium (fenchone = 1,3,3trimethylbicyclo[2.2.1]heptan-2-one). The unsymmetrical camphor azine monophosphine Z,Z-PPh<sub>2</sub>- $C_{10}H_{15}=N-N=C_{10}H_{16}$  **9** also gave a similar  $\delta$ -agostic methyl complex mer,trans-[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>- $C_{10}H_{15}=N-N=C_{10}H_{16}$  **10** (camphor = 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one). Treatment of **2** with the azine Z, E-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=N-N=CH(C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-4) 11a, derived from 4-dimethylaminobenzaldehyde, gave the δ-agostic complex mer,trans-[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>3</sup>)=N-N=CH(C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-4)}] 12a, in which the hydrogens in the 2 and 6 positions of the aryl group are agostically interacting with ruthenium. Similarly, the azines 11b and 11c, derived from 4-methoxybenzaldehyde or 4-nitrobenzaldehyde, gave the  $\delta$ -agostic complexes **12b** and **12c**, respectively. Treatment of **2** with the azine 13, derived from 1-methylpyrrole-2-carbaldehyde, gave the  $\delta$ -agostic complex 14, in which the hydrogen in the 3-position of the heterocyclic group is agostically interacting with ruthenium. Treatment of 2 with the azine 15, derived from benzylideneacetone, gave the  $\delta$ -agostic alkenyl complex 16. Proton, <sup>31</sup>P-{<sup>1</sup>H} and some <sup>13</sup>C-{<sup>1</sup>H} NMR data are given.

In a previous paper 1 we have described the synthesis of a very reactive phosphino hydrazone Z-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=NNH<sub>2</sub> 1 from the corresponding phosphino N,N-dimethylhydrazone Z-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=NNMe<sub>2</sub> by a hydrazine exchange reaction. We have shown that 1 is a convenient reagent for converting aldehydes or ketones QC(=O)R into azines of type Z,E-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=N-N=C(Q)R <sup>1-11</sup> (Q = H or Me; R = an aryl, heterocyclic or alkyl group) which were then cyclometal-lated using transition metal centres such as  $Ir^{1,2-5}$  W<sup>06</sup> or Pt<sup>II</sup>.<sup>2.7</sup> We have also promoted co-ordination of an aryl fluoride to ruthenium(II). In this paper we have used the strategy to promote C-H (agostic) interactions with ruthenium(II). The first suggestion of a C-H · · · metal interaction came from the crystal structure of [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] 12 as determined by LaPlaca and Ibers 13 and shown diagrammatically in 2; the agostic interaction is represented by a single headed arrow.<sup>14</sup> Since then many other examples of agostic interaction have been reported and the area has been reviewed. 14-18 We anticipated that an azine phosphine of type  $Z_1E$ -PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=N-N=C(Q)R would displace two PPh3 ligands from the labile ruthenium(11) complex [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] 2 to give a sixmembered (P-N) chelate, through P and N=C(Q)R nitrogen. This would force the R group to be in close proximity to the metal and induce interaction, i.e. agostic interaction, between a C-H bond in the R group and the ruthenium. We found this to be the case and report examples of agostic interactions with tert-butyl, methyl, aryl, heterocyclic and alkenyl groups. A preliminary account of some of this work has been published. 19

# **Results and Discussion**

For the convenience of the reader the various reactions are shown in Schemes 1–3. Elemental analytical, IR, mass spectral and some selected carbon-13 NMR data are in the Experimental section, and phosphorus-31 and proton NMR data in Tables 1 and 2, respectively. Carbon-13 spectra were assigned using Attached Proton Tests (APT) and by comparison with published data. 11,20,21

We first attempted to generate agostic interactions with a C-H of a tert-butyl group. We have shown that treatment of the phosphino hydrazone Z-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=NNH<sub>2</sub> 1 with pinacolone, MeC(=O)Bu<sup>t</sup>, gives the azine Z,E-PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)= N-N=C(Me)Bu<sup>t</sup> 3a; <sup>5</sup> 1 when treated with [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] 2 in benzene at ca. 50 °C for 1 min displaced two triphenylphosphine ligands and gave the hoped for  $\delta$ -agostic tert-butyl complex  $mer, trans-[RuCl_2(PPh_3)\{PPh_2CH_2C(Bu^t)=N-N=C(Me)Bu^t\}]$ 4a (Scheme 1) essentially quantitatively (31P-{1H} NMR evidence). This complex was isolated in 88% yield as brick-red microcrystals. The <sup>31</sup>P-{<sup>1</sup>H} NMR spectrum of the complex showed two doublets  $[\delta(P_A)]$  74.7 (d) and  $\delta(P_B)$  44.0 (d)] with  $^{2}J(PP) = 40$  Hz, typical of *cis*-phosphine ligands. <sup>19</sup> The occurrence of an infrared band at 320s cm<sup>-1</sup> for v(Ru-Cl) indicates a *trans* Cl-Ru-Cl moiety, <sup>22</sup> therefore, this complex must have the mer,trans-geometry at the metal centre. At 20 °C the proton NMR spectrum of this remarkable ruthenium(II) complex 4a showed a doublet for one of the tert-butyl protons at  $\delta$  1.17 with coupling only to  $P_A$  [ ${}^2J(P_AH) = 2.4$  Hz] as shown by selective decoupling of PA, indicating the presence of

3862 J. CHEM. SOC. DALTON TRANS. 1995

Table 1 31P-{1H} NMR data

| Compound        | $\delta(P_A)$ | $\delta(P_{\text{B}})$ | $^2J(PP)$ | Compound         | $\delta(P_A)$ | $\delta(P_{B})$ | $^{2}J(PP)$ |
|-----------------|---------------|------------------------|-----------|------------------|---------------|-----------------|-------------|
| 3a              | -12.4 (s)     |                        |           | 11a              | -11.3 (s)     |                 |             |
| 3b              | -10.5 (s)     |                        |           | 11b              | -10.0(s)      |                 |             |
| 4a <sup>b</sup> | 74.7 (d)      | 44.0 (d)               | 40        | 11c              | -10.4(s)      |                 |             |
| 4b <sup>b</sup> | 73.7 (d)      | 43.3 (d)               | 37        | 12a              | 78.4 (d)      | 45.8 (d)        | 37          |
| 5               | -14.4(s)      |                        |           | 12b              | 78.6 (d)      | 45.9 (d)        | 37          |
| $6^{c,d}$       | 75.2 (d)      | 43.9 (d)               | 39        | 12c <sup>b</sup> | 81.3 (d)      | 45.7 (d)        | 38          |
| 7               | -12.4(s)      |                        |           | 13               | -10.9 (s)     | . ,             |             |
| 8 <sup>b</sup>  | 76.7 (d)      | 43.1 (d)               | 39        | 14               | 78.2 (d)      | 44.0 (d)        | 37          |
| 9               | -0.3 (s)      |                        |           | 15               | -10.7 (s)     |                 |             |
| 10°             | 81.4 (d)      | 38.8 (d)               | 41        | 16 b             | 90.1 (d)      | 47.0 (d)        | 37          |

<sup>&</sup>lt;sup>a</sup> Recorded at 36.2 MHz, chemical shifts  $\delta(P)$  are in ppm relative to 85%  $H_3PO_4$ , <sup>2</sup>J(PP) values are in Hz, solvent CDCl<sub>3</sub> unless otherwise stated, s = singlet and d = doublet. <sup>b</sup> In CD<sub>2</sub>Cl<sub>2</sub>. <sup>c</sup> In C<sub>6</sub>D<sub>6</sub>. <sup>d</sup> Unco-ordinated PPh<sub>2</sub> at  $\delta - 8.8$ .

Scheme 1 (i)  $QC(=O)Bu^{t}$ ; (ii)  $[RuCl_{2}(PPh_{3})_{3}]$  2

δ-agostic interactions between ruthenium and all nine hydrogens of the tert-butyl group. The appearance of this tertbutyl resonance as a doublet suggests that all nine hydrogens of the tert-butyl group are chemically equivalent and equally coupled to P<sub>A</sub> due to the rapid rotation around the C-Bu<sup>t</sup> bond on the NMR time-scale. Since the observed  ${}^{2}J(P_{A}H)$  value (2.4) Hz) is an averaged value over the nine hydrogens we infer that the agostic interaction is quite strong. When the NMR sample was cooled to -50 °C, only three hydrogens (i.e. one methyl group) showed coupling to  $P_A$ ,  $\delta(Me-agostic)$  0.92 [ $^2J(P_AH)$  = 7.3 Hz], and the other two methyl resonances appeared as singlets at  $\delta$  1.19 and 1.28 (see Fig. 1); *i.e.* rotation around the Bu'-C bond has slowed down or stopped. At -50 °C, the <sup>1</sup>H- $\{^{31}P\}$  NMR spectrum showed an AB-pattern with  $^2J(HH) \approx 12$ Hz for the CH<sub>2</sub> protons (Fig. 1) as previously observed for methylene protons in similar six-membered chelate rings. <sup>6,8</sup> We were unable to stop the rotation of the interacting methyl group by cooling the NMR solution to -85 °C. The  $^{13}$ C- $\{^{1}$ H $\}$  NMR data (Experimental section) also support the fluxional behaviour referred above; at room temperature, the resonance for the three agostic methyl carbons was a very broad peak at  $\delta \approx 29$ , but at -50 °C, three separate signals were observed at  $\delta$  19.9 [d,  ${}^{3}J(PC) = 13.6 \text{ Hz}$ ], 27.7 (s) and 30.3 (s) for these methyl carbons of which the doublet resonance with coupling to phosphorus was assigned to the agostic methyl carbon. This is the first example of a  $\delta$ -agostic tert-butyl complex showing spin-spin coupling of the tert-butyl hydrogens through the

metal atom to a co-ordinated tertiary phosphine ligand, *i.e.* a  $^2J(PH)$  coupling. The azine phosphine 3b, derived from HC(=O)Bu¹, gave the analogous δ-agostic *tert*-butyl complex [RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C(Bu¹)=N-N=C(H)Bu¹}] 4b in excellent (92%) yield. In the proton NMR spectrum, the resonance due to the agostic *tert*-butyl group was a doublet at δ 1.12 with  $^2J(P_AH) = 2.0$  Hz whilst the imine proton (HC=N) resonance gave a doublet of doublets at 8.24 [dd,  $^4J(P_BH) = 6.1$ ,  $^4J(P_AH) = 0.6$  Hz]; *i.e.* the imine proton is strongly coupled to  $P_B$  (which is *trans* to the imine nitrogen HC=N) as reported for similar complexes *e.g.* [RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C(Bu¹)=N-N=C(H)C<sub>6</sub>H<sub>4-n</sub>F<sub>n</sub>}] (n = 1 or 2).

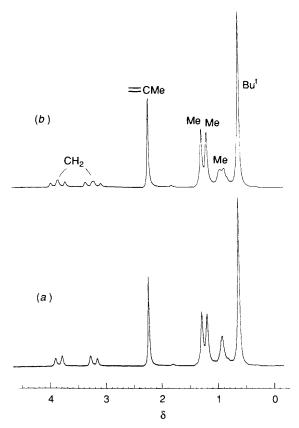
6

Similarly, other azine phosphine ligands discussed below readily displaced two PPh<sub>3</sub> ligands from  $[RuCl_2(PPh_3)_3]$  2 to give *mer,trans*-ruthenium(II) complexes as shown by their <sup>31</sup>P-{<sup>1</sup>H}NMR [<sup>2</sup>J(PP)  $\approx 40$  Hz] and IR data[ $\nu(Ru-Cl) \approx 320$  cm<sup>-1</sup>].

We have described the azine diphosphine,  $Z,Z-Ph_2PCH_2-C(Bu^t)=N-N=C(Bu^t)CH_2PPh_2$  5<sup>23</sup> and this when treated with [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] displaced only two PPh<sub>3</sub> to give the  $\delta$ -agostic tert-butyl complex 6 i.e. the tert-butyl groups again interacts agostically on to ruthenium, showing coupling to  $P_A$  [ $^2J(P_AH)=2.7$  Hz] and one of the PPh<sub>2</sub> groups is uncoordinated with the resonance occurring as a singlet at  $\delta(P_C)-8.8$ ; i.e. the ruthenium prefers the agostic interaction to the tert-butyl group rather than co-ordination to  $P_C$ .

Treatment of [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] with the phosphine 7,<sup>24</sup>

| Table | 2 | Proton | NMR | data a |
|-------|---|--------|-----|--------|
|       |   |        |     |        |


| Compound                 | $\delta(\mathbf{Bu}^t)$                                                                | $\delta(CH_2P)$                                                                                                                                                  | Others                                                                                                                                                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3a                       | 0.99 (9 H, s)<br>1.02 (9 H, s)                                                         | 3.23 [2 H, d, <sup>2</sup> J(PH) 4.4]                                                                                                                            | 1.83 (3 H, s, =CMe)                                                                                                                                                                                                                                   |
| 3b                       | 0.98 (9 H, s)<br>1.06 (9 H, s)                                                         | 3.41 [2 H, d, <sup>2</sup> J(PH) 4.0]                                                                                                                            |                                                                                                                                                                                                                                                       |
| 4a b.c                   | 0.64 (9 H, s)<br>1.17 [9 H, d, <sup>2</sup> J(P <sub>A</sub> H) 2.4]                   | 3.23 (1 H, br)<br>3.92 (1 H, br)                                                                                                                                 | 2.27 (3 H, s, =CMe)                                                                                                                                                                                                                                   |
| <b>4b</b> <sup>b,d</sup> | 0.66 (9 H, s)<br>1.12 [9 H, d, <sup>2</sup> J(P <sub>A</sub> H) 2.0]                   | 3.55 (2 H, br)                                                                                                                                                   | 8.24 [1 H, dd, ${}^{4}J(P_{B}H)$ 6.1, ${}^{4}J(P_{A}H)$ 0.6, =CH]                                                                                                                                                                                     |
| 5<br>6 <sup>b,e</sup>    | 0.90 (18 H, s)<br>0.57 (9 H, s)<br>0.83 [9 H, d, <sup>2</sup> J(P <sub>A</sub> H) 2.7] | 3.26 [4 H, d, <sup>2</sup> <i>J</i> (PH) 3.9]<br>3.62 (4 H, m, br)                                                                                               |                                                                                                                                                                                                                                                       |
| 7                        | 1.05 (9 H, s)                                                                          | 3.31 [1 H, dd, <sup>2</sup> J(HH) 12.7, <sup>2</sup> J(PH) 4.4]<br>3.43 [1 H, dd, <sup>2</sup> J(HH) 12.7, <sup>2</sup> J(PH) 4.4]                               | 1.08 (3 H, s, H <sup>10</sup> )<br>1.24 (3 H, s, H <sup>8</sup> or H <sup>9</sup> )<br>1.25 (3 H, s, H <sup>8</sup> or H <sup>9</sup> )                                                                                                               |
| <b>8</b> <sup>b</sup>    | 0.69 (9 H, s)                                                                          | 3.19 [1 H, dd, <sup>2</sup> J(HH) 11.7, <sup>2</sup> J(P <sub>A</sub> H) 12.0]<br>3.83 [1 H, dd, <sup>2</sup> J(HH) 11.7, <sup>2</sup> J(P <sub>A</sub> H) 12.2] | 0.99 [3 H, d, <sup>2</sup> /(P <sub>A</sub> H) 7.1, agostic Me]<br>1.26 (3 H, s, H <sup>8</sup> or H <sup>9</sup> )<br>1.57 (3 H, s, H <sup>8</sup> or H <sup>9</sup> )                                                                               |
| 9                        |                                                                                        |                                                                                                                                                                  | 0.13s, 0.68s, 0.74s, 0.76s, 0.96s and 1.04s (camphor methyls)                                                                                                                                                                                         |
| 10                       |                                                                                        |                                                                                                                                                                  | 3.28 [1 H, d, <sup>2</sup> J(PH) 2.7, CHP]<br>-0.20s, 0.51s, 0.59s, 0.96s and 1.12s<br>(camphor methyls)<br>0.94 [3 H, d, <sup>2</sup> J(P <sub>A</sub> H) 3.8, agostic Me]                                                                           |
| 11a                      | 1.19 (9 H, s)                                                                          | 3.54 [2 H, d, <sup>2</sup> J(PH) 2.9]                                                                                                                            | 4.45 [1 H, d, <sup>2</sup> J(P <sub>A</sub> H) 18.8, CHP]<br>2.99 (6 H, s, NMe <sub>2</sub> )<br>6.57 [2 H, d, <sup>3</sup> J(HH) 9.0, H <sub>m</sub> ]<br>8.05 (1 H, s, CH=)                                                                         |
| 11b                      | 1.22 (9 H, s)                                                                          | 3.52 [2 H, d, <sup>2</sup> J(PH) 3.2]                                                                                                                            | 3.81 (3 H, s, OMe)<br>8.04 (1 H, s, CH=)                                                                                                                                                                                                              |
| 11c                      | 1.25 (9 H, s)                                                                          | 3.50 [2 H, d, <sup>2</sup> J(PH) 2.9]                                                                                                                            | 8.03 [2 H, d, <sup>3</sup> /(HH) 8.6, H <sub>m</sub> ]<br>8.14 (1 H, s, CH=)                                                                                                                                                                          |
| 12a                      | 0.72 (9 H, s)                                                                          | 3.44 [2 H, d, <sup>2</sup> J(P <sub>A</sub> H) 15.2]                                                                                                             | 2.85 (6 H, s, NMe <sub>2</sub> )<br>5.95 [2 H, d, <sup>3</sup> J(HH) 8.5, H <sub>m</sub> ]<br>6.57 [2 H, dd, <sup>3</sup> J(HH) 8.5, <sup>2</sup> J(P <sub>A</sub> H) 2.1, H <sub>o</sub> ]                                                           |
| 12b                      | 0.73 (9 H, s)                                                                          | 3.42 [2 H, d, <sup>2</sup> J(P <sub>A</sub> H) 15.1]                                                                                                             | 9.00 [1 H, d, <sup>4</sup> /(P <sub>B</sub> H) 6.4, CH=] 3.62 (3 H, s, OMe) 6.18 [2 H, d, <sup>3</sup> /(HH) 8.6, H <sub>m</sub> ] 6.83 [2 H, dd, <sup>3</sup> /(HH) 8.6, <sup>2</sup> /(P <sub>A</sub> H) 2.0, H <sub>a</sub> ]                      |
| 12c b.f                  | 0.75 (9 H, s)                                                                          | 3.41 [2 H, d, <sup>2</sup> J(P <sub>A</sub> H) 14.3]                                                                                                             | 9.10 [1 H, d, <sup>4</sup> J(P <sub>B</sub> H) 6.4, CH=]<br>7.36 [2 H, dd, <sup>3</sup> J(HH) 8.6, <sup>2</sup> J(P <sub>A</sub> H) 1.8, H <sub>o</sub> ]<br>7.50 [2 H, d, <sup>3</sup> J(HH) 8.6, H <sub>o</sub> ]                                   |
| 13 9                     | 1.15 (9 H, s)                                                                          | 3.49 [2 H, d, <sup>2</sup> J(PH) 3.4]                                                                                                                            | 8.91 [1 H, d, <sup>4</sup> <i>J</i> (P <sub>B</sub> H) 6.4, CH=] 3.56 (3 H, s, NMe) 6.09 [1 H, dd, <i>J</i> (HH) 2.6, 3.8, H <sup>4</sup> ] 6.41 [1 H, dd, <i>J</i> (HH) 1.8, 3.8, H <sup>3</sup> ] 6.62 [1 H, t, <i>J</i> (HH) 2.2, H <sup>5</sup> ] |
| 14 <sup>g</sup>          | 0.77 (9 H, s)                                                                          | 3.54 [2 H, d, <sup>2</sup> J(PH) 15.0]                                                                                                                           | 8.07 [1 H, s, CH=] 3.76 (3 H, s, NMe) 5.74 [1 H, m, J(HH) 0.5, 2.4, 3.8, H <sup>4</sup> ] 6.67 [1 H, m, J(HH) 1.6, 3.8, <sup>2</sup> J(P <sub>A</sub> H) 3.8, H <sup>3</sup> ] 6.86 [1 H, dd, J(HH) 1.6, 2.4, H <sup>5</sup> ]                        |
| 15                       | 1.20 (9 H, s)                                                                          | 3.31 [2 H, d, <sup>2</sup> J(PH) 3.4]                                                                                                                            | 9.22 [1 H, dd, <sup>4</sup> /(P <sub>B</sub> H) 5.8, <sup>5</sup> /(HH) 0.5, CH=]<br>1.93 (3 H, s, Me)<br>6.51 [1 H, d, <sup>3</sup> /(HH) 16.4, =CH]<br>6.80 [1 H, d, <sup>3</sup> /(HH) 16.4, =CH]                                                  |
| 16 <sup>b,f</sup>        | 0.74 (9 H, s)                                                                          | 3.47 [2 H, d, <sup>2</sup> J(P <sub>A</sub> H) 14.5]                                                                                                             | 2.71 (3 H, s, Me)<br>6.88 [1 H, dd, <sup>3</sup> J(HH) 15.6, <sup>2</sup> J(P <sub>A</sub> H) 1.8, agostic H]<br>7.34 [1 H, d, <sup>3</sup> J(HH) 15.6, =CH]                                                                                          |

<sup>&</sup>lt;sup>a</sup> Recorded at 100 MHz, unless stated otherwise; chemical shifts are in ppm relative to SiMe<sub>4</sub>, J values are in Hz; solvent CDCl<sub>3</sub> unless otherwise stated; s = singlet, d = doublet, t = triplet, dd = doublet of doublets. Multiplicities refer to  ${}^{1}H$  spectra although  ${}^{1}H$ -{ ${}^{31}P_{A}$ } spectra were also measured and  ${}^{1}H$ -{ ${}^{31}P_{A}$ } and  ${}^{1}H$ -{ ${}^{31}P_{A}$ } spectra, when necessary.  ${}^{b}$  In CD<sub>2</sub>Cl<sub>2</sub>.  ${}^{c}$  At -50 °C,  $\delta$  0.62 (9 H, s, Bu'), 0.92 [3 H, d,  ${}^{2}J(P_{A}H)$  7.3, agostic Me], 1.19 (3 H, s, Me of Bu'), 1.28 (3 H, s, Me of Bu'), 3.2 [1 H, dd, br,  ${}^{2}J(HH)$  12,  ${}^{2}J(P_{A}H)$  13, CH<sub>2</sub>] and 3.7 [1 H, dd, br,  ${}^{2}J(HH)$  12,  ${}^{2}J(P_{A}H)$  13, CH<sub>2</sub>] and the resonance due to the agostic Bu' group is broad even at -70 °C.  ${}^{c}$  At -40 °C,  $\delta$  1.0 (br, agostic Bu'), 3.1 [1 H, m,  ${}^{2}J(HH)$  12, CH<sub>2</sub>], 3.3 [1 H, m,  ${}^{2}J(HH)$  13, CH<sub>2</sub>], 4.0 [1 H, m,  ${}^{2}J(HH)$  12, CH<sub>2</sub>] and 4.3 [1 H, m,  ${}^{2}J(HH)$  13, CH<sub>2</sub>].  ${}^{f}$  At 400 MHz.  ${}^{g}$  At 250 MHz.

derived from pinacolone fenchone mixed azine (fenchone = 1,3,3-trimethylbicyclo[2.2.1]heptan-2-one), gave the  $\delta$ -agostic methyl complex **8** in which the methyl group in the 10-position of the fenchone residue interacts with ruthenium, and all three

hydrogens are equally coupled to  $P_A$ ,  $\delta(Me)$  0.99,  $^2J(P_AH) = 7.1$  Hz (Scheme 2).

We anticipated that a similar agostic interaction of a methyl group in the 10-position of camphor (1,7,7-trimethylbicyclo-



**Fig. 1** Part of the proton NMR spectra of **4a** at -50 °C in CDCl<sub>3</sub>. (a)  $^{1}$ H- $^{(31}$ P} spectrum (b)  $^{1}$ H spectrum. The spectra show that, for the *tert*-butyl group which interacts agostically and dynamically with Ru at 20 °C, only one of its methyls is agostically interacting at -50 °C (see Discussion and Table 2 for data)

Scheme 2  $(i) [RuCl_2(PPh_3)_3]$ 

[2.2.1]heptan-2-one) would be induced by complexing the phosphine generated from camphor azine to ruthenium. Treatment of (1R)-(+)-camphor azine <sup>25</sup> with 1 mol of LiBu<sup>n</sup>, followed by addition of PPh<sub>2</sub>Cl introduced a PPh<sub>2</sub> group into the *exo*-3-position of one of the camphor residues *i.e.* giving the camphor azine phosphine 9. Preparative details are in the Experimental section and characterizing data are in Tables 1 and 2 (we are very grateful to Dr. N. Iranpoor, who was the first to make 9 and to characterize it). Treatment of [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] with 9 for *ca.* 1 min gave the hoped for

derivative 10 in 69% yield; characterizing data are in the Experimental section and in the Tables; in particular the  $\delta$ -agostic methyl showed coupling to the phosphorus in *trans*-position,  $\delta$ (Me) 0.94,  $^2J(P_AH) = 3.8$  Hz.

We can similarly induce  $\delta$ -agostic interaction with aromatic C-H bonds (Scheme 3). The mixed azine phosphine 11a from 4-dimethylaminobenzaldehyde reacted with  $[RuCl_2(PPh_3)_3]$  to give the  $\delta$ -agostic aryl complex 12a in which both *ortho* hydrogens (*i.e.* at the 2,6-positions of the  $C_6H_4NMe_2$  ring) interact with ruthenium,  $\delta(H_o)$  6.57,  ${}^2J(P_AH_o)=2.1$ ,  ${}^3J(H_oH_m)=8.5$  Hz. Similar results were obtained with the azine phosphine 11b,  ${}^7$  derived from 4-methoxybenzaldehyde; and 11c,  ${}^5$  from 4-nitrobenzaldehyde. In each case agostic interaction with both *ortho*-hydrogens occurred *i.e.* for 12b  ${}^2J(P_AH_o)=2.0$  Hz and for 12c  ${}^2J(P_AH_o)=1.8$  Hz. Thus an electron-releasing group  $(NMe_2)$  or electron-withdrawing group  $(NO_2)$  in the 4-position had essentially no substantial effect on the agostic interaction of the two hydrogens in the 2,6-positions with the ruthenium; similarly for a 4-methoxy group.

We have described the mixed azine phosphine 13 made by condensing the hydrazone phosphine 1 with N-methylpyrrole-2-carbaldehyde 5 and have shown that, when treated with [IrCl(CO)<sub>2</sub>(MeC<sub>6</sub>H<sub>4</sub>NH<sub>2</sub>-p)], cyclometallation occurs at the carbon in the 3-position of the pyrrole residue. We therefore hoped that treatment with [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] would give a product which would show agostic interaction of the C<sup>3</sup>-H on the pyrrole residue and the ruthenium. This we have found to be the case and 14 was isolated in 85% yield with the agostic hydrogen showing a coupling to P<sub>A</sub> of 3.8 Hz (see Table 2). The coupling constants within the pyrrole residue were assigned using selective decoupling experiments *i.e.* for both H-H and P-H couplings.

The mixed azine phosphine 15 from benzylideneacetone reacted with  $[RuCl_2(PPh_3)_3]$  to give an agostic alkenyl complex in which one of the alkenyl hydrogens was agostically interacting with the ruthenium, and was coupled to  $P_A$ ,  $\delta(CH=)$  6.88,  $^2J(P_ACH=)=1.8$ ,  $^3J(HC=CH)=15.6$  Hz. We tentatively suggest that it has the structure 16 having  $\delta$ -agostic interaction with the =CHPh alkenyl hydrogen, however, we cannot rule out a  $\gamma$ -agostic interaction with the CH=CPh hydrogen.

We found no evidence of carbon metallation by ruthenium in any of these reactions. For example, prolonged treatment of the agostic tert-butyl complex 5 with a base, e.g. NEt<sub>3</sub> or NaO<sub>2</sub>CMe did not lead to ruthenium-carbon bond formation nor did prolonged exposure of a solution of 5 to CO or H<sub>2</sub> at 20 °C lead to any reaction. The failure of agostic interactions with these ruthenium complexes, of the types shown in the Schemes, to lead to metal-carbon bond formation is probably because the chlorides in the trans-Cl-Ru-Cl moiety are very poor leaving groups. In our previously reported work on the reactions of mixed azines of type  $Z_1E-PPh_2CH_2C(Bu')=N-N=C(Q)R$  with iridium(1)<sup>2-5</sup> cyclometallation occurred, accompanied by oxidative addition with four-co-ordinate iridium(1) going to sixco-ordinate iridium(III); and treatment of [PtMe<sub>2</sub>(cod)] (cod = cycloocta-1,5-diene) with the mixed azines, a methyl group was lost as methane and cyclometallation of the R group occurred.2.7

## **Experimental**

All the reactions were carried out in an inert atmosphere of dry nitrogen or dry argon. Infrared spectra were recorded using a Perkin-Elmer model 457 grating spectrometer. The NMR spectra were recorded using a JEOL FX-90Q spectrometer (operating frequencies for <sup>1</sup>H and <sup>31</sup>P of 89.5 and 36.2 MHz respectively), a JEOL FX-100 spectrometer (operating frequencies for <sup>1</sup>H and <sup>31</sup>P of 99.5 and 40.25 MHz respectively), a Bruker ARX-250 spectrometer (operating frequencies for <sup>1</sup>H, <sup>31</sup>P and <sup>13</sup>C of 250.1, 101.3 and 62.9 MHz respectively) or a Bruker AM-400 spectrometer (operating frequencies for <sup>1</sup>H, <sup>31</sup>P and <sup>13</sup>C of 400.13, 161.9 and 100.6 MHz respectively). The

Ph  
H
$$(i)$$
 $(i)$ 
 $(i)$ 

Scheme 3 (i)  $[RuCl_2(PPh_3)_3]$ 

 $^{1}$ H and  $^{13}$ C chemical shifts are relative to tetramethylsilane and  $^{31}$ P shifts are relative to 85% phosphoric acids, and all coupling constants are in Hz. Electron impact (EI) and fast atom bombardment (FAB) mass spectra were recorded using a VG Autospec spectrometer with 8 kV acceleration, and for metal complexes the m/z values are quoted for  $^{102}$ Ru.

Preparation of Phosphine Ligands.—The phosphines 1, <sup>1</sup> 3a, <sup>5</sup> 5, <sup>23</sup> 7, <sup>24</sup> 11b, <sup>7</sup> 11c <sup>7</sup> and 13 <sup>5</sup> were prepared according to our published procedures.

The following three azine phosphines, **3b**, **11a** and **15**, were prepared and isolated as crystalline solids in a similar manner to that described for **11b**. <sup>7</sup> *Z,E*-PPh<sub>2</sub>CH<sub>2</sub>C(Bu')=N-N=C(H)-Bu' **3b**. Yield 81% (Found: C, 74.9; H, 8.4; N, 7.35.  $C_{23}H_{31}N_2P$  requires C, 75.35; H, 8.5; N, 7.65%). m/z (EI) 309 (M - Bu'). Z, E-PPh<sub>2</sub>CH<sub>2</sub>C(Bu')=N-N=CH(C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>-4) **11a**. Yield 78% (Found: C, 75.45; H, 7.8; N, 9.85.  $C_{27}H_{32}N_3P$  requires C, 75.5; H, 7.5; N, 9.8%). m/z (EI): 372 (M - Bu'). Z, E-PPh<sub>2</sub>CH<sub>2</sub>-C(Bu')=N-N=C(Me)CH=CHPh **15**. Yield 79% (Found: C, 78.9; H, 7.45; N, 6.7.  $C_{28}H_{31}N_2P$  requires C, 78.85; H, 7.35; N, 6.55%). m/z (EI); 426 (M<sup>+</sup>) and 369 (M - Bu').

PPh<sub>2</sub>C<sub>10</sub>H<sub>15</sub>=N-N=C<sub>10</sub>H<sub>16</sub> **9** (with Dr. N. Iranpoor). A solution of lithium diisopropylamide (0.05 mol) was prepared by treating a solution of LiBu<sup>n</sup> (0.05 mol) in hexane (3.4 cm<sup>3</sup>) with diisopropylamine (5.1 g, 0.05 mol) in tetrahydrofuran (thf) (7 cm<sup>3</sup>). A solution of (1R)-(+)-camphor azine (15.0 g, 0.05 mol) in thf (70 cm<sup>3</sup>) was then added to the lithium diisopropylamide solution at -20 °C, with stirring. After a further 30 min a solution of PPh<sub>2</sub>Cl (11.1 g, 0.05 mol) in thf (150

cm<sup>3</sup>) was added dropwise with stirring at -15 °C; the solution was then stirred for a further 30 min and then allowed to warm to room temperature. The resultant mixture was evaporated to low bulk on a Rotavap; ethanol was added to the residue, which was then cooled to ca. + 5 °C. The required product crystallized as microcrystals which were filtered off, washed with ethanol and dried. Yield 9.8 g, 67% (Found: C, 77.85; H, 8.45; N, 5.6. C<sub>32</sub>H<sub>41</sub>N<sub>2</sub>P·0.2EtOH requires C, 77.8; H, 8.35; N, 5.65%).

Preparation of Ruthenium(II) Complexes.—mer,trans-[Ru- $Cl_2(PPh_3)\{PPh_2CH_2C(Bu^t)=N-N=C(Me)Bu^t\}\}$  4a. The complex [RuCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub>] (80 mg, 0.083 mmol) and the azine phosphine 3a (33 mg, 0.083 mmol) were warmed (ca. 60 °C) in benzene (ca. 2 cm<sup>3</sup>) for 1 min. The resulting cherry red solution was concentrated to a low volume (ca. 0.5 cm<sup>3</sup>). Addition of hexane (ca. 1.5 cm<sup>3</sup>) to the residue gave the mer, transruthenium(II) complex 4a as brick-red microcrystals (60 mg, 88%) (Found: C, 63.0; H, 6.25; Cl, 8.2; N, 3.05.  $C_{42}$ - $H_{48}Cl_2N_2P_2Ru\cdot0.5C_6H_6$  requires C, 63.3; H, 6.0; Cl, 8.3; N, 13.3%). m/z (FAB): 814 ( $M^+$ ), 779 (M – Cl) and 743 (M – Cl – HCl). v(Ru–Cl) 320 cm<sup>-1</sup>. <sup>13</sup>C-{<sup>1</sup>H} NMR (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, -50 °C):  $\delta_{\rm C}$  19.9 [1 C, d, <sup>3</sup>J(PC) 13.6, agostic Me], 20.5 (1 C, s, MeC=), 26.7 (3 C, s,  $CMe_3$ ), 27.7 (1 C, s,  $CMe_3$ ) of agostic Bu'), 30.3 (1 C, s, CMe<sub>3</sub> of agostic Bu'), 30.8 [1 C, d,  ${}^{1}J(P_{A}C)$  29.2, CH<sub>2</sub>], 40.7 (1 C, s, CMe<sub>3</sub>), 42.0 (1 C, s, CMe<sub>3</sub>), 170.4 (1 C, s, C=N) and 185.2 (1 C, s, C=N). The <sup>13</sup>C-{<sup>1</sup>H} NMR spectrum, recorded at room temperature (20 °C), showed a very broad peak at  $\delta \approx 29$  for the three methyl carbons of the agostic tert-butyl group.

The following mer,trans-ruthenium(II) complexes were similarly. mer,trans-[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C-(Bu')=N-N=C(H)Bu'}] **4b**. Yield 92% (Found: C, 61.6; H, 5.6; Cl, 8.45; N, 2.8. C<sub>41</sub>H<sub>46</sub>Cl<sub>2</sub>N<sub>2</sub>P<sub>2</sub>Ru requires C, 61.5; H, 5.8; Cl, 8.85; N, 2.5%). m/z (FAB): 800 ( $M^+$ ), 765 (M — Cl) and 729 (M — Cl — HCl). v(Ru-Cl) 315 cm $^{-1}$ . mer, trans- $[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C(Bu<sup>t</sup>)=N-N=C(Bu<sup>t</sup>)CH<sub>2</sub>PPh<sub>2</sub>}]$ Yield 72% (Found: C, 64.8; H, 5.55; Cl, 6.8; N, 2.8. C<sub>54</sub>H<sub>57</sub>Cl<sub>2</sub>N<sub>2</sub>P<sub>3</sub>Ru requires C, 64.9; H, 5.75; Cl, 7.1; N, 2.8%). m/z (FAB): 998 ( $M^+$ ), 963 (M - Cl) and 927 (M - Cl - HCl). v(Ru-Cl) 320 cm<sup>-1</sup>. mer,trans-[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C- $(Bu^t)=N-N=C_{10}H_{16}$ ] **8.** Yield 61% (Found: C, 65.4; H, 5.85; Cl, 7.6; N, 2.8.  $C_{46}H_{52}Cl_2N_2P_2Ru\cdot0.6C_6H_6$  requires C, 65.2; H, 6.15; Cl, 7.7; N, 3.05%). m/z (FAB):  $866(M^+)$ , 831(M-Cl)and 795 (M - Cl - HCl). v(Ru-Cl) 320 cm<sup>-1</sup>. mer, trans- $[RuCl_2(PPh_3)\{PPh_2C_{10}H_{15} = N-N=C_{10}H_{16}\}] \ \ 10. \ \ Yield \ \ 69\%.$ m/z (FAB): 918 ( $M^+$ ), 883 (M — Cl) and 847 (M — Cl — HCl). v(Ru-Cl) 315 cm<sup>-1</sup>. mer, trans-[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C- $(Bu^{t})=N-N=CH(C_{6}H_{4}NMe_{2}-4)$ ] 12a. Yield 83% (Found: C, 62.4; H, 5.4; Cl, 8.15; N, 4.6. C<sub>45</sub>H<sub>47</sub>Cl<sub>2</sub>N<sub>3</sub>P<sub>2</sub>Ru requires C, 62.55; H, 5.5; Cl, 8.2; N, 4.85%). m/z (FAB): 863 (M<sup>+</sup>), 828 (M - Cl) and 792 (M - Cl - HCl). v(Ru-Cl) 320 cm<sup>-1</sup>. <sup>13</sup>C-<sup>1</sup>H) NMR (100.6 MHz, CDCl<sub>3</sub>):  $\delta$  27.3 (3 C, s, CMe<sub>3</sub>), 31.3 [1 C, d,  ${}^{1}J(P_{A}C)$  28.2, CH<sub>2</sub>], 39.8 [1 C, d,  ${}^{3}J(P_{A}C)$  2.6, CMe<sub>3</sub>], 40.1 (2 C, s, NMe<sub>2</sub>), 111.9 (2 C, s, C<sub>meta</sub> of C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>), 120.8 (1 C, s, C<sub>ipso</sub> or C<sub>para</sub> of C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>], 133.0 [2 C, d, <sup>3</sup>J(P<sub>A</sub>C) 5.2, C<sub>ortho</sub> of C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>], 151.7 (1 C, s, C<sub>ipso</sub> or C<sub>para</sub> of C<sub>6</sub>H<sub>4</sub>NMe<sub>2</sub>), 168.2 (1 C, s, HC=N) and 170.8 (1 C, s, Bu<sup>1</sup>C=N). mer,  $\textit{trans-} [RuCl_2(PPh_3)\{PPh_2CH_2C(Bu^t)\!\!=\!\!N\!\!-\!\!N\!\!=\!\!CH(C_6H_4OMe-1)\} = N-N-CH(C_6H_4OMe-1)$ 4)}] 12b. Yield 81% (Found: C, 62.35; H, 5.35; Cl, 8.25; N, 3.05. C<sub>44</sub>H<sub>44</sub>Cl<sub>2</sub>N<sub>2</sub>OP<sub>2</sub>Ru requires C, 62.1; H, 5.2; Cl, 8.35; N, 3.3%). m/z (FAB): 850 ( $M^+$ ), 815 (M – Cl) and 779 (M – Cl – HCl). v(Ru–Cl) 320 cm<sup>-1</sup>. mer, trans-[RuCl<sub>2</sub>(PPh<sub>3</sub>)-{PPh<sub>2</sub>CH<sub>2</sub>C(Bu')=N–N=CH(C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>-4)}] 12c. Yield 97% (Found: C, 61.6; H, 4.65; Cl, 7.25; N, 4.5. C<sub>43</sub>H<sub>41</sub>Cl<sub>2</sub>N<sub>3</sub>O<sub>2</sub>- $P_2Ru \cdot 0.6C_6H_6$  requires C, 61.35; H, 4.95; Cl, 7.75; N, 4.6%). m/z (FAB): 865 ( $M^+$ ), 829 (M - HCl) and 794 (M - ClHCl). v(Ru-Cl) 320 cm<sup>-1</sup>. mer,trans-[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>- $C(Bu')=N-N=CH(C_4H_3NMe)$ ] 14. Yield 85% (Found: C. 63.45; H, 5.35; Cl, 8.35; N, 4.65. C<sub>42</sub>H<sub>43</sub>Cl<sub>2</sub>N<sub>3</sub>P<sub>2</sub>Ru·0.75C<sub>6</sub>H<sub>6</sub> requires C, 63.3; H, 5.45; Cl, 8.05; N, 4.75%). m/z (FAB): 823 ( $M^+$ ) and 788 (M – Cl). v(Ru–Cl) 320 cm  $^1$ . mer, trans[RuCl<sub>2</sub>(PPh<sub>3</sub>){PPh<sub>2</sub>CH<sub>2</sub>C(Bu¹)=N-N=C(Me)CH=CHPh)}] **16.** Yield 90% (Found: C, 64.0; H, 5.25; Cl, 8.1; N, 3.15.  $C_{46}H_{46}Cl_2N_2P_2Ru$  requires C, 64.2; H, 5.4; Cl, 8.25; N, 3.25%). m/z (FAB): 860 ( $M^+$ ), 825 (M — Cl) and 789 (M — Cl — HCl).  $\nu$ (Ru—Cl) 320 cm<sup>-1</sup>.

### Acknowledgements

We thank the SERC for a fellowship (to S. D. P.) and for other support, and Johnson Matthey for the generous loan of ruthenium salts.

### References

- 1 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 2361.
- 2 K. K. Hii, S. D. Perera and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1994, 3589.
- 3 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1203.
- 4 S. D. Perera, B. L. Shaw and M. Thornton-Pett, *Inorg. Chim. Acta*,
- 1995, 233, 103.5 S. D. Perera, B. L. Shaw and M. Thornton-Pett, *J. Chem. Soc.*, *Dalton Trans.*, 1995, 1689.
- 6 S. D. Perera and B. L. Shaw, J. Organomet. Chem., 1994, 479, 117.
- 7 S. D. Perera and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1995, 641
- 8 S. D. Perera, M. Shamsuddin and B. L. Shaw, *Can. J. Chem.*, 1995, **73**, 1010.
- 9 K. K. Hii, S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 103.
- 10 S. D. Perera and B. L. Shaw, Inorg. Chim. Acta, 1995, 228, 127.

- 11 K. K. Hii, S. D. Perera and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1995, 625.
- 12 P. S. Hallman, T. A. Stephenson and G. Wilkinson, *Inorg. Synth.*, 1970, 12, 237.
- 13 S. J. LaPlaca and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
- 14 M. Brookhart, M. L. H. Green and L.-L. Wong, *Prog. Inorg. Chem.*, 1988. 36. 1.
- 15 R. Crabtree and D. G. Hamilton, Adv. Organomet. Chem., 1988, 28, 199.
- 16 A. Albinati, P. S. Pregosin and F. Wombacher, *Inorg. Chem.*, 1990, 29, 1812 and refs. therein.
- 17 F. M. Conroy-Lewis, L. Mole, A. D. Redhouse, S. A. Lister and J. L. Spencer, J. Chem. Soc., Chem. Commun., 1991, 1601 and refs. therein.
- 18 F. Neve, M. Ghedini and A. Crispini, Organometallics, 1992, 11, 3324 and refs. therein.
- 19 S. D. Perera and B. L. Shaw, J. Chem. Soc., Chem. Commun., 1994, 1201 and refs. therein.
- 20 G. C. Levy, R. L. Lichter and G. L. Nelson, Carbon-13 Nuclear Magnetic Resonance Spectroscopy, 2nd edn., Wiley, New York, 1980
- 21 B. E. Mann and B. E. Taylor, <sup>13</sup>C-NMR Data for Organometallic Compounds, Academic Press, New York, 1981.
- 22 E. Lindner, A. Möckel, H. A. Mayer, H. Kühbauch, R. Fawzi and M. Steinmann, *Inorg. Chem.*, 1993, 32, 1266 and refs. therein.
- 23 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1992, 1469.
- 24 S. D. Perera, B. L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., 1994, 713.
- 25 K. A. Taipale, Chem. Ber., 1930, 63, 243.

Received 13th June 1995; Paper 5/03801D