Synthesis and Characterisation of Ytterbium(II) Alkyls*

Johannes R. van den Hende, Peter B. Hitchcock, Stephen A. Holmes, Michael F. Lappert and Shun Tian

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

The following complexes were obtained and characterised: $[Yb(CHR_2)_2(OEt_2)_2]$ 1 from YbI₂ and 2 NaCHR₂; [Yb(CHR₂),Na] from Ybl, and 3 Na(CHR₂); 1 and [Yb(CHR₂)(OR')(OEt₂)₂] from $[Yb(OR')_2(OEt_2)_2]$ and 2 $K(CHR_2)$; $[Yb(CHR_2)(OR')(thf)_3]$ from $[Yb(OR')_2(thf)_3]$ and 1 $K(CHR_2)$; $\begin{bmatrix} Yb(CHR_2)_2(tmen) \end{bmatrix} \text{ from } \begin{bmatrix} Yb(\eta-C_5Me_5)_2(OEt_2) \end{bmatrix}, 2 \text{ Li}(CHR_2) \text{ and tmen}; \\ \begin{bmatrix} Yb(CHR_2)_2(dmpe) \end{bmatrix} \text{ from } 1 \text{ and } dmpe; \\ \begin{bmatrix} Yb(CHR_2)(OEt_2) \end{bmatrix}_2 C_6 H_4(NR)_2 - 1.4 \end{bmatrix} \text{ from } 2 \text{ 1 and } C_6 H_4(NHR)_2 - 1.4; \\ \begin{bmatrix} Yb(CR_3) - 1 \end{bmatrix} C_6 H_4(NR)_2 - 1.4 \end{bmatrix}$ $(\mu-OEt)(OEt_2)_2$ from Ybl_2 and 1 or 2 $K(CR_3)$; $[Yb(NR_2)_2\{NC_5H_4(CH_2R)-2\}_2]$ from $[\{Yb(NR_2)-2\}_2]$ from $[\{Yb(NR_2)-2\}_2]$ $(\mu - NR_2)_2$] I and 4 NC₅H₄(CH₂R)-2; [Yb(NR₂)₂{NC₅H₄(CHR₂)-2}] from I and 4 NC₅H₄(CHR₂)-2; [Yb{NC₆H₄(CHR)-2}₂(dme)] $[K{NC_{H}(CHR)-2}(dme)(OEt_{2})]$ from Ybl, and 2 [K{Yb[NC₅H₄(CHR)-2]₃}(dme)₂] from Ybl₂ and 3 [K{NC₅H₄(CHR)-2}(dme)(OEt₂)] (R = SiMe₄, R' = $C_{6}H_{2}Bu^{t}_{2}$, $Z_{6}-Me-4$, thf = tetrahydrofuran, tmen = Me₂NCH₂CH₂NMe₂, dmpe = Me₂PCH₂CH₂PMe₂ and dme = 1,2-dimethoxyethane). A single-crystal X-ray diffraction study established [$\{Yb(CR_3)\}$ - $(\mu-OEt)(OEt_2)$ to be a centrosymmetric dimer with each Yb atom in a distorted-tetrahedral environment and a central planar Yb_2O_2 ring. Variable-temperature ¹H NMR spectral data for $[K{Yb[NC_5H_4(CHR)-2]_3}(dme)_2]$ showed that the Me₃Si protons become inequivalent at low temperature, $T_c = 238$ K, due to a terminal-bridging NC₅H₄(CHR)-2 site-exchange process.

The stability of organolanthanide complexes has often relied on the incorporation of cyclopentadienyl ligands. Lanthanide(III) complexes containing only alkyl ligands are well established.² Several types of such complexes have been synthesised and structurally characterised, including (i) the homoleptic neutral complexes $[Ln(CHR_2)_3]$ (Ln = La or Sm, R = SiMe₃);³ (*ii*) anionic complexes, e.g. $[Li(thf)_4][LnBu_4^t]$ (Ln = Sm, Eu or Lu: thf = tetrahydrofuran)⁴ and $[Li(thf)_4][Ln(CHR_2)_3Cl]$ Yb);⁵ (*iii*) bimetallic complexes, (Ln = Er or)e.g. $[(R_2HC)_3La(\mu-Cl)Li(pmdien)]^6$ and $[(R_2HC)_3Ln(\mu-Me)Li-$ (pmdien)] (Ln = La or Sm; pmdien = N, N, N', N'', N''-pentamethyldiethylenetriamine)⁷ and (iv) chelate complexes, e.g. $[La{CH(PPh_2)_2}_3]^8$ and $[Sc{CH_2(SiMe_2C_6H_4OMe-2)}_3]^9$ By contrast, much less work has been reported on the lanthanide(11) alkyls. Reactions of an alkyl or aryl iodide with Sm, Eu or Yb metal have yielded lanthanide(II) complexes related to Grignard reagents.¹⁰ The obtained products were not pure but contained various lanthanide-(II) and -(III) species. More recently, several well characterised ytterbium(II) alkyls have been reported in preliminary publications using the bulky $^{-}CH_2R$, $^{-}CHR_2$ and $^{-}CR_3$ ligands,¹¹ including the first structurally authenticated lanthanide(II) alkyl [Yb(CHR₂){HB(bmpz)₃}] butyl-5-methylpyrazolyl).^{11b} $(\mathbf{R} = \mathrm{SiMe}_3,$ bmpz = 3-tert-

The work described in this paper is concerned with the use in ytterbium(II) chemistry of the bulky alkyl ligands $^{-}CHR_2$ and $^{-}CR_3$ and the potentially bidentate alkyl ligands C_5H_4N -(CHR)-2 and $C_5H_4N(CR_2)$ -2 (R = SiMe₃). The latter have been widely employed in transition-metal and main-group chemistry.¹² but no lanthanide metal complexes had previously been reported.

We have previously briefly communicated the preparation and NMR spectra of the ytterbium(II) alkyls [Yb(CHR₂)₂(OEt₂)₂] 1 (R = SiMe₃), [Yb(CHR₂)₃Na] 2, [Yb(CHR₂)(OR')(thf)₃] 3 (R' = C₆H₂Bu^t₂-2,6-Me-4), [Yb(CHR₂)₂(dmpe)] 4 (dmpe = Me₂PCH₂CH₂PMe₂) and [Yb(CR₃)(μ -OEt)(OEt₂)₂] 5, including the crystal structure of complex 5.^{11*a*} We report here details including new data on complexes 1–5 and the synthesis and characterisation of [Yb(CHR₂)(OR')(OEt₂)₂] 6, [Yb(CHR₂)₂(tmcn)] 7 (tmen = Me₂NCH₂CH₂NMe₂), [Yb(CHR₂)(OEt₂)₂C₆H₄(NR)₂-1,4] 8, [Yb(NR₂)₂{NC₅H₄(CH₂R)-2}₂] 9, [Yb(NR₂)₂{NC₅H₄-(CHR₂)-2}₂] 10, [Yb{NC₅H₄(CHR)-2}₂(dme)] 11 (dme = 1,2-dimethoxyethane) and [K{Yb[NC₅H₄(CHR)-2]₃(dme)₂] 12. Part 3 of this Series described the reactions of [{Yb-(NR₂)(μ -NR₂)₂] I¹³ or [Yb(NR₂)₂(OEt₂)₂]¹⁴ with various Brønsted acids, carbon disulfide, or LiNR₂ with tmen.¹

Results and Discussion

Synthesis and Characterisation of Ytterbium(II) Alkyls.—The reaction of YbI_2 with 2 equivalents of $Na(CHR_2)$ in diethyl ether yielded orange crystals of $[Yb(CHR_2)_2(OEt_2)_2]$ 1, equation (1). Compound 1 was fully characterised by NMR

$$YbI_{2} + 2Na(CHR_{2}) \xrightarrow{OEt_{2}}$$

$$[Yb(CHR_{2})_{2}(OEt_{2})_{2}] + 2NaI \quad (1)$$

$$1$$

 $[{}^{1}H, {}^{13}C, {}^{29}Si-\{{}^{1}H\}, {}^{171}Yb-\{{}^{1}H\}{}^{15}$ (Table 1)] spectroscopy. Owing to the lability of the diethyl ether ligands in 1, satisfactory elemental analytical data were not obtained. Attempts to determine the molecular structure were hampered by disorder in the crystal.

The reaction of YbI_2 with either 2 or 3 equivalents of $Na(CHR_2)$ in hexane yielded the solvent-free, red-brown crystalline [Yb(CHR₂)₃Na] **2**, equation (2). In the former case

$$YbI_{2} + 3Na(CHR_{2}) \xrightarrow{hexane} [Yb(CHR_{2})_{3}Na] + 2NaI \quad (2)$$
2

the reacting YbI_2 was not completely consumed; the formation of **2**, rather than $Yb(CHR_2)_2$, was confirmed by elemental

^{*} Lanthanide(11) Alkyls, Amides, Alkoxides and Aryloxides. Part 4.¹ No reprints available.

Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.

Table 1 The ¹⁷¹Yb-{¹H} NMR spectral chemical shift (δ) data ^{*a*} for compounds 1, 3–12, I and VIII (R = SiMe₃, R' = C₆H₂Bu'₂-2,6-Me-4)

Compound	Solvent ^b	T/\mathbf{K}	δ(¹⁷¹ Yb)	w ₁ /Hz	² J(¹⁷¹ Yb– ¹ H)/Hz	Ref.
$1 [Yb(CHR_2)_2(OEt_2)_2]$	C ₆ H ₅ Me	295	1035	Triplet	30	11(<i>a</i>)
$3 [Yb(CHR_2)(OR')(thf)_3]$	C ₆ H ₅ Me	293	725	_	-	11(a)
$4 [Yb(CHR_2)_2(dmpe)]$	C ₆ H ₅ Me	293	1231	260		11(a)
$5 [{Yb(CR_3)(\mu-OEt)(OEt_2)}_2]$	OEt ₂	298	764		- 1997	11(a)
$6 [Yb(CHR_2)(OR')(OEt_2)_2]$	C ₆ H ₅ Me	293	744	Doublet	30	11(a)
$7 [Yb(CHR_2)_2(tmen)]$	C ₆ H ₆	304	1068	25		This work
8 [{Yb(CHR ₂)(OEt ₂)} ₂ C ₆ H ₄ (NR) ₂ -1,4]	OEt ₂	298	596			This work
9 [Yb(NR ₂) ₂ {NC ₅ H ₄ (CH ₂ R)-2} ₃]	C_6H_6	304	880	450		This work
10 $[Y_{b}(NR_{2})_{2}\{NC_{5}H_{4}(CHR_{2})-2\}_{2}]$	C_6H_6	304	819	550		This work
11 [Yb{ $NC_5H_4(CHR)-2$ } ₂ (dme)]	thf	304	770	80		This work
12 [K{Yb[NC ₅ H ₄ (CHR)-2] ₃ }(dme) ₂]	dme	223	690	30		This work
$I[{Yb(NR_2)(\mu-NR_2)}_2]$	C_6H_6	304	779	200		1
VIII $[Yb(NR_2)_2(py)_2]$	ру	213	919	60		1

^a Spectra were recorded at 43.77 (for complexes 7, 9–12, I and VIII), 63.01 (for 1, 3, 4 and 6) or 87.5 MHz (for 5 and 8) relative to $[Yb(\eta - C_5Me_5)_2(thf)_2]$ in 10% $C_6D_5CD_3$ at 273 K.^{15 b} 10–20% v/v C_6D_6 or $C_6D_5CD_3$ was used as lock.

(C, H) analysis. Complex 2 may be isostructural with its isoelectronic X-ray characterised amide $[(R_2N)Yb(\mu-NR_2)_2Na]$ II.¹⁶ Compound 2 was stable at -30 °C but slowly decomposed at room temperature. The ²⁹Si-{¹H} NMR spectrum of freshly prepared 2 showed a signal at $\delta 0.1$. After 1 month it had partially decomposed; the ²⁹Si-{¹H} NMR spectrum showed two signals at $\delta 0.08$ and $\delta - 10.77$. The latter was broad, which is attributed to the paramagnetic effect of the decomposition products, as is the failure to observe the ¹⁷¹Yb-{¹H} NMR signal of 2.

The compound [Yb(OR')₂(OEt₂)₂] III (R' = $C_6H_2Bu_2^{t}$ -2,6-Me-4)¹⁷ was treated with 2 equivalents of K(CHR₂) in diethyl ether; the reaction was monitored by ¹⁷¹Yb-{¹H} NMR spectroscopy (Table 1). The proton-coupled spectrum indicated that there were two ytterbium(II) species present in solution, a doublet and triplet pattern being observed at δ 744 and 1035, respectively. These multiplicities are assigned to ²*J*(¹⁷¹Yb-¹H) = 30 Hz. The signals are assigned to the bis-(alkyl) [Yb(CHR₂)₂(OEt₂)₂] 1 (triplet) and the mixed alkyl-phenoxide [Yb(CHR₂)(OR')(OEt₂)₂] **6** (doublet). It is assumed that in **6**, as in the case of **III**, there are two diethyl ether ligands, equation (3).

$$[Yb(OR')_{2}(OEt_{2})_{2}] + 2K(CHR_{2}) \xrightarrow{OEt_{2}}$$

$$III$$

$$[Yb(CHR_{2})_{2}(OEt_{2})_{2}] + [Yb(CHR_{2})(OR')(OEt_{2})_{2}] + 1$$

$$6$$

$$KOR' (3)$$

The ${}^{2}J({}^{171}Yb{}^{-1}H)$ and reduced (${}^{2}k$) spin–spin coupling constant of 30 Hz may be compared with such data for other ${}^{2}J({}^{x}M{}^{-1}H)$ couples (obtained for MPr $_{n}^{n}$), 18 ${}^{2}J({}^{x}M{}^{-1}H)[{}^{2}k$ (${}^{x}M{}^{-1}H)(\times 10^{19} \text{ N m}^{3}A{}^{-2})]$: ${}^{x}M = {}^{171}Yb$ 30 [14.1], ${}^{113}Cd$ 52 [20.7], ${}^{119}Sn$ 49 [10.9], ${}^{199}Hg$ 95 [44.2] and ${}^{207}Pb$ 40 Hz [15.8].

The mixed ytterbium(II) alkyl-phenoxide $[Yb(CHR_2)(OR')-(thf)_3]$ **3** was obtained when $[Yb(OR')_2(thf)_3]^{17}$ was treated with 1 equivalent of K(CHR_2) in thf. The formulation is consistent with the analytical data. A singlet was observed at δ 725 in its 171 Yb- $\{^{1}$ H} NMR spectrum (Table 1). The reaction of $[Yb(\eta-C_5Me_5)_2(OEt_2)]^{14}$ with 2 equivalents

The reaction of $[Yb(\eta-C_5Me_5)_2(OEt_2)]^{14}$ with 2 equivalents of Li(CHR₂) in diethyl ether afforded a red oil, which was dissolved in toluene and excess of tmen; the isolated product was $[Yb(CHR_2)_2(tmen)]$ 7, equation (4). Attempts to obtain

$$[Yb(\eta-C_5Me_5)_2(OEt_2)] + 2Li(CHR_2) + tmen \xrightarrow{OEt_2} [Yb(CHR_2)_2(tmen)] + 2Li(C_5Me_5) \quad (4)$$

crystalline material were unsuccessful. The ¹⁷¹Yb-{¹H} NMR signal of 7 was observed at a slightly higher frequency (δ 1068) than that for [Yb(CHR₂)₂(OEt₂)₂] 1 (Table 1). A similar route had previously been employed in the preparation of the alkaline-earth-metal complexes [M(CHR₂)₂(thf)₃] complexes (M = Ca or Sr).¹⁹

Reactions of $[Yb(CHR_2)_2(OEt_2)_2]$ 1.—The substitution lability of the ether ligands in complex 1 was demonstrated by their displacement by the chelating 1,2-bis(dimethylphosphino)ethane. One equivalent of dmpe with 1 in toluene yielded $[Yb(CHR_2)_2(dmpe)]$ 4, equation (5). Compound 4 was

$$[Yb(CHR_2)_2(OEt_2)_2] + dmpe \longrightarrow$$

$$1 \qquad [Yb(CHR_2)_2(dmpe)] + 2OEt_2 \quad (5)$$

$$4$$

characterised by NMR [$^{13}C-\{^{1}H\}$, $^{31}P-\{^{1}H\}$, $^{171}Yb-\{^{1}H\}$] spectroscopy. The $^{171}Yb-\{^{1}H\}$ NMR resonance was observed at somewhat higher frequency (δ 1231) than that of 1 or 7 (Table 1). The broad signal ($w_{\frac{1}{2}} = 260$ Hz) indicates that the dmpe ligand in 4 was undergoing rapid dissociationassociation.

The reaction of two molar portions of complex 1 with one of $C_6H_4(NHR)_2$ -1,4 in diethyl ether afforded [{Yb(CHR₂)-(OEt₂)}₂ $C_6H_4(NR)_2$ -1,4] 8 as a brown solid, equation (6).

$$2[Yb(CHR_{2})_{2}(OEt_{2})_{2}] + C_{6}H_{4}(NHR)_{2}-1,4 \xrightarrow{OEt_{2}} 1$$

$$[\{Yb(CHR_{2})(OEt_{2})\}_{2}C_{6}H_{4}(NR)_{2}-1,4] + 2CH_{2}R_{2} \quad (6)$$

Compound 8 was characterised by NMR [¹H, ²⁹Si-{¹H}, ¹⁷¹Yb-{¹H} (Table 1)] spectroscopy. There were two equalintensity ²⁹Si-{¹H} NMR signals at δ –22.01 and –17.05, confirming that there are two different SiMe₃ groups in the molecule.

Synthesis and Characterisation of $[{Vb(CR_3)(\mu-OEt)-(OEt_2)}_2]$ 5.—The reaction of YbI₂ with 2 equivalents of K(CR₃) in diethyl ether at room temperature yielded orangered crystals of $[{Vb(CR_3)(\mu-OEt)(OEt_2)}_2]$ 5 rather than the expected $[Yb(CR_3)_2]$ or $[Yb(CR_3)_2(OEt_2)_n]$. The ⁻OEt moiety may have resulted from the cleavage of OEt₂ by either K(CR₃) or $[Yb(CR_3)_2]$, equations (7)–(10). Dialkyl ethers are known readily to be cleaved by the heavier boron trihalides, *e.g.* BCl₃. It may be that K(CR₃) or $[Yb(CR_3)_2]$ has sufficient ionic

Table 2 Selected intramolecular distances (Å) and angles (°) with estimated standard deviations (e.s.d.s) in parentheses for [{Yb(CR₃)-(μ -OEt)(OEt₂)}₂] 5

Yh · · · Yh	3.531(1)	Yb-O(1)	2.267(10)
Yb-O(1')	2.276(10)	Yb-O(2)	2.479(13)
Yb-C(1)	2.573(13)	O(1)-C(11)	1.33(2)
O(2)-C(13)	1.80(4)	O(2) - C(15)	1.58(4)
C(11) - C(12)	1.44(3)	C(13) - C(14)	1.06(6)
C(15)-C(16)	1.11(5)		. ,
O(1) - Yb - O(1')	78 0(4)	O(1) - Y - O(2)	105.4(4)
O(1) - Yb - C(1)	120 7(4)	O(1')-Yb-O(2)	106.7(4)
O(1')-Yb-C(1)	123.4(4)	O(2)-Yb-C(1)	116.1(4)
Yb-O(1)-Yb'	102.0(4)	Yb-O(1)-C(11)	120.9(8)
Yb'-O(1)-C(11)	137.1(9)	Yb-O(2)-C(13)	121(1)
Yb-O(2)-C(15)	120(1)	C(13)-O(2)-C(15)	104(2)
Yb-C(1)-Si(1)	108.8(6)	Yb-C(1)-Si(2)	102.5(6)
Yb-C(1)-Si(3)	107.6(6)	Si(1) - C(1) - Si(2)	111.9(8)
Si(1)-C(1)-Si(3)	114.0(8)	Si(2)-C(1)-Si(3)	111.4(8)
O(1)-C(11)-C(12)	119(1)	O(2)-C(13)-C(14)	91(3)
O(2)-C(15)-C(16)	123(3)		
Primed atoms are re	elated by $-x, -y$, <i>— z</i> .	

Table 3 Fractional atomic coordinates with e.s.d.s in parentheses for $[{Yb(CR_3)(\mu-OEt)(OEt_2)}_2]$ 5

Atom	x	У	Ζ
Yb	0.003 47(8)	0.063 43(4)	0.087 15(4)
$Si(1)^a$	0.013 2(8)	-0.0734(4)	0.258 8(3)
Si(2) ^{<i>a</i>}	-0.2342(6)	0.050 6(4)	0.247 2(4)
Si(3)"	0.0662(7)	0.110 5(4)	0.296 6(4)
O(1)	0.147 6(11)	-0.0194(6)	0.013 5(6)
O(2)	0.073 5(14)	0.207 8(8)	0.053 1(7)
C(1)	-0.0367(15)	0.033 5(8)	0.237 8(8)
C(2)	-0.0806(24)	-0.1208(14)	0.353 3(13)
C(3)	-0.0294(22)	-0.1449(13)	0.176 6(12)
C(4)	0.215 5(25)	-0.0813(14)	0.279 5(14)
C(5)	-0.2973(26)	0.142 0(15)	0.181 2(14)
C(6)	-0.3013(27)	0.070 5(15)	0.350 9(15)
C(7)	-0.337 7(26)	-0.044 5(15)	0.203 9(14)
C(8)	0.252 0(24)	0.126 7(15)	0.255 5(13)
C(9)	-0.014 1(26)	0.220 1(15)	0.291 7(14)
C(10)	0.107 4(26)	0.083 9(14)	0.395 9(14)
C(11)	0.284 4(16)	-0.0298(9)	0.034 4(8)
C(12)	0.336 5(26)	-0.112 3(16)	0.052 0(14)
C(13)	-0.054 1(41)	0.280 1(24)	0.009 9(24)
C(14)	-0.034 4(45)	0.322 5(28)	0.057 6(27)
C(15)	0.214 4(37)	0.223 7(22)	0.004 0(22)
C(16)	0.322 8(36)	0.216 7(21)	0.031 5(20)
Si(1a) ^b	-0.117 9(36)	-0.069 5(21)	0.242 7(18)
Si(2a) ^b	-0.151 1(39)	0.116 3(21)	0.267 6(19)
Si(3a) ^b	0.151 5(40)	0.040 2(21)	0.295 6(20)
^a Occupancy	0.9. ^b Occupancy 0.1.		

$$YbI_2 + 2K(CR_3) \longrightarrow [Yb(CR_3)_2] + 2KI$$
(7)

$$[Yb(CR_3)_2] \xrightarrow{OEt_2}$$

$$\frac{1}{2}[\{Yb(CR_3)(\mu-OEt)(OEt_2)\}_2] + CHR_3 + CH_2CH_2 \quad (8)$$
5

$$K(CR_3) + OEt_2 \longrightarrow CHR_3 + CH_2CH_2 + KOEt \quad (9)$$

$$YbI_{2} + K(CR_{3}) + KOEt \xrightarrow{OEt_{2}} \frac{1}{2} [\{Yb(CR_{3})(\mu - OEt)(OEt_{2})\}_{2}] + 2KI \quad (10)$$

character for K^+ or Yb^{2+} to behave as such a Lewis acid. Alternatively OEt_2 cleavage by YbI_2 or $Yb(CR_3)I$ cannot be ruled out. **Table 4** Crystal data for $[{Vb(CR_3)(\mu-OEt)(OEt_2)}_2]$ 5

Formula	$C_{32}H_{84}O_4Si_6Yb_2$
Crystal system	Monoclinic
Space group	$P?_{n}(no_{14})$
a/Å	9 358(8)
b/A	16.069(11)
c/Å	16.547(12)
β/°	91 12(6)
Z	2
$U/Å^3$	2487.6
$D_{\rm c}/g~{\rm cm}^{-3}$	1.40
F(000)	4825
N (total unique)	4551
N _o (observed)	2655
$\mu_{\rm Ma}/\rm cm^{-1}$	38.9
Specimen/mm	$0.3 \times 0.3 \times 0.2$
Ŕ	0.072
R'	0.080
S	2.1
Absorption corrections, maximum, minimum	1.24, 0.64
Weighting scheme employed (w)	$1/\sigma^2(F)$

Fig. 1 Molecular structure of $[\{Yb(CR_3)(\mu\text{-}OEt)(OEt_2)\}_2]$ 5 and atom numbering scheme

Compound 5 was characterised by elemental (C, H) analysis, NMR [^{1}H , $^{13}C-{^{1}H}$, $^{171}Yb-{^{1}H}$ (Table 1)] spectroscopy and X-ray crystallography. Reaction of YbI₂ with an equimolar portion of K(CR₃) in diethyl ether at room temperature also afforded 5, rather than the expected [{Yb(CR₃)(μ -I)(OEt₂)}₂].

Subsequently, our colleagues have prepared and characterised crystallographically $[Yb(CR_3)_2]$ IV [from YbI₂ + 2 K(CR₃) in C₆H₆] and [{Yb(CR₃)(μ -I)(OEt₂)}₂] V (from IV and an excess of MeI or ICH₂CH₂I in OEt₂), and shown that V reacts with OEt₂ to yield 5.^{11c}

Crystal Structure of $[{Yb(CR_3)(\mu-OEt)(OEt_2)}_2]$ 5.—The molecular structure and atom numbering scheme for compound 5 are shown in Fig. 1; selected bond lengths and angles are in Table 2, fractional atomic coordinates in Table 3 and the crystal data and refinement parameters in Table 4.

The structure reveals an ethoxo-bridged dimer, with each ytterbium atom in a distorted-tetrahedral geometry. The molecule lies across a crystallographic inversion centre. The central YbOYbO ring is planar, as in $[{Vb(OR')(\mu-OR')}_2]VI$, but unlike that in $[{Vb(NR_2)(\mu-OCBu^t_3)}_2]VII$.²⁰ The Yb–C distance, 2.573(13) Å, is slightly longer than in IV [2.490(8) and 2.501(9) Å] or V [2.47(2) Å].^{11c} The Yb–OEt bond lengths in 5 [average 2.27(1) Å] are comparable to those for Yb–OR'_{br} in VI [average 2.28(2) Å] and Yb–O in VII [average 2.31(1) Å]. The endocyclic angles are O–Yb–O 78.0(4)° in 5, average 79.6(6)° in VI and 84.1(7)° in VII, and Yb–O–Yb 102.0(4)° in 5, average 100.4(7) in VI and 93.3(2)° in VII.

Table 5 Proton NMR spectral chemical shifts (δ)

		5 = 1 or	3 ^{2 2′} CH _n (SiM 0	e ₃) _{2-n}			
Compound	SiMe ₃	2'	3	4	5	6	Ref.
$NC_5H_4(CH_2R)^a$	-0.05	2.10	6.80	7.25	6.80	8.35	12(<i>i</i>)
$NC_5H_4(CHR_2)^a$	-0.07	2.20	6.70	7.38	6.70	8.25	12(<i>i</i>)
9 ^b	$0.00 (NR_2)$	1.57	6.45	7.4	6.45	8.3	This work
	$0.32 (CH_2R)$						
10 ^{<i>b</i>}	$0.06 (NR_2)$	1.67	6.49	6.98	6.54	8.40	This work
	0.13 (CHR ₂)						
11 ^b	0.28	2.30	6.55	7.02	6.62	8.46	This work
12 ^b	0.31	2.20	5.55	6.57	6.30	7.32	This work

^{*a*} Recorded in CDCl₃; δ calibrated with respect to SiMe₄. ^{*b*} Recorded in C₆D₆ at 250.13 MHz (9) at 304 K, in C₆D₆ at 360.13 MHz (10 and 11) at 293 K or in C₆D₅CD₃ at 360.13 MHz (12) at 293 K; δ calibrated with respect to internal solvent.

Table 0 The CONVER spectral chemical shifts (0) (for atom numbering see Tab	Table 6	The ¹³ C NMR	spectral chemical	l shifts (δ) (fo	or atom numbering	see Table ?
--	---------	-------------------------	-------------------	------------------	-------------------	-------------

Compound	SiMe ₃	2'	2	3	4	5	6	Ref.
$NC_5H_4(CH_2R)-2^a$	-1.8	30.0	161.3	121.9	135.6	119.0	148.9	12(<i>i</i>)
$NC_5H_4(CHR_2)-2^a$	0.0	33.4	164.4	122.8	135.5	118.0	149.2	12(i)
9 ^b	$0.38 (NR_2)$ 6.07 (CH ₂ R)	22.64	164.64	123.05	135.01	118.31	149.16	This work
10 ^b	$0.44 (NR_2)$ 5.80 (CHR ₂)	33.51	164.69	123.21	135.59	118.46	149.05	This work
11 ^b	1.03	41.30	161.84	122.32	135.68	119.36	149.52	This work
12 ^b	1.92	61.39	167.96	119.55	132.59	114.98	149.59	This work

^{*a*} Recorded in CDCl₃; δ calibrated with respect to SiMe₄. ^{*b*} Recorded in C₆D₆ at 62.90 MHz (9) at 304 K, in C₆D₆ at 125.76 MHz (10 and 11) at 293 K or in C₆D₅CD₃ at 125.76 MHz (12) at 293 K; δ calibrated with respect to internal solvent.

Lewis-base Adducts of $[{Yb(NR_2)(\mu-NR_2)}_2]$ I.—Four equivalents of $NC_5H_4(CH_2R)$ -2 or $NC_5H_4(CHR_2)$ -2 with $[{Yb(NR_2)(\mu-NR_2)}_2]$ I¹³ in hexane at ambient temperature afforded $[Yb(NR_2)_2\{NC_5H_4(CH_2R)-2\}_2]$ 9 or $[Yb(NR_2)_2 \{NC_5H_4(CHR_2)-2\}_2]$ 10, respectively, in an almost quantitative yield, equation (11). It was evident from the NMR

$$[\{Yb(NR_2)(\mu-NR_2)\}_2] + 4NC_5H_4(CHXR) - 2 \xrightarrow{hexane} I$$

$$2[Yb(NR_2)_2\{NC_5H_4(CHXR) - 2\}_2] \quad (11)$$

$$X = H 9 \text{ or } R 10$$

[¹H (Table 5), ¹³C-{¹H} (Table 6) and ²⁹Si-{¹H} (see Experimental section), ¹⁷¹Yb-{¹H} (Table 1)] spectra that 9 and 10 were the Lewis-base adducts of the ytterbium(II) amide. There was no evidence for protolytic ligand exchange, indicating that $NC_5H_4(CH_2R)$ -2 and $NC_5H_4(CHR_2)$ -2 are weaker Brønsted acids than $NH(SiMe_3)_2$. Complex 10 was also obtained when 2 equivalents of the pyridine derivative were allowed to react with I in toluene under reflux for 8 h.

The signals in the ¹H and ¹³C-{¹H} NMR spectra of complexes 9 and 10 corresponding to the carbon atoms bearing the Me₃Si groups were shifted to lower frequency compared with those of the free pyridine derivatives; the signals for the pyridyl protons remained largely unshifted (Tables 5 and 6). The ¹⁷¹Yb NMR spectral data (Table 1) showed high-frequency shifts for 9 and 10 compared with I, due to the coordination of two pyridyl groups at the ytterbium centre. A similar ¹⁷¹Yb shift was observed for [Yb(NR₂)₂(py)₂] VIII (py = pyridine) compared with I (Table 1).¹⁵

Synthesis and Characterisation of $[Yb{NC_5H_4(CHR)-2}_2-(dme)]$ 11 and $[K{Yb[NC_5H_4(CHR)-2]_3}(dme)_2]$ 12.—The reaction of YbI_2 with 2 equivalents of $[K{NC_5H_4(CHR)-2}_-]$

(dme)(OEt₂)] in diethyl ether, followed by crystallisation from dme, afforded maroon crystals of $[Yb{NC_5H_4(CHR)-2}_2]_2$ -(dme)] 11 equation (12). When YbI_2 was treated with 3

$$YbI_{2} + 2[K\{NC_{5}H_{4}(CHR)-2\}(dme)(OEt_{2})] \xrightarrow{OEt_{2}}$$
$$[Yb\{NC_{5}H_{4}(CHR)-2\}_{2}(dme)] + 2KI \quad (12)$$

equivalents of $[K{NC_5H_4(CHR)-2}(dme)(OEt_2)]$ in dme maroon crystals of $[K{Yb[NC_5H_4(CHR)-2]_3}(dme)_2]$ 12 were obtained from diethyl ether, equation (13). Complexes 11 and

$$YbI_{2} + 3[K{NC_{5}H_{4}(CHR)-2}(dme)(OEt_{2})] \xrightarrow{dme} K{Yb[NC_{5}H_{4}(CHR)-2]_{3}}(dme)_{2}] + 2KI \quad (13)$$
12

12 were characterised by NMR [¹H (Table 5), ¹³C-{¹H} (Table 6) and ²⁹Si-{¹H} (see Experimental section), ¹⁷¹Yb-{¹H} (Table 1)] spectroscopy and elemental (C, H, N) analysis. The ¹H NMR spectra at ambient temperature showed a lowfrequency shift for the pyridyl ring protons relative to NC₅H₄(CH₂R)-2 (Table 5). The signals corresponding to the carbon atoms bearing the Me₃Si groups showed little deviation from those observed for the free pyridine derivative (Table 5). The ¹H NMR spectra showed the presence of one molecule of dme in 11 and two in 12. A variable-temperature ¹H NMR spectral study showed that the Me₃Si groups became inequivalent at low temperature. The ¹H NMR (250.13 MHz) spectrum of 12 in C₆D₅CD₃ showed that the Me₃Si groups coalesced at $T_c = 238 \pm 1$ K. Determination of the corresponding ΔG^{\ddagger} was hampered by the insolubility of 12 in C₆D₅CD₃ at low temperature, making it impracticable to measure $\delta(v)$. The fluxional behaviour is believed to arise from terminal-bridging $NC_5H_4(CHR)$ site exchange. The signals for the Me₃Si groups shifted to higher frequency at lower temperature. This is attributed to a second fluxional process, believed to arise from site exchange of co-ordinating and non-co-ordinating pyridyl groups. The ¹³C-{¹H} NMR spectra of complexes 11 and 12 were

The ¹³C-{¹H} NMR spectra of complexes **11** and **12** were unexceptional. The signals for the carbon atoms (C α) bearing the Me₃Si group were shifted to higher frequency compared with those for NC₃H₄(CH₂R)-2 (Table 6). This is consistent with data for a number of deprotonated methyl-substituted pyridines,²¹ which were attributed to delocalisation of the negative charge and increased p character of the α -carbon atom. The ¹³C NMR spectrum of **11** showed a doublet at δ 41.30 with ¹J_{CH} = 122.49 Hz. This value is unexceptional for an sp³hybridised carbon atom. The pyridyl ring resonances remained largely unshifted in the ¹³C-{¹H} NMR spectra of **11** and **12** (Table 6).

The ¹⁷¹Yb-{¹H} NMR resonances of complexes 11 (at 304 K) and 12 (at 223 K) were observed at relatively low frequency compared with those for $[Yb(CHR_2)_2(OEt_2)_2]$ 1 and $[Yb(CHR_2)_2(dmpe)]$ 4 (Table 1). No ¹⁷¹Yb-{¹H} NMR signal for 12 was observed at 304 K. This may be due to the fluxional behaviour of the NC₅H₄(CHR)-2 ligands at ambient temperature.

Other previously reported heterobimetallic ytterbium(II) complexes include $[(R_2N)Yb(\mu-NR_2)_2Na]$ II,¹⁶ [Li{Yb-(NR_2)_3}(tmen)]¹ and [Yb(CHR_2)_3Na] 2. Complex 12 may be isostructural with that of the crystallographically characterised amide II.¹⁶

Experimental

General.—All manipulations were carried out under vacuum or in a stream of argon by Schlenk techniques. Solvents were dried and distilled over potassium–sodium alloy under argon prior to use. The following compounds were prepared by known procedures: YbI₂,¹⁴ [{Yb(NR₂)(μ -NR₂)}₂] I,¹³ [Yb(OR')₂(OEt₂)₂] III,¹⁷ [Yb(OR')₂(thf)₃],¹⁷ [Yb(η -C₅-Me₅)₂(OEt₂)],¹⁴ Li(CHR₂),²² Na(CHR₂),²³ K(CHR₂),²³ K-(CR₃),²⁴ NC₅H₄(CH₂R)-2¹²ⁱ and NC₅H₄(CHR₂)-2.¹²ⁱ *N*,*N*,*N*',*N*'-Tetramethylethylenediamine (tmen) was obtained from Aldrich and distilled from KOH.

Microanalyses were carried out by Medac Ltd., Uxbridge, Middlesex. The NMR spectra were recorded using Bruker WP-80, AC-250, WM-360 or AMX-500 spectrometers and mass spectra using a VG Autospec instrument. Melting points are uncorrected and were determined under argon in sealed capillary tubes using an Electrothermal apparatus.

Syntheses. —[Yb(CHR₂)₂(OEt₂)₂] 1. A colourless solution of Na(CHR₂) (1.14 g, 6.28 mmol) in OEt₂ (50 cm³) was added to a yellow suspension of YbI₂ (1.34 g, 3.14 mmol) in OEt₂ (100 cm³) at 25 °C. The mixture was stirred for 24 h, leaving a redorange solution and a white precipitate. After filtration, the filtrate was concentrated to *ca*. 5 cm³ and cooled to -30 °C, affording red-orange crystals of complex 1 (1.0 g, 1.6 mmol, 50%). NMR: ¹H (C₆D₆, 360.13 MHz, 20 °C), $\delta - 1.55$ (s, 1 H, CHSiMe₃), 0.34 (s, 18 H, SiMe₃), 0.95 (br s, 6 H, OCH₂Me) and 3.36 (br s, 4 H, OCH₂Me); ¹³C (C₆D₆, 62.90 MHz, 25 °C), $\delta 6.15$ (q, ¹J_{CH} = 116.3, SiMe₃), 14.11 (q, ¹J_{CH} = 126.5, OCH₂Me), 27.34 (d, ¹J_{CH} = 94.3, CHSiMe₃) and 64.64 (t, ¹J_{CH} = 148.8 Hz, OCH₂Me); ²⁹Si-{¹H} (OEt₂-C₆D₆, 49.70 MHz, 25 °C), $\delta - 7.8$ (SiMe₃).

[Yb(CHR₂)₃Na] 2. Hexane (100 cm³) was added to a mixture of solid YbI₂ (0.87 g, 2.03 mmol) and Na(CHR₂) (1.15 g, 6.1 mmol). The suspension was stirred at room temperature for 2 d, leaving a red-brown solution and a pale yellow precipitate. After filtration, the filtrate was concentrated to *ca*. 5 cm³. Cooling to -30 °C afforded red-brown crystals of complex 2 (0.65 g, 0.97 mmol, 48%) (Found: C, 37.1; H, 8.40.

C₂₁H₅₇NaSi₆Yb requires C, 37.4; H, 8.50%). NMR: ¹H (C₆D₆, 360.13 MHz, 20 °C), $\delta - 1.78$ (s, CHSiMe₃) and 0.29 (s, SiMe₃); ²⁹Si-{¹H} (C₆H₁₄-C₆D₆, 49.70 MHz, 25 °C), $\delta 0.1$ (SiMe₃).

Mixture of $[Yb(CHR_2)_2(OEt_2)_2]$ 1 and $[Yb(CHR_2)(OR')-(OEt_2)_2]$ 6. Solid K(CHR_2) (1.1 g, 5.5 mmol) was added to a stirring solution of $[Yb(OR')_2(OEt_2)_2]$ III (2.1 g, 2.75 mmol) in OEt₂ (30 cm³) at 0 °C. An immediate change from red-orange to brown was noted as the K(CHR₂) was added. The reaction mixture was stirred for 30 min at 0 °C and then allowed to warm to room temperature. The solvent volume was reduced to *ca*. 15 cm³ and a white solid was isolated at -30 °C. A portion of the reaction mixture was placed in a NMR spectral tube and its ¹⁷¹Yb NMR spectrum recorded. The latter showed a triplet and doublet pattern, assigned to complexes 1 and 6, respectively.

[Yb(CHR₂)(OR')(thf)₃] 3. Solid K(CHR₂) ($\overline{0.51}$ g, 2.6 mmol) was added to a stirring solution of [Yb(OR')₂(thf)₃] (2.12 g, 2.6 mmol) in toluene (20 cm³) at 0 °C. A change from yellow-orange to brown was noted. The toluene was removed *in vacuo*, the residue was taken up in hexane and a white precipitate was filtered off. The hexane was removed from the filtrate *in vacuo*. The residue of crude 3 was redissolved in the minimum of toluene (5 cm³) and cooled (-30 °C). This yielded brown, microcrystalline 3 (0.49 g, 0.64 mmol, 25%) (Found: C, 51.2; H, 7.4. C₃₄H₆₆O₄Si₂Yb requires C, 53.2, H, 8.65%).

[Yb(CHR₂)₂(tmen)] 7. A solution of Li(CHR₂) (0.55 g, 3.30 mmol) in OEt₂ (5 cm³) was added to [Yb(η -C₅Me₅)₂(OEt₂)] (0.85 g, 1.65 mmol) in OEt₂ (40 cm³) at -70 °C. The green suspension was stirred and slowly warmed to room temperature; a colour change to red was noted at *ca*. -70 °C. After stirring for 4 h at room temperature the solid was allowed to settle. The supernatant layer was decanted off and filtered. The volatiles were removed from the filtrate *in vacuo* to afford a red oil, which was dissolved in a mixture of toluene (20 cm³) and tmen (1 cm³) to give a red solution. Attempts to obtain crystalline material were unsuccessful. The volatiles were removed *in vacuo*, the residue was taken up in benzene (2.5 cm³) and the solution transferred to a NMR spectral tube. ²⁹Si-{¹H} NMR (C₆H₆-C₆D₆, 99.36 MHz, 25 °C): $\delta - 8.16$ (SiMe₃).

[Yb(CHR₂)₂(dmpe)] 4. The diphosphine dmpe (0.4 g, 2.7 mmol) was added to a toluene solution of [Yb(CHR₂)₂(OEt₂)₂] 1 (1.9 g, 3.0 mmol) with stirring at -30 °C. An immediate change from brown to purple was noted. The solvent was removed *in vacuo* to yield a purple waxy solid. Recrystallisation from hexane afforded purple needles of complex 4 (0.43 g, 0.67 mmol, 25%). NMR (C₆D₅CD₃, 20 °C): ¹³C-{¹H} (62.90 MHz), δ 5.6 (SiMe₃), 13.3 [(Me₂PCH₂)₂] and 27.6 [(Me₂PCH₂)₂]; ³¹P-{¹H} (101.2 MHz), δ -42.6.

[{Yb(CHR₂)(OEt₂)}₂C₆H₄(NR)₂-1,4] **8**. A solution of C₆H₄(NHR)₂-1,4 (0.25 g, 0.81 mmol) in OEt₂ (20 cm³) was added to an orange solution of complex **1** (1.07 g, 1.67 mmol) in OEt₂ (50 cm³). The mixture was stirred at room temperature for 24 h, changing to brown. The solvent was removed *in vacuo* to yield a brown solid, which was recrystallised from benzene to give dark brown microcrystalline complex **8** (0.65 g, 0.61 mmol, 75%). NMR: ¹H (C₆D₆, 360.13 MHz, 25 °C), δ 0.43 (s, 36 H, SiMe₃), 0.55 (s, 18 H, SiMe₃), 1.39 (br s, 24 H, OCH₂Me), 1.78 (s, 2 H, CHSiMe₃), 3.71 (br s, 16 H, OCH₂Me) and 6.85-7.12 (m, 4 H, C₆H₄); ²⁹Si-{¹H</sub> (OEt₂-C₆D₆, 49.70 MHz, 25 °C), δ -22.0 (SiMe₃) and -17.1 (SiMe₃).

[{Yb(CR₃)(μ -OEt)(OEt₂)}] **5**. A solution of K(CR₃) (0.83 g, 3.07 mmol) in OEt₂ (20 cm³) was added to a suspension of YbI₂ (0.65 g, 1.5 mmol) in OEt₂ (100 cm³). The mixture was stirred at room temperature for 24 h, leaving an orange solution and a white precipitate which was filtered off. The filtrate was concentrated to *ca*. 10 cm³ and cooled to -30 °C to yield orange crystals of complex **5** (0.5 g, 0.48 mmol, 63%) (Found: C, 35.1; H, 7.75. C₃₂H₈₄O₄Si₆Yb₂ requires C, 36.7; H, 8.10%). NMR: ¹H (C₅D₅N, 360.13 MHz, 25 °C), δ 0.11 (s, 27 H, SiMe₃), 1.10 (t, 6 H, OCH₂Me), 1.58 (br s, 3 H, μ -OCH₂Me), 3.33 (q, 4 H, OCH₂Me) and 3.36 (br s, 2 H, μ -CH₂Me); ²⁹Si-{¹H} (OEt₂-C₆D₆, 49.70 MHz, 25 °C), δ -11.2 (SiMe₃).

 $[K{NC_5H_4(CHR)-2}(dme)(OEt_2)]$. A yellow solution of $NC_5H_4(CH_2R)-2$ (5.89 g, 35.6 mmol) in dme (20 cm³) was added to a suspension of KH (1.36 g, 33.9 mmol) in dme (100 cm³) at room temperature, yielding a brown suspension. The latter was stirred for 16 h, refluxed for 6 h and again stirred at room temperature for 14 h to give a dark red-brown solution. The mixture was filtered and the volatiles were removed from the filtrate in vacuo. The residual dark red oil was washed with pentane to give a dark red, impure (by ¹H NMR spectroscopy) solid (9.5 g), which was dried in vacuo and recrystallised from OEt₂ to yield orange crystals of $[K{NC_5H_4(CHR)-2}(dme) (OEt_2)$] (4.0 g, 10.9 mmol, 32%). Mass spectrum (electron impact, EI): m/z 422 (4%). NMR: ¹H (C₅D₅N, 360.13 MHz, 20 °C), δ 0.23 (s, 9 H, SiMe₃), 1.12 (t, 6 H, OCH₂Me), 3.25 (s, 6 H, CH₂OMe), 3.35 (q, 4 H, OCH₂Me), 3.48 (s, 4 H, CH₂OMe), 6.25 (s, 1 H, CHSiMe₃), 6.61 (t, 1 H, C₅H₄N), 7.10 (d, 1 H, C_5H_4N), 7.30 (t, 1 H, C_5H_4N) and 8.50 (d, 1 H, C_5H_4N); ¹³C $(C_5D_5N, 62.90 \text{ MHz}, 25 \text{ °C}), \delta 1.24 \text{ (q, } {}^1J_{CH} = 117.2, \text{SiMe}_3), 15.57 \text{ (q, } {}^1J_{CH} = 125.47, \text{ OCH}_2Me), 58.74 \text{ (q, } {}^1J_{CH} = 140.68,$ CH_2OMe), 65.86 (t, ${}^{1}J_{CH} = 137.55$, OCH_2Me), 72.08 (t, ${}^{1}J_{CH} = 141.66, CH_2OMe), 110.95 (d, {}^{1}J_{CH} = 150.5, CHSiMe_3), 115.98 (d, {}^{1}J_{CH} = 170.3, CH), 118.68 (d, {}^{1}J_{CH} = 163.2, CH), 123.86 (d, {}^{1}J_{CH} = 163.0, CH), 135.48 (d, {}^{1}J_{CH} = 159.0 Hz, CH) and 160.88 (s, C); {}^{29}Si-{}^{1}H} (C_6D_6, 49.70 MHz, 25 °C),$ $\delta - 5.36 \,(\text{SiMe}_3).$

[Yb(NR₂)₂{NC₅H₄(CH₂R)-2}₂] 9. A hexane solution of NC₅H₄(CH₂R)-2 (41.5 cm³, 0.06 mol dm⁻³, 2.5 mmol) was added to [{Yb(NR₂)(μ -NR₂)}₂] I (0.60 g, 0.61 mmol) at room temperature. The resulting dark red suspension was stirred for 15 h. The volatiles were removed *in vacuo* and the dark brown, oily residue was extracted into pentane (30 cm³). The extract was filtered and the pentane removed from the filtrate *in vacuo* to afford dark brown, sticky solid complex 9 (0.95 g, 1.15 mmol, 94%). NMR: ¹H (C₆D₆, 250.13 MHz, 31 °C), δ 0.00 [s, 36 H, N(SiMe₃)₂], 0.32 (s, 18 H, CH₂SiMe₃), 1.57 (br s, 4 H, CH₂SiMe₃), 6.45 (br s, 4 H, C₅H₄N), 7.4 (br s, 2 H, C₅H₄N) and 8.3 (br s, 2 H, C₅H₄N); ¹³C-{¹H} (C₆H₆-C₆D₆, 62.90 MHz, 25 °C), δ 0.38 (q, SiMe₃), 6.07 (q, SiMe₃), 22.64 (t, CH₂SiMe₃), 118.31 (d, CH), 123.05 (d, CH), 135.01 (d, CH), 149.16 (d, CH) and 164.64 (s, C); ²⁹Si-{¹H} (C₆H₆-C₆D₆, 49.70 MHz, 25 °C), δ -9.07 [N(SiMe₃)₂] and 7.57 (CH₂SiMe₃).

[Yb(NR₂)₂{NC₅H₄(CHR₂)-2}₂] **10**. A hexane solution (50 cm³) of NC₅H₄(CHR₂)-2 (0.55 g, 2.9 mmol) was added to complex I (0.55 g, 0.56 mmol) at room temperature. The resulting dark red suspension was stirred for 17 h. The volatiles were removed *in vacuo* and the dark brown, oily residue was extracted into pentane (20 cm³). The extract was filtered and the pentane removed from the filtrate *in vacuo* to afford complex **10** as a red-brown oil (0.95 g, 1.09 mmol, 97%). NMR: ¹H (C₆D₆, 360.13 MHz, 20 °C), δ 0.06 [s, 36 H, N(SiMe₃)₂], 0.13 [s, 36 H, CH(SiMe₃)₂], 1.67 [br s, 2 H, CH(SiMe₃)₂], 6.49 (t, 2 H, C₅H₄N) 6.54 (d, 2 H, C₅H₄N), 6.98 (t, 2 H, C₅H₄N) and 8.40 (br s, 2 H, C₅H₄N); ¹³C-{¹H} (C₆H₆-C₆D₆, 125.76 MHz, 25 °C), δ 0.44 (q, SiMe₃), 5.80 (q, SiMe₃), 33.51 [d, CH(SiMe₃)₂], 118.46 (d, CH), 123.21 (d, CH), 135.59 (d, CH), 149.05 (d, CH) and 164.69 (s, C); ²⁹Si-{¹H} (C₆H₆-C₆D₆, 49.70 MHz, 25 °C), δ -11.94 [N(SiMe₃)₂] and 5.21 [CH(SiMe₃)₂].

[Yb{NC₅H₄(CHR)-2}₂(dme)] **11**. Diethyl ether (100 cm³) was added to [K{NC₅H₄(CHR)-2}(dme)(OEt₂)] (0.70 g, 2.05 mmol) and YbI₂ (0.50 g, 1.17 mmol) at room temperature, yielding a red-brown suspension, which was stirred for 24 h. The volatiles were removed *in vacuo*. The brown solid residue was recrystallised from dme to yield maroon, crystalline complex **11** (0.45 g, 0.90 mmol, 88%) (Found: C, 42.1; H, 6.20; N, 4.30. C₂₂H₃₈N₂O₂Si₂Yb requires C, 44.6; H, 6.45; N, 4.75%). Mass spectrum (EI): *m/z* 816 (1%). NMR: ¹H (C₆D₆, 360.13 MHz, 20 °C), δ 0.28 (s, 18 H, SiMe₃), 2.30 (s, 2 H, CHSiMe₃), 3.12 (s, 6 H, CH₂OMe), 3.32 (s, 4 H, CH₂OMe), 6.55 (t, 2 H, C₅H₄N), 6.62 (d, 2 H, C₅H₄N), 7.02 (t, 2 H, C₅H₄N) and 8.46 (d, 2 H, C₅H₄N); ¹³C (C₄H₈O-C₆D₅CD₃, 125.76 MHz, 25 °C), δ 1.03

(q, ${}^{1}J_{CH} = 118.19$, SiMe₃), 41.30 (d, ${}^{1}J_{CH} = 122.49$, CHSiMe₃), 58.55 (q, ${}^{1}J_{CH} = 133.28$, CH₂OMe), 72.17 (t, ${}^{1}J_{CH} = 128.14$, CH₂OMe), 119.36 (d, ${}^{1}J_{CH} = 162.99$, CH), 122.32 (d, ${}^{1}J_{CH} = 162.51$, CH), 135.68 (d, ${}^{1}J_{CH} = 154.43$, CH), 149.52 (d, ${}^{1}J_{CH} = 174.46$ Hz, CH) and 161.84 (s, C); ${}^{29}\text{Si}{}_{1}\text{H}$ (C₄H₈O-C₆D₅CD₃, 99.36 MHz, 25 °C), $\delta - 18.64$ (CHSiMe₃).

[K{Yb[NC₅H₄(CHR)-2]₃}(dme)₂] 12. 1,2-Dimethoxyethane (100 cm³) was added to [K{NC₅H₄(CHR)-2}(dme)-(OEt₂)] (2.0 g, 5.9 mmol) and YbI₂ (0.75 g, 1.8 mmol) at room temperature, yielding a red-brown suspension. The latter was stirred for 64 h. The volatiles were removed *in vacuo* to afford a brown solid. Recrystallisation from diethyl ether yielded maroon, crystalline complex 12 (0.95 g, 1.07 mmol, 59%) (Found: C, 49.1; H, 7.15; N, 5.25. $C_{35}H_{62}KN_3O_4Si_3Yb$ requires C, 47.5; H, 7.05; N, 4.75%), m.p. *ca.* 100 °C (decomp.). Mass spectrum (EI): *m/z* 497 (7%). NMR: ¹H (C₆D₅CD₃, 360.13 MHz, 20 °C), δ 0.31 (s, 27 H, SiMe₃), 2.20 (s, 3 H, *CHSiMe₃*), 2.99 (s, 12 H, CH₂OMe), 3.01 (s, 8 H, CH₂OMe), 5.55 (br s, 3 H, C₅H₄N), 6.30 (d, 3 H, C₅H₄N), 6.57 (m, 3 H, C₅H₄N) and 7.32 (br s, 3 H, C₅H₄N); ¹³C-{¹H} (dme-C₆D₅CD₃, 125.76 MHz, 25 °C), δ 1.92 (q, SiMe₃), 61.39 (d, *CHSiMe₃*), 114.98 (d, CH), 119.55 (d, CH), 132.59 (d, CH), 149.59 (d, CH) and 167.96 (s, C); ²⁹Si-{¹H} (dme-C₆D₅CD₃, 99.36 MHz, 25 °C), δ -13.72 (CHSiMe₃).

X-Ray Crystallography for Compound 5.—Details are given in Table 4. An unique data set was collected, using a single crystal on an Enraf-Nonius CAD4 diffractometer in the θ -2 θ mode with monochromated Mo-K α radiation ($\lambda = 0.710$ 69 Å). Two standard reflections monitored every hour showed no significant change. Data were corrected for Lorentz and polarisation effects (L_p) and also for absorption using DIFABS²⁵ after isotropic refinement. Reflections with $|F^2| > 2\sigma(F^2)$, where $\sigma(F^2) = [\sigma^2(I) + (0.04I)^2]^{\frac{1}{2}}/L_p$ were considered to be observed. The structure was solved by the heavy-atom method using SHELXS 86²⁶ and refined by fullmatrix least squares with Yb and Si atoms anisotropic, C and O atoms isotropic and H atoms at fixed positions. The CR₃ group is disordered such that there are two sets of silicon positions in a ratio of 0.9:0.1; only the major sites are shown in Fig. 1.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank Shell Research BV (Koninklijke/Shell-Laboratorium, Amsterdam) for a studentship (to J. R. v. d. H.), the EPSRC and ICI plc, Petrochemicals and Plastics Division for a CASE award (for S. A. H.) [and Drs. R. W. Chorley (Shell) and P. J. V. Jones (ICI) for their interest and encouragement], and the Chinese Government and the British Council for a studentship (to S. T.).

References

- 1 Part 3, J. R. van den Hende, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1995, 2251.
- 2 C. J. Schaverien, Adv. Organomet. Chem., 1994, 36, 283.
- 3 P. B. Hitchcock, M. F. Lappert, R. G. Smith, R. A. Bartlett and P. P. Power, J. Chem. Soc., Chem. Commun., 1988, 1007.
- 4 A. L. Wayda and W. J. Evans, J. Am. Chem. Soc., 1978, 100, 7119.
- J. L. Atwood, W. E. Hunter, R. D. Rogers, J. Holton, J. McMeeking, R. Pearce and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1978, 140.
- 6 J. L. Atwood, M. F. Lappert, R. G. Smith and H. Zhang, J. Chem. Soc., Chem. Commun., 1988, 1308.
- 7 P. B. Hitchcock, M. F. Lappert and R. G. Smith, J. Chem. Soc., Chem. Commun., 1989, 369.
- 8 H. H. Karsch, A. Appelt and G. Müller, *Angew. Chem.*, *Int. Ed. Engl.*, 1986, **25**, 823.
- 9 M. F. Lappert and R. Pearce, J. Chem. Soc., Chem. Commun., 1973, 126.

- 10 D. F. Evans, G. V. Fazakerley and R. F. Phillips, Chem. Commun., 1970, 244; J. Chem. Soc. A, 1971, 1931.
- 11 (a) P. B. Hitchcock, S. A. Holmes, M. F. Lappert and S. Tian, J. Chem. Soc., Chem. Commun., 1994, 2691; (b) L. Hasinoff, J. Takats, X. W. Zhang, A. H. Bond and R. D. Rogers, J. Am. Chem. Soc., 1994, 116, 8833; (c) C. Eaborn, P. B. Hitchcock, K. Izod and J. D. Smith, J. Am. Chem. Soc., 1994, 116, 12071.
- 12 (a) R. I. Papasergio, C. L. Raston and A. H. White, J. Chem. Soc., Chem. Commun., 1983, 1419; (b) R. I. Papasergio, C. L. Raston and A. H. White, J. Chem. Soc., Chem. Commun., 1984, 612; (c) D. Colgan, R. I. Papasergio, C. L. Raston and A. H. White, J. Chem. Soc., Chem. Commun., 1984, 1708; (d) S. I. Bailey, D. Colgan, L. M. Engelhardt, W. -P. Leung, R. I. Papasergio, C. L. Raston and A. H. White, J. Chem. Soc., Dalton Trans., 1986, 603; (e) M. J. Henderson, R. I. Papasergio, C. L. Raston, A. H. White and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1986, 672; (f) L. M. Engelhardt, U. Kynast, C. L. Raston and A. H. White, Angew. Chem., Int. Ed. Engl., 1987, 26, 681; (g) R. I. Papasergio, C. L. Raston and A. H. White, J. Chem. Soc., Dalton Trans., 1987, 3085; (h) L. M. Engelhardt, B. S. Jolly, M. F. Lappert, C. L. Raston and A. H. White, J. Chem. Soc., Chem. Commun., 1988, 336; (i) R. I. Papasergio, B. W. Skelton, P. Twiss, A. H. White and C. L. Raston, J. Chem. Soc, Dalton Trans., 1990, 1161; (j) U. Kynast, B. W. Skelton, A. H. White, M. J. Henderson and C. L. Raston, J. Organomet. Chem., 1990, 384, Cl; (k) C. Jones, C. H. L. Kennard, C. L. Raston and G. Smith, J. Organomet. Chem., 1990, 396, C39; (1) T. van den Ancker, B. S. Jolly, M. F. Lappert, C. L. Raston, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1990, 1006; (m) C. Jones, L. M. Engelhardt, P. C. Junk, D. S. Hutchings, W. C. Patalinghug, C. L. Raston and A. H. White, J. Chem. Soc., Chem. Commun., 1991, 1560; (n) W.-P. Leung, H. K. Lee, Z.-Y. Zhou and T. C. W. Mak, J. Organomet. Chem., 1993, 443, C39; (o) H. K. Lee, B.-S. Luo, T. C. W. Mak and W.-P. Leung, J. Organomet. Chem., 1995, 489, C71.

- 13 T. D. Tilley, Ph. D. Thesis, University of California, Berkeley, 1982; cited in J. M. Boncella and R. A. Andersen, *Organometallics*, 1985, 4, 205.
- 14 T. D. Tilley, J. M. Boncella, D. J. Berg, C. J. Burns and R. A. Andersen, *Inorg. Synth.*, 1990, 27, 146.
- 15 A. G. Avent, M. A. Edelman, M. F. Lappert and G. A. Lawless, J. Am. Chem. Soc., 1989, 111, 3423.
- 16 T. D. Tilley, R. A. Andersen and A. Zalkin, *Inorg. Chem.*, 1984, 23, 2271.
- 17 G. B. Deacon, P. B. Hitchcock, S. A. Holmes, M. F. Lappert, P. MacKinnon and R. H. Newnham, J. Chem. Soc., Chem. Commun., 1989, 935; Part 1, J. R. van den Hende, P. B. Hitchcock, S. A. Holmes, M. F. Lappert, W.-P. Leung, T. C. W. Mak and S. Prashar, J. Chem. Soc., Dalton Trans., 1995, 1427; Part 2, J. R. van den Hende, P. B. Hitchcock, S. A. Holmes and M. F. Lappert, J. Chem. Soc., Dalton Trans., 1995, 1435.
- 18 cf., J. Mason, Multinuclear NMR, Plenum, New York, 1987.
- 19 B. Royo, D. Phil. Thesis, University of Sussex, 1992.
- 20 J. R. van den Hende, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1994, 1413.
- 21 K. Konishi and K. Takahashi, Bull. Chem. Soc. Jpn., 1977, 50, 2512; 1983, 56, 1612.
- 22 N. Wiberg and G. Wagner, Chem. Ber., 1986, 119, 1455.
- 23 P. B. Hitchcock, M. F. Lappert, W.-P. Leung, L. Diansheng and S. Tian, J. Chem. Soc., Chem. Commun., 1993, 1386.
- 24 C. Eaborn, P. B. Hitchcock, K. Izod, A. J. Jaggar and J. D. Smith, Organometallics, 1994, 13, 753.
- 25 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, **39**, 158. 26 G. M. Sheldrick, in Crystallographic Computing 3: Data Collection,
- Structure Determination, Proteins, Databases, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, New York, 1985, pp. 175–189.

Received 5th June 1995; Paper 5/03567H

[©] Copyright 1995 by the Royal Society of Chemistry