Synthesis and Characterisation of Palladium(II) Complexes of Mixed Thioether/Oxa Ionophores. Crystal Structures of $\left[\mathrm{PdCl}_{2}\left([18]\right.\right.$ aneS $\left.\left.\mathbf{2}_{4}\right)\right],\left[\mathrm{Pd}\left([18] \text { aneS }_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ ([18]aneS $\mathbf{2}_{2}=1,4,7,10$-tetraoxa-13,16-dithiacyclooctadecane) and $\left[\mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ ([18]aneS $\mathrm{O}_{3}=1,4,7$-trioxa-10,13,16-trithiacyclooctadecane) \dagger

Alexander J. Blake, \ddagger Robert O. Gould, Christian Radek and Martin Schröder * \ddagger
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK

Abstract

The palladium(II) complexes cis- $\left[\mathrm{PdCl}_{2}\left([18]\right.\right.$ aneS $\left.\left._{2} \mathrm{O}_{\mathrm{A}}\right)\right],\left[\mathrm{Pd}\left([18] \text { aneS }_{2} \mathrm{O}_{\mathrm{A}}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} \quad\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}=\right.$ 1.4,7,10-tetraoxa-13.16-dithiacyclooctadecane). $\left[\mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} \quad$ ($[18] \mathrm{aneS}_{3} \mathrm{O}_{3}=1.4 .7$ -trioxa-10,13,16-trithiacyclooctadecane) and $\left[\mathrm{PdCl}\left([20] a n e \mathrm{~S}_{3} \mathrm{O}_{3}\right)_{3}\right]_{\mathrm{BPh}}^{4}$ ($[20] \mathrm{aneS}_{3} \mathrm{O}_{3}=1,4,7$-trioxa-10,14,18-trithiacycloicosane) have been synthesised and characterised. Reaction of PdCl_{2} with 1 molar equivalent of $[18] \mathrm{aneS}_{2} \mathrm{O}_{4}$ afforded $c i s-\left[\mathrm{PdCl}_{2}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right]$; addition of a second equivalent gave the bis complex cation $\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2+}$. The crystal structure of cis- $\left[\mathrm{PdCl}_{2}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right]$ showed the Pd" in a square-planar co-ordination geometry with mutually cis Cl^{-}ligands, $\mathrm{Pd}-\mathrm{S}(1)$ $2.276(2), \mathrm{Pd}-\mathrm{S}(4)$ 2.2786(14). $\mathrm{Pd}-\mathrm{Cl}(1)$ 2.307(2). $\mathrm{Pd}-\mathrm{Cl}(2) 2.3100(14) \AA, \quad \mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{Cl}(2)$ $92.12(5), \mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{S}(1) \quad 176.33(5), \mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{S}(4) \quad 87.76(5), \mathrm{Cl}(2)-\mathrm{Pd}-\mathrm{S}(1) \quad 91.19(4) \quad \mathrm{Cl}(2)-$ $\mathrm{Pd}-\mathrm{S}(4) 179.24(4)$ and $\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4) 88.96(4)^{\circ}$. The near-planar macrocycle co-ordinates as a bidentate chelating ligand via the exo oriented S -donor atoms leaving the endo oriented O atoms free. The $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$ moiety adopts a gauche conformation $\left[\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-58.3(4)^{\circ}\right]$ with the ethylene bridge occupying part of the macrocyclic cavity. The crystal structure of $\left[\operatorname{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ showed the Pd " occupying a crystallographic inversion centre, with square-planar co-ordination by the [18] $\mathrm{PaneS}_{2} \mathrm{O}_{4}$ ionophores through the thioether S donors, $\mathrm{Pd}-\mathrm{S}(1)$ $2.3217(14), \operatorname{Pd}-\mathrm{S}(4) 2.3102(13) \AA$ and $\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4) 88.71(5)^{\circ}$. The conformation of the macrocycle is very similar to that found in cis- $\left[\mathrm{PdCl}_{2}\left([18] a n e \mathrm{~S}_{2} \mathrm{O}_{4}\right)\right]$, with the O atoms in endo orientations. Reaction of PdCl_{2} with 2 equivalents of [18] aneS $\mathrm{S}_{3} \mathrm{O}_{3}$ afforded $\left[\mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ which has the Pd" occupying a crystallographic inversion centre, with square-planar co-ordination by the [18] $\mathrm{aneS}_{3} \mathrm{O}_{3}$ ligands via two of their three thioether S -donor atoms, $\mathrm{Pd}-\mathrm{S}(1)$ 2.308(2), $\mathrm{Pd}-\mathrm{S}(4)$ $2.319(2) \AA$, $\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4) 88.33(8)^{\circ}$. The structure exhibits some disorder in the polyether/thioether chain which was modelled in terms of two half-occupied orientations. In one component of the disorder the third S -donor atom of each ligand exhibits a long-range apical interaction with the Pd", $\mathrm{Pd} \cdots \mathrm{S}(16) 3.290(2) \AA$. Reaction of PdCl_{2} with 1 equivalent of [20]aneS $\mathrm{S}_{3} \mathrm{O}_{3}$ afforded the monocation $\left[\mathrm{PdCl}\left([20] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)\right]^{+}$.

Mixed O/S-donor ionophores feature hard and soft binding sites in close proximity within the same macrocyclic cavity. They therefore have the potential to co-ordinate to both hard and soft guest ions or molecules, and should allow for simultaneous co-ordination of two different guests. The concept of simultaneous co-ordination has important implications for the development of responsive macrocyclic complexes, for instance in the area of chemical sensing. ${ }^{1,2}$ In addition, mixed S/O ionophores have potential as extractants for heavy metal ions. ${ }^{3-5}$ We are interested to establish whether mixed O / S-donor macrocyclic hosts containing transition-metal ions as the responsive centre could be used to co-ordinate to other guest ions or molecules, and report herein initial results of our investigation of palladium(II) complexes with mixed O / S-donor ionophores.

There have been a few reports of complexes between PdCl_{2} and mixed O / S-donor ionophores, such as $[\mathrm{Pd}([15]-$ aneS $\left.\left.\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]^{2+6} \quad$ ($[15] \mathrm{aneS}_{2} \mathrm{O}_{3}=1,4,7$-trioxa-10,13-dithiacy-

[^0]clopentadecane), $\quad\left[\mathrm{Pd}\left([18] \text { aneS }_{2} \mathrm{O}_{4}\right)_{2}\right]^{2+7} \quad\left([18]\right.$ aneS $_{2} \mathrm{O}_{4}=$ 1,4,7,10-tetraoxa-13,16-dithiacyclooctadecane) and cis-[PdX 2^{-} (7,16-[18]aneS $\left.\left.\mathrm{S}_{2} \mathrm{O}_{4}\right)\right]\left(\mathrm{X}=\mathrm{Cl}^{8}\right.$ or $\mathrm{NO}_{3} ;^{7} 7,16-[18] \mathrm{aneS}_{2} \mathrm{O}_{4}=$ 1,4,10,13-tetraoxa-7,16-dithiacyclooctadecane). All these complexes show a square-planar co-ordination geometry at the $\mathrm{Pd}^{\mathrm{II}}$ with the macrocycles adopting exo bidentate co-ordination modes. We were interested in establishing the factors which influence exo or endo co-ordination of platinum-group metal centres to these ionophores.

Results and Discussion

The reaction of PdCl_{2} with 1 molar equivalent of [18]aneS $\mathrm{S}_{2} \mathrm{O}_{4}{ }^{9,10}$ in refluxing MeOH -water affords a yellow solution from which orange crystals can be isolated upon cooling. The presence of the ligand in the product was confirmed by infrared and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The FAB mass spectrum shows a low-intensity peak with the correct isotopic distribution assigned to $\left[{ }^{106} \mathbf{P d}^{35} \mathrm{Cl}_{2}\left([18]\right.\right.$ aneS $\left._{2} \mathrm{O}_{4}\right)-$ $\mathrm{H}]^{+}$. Two additional strong peaks assigned to fragments $\left[{ }^{106} \mathrm{Pd}^{35} \mathrm{Cl}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right]^{+}$and ${ }^{106} \mathrm{Pd}\left([18]\right.$ aneS $\left.\left._{2} \mathrm{O}_{4}\right)\right]^{+}$are also observed. Analytical data confirmed a $1: 1 \mathrm{Pd}:[18]$ ane$\mathrm{S}_{2} \mathrm{O}_{4}$ stoichiometry for the complex. Peaks at 340 and $320 \mathrm{~cm}^{-1}$ in the infrared spectrum were assigned to the $\mathrm{Pd}-\mathrm{Cl}$ stretching
vibration, $v(\mathrm{Pd}-\mathrm{Cl})$, of a cis-dichloro complex. ${ }^{6}$ This assignment is complicated by the possible presence of $\mathrm{Pd}-\mathrm{S}$ vibrations. The single-crystal structure of $\left[\mathrm{PdCl}_{2}([18]\right.$ ane$\mathrm{S}_{2} \mathrm{O}_{4}$)] 1 (Fig. 1, Table 1) confirms cis binding of Cl^{-}ions and shows the $\mathrm{Pd}^{\mathrm{II}}$ adopting the expected square-planar coordination geometry. The Pd-S distances, $\mathrm{Pd}-\mathrm{S}(1)$ 2.276(2) and $\mathrm{Pd}-\mathrm{S}(4) \mathbf{2 . 2 7 8 6}(14) \AA$, are on average $0.039 \AA$ shorter than those in $\left[\operatorname{Pd}\left([18] \text { aneS }_{2} \mathrm{O}_{4}\right)_{2}\right]^{2+}$ (see below), suggesting that π-back donation from the Pd^{11} ion to the S atoms may be occurring with π donation from the Cl^{-}to the $\mathrm{Pd}^{\mathrm{II}}$. The macrocyclic ligand binds to the $\mathrm{Pd}^{\text {II }}$ as a bidentate chelate through the two S donors, leaving the O atoms non-interacting but pointing towards the centre of the cavity of the ionophore. The conformation of the macrocycle in this complex is largely unchanged from that of the free macrocycle in the solid state. ${ }^{10,11}$ All C-O-C-C torsion angles are anti and $\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}$ arrangements gauche.
The complex $\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 2$ was prepared by following the same procedure as for 1 but with a $1: 2 \mathrm{Pd}$: ligand ratio and addition of an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. A yellow microcrystalline powder precipitated on cooling. The FAB mass spectrum shows a molecular ion peak ($m / z=843$) with the correct isotopic distribution corresponding to $\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{PF}_{6}\right)\right]^{+}$. The assignment of the compound was confirmed by IR spectroscopy and microanalytical data. Attempts to prepare the analogous $\mathrm{BPh}_{4}{ }^{-}$salt failed due to decomposition upon attempted recrystallisation from $\mathrm{Me}_{2} \mathrm{CO}, \mathrm{MeCN}, \mathrm{MeNO}_{2}$ or $\mathrm{Me}_{2} \mathrm{SO}$. A similar observation has been made for the analogous complex with [15]aneS $\mathrm{S}_{2} \mathrm{O}_{3}$, $\left[\mathrm{Pd}\left([15] \text { ane } \mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2},{ }^{6}$ suggesting that the $\mathrm{Pd}^{11} \mathrm{O}_{3}$ is exposed and accessible to redox reactions. The analogous dinitrate salt has, however, been reported by Izatt et al. ${ }^{7}$ Single crystals of 2 suitable for X-ray diffraction studies were obtained by recrystallisation from MeNO_{2}. The single-crystal structure (Fig. 2, Table 2) shows the expected square-planar coordination geometry, $\mathrm{Pd}-\mathrm{S}(1) 2.3217(14), \mathrm{Pd}-\mathrm{S}(4)$ 2.3102(13) \AA, $\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4) 88.71(5)^{\circ}$, with the $\mathrm{Pd}^{\mathrm{II}}$ occupying a crystallo-
(a)

(b)

Fig. 1 Single-crystal structure of $\left[\mathrm{PdCl}_{2}\left([18]\right.\right.$ ane $\left.\left.\mathrm{S}_{2} \mathrm{O}_{4}\right)\right]$ 1. Two views with the numbering scheme adopted. Thermal ellipsoids enclose 30% probability surfaces and hydrogen atoms are drawn as spheres with arbitrary radii
graphic inversion centre. The conformation of the macrocycle in this complex is again very similar to that of the free
(a)

(b)

Fig. 2 Single-crystal structure of $\left[\operatorname{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]^{2+}$ 2. Details as in Fig. 1
(a)

(b)

Fig. 3 Single-crystal structure of $\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)_{2}\right]^{2+} 3$. Two views illustrating the disorder with the numbering scheme adopter. Other details as in Fig. 1

Table 1 Bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ with estimated standard deviations (e.s.d.s) in parentheses for $\left[\mathrm{PdCl}_{2}\left([18] a n e S_{2} \mathrm{O}_{4}\right)\right] 1$

$\mathrm{Pd}-\mathrm{S}(1)$	2.276(2)	$\mathrm{O}(7)-\mathrm{C}(8)$	1.411(8)
$\mathrm{Pd}-\mathrm{S}(4)$	2.2786(14)	$\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}(8)$	1.50(3)
$\mathrm{Pd}-\mathrm{Cl}(1)$	$2.307(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.421(9)$
$\mathrm{Pd}-\mathrm{Cl}(2)$	$2.3100(14)$	$\mathrm{C}(9)-\mathrm{O}(10)$	1.430 (7)
S(1)-C(2)	1.819(5)	$\mathrm{O}(10)-\mathrm{C}(11)$	$1.400(6)$
$\mathrm{S}(1)-\mathrm{C}(18)$	$1.820(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.486(7)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.503(7)	$\mathrm{C}(12)-\mathrm{O}(13)$	$1.421(6)$
C(3)-S(4)	1.816 (5)	$\mathrm{O}(13)-\mathrm{C}(14)$	$1.420(6)$
S(4)-C(5)	$1.823(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.498(7)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.495(8)$	$\mathrm{C}(15)-\mathrm{O}(16)$	$1.423(6)$
$\mathrm{C}(6)-\mathrm{O}(7)$	1.426(8)	$\mathrm{O}(16)-\mathrm{C}(17)$	1.426 (6)
$\mathrm{C}(6)-\mathrm{O}\left(7^{\prime}\right)$	1.46(3)	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.496(7)$
$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{Cl}(2)$	92.12(5)	$\mathrm{C}(8)-\mathrm{O}(7)-\mathrm{C}(6)$	115.4(5)
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4)$	88.96(4)	$\mathrm{C}(6)-\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}(8)$	109(2)
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{Cl}(1)$	176.33(5)	$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	110.6(5)
$\mathrm{S}(4)-\mathrm{Pd}-\mathrm{Cl}(1)$	87.76(5)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}\left(7^{\prime}\right)$	107.9(12)
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{Cl}(2)$	91.19(4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	112.3(5)
$\mathrm{S}(4)-\mathrm{Pd}-\mathrm{Cl}(2)$	179.24(4)	$\mathrm{C}(11)-\mathrm{O}(10)-\mathrm{C}(9)$	111.6(4)
$\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{Pd}$	111.3(2)	$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	111.2(4)
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{Pd}$	101.8(2)	$\mathrm{O}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	109.9(4)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{Pd}$	102.5(2)	$\mathrm{C}(14)-\mathrm{O}(13)-\mathrm{C}(12)$	111.9(4)
$\mathrm{C}(5)-\mathrm{S}(4)-\mathrm{Pd}$	101.5(2)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	109.1(4)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{S}(1)$	107.4(4)	$\mathrm{O}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	108.0(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	111.8(3)	$\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	113.8(4)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	103.6(2)	$\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	109.0(4)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{S}(4)$	113.6(4)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)$	111.6(3)
$\mathrm{O}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	104.7(4)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(18)$	103.0(2)
$\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}(6)-\mathrm{C}(5)$	128(2)		
$\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	164.3(3)	$\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	95(2)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	-58.3(4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	-163.5(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	-67.9(4)	$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-174.0(5)
$\mathbf{C}(3)-S(4)-C(5)-C(6)$	-64.6(4)	$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	-72.3(5)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)$	77.6(6)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)$	176.9(4)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}\left(7^{\prime}\right)$	40(2)	$\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	179.6(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(8)$	165.2(6)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)$	65.7(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}(8)$	118(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	-179.8(4)
$\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	154.2(6)	$\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	148.0(4)
$\mathrm{C}(6)-\mathrm{O}\left(7^{\prime}\right)-\mathrm{C}(8)-\mathrm{C}(9)$	-155(2)	$\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)$	-76.1(5)
$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	53.4(8)	$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	75.3(4)

macrocycle and in $\mathbf{1}$. The co-ordination geometry at the Pd^{11} in the dinitrate compound is square planar with $\mathrm{Pd}-\mathrm{S}$ distances of 2.304(3)-2.308(3) \AA and S-Pd-S angles close to 90 and $180^{\circ} .{ }^{7}$

The results for complexes 1 and 2 confirm that enlargement of the macrocyclic cavity on going from [15]aneS $2_{2} \mathrm{O}_{3}$ to [18] aneS $\mathrm{S}_{2} \mathrm{O}_{4}$ does not of itself yield endo co-ordination of Pd^{11}. It seems more likely that the hard O-donor environment within the macrocyclic cavity renders in-cavity co-ordination to $\mathrm{Pd}^{\mathrm{II}}$ unfavourable. We therefore investigated the binding of related ionophores [18] $\mathrm{aneS}_{3} \mathrm{O}_{3}$ (1,4,7-trioxa-10,13,16-trithiacyclooctadecane) and the larger macrocycle [20]aneS $3_{3} \mathrm{O}_{3}(1,4,7-$ trioxa-10,14,18-trithiacycloicosane) in order to ascertain whether endo co-ordination to Pd^{n} is observed.

Reaction of [18]aneS $\mathrm{S}_{3} \mathrm{O}_{3}{ }^{12}$ with PdCl_{2} in refluxing $\mathrm{MeOH}-$ water yielded a dark orange resin after addition of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and removal of the solvent. Purification was achieved by repeated recrystallisation from $\mathrm{Me}_{2} \mathrm{CO}$ although this diminished the yield drastically. The FAB mass spectrum of the product shows peaks with the correct isotopic distribution corresponding to $\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{PF}_{6}\right)\right]^{+}$and $\left[{ }^{106} \mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)\right]^{+}$. Analytical data were in good agreement with a 1:2 $\mathrm{Pd}:[18] \mathrm{aneS}_{3} \mathrm{O}_{3}$ stoichiometry.

In the crystal structure of $\left[\mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 3$ (Fig. 3, Table 3) the $\mathrm{Pd}^{\mathrm{II}}$ occupies a crystallographic inversion centre: each asymmetric unit therefore contains one macrocycle coordinated to the metal. As seen for 2, 3 exhibits a squareplanar co-ordination geometry at the $\mathrm{Pd}^{\mathrm{II}}, \mathrm{Pd}-\mathrm{S}_{\text {eq }} 2.308$ (2) and $2.319(2) \AA, \mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4) 88.33(8)^{\circ}$, even though each
[18]aneS $\mathrm{S}_{3} \mathrm{O}_{3}$ macrocycle contains an additional S donor compared to [18]ane $\mathrm{S}_{2} \mathrm{O}_{4}$. The structure of 3 shows some disorder which may result from the two additional S donors. Since only two of the three S donors per ligand co-ordinate to the $\mathrm{Pd}^{\mathrm{HI}}$, there is a $50: 50$ statistical probability of finding the third \mathbf{S} atom on the 'left'- or 'right'-hand side of the molecule. This disorder affects not only the third S but also an O atom and part of the linking methylene group. The disorder was successfully modelled with site occupancies of 0.5 for each distinct orientation. The position of the S atom in relation to the $\mathrm{Pd}^{\mathrm{II}}$ is, however, different in each of the disordered sites. Fig. $3(a)$ and $3(b)$ illustrate that $\mathrm{S}(16)\left[\mathrm{Pd} \cdots \mathrm{S}(16)_{\mathrm{ap}} 3.290(2) \AA\right]$, in contrast to its equivalent $\mathrm{S}(7)[\mathrm{Pd} \cdots \mathrm{S}(7)$ 4.374(2) $\AA]$, participates in a long-range apical interaction with the $\mathrm{Pd}^{\mathrm{II}}$. None of the O atoms interacts with the $\mathrm{Pd}^{\mathrm{II}}$.

Complexation of $\mathrm{Pd}^{\mathrm{II}}$ by [12]aneS ${ }_{4}$ (1,4,7,10-tetrathiacyclododecane), [14]aneS ${ }_{4}$ (1,4,8,11-tetrathiacyclotetradecane) and [16] aneS_{4} (1,5,9,13-tetrathiacyclohexadecane) confirms a complementarity between the metal ion and soft thioether S donors. The $\mathrm{Pd}^{\mathrm{II}}$ in $\left[\mathrm{Pd}\left([12] \text { ane }_{4}\right)\right]^{2+}$ is displaced out of the S_{4} bestfit plane by $0.3116 \AA$, but the displacement becomes smaller on going from $\left[\operatorname{Pd}\left([12] \text { aneS }_{4}\right)\right]^{2+}$ to $\left[\operatorname{Pd}\left([14] \text { aneS }_{4}\right)\right]^{2+}$ to $\left[\mathrm{Pd}\left([16] \mathrm{aneS}_{4}\right)\right]^{2+} .^{13}$ Related long-range apical interactions to $\mathrm{Pd}^{\mathrm{II}}$ have been observed in $\left[\mathrm{Pd}\left([9] \mathrm{aneS}_{3}\right)_{2}\right]^{2+}{ }^{14}[\mathrm{Pd}-$ ([9]aneS $\left.\left.{ }_{3}\right) \mathrm{X}_{2}\right](\mathrm{X}=\mathrm{Cl}$ or Br$),{ }^{11}{ }^{10}\left[\mathrm{Pd}\left([9] \text { anes }_{3}\right) \mathrm{L}_{2}\right]^{\mathbf{2}^{+}}\{\mathrm{L}=$ ${ }^{\mathrm{PPh}_{3}}, \frac{1}{2}$ bipy ($2,2^{\prime}$-bipyridine), $\frac{1}{2}$ phen ($\left(1,10-\right.$ phenanthroline); ${ }^{16}$ $[9]$ aneS $_{3}=1,4,7$-trithiacyclononane $\}$ and $\left[\operatorname{Pd}\left([18] \text { aneS }_{6}\right)\right]^{2+}$ ([18]aneS ${ }_{6}=1,4,7,10,13,16$-hexathiacyclooctadecane). ${ }^{17}$

Table 2 Bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for $\left[\operatorname{Pd}\left([18] \text { aneS }_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 2$

$\mathrm{Pd}-\mathrm{S}(1)$	$2.3217(14)$	$\mathrm{O}(10)-\mathrm{C}(11)$	1.431(5)
$\mathrm{Pd}-\mathrm{S}(4)$	$2.3102(13)$	$\mathrm{O}(10)-\mathrm{C}\left(11^{\prime}\right)$	$1.426(9)$
$\mathrm{S}(1)-\mathrm{C}(2)$	1.819(5)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.520(5)
$\mathrm{S}(1)-\mathrm{C}(18)$	$1.813(5)$	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	1.521(11)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.498(7)	$\mathrm{C}(12)-\mathrm{O}(13)$	1.429 (5)
$\mathrm{C}(3)-\mathrm{S}(4)$	$1.825(5)$	$\mathrm{C}(12)^{\prime}-\mathrm{O}(13)$	1.560(9)
$\mathrm{S}(4)-\mathrm{C}(5)$	$1.816(5)$	$\mathrm{O}(13)-\mathrm{C}(14)$	1.401 (8)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.508(8)	C(14)-C(15)	$1.464(9)$
$\mathrm{C}(6)-\mathrm{O}(7)$	$1.413(7)$	$\mathrm{C}(15)-\mathrm{O}(16)$	1.431(7)
$\mathrm{O}(7)-\mathrm{C}(8)$	1.400(7)	$\mathrm{O}(16)-\mathrm{C}(17)$	1.391(7)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.481(9)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.517(7)
$\mathrm{C}(9)-\mathrm{O}(10)$	1.428(7)		
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4)$	88.71(5)	$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}\left(11^{\prime}\right)$	126.3(5)
$\mathrm{Pd}-\mathrm{S}(1)-\mathrm{C}(2)$	101.16(16)	$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	104.0(3)
$\mathrm{Pd}-\mathrm{S}(1)-\mathrm{C}(18)$	102.85(17)	$\mathrm{O}(10)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	107.2(6)
$\mathrm{Pd}-\mathrm{S}(4)-\mathrm{C}(3)$	102.53(16)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	110.5(3)
$\mathrm{Pd}-\mathrm{S}(4)-\mathrm{C}(5)$	109.74(18)	$\mathrm{O}(13)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	97.9(6)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	112.4(3)	$\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)$	128.9(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	108.2(3)	$\mathrm{C}\left(12{ }^{\prime}\right)-\mathrm{O}(13)-\mathrm{C}(14)$	92.4(5)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	103.9(2)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110.7(5)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	110.4(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)$	108.2(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)$	107.4(4)	$\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	114.0(4)
$\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(8)$	114.5(4)	$\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	107.6(4)
$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	108.6(5)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)$	112.7(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	108.8(5)	$\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{C}(2)$	104.5(2)
$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	100.9(4)		
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	59.5(4)	$\mathrm{O}(10)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{O}(13)$	-83.3(6)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	-158.7(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)$	77.6(3)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-77.5(4)	$\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)-\mathrm{O}(13)-\mathrm{C}(14)$	172.4(5)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)$	67.6(5)	$\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	160.6(4)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(8)$	-161.5(4)	$\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-175.1(5)
$\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	-178.1(5)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)$	68.8(6)
$\mathrm{O}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	-63.8(6)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	-176.9(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	169.0(4)	$\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	169.5(4)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}\left(11^{\prime}\right)$	-168.3(5)	$\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)$	-80.9(4)
$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-176.4(3)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{C}(2)$	56.4(4)
$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}\left(11^{\prime}\right)-\mathrm{C}\left(12^{\prime}\right)$	-87.5(7)	$\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	64.2(4)
$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	75.7(3)		

Formal replacement of two ethylene bridges in [18]aneS $\mathrm{S}_{3} \mathrm{O}_{3}$ by trimethylene bridges gives [20]ane $\mathrm{S}_{3} \mathrm{O}_{3}$. We anticipated that this compound might adopt tridentate co-ordination towards $\mathrm{Pd}^{\mathrm{II}}$ without causing a strained geometry, although all S-Pd-S chelating angles in compounds $\mathbf{1 - 3}$ are somewhat less than the ideal angle of 90°. Reaction of PdCl_{2} with [20]aneS $\mathrm{S}_{3} \mathrm{O}_{3}$ in refluxing MeOH -water and addition of NaBPh_{4} afforded an orange microcrystalline solid which could be recrystallised from $\mathrm{Me}_{2} \mathrm{CO}$ without decomposition. The $\mathrm{BPh}_{4}{ }^{-}$salts of other palladium(n) complexes with mixed O / S-donor ionophores deteriorate rapidly in solution. ${ }^{6}$ The enhanced stability of $\left[\operatorname{PdCl}\left([20] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)\right] \mathrm{BPh}_{4} 4$ suggests a more enclosed and protected environment for the $\mathrm{Pd}^{\mathrm{II}}$. Microanalytical results and mass spectrometric studies confirmed the formulation of 4 as a monocationic 1:1 Pd:[20]aneS $\mathrm{S}_{3} \mathrm{O}_{3}$ complex with possible endo co-ordinated $\mathrm{Pd}^{\mathrm{II}}$ in the macrocyclic cavity. We anticipate that the $\mathrm{Pd}^{\text {II }}$ binds to one Cl and three S donors consistent with the orange colour (an S_{4} donor set gives yellow materials). Unfortunately we have been unable to isolate single crystals of 4 suitable for X-ray diffraction studies: we would like to establish the structure to confirm endo co-ordination of the PdCl^{+}fragment.

These results show that it is possible to design mixed O/Sdonor ionophores to co-ordinate exo as well as endo to Pd^{11}. The trimethylene-bridged S_{3} moiety could be a key element in the design of potentially stable palladium(II) macrocyclic hosts containing S/O ionophores. Current work is aimed at the investigation of metal complexes with the related large-ring ionophores.

Experimental

Infrared spectra were measured as KBr discs or between KBr plates using Perkin-Elmer 598 and FT-1600 spectrometers over the range $400-4000 \mathrm{~cm}^{-1}$, electronic spectra in quartz cells using a Perkin-Elmer Lambda 9 spectrophotometer. Microanalyses were performed by the Edinburgh University Chemistry Department microanalytical service. Mass spectra were run by fast-atom bombardment on a Kratos MS50TC spectrometer, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra on Bruker WP200, AC250 and WH360 instruments. The compounds [18]aneS $\mathrm{S}_{2} \mathrm{O}_{4}$ and [18]aneS $3_{3} \mathrm{O}_{3}$ were prepared following the methods reported by Bradshaw and co-workers. ${ }^{9,10,12}$
$\left[\mathrm{PdCl}_{2}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right]$ 1.-Treatment of $\mathrm{PdCl}_{2}(40 \mathrm{mg}$, 0.226 mmol) with [18] $\mathrm{aneS}_{2} \mathrm{O}_{4}(67 \mathrm{mg}, 0.226 \mathrm{mmol})$ in refluxing MeOH -water ($1: 1 \mathrm{v} / \mathrm{v}, 35 \mathrm{~cm}^{3}$) for 2 h under dinitrogen afforded a bright yellow solution. The reaction mixture was filtered while hot and the orange crystals which precipitated upon cooling were isolated, dried and characterised (yield: $55 \mathrm{mg}, 50 \%$) (Found: C, 30.2; H, 5.15. Calc. for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{PdS}_{2}$: C, $30.4 ; \mathrm{H}, 5.10 \%$). Fast-atom bombardment mass spectrum (3-nitrobenzyl alcohol matrix): m / z 437 and 402 ; calc. for $\left[{ }^{106} \mathrm{Pd}^{35} \mathrm{Cl}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right]^{+} 439$, $\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right]^{+} 402 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{NO}_{2}, 298 \mathrm{~K}\right.$, $200.13 \mathrm{MHz}): \delta 3.00-4.25\left(\mathrm{~m}, \mathrm{CH}_{2}, 24 \mathrm{H}\right)$. Infrared spectrum (KBr disc): $2960 \mathrm{~m}, 2900 \mathrm{~m}, 1480 \mathrm{~m}, 1440 \mathrm{~m}, 1420 \mathrm{~m}, 1400 \mathrm{~m}$, $1360 \mathrm{~m}, 1350 \mathrm{~m}, 1340 \mathrm{~m}, 1290 \mathrm{~m}, 1250 \mathrm{~m}, 1180 \mathrm{w}, 1105 \mathrm{~s}, 1020 \mathrm{w}$, $940 \mathrm{~m}, 920 \mathrm{~m}, 840 \mathrm{~m}, 340 \mathrm{w}$ and $320 \mathrm{w} \mathrm{cm}^{-1}$.

Table 3 Bond lengths (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$ with e.s.d.s in parentheses for $\left[\mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 3$

$\mathrm{Pd}-\mathrm{S}(1)$	2.308(2)	$\mathrm{C}(9)-\mathrm{O}(10)$	1.427(12)
Pd -S(4)	2.319(2)	$\mathrm{O}(10)-\mathrm{C}(11)$	1.424(13)
S(1)-C(2)	1.828(9)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.486(17)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.492(13)	$\mathrm{C}(12)-\mathrm{O}(13)$	1.416(14)
C(3)-S(4)	1.821(10)	$\mathrm{O}(13)-\mathrm{C}(14)$	1.434(13)
S(4)-C(5)	1.832(10)	$\mathrm{C}(14)-\mathrm{C}(15)$	1.52(2)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.480(13)	$\mathrm{C}(14)-\mathrm{C}\left(15^{\prime}\right)$	1.52(2)
$\mathrm{C}(6)-\mathrm{S}(7)$	1.828(10)	$\mathrm{C}(15)-\mathrm{O}(16)$	1.42(2)
$\mathrm{C}(6)-\mathrm{O}(7)$	1.421(16)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}(16)$	1.830(15)
$\mathrm{S}(7)-\mathrm{C}(8)$	1.830(14)	$\mathrm{O}(16)-\mathrm{C}(17)$	1.420(15)
$\mathrm{O}(7)-\mathrm{C}\left(8^{\prime}\right)$	1.42(2)	$\mathrm{S}(16)-\mathrm{C}(17)$	1.830(10)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.520(16)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.523(14)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(9)$	1.52(2)	$\mathrm{C}(18)-\mathrm{S}(1)$	1.826(11)
$\mathrm{S}(1)-\mathrm{Pd}-\mathrm{S}(4)$	88.33(8)	$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(9)-\mathrm{O}(10)$	105.5(9)
$\mathrm{Pd}-\mathrm{S}(1)-\mathrm{C}(18)$	110.3(3)	$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	114.8(8)
$\mathrm{Pd}-\mathrm{S}(1)-\mathrm{C}(2)$	102.9(3)	$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	108.6(9)
Pd-S(4)-C(3)	101.2(3)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	108.6(10)
Pd-S(4)-C(5)	105.9(3)	$\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)$	110.7(8)
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.4(6)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110.2(10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	112.4(7)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	108.2(9)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	100.4(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)$	124.0(13)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	114.1(7)	$\mathrm{C}(14)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}(16)$	96.4(9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	106.0(6)	$\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	114.9(11)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)$	108.8(9)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}(16)-\mathrm{C}(17)$	88.9(6)
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	104.4(6)	$\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	101.8(8)
$\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}\left(8^{\prime}\right)$	122.8(11)	$\mathrm{S}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	125.8(7)
$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	101.0(8)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)$	116.9(7)
$\mathrm{O}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(9)$	125.5(13)	$\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{C}(2)$	103.3(5)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	110.7(8)		
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)$	-60.0(7)	$\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)$	64.8(11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)$	-65.7(7)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)$	-173.9(9)
$\mathrm{C}(3)-\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	169.5(7)	$\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	150.4(10)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)$	55.3(8)	$\mathrm{C}(12)-\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}\left(15^{\prime}\right)$	-167.7(9)
$\mathrm{S}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)$	57.6(10)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)$	65.0(17)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)$	161.9(7)	$\mathrm{O}(13)-\mathrm{C}(14)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}(16)$	-67.5(9)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}\left(8^{\prime}\right)$	172.6(12)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)$	173.7(12)
$\mathrm{C}(6)-\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	79.0(8)	$\mathrm{C}(14)-\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}(16)-\mathrm{C}(17)$	-160.9(8)
$\mathrm{C}(6)-\mathrm{O}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(9)$	61(2)	$\mathrm{C}(15)-\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-175.2(11)
$\mathrm{S}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)$	-78.6(9)	$\mathrm{C}\left(15^{\prime}\right)-\mathrm{S}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-87.3(9)
$\mathrm{O}(7)-\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(9)-\mathrm{O}(10)$	-51.0(16)	$\mathrm{O}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)$	-76.3(9)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	-177.4(9)	$\mathrm{S}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)$	-40.4(11)
$\mathrm{C}\left(8^{\prime}\right)-\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)$	161.9(9)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{C}(2)$	- 55.3(8)
$\mathrm{C}(9)-\mathrm{O}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	-176.7(8)	$\mathrm{C}(18)-\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	159.9(6)

$\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ 2.-Palladium(II) chloride (30 $\mathrm{mg}, 0.169 \mathrm{mmol}$) was added to a solution of [18]aneS $\mathrm{O}_{2} \mathrm{O}_{4}$ ($100 \mathrm{mg}, 0.338 \mathrm{mmol}$) in MeOH -water ($35 \mathrm{~cm}^{3}, 1: 1 \mathrm{v} / \mathrm{v}$). The reaction mixture was refluxed for 2 h under N_{2} yielding a bright yellow solution to which an excess of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added. A yellow precipitate formed upon cooling to $-25^{\circ} \mathrm{C}$: this was isolated, recrystallised from MeNO_{2} and dried (yield: 105 mg , 63% (Found: C, 29.1; H, 4.90. Calc. for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{~F}_{12} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{PdS}_{4}$: $\mathrm{C}, 29.1 ; \mathrm{H}, 4.90 \%$). Fast-atom bombardment mass spectrum: $m / z 843,697$ and 402; calc. for $\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{PF}_{6}\right)\right]^{+}$ 843, $\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]^{+} 698,{ }^{[106} \mathrm{Pd}\left([18]\right.$ aneS $\left.\left._{2} \mathrm{O}_{4}\right)\right]^{+}$ 404. Infrared spectrum (KBr disc): $3655 \mathrm{w}, 3510 \mathrm{w}$, 2995 m , $2955 \mathrm{~m}, 2900 \mathrm{~s}, 1955 \mathrm{w}, 1630 \mathrm{w}, 1475 \mathrm{~m}, 1400 \mathrm{~m}, 1355 \mathrm{~s}, 1290 \mathrm{~m}$, $1245 \mathrm{~m}, 1195 \mathrm{w}, 1120 \mathrm{vs}, 1095 \mathrm{~s}, 1040 \mathrm{~m}, 935 \mathrm{~m}, 920 \mathrm{~m}, 835 \mathrm{vs}$ and $560 \mathrm{~s} \mathrm{~cm}^{-1}$.
$\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ 3.-Method as above but using $\mathrm{PdCl}_{2}(89 \mathrm{mg}, 0.5 \mathrm{mmol})$ and [18]aneS $\mathrm{O}_{3}(312 \mathrm{mg}, 1.0 \mathrm{mmol})$ in MeCN-MeOH ($20 \mathrm{~cm}^{3}, 9: 1 \mathrm{v} / \mathrm{v}$). Removal of the solvent in vacuo yielded an orange residue which was repeatedly recrystallised from MeCN and dried (Found: C, 28.6; H, 4.90. Calc. for $\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{~F}_{12} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{PdS}_{6}$: C, 28.2; $\mathrm{H}, 4.75 \%$). Fast-atom bombardment mass spectrum: $m / z 877,729$ and 418; calc. for
$\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{PF}_{6}\right)\right]^{+}$875, $\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)_{2}\right]^{+}$ $730,\left[{ }^{106} \mathrm{Pd}\left([18] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)\right]^{+}$418. Electronic spectrum (MeCN): $\lambda_{\text {max }}=295 \mathrm{~nm}\left(\varepsilon_{\text {max }} 18000 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$.
[20] $\mathrm{aneS}_{3} \mathrm{O}_{3}$.-Commercial EtOH ($1 \mathrm{dm}^{3}$) was placed in a round-bottom flask ($2 \mathrm{dm}^{3}$) equipped with a gas inlet, a coiled condenser and a mechanical stirrer. Sodium metal ($28 \mathrm{~g}, 1.2$ mol) was slowly added to the stirred EtOH under a stream of N_{2} and the clear solution was heated to $70^{\circ} \mathrm{C} .4$-Thiaheptane-1,7dithiol ($3.64 \mathrm{~g}, 0.02 \mathrm{~mol}$) and 1,11-dibromo-3,6,9-trioxaundecane ($6.36 \mathrm{~g}, 0.02 \mathrm{~mol}$) in EtOH-HCONMe $2\left(250 \mathrm{~cm}^{3}, 4: 1 \mathrm{v} / \mathrm{v}\right.$) were added slowly over a period of 48 h . The progress of the reaction was monitored by the appearance of some cloudiness due to precipitation of NaBr . The cold reaction mixture was then carefully neutralised with diluted hydrochloric acid and the solvents were removed in vacuo. The remaining $\mathrm{NaCl} / \mathrm{NaBr}$ slurry was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 50 \mathrm{~cm}^{3}\right)$ and with hexane ($3 \times 50 \mathrm{~cm}^{3}$). The solvents were removed leaving the macrocycle as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}, 250.13 \mathrm{MHz}$); $\delta 1.7-1.8$ (qnt, $\mathrm{CH}_{2}, 4 \mathrm{H}$), 2.45-2.65 (m, $\mathrm{CH}_{2} \mathrm{~S}, 12 \mathrm{H}$) and 3.4-3.7 (m, $\mathrm{CH}_{2} \mathrm{O}, 12 \mathrm{H}$). IR spectrum (film between KBr plates): $2915 \mathrm{~s}, 2865 \mathrm{~s}, 1445 \mathrm{~m}, 1350 \mathrm{~m}, 1295 \mathrm{~m}$, $1250 \mathrm{~m}, 1115 \mathrm{vs}, 800 \mathrm{w}, 670 \mathrm{w}$ and $570 \mathrm{w} \mathrm{cm}^{-1}$.

Table 4 Experimental data for single-crystal structure determinations of $\left[\mathrm{PdCl}_{2}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right] \quad 1, \quad\left[\operatorname{Pd}\left([18] \operatorname{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 2$ and $\left[\mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 3^{a}$

	1	2	3
Formula	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{O}_{4} \mathrm{PdS}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{~F}_{12} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{PdS}_{4}$	$\mathrm{C}_{24} \mathrm{H}_{48} \mathrm{~F}_{12} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{PdS}_{6}$
M	$473.7{ }^{4}$	$989.25 \times$	$1021.7 \times$
Crystal size/mm	$0.20 \times 0.40 \times 1.00$	$0.12 \times 0.19 \times 0.82$	$0.12 \times 0.23 \times 0.35$
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$\begin{aligned} & P 2_{1} / n \\ & \text { (alt. } P 2_{1} / c \text {, no. } 14 \text {) } \end{aligned}$	PI (no. 2)	$P \overline{\text { I (no. 2) }}$
a / \AA	8.714(2)	7.7395(15)	8.421(8)
b / \AA	10.915(3)	11.618(2)	10.478(8)
c / \AA	18.787(8)	11.882(2)	11.243(11)
$\alpha /{ }^{\circ}$	90	102.171(12)	76.01(7)
$\beta{ }^{\circ}$	92.04(3)	95.518(15)	87.10(8)
$\gamma 1^{\circ}$	90	103.673(15)	84.61(7)
U / \AA^{3}	1785.00	1002.76	958.00
Z	4	1	1
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.762	1.638	1.770
μ / mm^{-1}	1.562	0.828	0.967
$F(000)$	960	504	520
T / \mathbf{K}	295	298	$150{ }^{\text {b }}$
h, k, l Ranges	-9 to 9, 0-11, 0-20	-8 to 8, -12 to 12, 0-12	-10 to $9,-10$ to $11,0-12$
Measured reflections	2496	2632	2490
Independent reflections	2344	2632	2336
Observed reflections [$F \geqslant 4 \sigma(F)$]	2073	2306	2050
Full-matrix least-squares refinement on program	F^{2} (SHELXL 93)	F (SHELX 76)	F (SHELX 76)
Parameters refined	196	210	241
SHELX $76{ }^{c} R, R^{\prime}, S$	-	0.045, 0.059, 1.22	0.063, 0.083, 1.10
m In weighting scheme	-	0.000193	0.000121
SHELXL $93{ }^{\text {d }}$ R1,wR2,S	0.046, 0.112, 1.07		
m, n In weighting scheme	0.0848, 1.06		
$(\Delta / \sigma)_{\text {max }}$	0.020	0.100	0.002
$\Delta \sigma_{\text {max, min }} / \mathrm{e} \AA^{-3}$	+1.60, -0.59	$+0.65,-0.60$	+1.26, -1.11

${ }^{a}$ Details in common: Stoë Stadi-4 four-circle diffractometer, $\omega-2 \theta$ scan mode, graphite monochromated Mo-K α radiation $(\lambda=0.71073 \AA) ; 2 \theta_{\max } 45^{\circ}$.
${ }^{b}$ Oxford Cryosystems low-temperature device (ref. 20). ${ }^{c}$ Ref. 18. Weighting scheme $w^{-1}=\sigma^{2}(F)+m F^{2}, S$ (goodness of fit) $=\left[\Sigma w\left(\left|F_{0}\right|-\right.\right.$ $\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right]^{\frac{1}{2}} \quad{ }^{d}$ Ref. 19. Weighting scheme $w^{-1}=\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(m P)^{2}+n P\right] \quad$ where $\quad P=\left[\max \left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3, \quad S=\left\{\Sigma\left[w\left(F_{\mathrm{o}}{ }^{2}-\right.\right.\right.$ $\left.\left.\left.F_{\mathrm{c}}^{2}\right)^{2}\right] /\left(N_{\mathrm{o}}-N_{\mathrm{p}}\right)\right\}^{\frac{1}{2}}\left(N_{\mathrm{o}}=\right.$ no. of observations; $N_{\mathrm{p}}=$ no. of parameters $)$.

Table 5 Fractional atomic coordinates with e.s.d.s in parentheses for $\left[\mathrm{PdCl}_{2}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)\right] 1$

Atom	x	y	z
Pd	$0.5328(1)$	$0.1059(1)$	$0.2660(1)$
$\mathrm{Cl}(1)$	$0.3982(2)$	$0.807(2)$	$0.1590(1)$
$\mathrm{Cl}(2)$	$0.4433(1)$	$0.3037(1)$	$0.2785(1)$
$\mathrm{S}(1)$	$0.6765(1)$	$0.1216(1)$	$0.3691(1)$
$\mathrm{C}(2)$	$0.7035(5)$	$-0.0384(4)$	$0.3935(3)$
$\mathrm{C}(3)$	$0.7558(5)$	$-0.1048(4)$	$0.3285(3)$
$\mathrm{S}(4)$	$0.6181(1)$	$-0.901(1)$	$0.2542(1)$
$\mathrm{C}(5)$	$0.4528(5)$	$-0.1774(5)$	$0.2826(3)$
$\mathrm{C}(6)$	$0.4844(7)$	$-0.3113(5)$	$0.2917(3)$
$\mathrm{O}(7)$	$0.5675(7)$	$-0.3204(4)$	$0.3582(3)$
$\mathrm{O}(7)$	$0.622(3)$	$-0.369(3)$	$0.323(2)$
$\mathrm{C}(8)$	$0.5786(8)$	$-0.4395(5)$	$0.3873(4)$
$\mathrm{C}(9)$	$0.7116(8)$	$-0.4501(5)$	$0.4328(4)$
$\mathrm{O}(10)$	$0.7188(4)$	$-0.3569(3)$	$0.4863(2)$
$\mathrm{C}(11)$	$0.8664(6)$	$-0.3468(5)$	$0.5177(3)$
$\mathrm{C}(12)$	$0.8689(6)$	$-0.2593(4)$	$0.5783(3)$
$\mathrm{O}(13)$	$0.8538(4)$	$-0.1375(3)$	$0.5523(2)$
$\mathrm{C}(14)$	$0.8475(5)$	$-0.0509(5)$	$0.6085(2)$
$\mathrm{C}(15)$	$0.8328(5)$	$0.0753(4)$	$0.5776(3)$
$\mathrm{O}(16)$	$0.6882(4)$	$0.0832(3)$	$0.5403(2)$
$\mathrm{C}(17)$	$0.6596(6)$	$0.1994(4)$	$0.5078(3)$
$\mathrm{C}(18)$	$0.5635(5)$	$0.1813(4)$	$0.4411(2)$

$\left[\mathrm{PdCl}\left([20] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)\right] \mathrm{BPh}_{4}$ 4.--Palladium(II) chloride (89 $\mathrm{mg}, 0.5 \mathrm{mmol})$ and [20] aneS $\mathrm{S}_{3} \mathrm{O}_{3}(170 \mathrm{mg}, 0.5 \mathrm{mmol})$ were heated in MeOH -water ($5: 1 \mathrm{v} / \mathrm{v}, 12 \mathrm{~cm}^{3}$) for 2 h under N_{2}. Addition of an excess of NaBPh_{4} to the cold reaction mixture, removal of the solvent and successive recrystallisation from
$\mathrm{Me}_{2} \mathrm{CO}$ yielded an orange microcrystalline product (yield: 60 $\mathrm{mg}, 15 \%$) (Found: C, $56.60 ; \mathrm{H}, 5.90$. Calc. for $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{~B}-$ $\mathrm{ClO}_{3} \mathrm{PdS}_{3}: \mathrm{C}, 56.95 ; \mathrm{H}, 6.05 \%$). Fast-atom bombardment mass spectrum: $m / z 483$; calc. for $\left[{ }^{106} \mathrm{Pd}^{35} \mathrm{Cl}\left([20] \text { aneS }_{3} \mathrm{O}_{3}\right)\right]^{+} 483$. ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 297 \mathrm{~K}, 250.13 \mathrm{MHz}\right]: \delta 1.9$ (m, $\left.\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}, 4 \mathrm{H}\right), 2.7\left(\mathrm{~m}, \mathrm{SCH}_{2}, 12 \mathrm{H}\right), 3.6\left(\mathrm{~m}, \mathrm{OCH}_{2}, 12\right.$ $\mathrm{H})$ and 6.7-7.8 $\left[\mathrm{m}, \mathrm{B}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}{ }^{-}, 20 \mathrm{H}\right]$. Infrared spectrum $(\mathrm{KBr}$ disc): $3053 \mathrm{~m}, 2982 \mathrm{w}, 2920 \mathrm{~m}, 1720 \mathrm{w}, 1657 \mathrm{w}, 1579 \mathrm{~m}, 1478 \mathrm{~m}$, $1426 \mathrm{~m}, 1351 \mathrm{w}, 1262 \mathrm{~m}, 1183 \mathrm{w}, 1110 \mathrm{~s}, 1032 \mathrm{~m}, 904 \mathrm{w}, 842 \mathrm{~m}$, $735 \mathrm{vs}, 708 \mathrm{vs}, 620 \mathrm{~m}, 558 \mathrm{w}$ and $464 \mathrm{w} \mathrm{cm}{ }^{-1}$.

Single-crystal Structure Determinations.-Details of the crystal data, data collection and processing and structure analysis are given in Table 4. All three structures were solved from Patterson syntheses (SHELX 76^{18}) and developed by iterative cycles of least-squares refinement and Fourierdifference syntheses. Hydrogen atoms were included in fixed, calculated positions. Final atomic coordinates appear in Tables 5-7. Illustrations were generated using SHELXTL-PC, ${ }^{21}$ and molecular geometry calculations utilised CALC ${ }^{22}$ and SHELXTL-PC.
$\left[\mathrm{PdCl}_{2}\left([18]\right.\right.$ aneS $\left.\left._{2} \mathrm{O}_{4}\right)\right]$ 1. During refinement atom $\mathrm{O}(7)$ was found to be disordered over two positions with site occupancies for $O(7)$ and $O\left(7^{\prime}\right)$ of 0.88 and 0.12 respectively. All nonhydrogen atoms apart from $O\left(7^{\prime}\right)$ were refined with anisotropic thermal parameters. Hydrogen atoms were included in fixed calculated positions with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.
$\left[\operatorname{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2}$ 2. Both the macrocycle and the PF_{6} - counter anion exhibited disorder. In the former, disorder affecting $C(11)$ and $C(12)$ was successfully modelled by allowing two positions for each atom. The disorder in the $\mathrm{PF}_{6}{ }^{-}$

Table 6 Fractional atomic coordinates with e.s.d.s in parentheses for $\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{2} \mathrm{O}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 2$

Atom	x	y	z	Atom	x	y	z
Pd	0.5	0.5	0.5	$\mathrm{C}(17)$	$0.1094(6)$	$0.4320(5)$	$0.7668(5)$
S(1)	$0.40464(17)$	$0.54778(13)$	$0.67932(11)$	$\mathrm{C}(18)$	$0.1788(6)$	$0.4478(5)$	$0.6545(4)$
$\mathrm{C}(2)$	$0.5382(6)$	$0.4790(4)$	$0.7662(4)$	P	$1.0214(2)$	$0.22847(15)$	$0.27881(14)$
$\mathrm{C}(3)$	$0.5468(6)$	$0.3555(4)$	$0.7015(4)$	$\mathrm{F}(1)$	$1.0178(6)$	$0.3108(5)$	$0.1879(4)$
$\mathrm{S}(4)$	$0.64648(16)$	$0.37220(12)$	$0.57082(11)$	$\mathrm{F}(2)$	$1.0088(7)$	$0.1336(5)$	$0.3563(5)$
$\mathrm{C}(5)$	$0.5724(6)$	$0.2200(5)$	$0.4750(5)$	$\mathrm{F}(3)$	$0.8012(6)$	$0.1934(6)$	$0.2515(5)$
$\mathrm{C}(6)$	$0.6821(7)$	$0.1393(5)$	$0.5121(5)$	$\mathrm{F}(4)$	$1.2351(6)$	$0.2439(6)$	$0.2817(6)$
$\mathrm{O}(7)$	$0.6387(5)$	$0.1209(4)$	$0.6209(3)$	$\mathrm{F}(5)$	$0.9815(8)$	$0.1244(6)$	$0.1536(6)$
$\mathrm{C}(8)$	$0.7645(7)$	$0.0803(5)$	$0.6841(5)$	$\mathrm{F}(6)$	$1.0523(9)$	$0.3375(7)$	$0.3868(7)$
$\mathrm{C}(9)$	$0.6989(7)$	$0.0610(6)$	$0.7934(6)$	$\mathrm{F}(7)$	$0.0759(9)$	$0.1926(9)$	$0.4020(9)$
$\mathrm{O}(10)$	$0.6907(4)$	$0.1755(3)$	$0.8627(3)$	$\mathrm{F}(8)$	$0.1244(10)$	$0.3718(9)$	$0.3516(9)$
$\mathrm{C}(11)$	$0.5933(4)$	$0.1365(3)$	$0.9504(3)$	$\mathrm{F}(9)$	$-0.0455(9)$	$0.3100(8)$	$0.3886(8)$
$\mathrm{C}\left(11^{\prime}\right)$	$0.6649(9)$	$0.2002(7)$	$0.9818(7)$	$\mathrm{F}(10)$	$-0.1587(9)$	$0.2427(7)$	$0.3021(8)$
$\mathrm{C}(12)$	$0.5681(4)$	$0.2536(3)$	$1.0238(3)$	$\mathrm{F}(11)$	$0.2266(10)$	$0.2973(10)$	$0.3398(10)$
$\mathrm{C}\left(12^{\prime}\right)$	$0.4629(9)$	$0.1696(7)$	$0.9831(7)$	$\mathrm{F}(12)$	$-0.0647(10)$	$0.10177(10)$	$0.2689(10)$
$\mathrm{O}(13)$	$0.4311(4)$	$0.2922(3)$	$0.9642(3)$	$\mathrm{F}(13)$	$0.1896(10)$	$0.1982(9)$	$0.2346(9)$
$\mathrm{C}(14)$	$0.2438(8)$	$0.2471(6)$	$0.9511(6)$	$\mathrm{F}(14)$	$0.0594(10)$	$0.1366(8)$	$0.1850(8)$
$\mathrm{C}(15)$	$0.1536(7)$	$0.3361(5)$	$0.9203(5)$	$\mathrm{F}(15)$	$-0.0137(10)$	$0.0992(9)$	$0.2016(9)$
$\mathrm{O}(16)$	$0.1812(5)$	$0.3453(4)$	$0.8048(3)$	$\mathrm{F}(16)$	$0.0668(10)$	$0.3415(10)$	$0.2363(10)$

Table 7 Fractional atomic coordinates with e.s.d.s in parentheses for $\left[\mathrm{Pd}\left([18] \mathrm{aneS}_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 3$

Atom	x	y	z
Pd	0.5	0.5	0.5
S(1)	0.497 2(3)	0.2869 (2)	0.618 4(2)
C(2)	0.697 3(11)	$0.2138(8)$	0.5911 (9)
C(3)	0.812 3(11)	$0.3110(9)$	0.599 6(8)
S(4)	0.7760 (2)	0.467 3(2)	0.487 29(19)
C(5)	0.822 9(13)	0.4142 (9)	0.344 9(8)
C(6)	0.777 2(11)	0.515 2(7)	0.2325 (8)
S(7)	0.874 8(6)	0.6621 (5)	$0.2387(4)$
C(8)	0.871 6(12)	0.762 1(18)	$0.0808(8)$
$\mathrm{O}(7)$	0.854 9(18)	$0.6308(9)$	0.229 3(14)
$\mathrm{C}\left(8^{\prime}\right)$	$0.8505(14)$	0.740 7(15)	0.126 5(16)
C(9)	$0.7007(10)$	0.823 9(9)	0.074 7(10)
$\mathrm{O}(10)$	0.5938 (8)	0.7321 (6)	0.058 5(6)
C(11)	$0.4311(14)$	0.7831 (11)	0.046 3(10)
C(12)	0.333 6(13)	0.674 9(13)	0.037 5(11)
$\mathrm{O}(13)$	0.341 6(8)	0.577 8(8)	0.1497 76)
C(14)	0.263 2(12)	0.4647 (11)	0.141 6(10)
C(15)	0.340(3)	0.3410 (15)	0.226 2(9)
$\mathrm{O}(16)$	0.337 3(16)	$0.3179(9)$	0.3561 (10)
C(15')	0.243 4(7)	0.378 4(19)	0.270 3(12)
S(16)	0.4559 (6)	0.3300 (5)	0.294 9(4)
C(17)	0.4017 (14)	0.1905 (7)	0.418 2(7)
C(18)	0.367 9(12)	0.193 6(9)	0.551 9(10)
P	1.048 2(3)	0.914 9(2)	-0.251 2(2)
F(1)	1.054 4(7)	1.066 4(5)	-0.320 7(6)
F(2)	0.999 6(9)	0.878 4(6)	-0.373 7(5)
F(3)	1.0431 17)	0.763 2(5)	-0.181 6(5)
F(4)	0.864 5(7)	0.9415 (6)	-0.2176(6)
F(5)	1.231 6(7)	$0.8857(6)$	-0.285 0(7)
F(6)	1.0963 (8)	0.945 9(6)	-0.1271(6)

anion was modelled by one major $\mathrm{PF}_{6}{ }^{-}$component (site occupancy 0.6) and a minor component comprising the symmetrically distributed F atoms. With hindsight this disorder might have been avoided (or at least simplified) by carrying out the data collection at low temperature. All nonhydrogen atoms apart from $\mathrm{C}(11), \mathrm{C}\left(11^{\prime}\right), \mathrm{C}(12), \mathrm{C}\left(12^{\prime}\right)$ and $F(6)-F(16)$ were refined with anisotropic thermal parameters. Hydrogen atoms were refined in fixed calculated positions with fixed thermal parameters $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$.
$\left[\mathrm{Pd}\left([18] \text { aneS }_{3} \mathrm{O}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]_{2} 3$. The disorder affecting atoms $O(7), S(7), O(16)$ and $S(16)$ is described in the Results and Discussion section. It was successfully modelled over two equally occupied orientations including $C(8) / C\left(8^{\prime}\right)$ and $\mathrm{C}(15) / \mathrm{C}\left(15^{\prime}\right)$. It was necessary to restrain the $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and

C-S bond lengths in the two affected moieties to 1.52, 1.42 and $1.83 \AA$ respectively. At isotropic convergence, final corrections (minimum 0.842, maximum 1.162) for absorption were made using DIFABS. ${ }^{23}$ All non-hydrogen atoms apart from $\mathrm{O}(7)$, $S(7), C(8), C\left(8^{\prime}\right), C(15)$ and $C\left(15^{\prime}\right)$ were refined with anisotropic thermal parameters. Hydrogen atoms were included in fixed calculated positions with a common thermal parameter which was allowed to refine freely to $U_{\text {iso }}(\mathrm{H})=0.068 \AA^{2}$.

Additional material available from the Cambridge Crystallographic Data Centre comprises \mathbf{H}-atom coordinates, thermal parameters and remaining bond lengths and angles.

Acknowledgements

We thank the SERC for support and Johnson Matthey for generous loans of platinum metal salts.

References

1 J. E. Kickham, S. J. Loeb and S. L. Murphy, J. Am. Chem. Soc., 1993, 115, 7031; J. E. Kickham and S. J. Loeb, Inorg. Chem., 1994, 33, 4351 .
2 D. Parker, J.-M. Lehn and J. Rimmer, J. Chem. Soc., Dalton Trans., 1985, 1517; G. Ferguson, K. E. Matthes and D. Parker, J. Chem. Soc., Chem. Commun., 1987, 1350.
3 A. J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Chem. Commun., 1992, 1074 and refs. therein.
4 H.-J. Holdt, Pure Appl. Chem., 1993, 65, 477; A. P. Paiva, Sep. Sci. Technol., 1993, 946.
5 J. W. Seibert, S. J. Lange, D. J. Williams, A. G. M. Barrett and B. M. Hoffman, Inorg. Chem., 1995, 34, 2300 and refs. therein.

6 A. J. Blake, G. Reid and M. Schröder, J. Chem. Soc., Dalton Trans., 1990, 3849.
7 R. M. Izatt, G. Wu, W. Jiang and N. K. Dalley, Inorg. Chem., 1990, 29, 3828.
8 B. Metz, D. Moras and R. Weiss, J. Inorg. Nucl. Chem., 1974, 36, 785.

9 J. Buter and R. M. Kellogg, J. Org. Chem., 1981, 46, 4481.
10 N. K. Dalley, S. B. Larson, J. S. Smith, K. L. Matheson, R. M. Izatt and J. J. Christensen, J. Heterocycl. Chem., 1981, 18, 463; A. J. Blake, C. Radek and M. Schröder, Acta Crystallogr., Sect. C, 1995, 51, in the press.
11 C. Radek, Ph.D. Thesis, The University of Edinburgh, 1995.
12 J. S. Bradshaw, J. Y. Hui, J. Y. Chan, B. L. Haymore, J. J. Christensen and R. M. Izatt, J. Heterocyclic Chem., 1974, 11, 45.
13 A. J. Blake and M. Schröder, Adv. Inorg. Chem., 1990, 35, 1.
14 A. J. Blake, A. J. Holder, T. I. Hyde, Y. V. Roberts, A. J. Lavery and M. Schröder, J. Organomet. Chem., 1987, 323, 261.

15 K. Wieghardt, H.-J. Küppers, E. Raabe and C. Krüger, Angew. Chem., Int. Ed. Engl., 1986, 25, 1101; A. J. Blake, A. J. Holder, Y. V. Roberts and M. Schröder, Acta Crystallogr., Sect. C, 1988, 44, 360.

16 A. J. Blake, Y. V. Roberts and M. Schröder, unpublished work.
17 A. J. Blake, R. O. Gould, A. J. Lavery and M. Schröder, Angew. Chem., Int. Ed. Engl., 1986, 25, 274.
18 G. M. Sheldrick, SHELX 76, program for crystal structure determination, University of Cambridge, 1976.
19 G. M. Sheldrick, SHELXL 93, Universität Göttingen, 1993.
20 J. Cosier and A. M. Glazer, J. Appl. Crystallogr., 1986, 19, 105.
21 G. M. Sheldrick, SHELXTL-PC, version 4.3. Siemens Analytical X-Ray Instrumentation Inc., Madison, WI, 1992.

22 R. O. Gould and P. Taylor, CALC, program for molecular geometry calculations, University of Edinburgh, 1985.
23 N. Walker and D. Stuart, DIFABS, program for applying empirical absorption corrections, Acta Crystallogr., Sect. A, 1983, 39, 158.

[^0]: \dagger Supplementary data available: see Instructions for Authors, J. Chem. Soc., Dalton Trans., 1995, Issue 1, pp. xxv-xxx.
 \ddagger Present address: Department of Chemisty, The University of Nottingham, University Park, Nottingham NG7 2RD, UK.

