Alkoxide hydrolysis as a route to early transition-metal polyoxometalates: synthesis and crystal structures of heteronuclear hexametalate derivatives **†**

William Clegg, Mark R. J. Elsegood, R. John Errington * and Joanne Havelock Department of Chemistry, The University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK

Oxygen-17 NMR studies indicated that the hexametalates $[MW_5O_{19}]^{n-1}$ or their derivatives $[(MeO)MW_5-O_{18}]^{(n-1)^-}$ (M = Ti, Zr, V, Nb, Ta, Mo or W) can be obtained by hydrolysis of the appropriate mixture of metal alkoxides in the presence of $M'O_4^{2-1}$ (M' = W or Mo) with remarkable selectivity in some cases, giving a very efficient method of preparing ¹⁷O-enriched polyoxometalates. The crystal structure of $[NBu^n_4]_3[(MeO)-TiW_5O_{18}]\cdot 0.5$ MeCN shows the terminal Ti–OMe bond in the anion to have Ti–O 1.760(10) Å and Ti–O–C 150.1(12)° and also reveals W–O bridging bond length alternations due to the substitution of Ti(OMe)³⁺ for WO⁴⁺ in the $[W_6O_{19}]^{2-}$ structure. Hydrolysis of $[NBu^n_4]_2[(MeO)NbW_5O_{18}]$ gives $[NBu^n_4]_4[(NbW_5-O_{18})_2O]$ and the crystal structure revealed two eclipsed NbW₅O₁₈ oxide fragments joined by a strictly linear Nb–O–Nb linkage with Nb–O 2.264(8) Å.

The synthesis of early transition-metal polyoxometalates by alkaline hydrolysis of metal alkoxides was first investigated by Jahr and Fuchs¹ and is related to the 'sol-gel' production of metal oxides from solutions of alkoxides. In our efforts to develop rational synthetic routes to new polyoxometalates we have adopted a modified strategy in which soluble oxoalkoxoanions formed in reactions between mononuclear tungstate $WO_4^{2^-}$ and metal alkoxides are hydrolysed in organic solvents. We are particularly interested in (a) the preparation of heteropolyanions from mixtures of different metal alkoxides and (b) the preparation of alkoxide-substituted polyoxoanions by controlling the hydrolysis process, since these would enable the systematic introduction of reactive surface sites into polyoxometalate structures. An additional advantage of this strategy is that when ¹⁷O-enriched water is used for the hydrolysis these non-aqueous reactions are conveniently monitored by ¹⁷O NMR spectroscopy.

Our attempts to synthesise the unknown molecular ditungstate $[W_2O_7]^{2-}$ by hydrolysis of a 1:1 mixture of WO_4^2 and $WO(OMe)_4$ have already been reported ^{2,3} and we describe here the application of this strategy to the synthesis of the hexatungstate $[W_6O_{19}]^{2-}$ 1 and a range of derivatives. We chose these particular polyoxometalates as synthetic targets because of the apparent stability of the hexanuclear M_6O_{19} core structure which, since the structural characterisation of Na₇HNb₆O₁₉·15H₂O and K₈Ta₆O₁₉·16H₂O by Lindqvist,⁴ has been identified in a variety of other molecular and extended oxide structures, *e.g.* $[Mo_6O_{19}]^{2-}$,⁵ $[W_6O_{19}]^{2-}$,⁶ $[MW_5-O_{19}]^3$ (M = Nb or Ta),^{7,8} $[Nb_2W_4O_{19}]^{4-}$,⁸ $[\{M(\eta^5-C_5Me_5)\}_4V_6O_{19}]$ (M = Rh or Ir),⁹ $[V_6O_{12}(OMe)_7]^{-10}$ $[V_6O_{13}\{(OCH_2)_3CNO_2\}_2]^{2^-,11}$ $[Mo_6O(OEt)_{18}]$,¹² $[Fe_6O-\{(OCH_2)_3CMe_{16}\}^{2-,13}$ $[Fe_6O(OMe)_{18}]^{2-,14}$ $[Zr_2Co_4O(O-Pr^n)_{10}(acac)_4]$ (acac = acetylacetonate)¹⁵ and the α -copper vanadate $Cu_{6.78}V_6O_{18.78}$.¹⁶

Our studies of non-aqueous polyoxometalate reactivity ¹⁷ have served to emphasis the inertness of anion 1 compared with $[Mo_6O_{19}]^2$. We and others have shown that the hexamolyb-date can be converted into organoimido derivatives by reaction with phosphinimines,¹⁸ isocyanates ¹⁷ or aromatic amines,¹⁹ whereas hexatungstate 1 does not react. The activation of the tungsten oxide framework by the systematic introduction of heterometal atoms and/or surface alkoxide ligands is therefore of major significance in this area, as exemplified by Klemperer

ALTO

Fig. 1 The ${}^{17}O$ NMR spectrum of the reaction products in the preparation of [NBuⁿ₄]₂[W₆O₁₉] according to equation (1)

and Schwartz²⁰ who have used this approach of surface functionalisation in the preparation of thio-derivatives $[MW_5O_{18}^{-1}S]^{3-1}$ from $[MW_5O_{19}]^{3-1}$ (M = Nb or Ta).

Results and Discussion

The hydrolysis of a mixture of $[NBu^n_4]_2[WO_4]$ and $WO(OMe)_4$ in acetonitrile with the stoichiometry (1) produced

$$WO_4^{2^-} + 5WO(OMe)_4 + 10H_2O \longrightarrow$$

 $[W_6O_{19}]^{2^-} + 20MeOH$ (1)

 $[NBu^{n}_{4}]_{2}[W_{6}O_{19}]$ in almost quantitative yield. When the reaction is carried out in an NMR tube most of the $[NBu^{n}_{4}]_{2}[W_{6}O_{19}]$ crystallises from solution and the ¹⁸³W NMR spectrum of the soluble fraction contains only small impurity peaks at δ –31.1 and –116.3 in addition to the peak for 1 at δ 47.8, while the ¹⁷O NMR spectrum (Fig. 1) better reveals just how clean the reaction is, with only very minor impurity peaks appearing slightly above the baseline. This remarkably efficient self-assembly of 1 encouraged us to investigate the possible incorporation of other early transition metals into hexametalate structures using this strategy.

Group 4 heteroatoms

The product from the hydrolysis of a mixture of $Ti(OMe)_4$, WO(OMe)₄ and WO₄²⁻ with ¹⁷O-enriched water using the stoichiometry (2) gave a ¹⁷O NMR spectrum consistent with

[†] Basis of the presentation given at Dalton Discussion No. 1, 3rd-5th January 1996, University of Southampton, UK.

$$3WO_4^{2^-} + 7WO(OMe)_4 + 2Ti(OMe)_4 + 17H_2O \longrightarrow$$

 $2[(MeO)TiW_5O_{18}]^{3^-} + 34MeOH$ (2)

that of a monosubstituted $[LMW_5O_{18}]^{n-}$ species contaminated with small amounts of 1 and another unidentified polyoxoanion. The ¹⁸³W NMR spectrum of the recrystallised material contained two resonances at δ 64.5 (1W) and 32.3 (4W) with $J_{\rm WW}$ 6.2 Hz and the ¹H NMR spectrum contained a singlet at δ 4.10 in addition to tetrabutylammonium and solvent resonances. The ¹⁷O NMR spectrum (Fig. 2) shows two types of terminal W=O, one type of TiOW bridge, two types of WOW bridge and the unique central μ_6 -O, but no signal for terminal Ti=O. These spectra are consistent with the methoxidesubstituted hexametalate $[(MeO)TiW_5O_{18}]^{3-}$ 2 and this formulation was confirmed by crystal structure determination (see below). Surprisingly, an attempted hydrolysis of this alkoxoanion with a stoichiometric amount of water at room temperature did not produce a significant amount of the expected product, $[(TiW_5O_{18})_2O]^{6-}$, since the OMe singlet was still present in the ¹H NMR spectrum. This suggests that 2 possesses a certain degree of kinetic stability and we are presently investigating the optimum conditions for this hydrolysis (e.g. higher concentration of water, increased temperature). However, the niobium analogue of this hydrolysate has been obtained and is described later in this paper.

Compounds containing terminal Ti=O ('titanyl') bonds are comparatively rare and to our knowledge $[TiW_5O_{19}]^{4^-}$ has not been reported. We therefore adjusted the stoichiometry to that shown in equation (3) in an attempt to prepare this

$$2WO_4^{2^-} + 3WO(OMe)_4 + Ti(OR)_4 + 8H_2O \longrightarrow$$
$$[TiW_5O_{19}]^{4^-} + 12MeOH + 4ROH \quad (3)$$

heteropolyanion but the reaction did not proceed as cleanly as the preparation of anion 2. Of the two or three main products observed by NMR spectroscopy, one is the methoxide-substituted anion 2 and another appears to be a related TiW₅ species 3. The ¹⁸³W NMR spectrum of the solid from a reaction involving Ti(OPrⁱ)₄ contained peaks at δ 64.9 and 32.9 due to 2, at δ 69.7 (1W) and 36.5 (4W) due to 3 and a peak at δ 72.0 in addition to a few small peaks near δ 0 (Fig. 3). While this suggested that 3 might be $[(Pr^iO)TiW_5O_{18}]^{3-}$, ¹⁷O NMR studies of reactions with R = Me or Pr^{i} in equation (3) showed the same mixture from both titanium alkoxide starting materials. We have not yet been able to isolate a sufficiently pure sample of 3 for full characterisation since crystallisation has only yielded crystals of [NBuⁿ₄]₃[(MeO)TiW₅O₁₈] (which were used for the crystal structure determination), but it seems likely that it is either $[TiW_5O_{19}]^{4-}$, the protonated [(HO)TiW₅O₁₈]³⁻ or the Ti–O–Ti bridged derivative [(TiW₅O₁₈)₂O]⁶⁻. There is no overwhelming evidence in favour of any one of these formulae, although ¹⁷O NMR spectra of the more soluble fractions from these reactions contain a small peak at δ 947 which might be assigned to Ti–OH or Ti=O, whereas no obvious TiOTi peak is present. Most of the compounds containing terminal Ti=O bonds that have been characterised²¹ contain fairly rigid polydentate ligands such as phthalocyanine or porphyrin derivatives, or the tridentate 1,4,7-trimethyl-1,4,7-triazacyclononane, and in this regard it is worth noting that the $W_5O_{18}^{6-}$ fragment is effectively a pentadentate oxygen-donor ligand towards the heterometal in $[LMW_5O_{18}]^{n-}$ hexametalates.

In the crystal structure of $[NBu^{n}_{4}]_{3}[(MeO)TiW_{5}O_{18}]$ the asymmetric unit contains two unique anions $[(MeO)TiW_{5}O_{18}]^{3-}$ **2**, six discrete NBu^{n}_{4} + cations and one molecule of acetonitrile solvate. Angles at W are typical of those in $[W_{6}O_{19}]^{2-}$ and related polytungstates while M–O–M angles lie in the range 114.1(4)–119.7(5)°. The different O–Ti–O–C

Fig. 2 The 17 O NMR spectrum of [(MeO)TiW₅O₁₈]³⁻ 2. The peak marked with an asterisk is due to an impurity

Fig. 3 The ¹⁸³W NMR spectrum of the products from a reaction to prepare $[\text{TiW}_5\text{O}_{19}]^{4^-}$ according to equation (3)

torsion angles in the two anions are visible in the views shown in Fig. 4(a) and (b). Selected bond lengths and angles are given in Table 1. The methoxide ligand is terminally bonded to titanium with an average Ti-O bond length of 1.758(10) Å and a Ti--O-C angle of 148.6(15)°. The bond length is in the middle of the range of Ti-OMe values reported by Wieghardt and coworkers^{21a} for a series of octahedral titanium(IV) complexes $[Ti(tmtacn)(OMe)_{x}Br_{3-x}]^{+}$ (tmtacn = 1,4,7-trimethyl-1,4,7triazacyclononane; x = 1-3) in which competition for metal π orbitals results in an increase in the Ti–O bond length from 1.723(12) to 1.795(6) Å. By comparison, the Ti=O bond length in [Ti(tmtacn)OCl₂] is 1.637(3) Å.^{21a} As such, the Ti–O π bonding in 2 is substantially less than would be expected for terminal Ti=O in this situation and this is reflected in the internal M-O bond lengths along the Ti–O–W axis where Ti–O [2.221(10) Å (average)] is shorter than W-O [2.353(10) Å (average)]. Systematic variations in the bridging M-O bond lengths in 2 are discussed later in a comparison with similar effects observed in other examples of MW₅-substituted hexametalates.

The lack of zirconium-substituted hexametalates in the literature suggested that the aqueous synthetic routes used for other derivatives may be unsuitable for this metal and prompted us to attempt the preparation of $[(MeO)ZrW_5O_{18}]^{3-}$ via an alkoxide hydrolysis method analogous to that used for 2. The compound $Zr(OPr^n)_4$ was used in the reaction on the assumption that methanol produced by hydrolysis would cause metathesis of the propoxide ligands. The ¹⁸³W NMR spectrum of the product 4 (Fig. 5) contains no significant impurity peaks, suggesting that the reaction proceeds cleanly to give the expected ZrW_5 hexametalate structure. Despite broadening of several peaks, the ¹⁷O NMR

Fig. 4 Views (a) and (b) of the two unique $[(MeO)TiW_5O_{18}]^3 = 2$ anions in the crystal structure of $[NBu^n_4]_3[(MeO)TiW_5O_{18}] = 0.5MeCN$ with the atom labelling scheme. Torsion angles: C(1)-O(1)-Ti(1)-O(3) 4.4, C(2)-O(20)-Ti(2)-O(24) -19°

spectrum (Table 4) is also consistent with the required metal oxide framework, as is the IR spectrum, which is similar to that of **2**. The presence of alkoxide groups is suggested by the ¹H NMR spectrum; broad peaks between δ 3.9 and 4.2 (possibly due to OCH₂ of propoxide) and a sharp peak at δ 3.77 integrate for a total of 6 H for every three cations, although these may also be due to co-ordinated propanol, water or hydroxide. In

this regard, it is noteworthy that no band due to v(OH) is present in the IR spectrum of 4, but there is a band at 1660 cm⁻¹ which may be due to OH bend. These differences between 2 and 4 are presumably due to different co-ordination environments at the heteratoms and reflect the greater covalent radius of zirconium.

Group 5 heteroatoms

Tetraalkylammonium salts of $[VW_5O_{19}]^{3-5}$ have previously been prepared from Na₂WO₄ and NaVO₃ in aqueous media²² or, when ¹⁷O-enriched material was required, by a non-aqueous route involving the treatment of ¹⁷O-enriched $[W_{10}O_{32}]^{4-7}$ with a vanadate solution obtained by dissolving V₂O₅ in methanolic NBuⁿ₄OH.²³ Using our hydrolytic method, ¹⁷Oenriched **5** is readily prepared in high yield by hydrolysis of an acetonitrile solution of $[NBu^n_4]_2[WO_4]$, WO(OMe)₄ and VO(OMe)₃ with ¹⁷O-enriched water [equation (4)]. The ¹⁷O

$$3WO_4^{2^-} + 7WO(OMe)_4 + 2VO(OMe)_3 + 17H_2O \longrightarrow 2[VW_5O_{10}]^{3^-} + 34MeOH$$
 (4)

and ⁵¹V NMR spectra show that the minor amounts of hexatungstate **1** and other vanadates formed in this reaction are removed on recrystallisation. However, we have been unable so far to isolate the methoxide derivative $[(MeO)VW_5O_{18}]^{2-}$, ¹⁷O and ⁵¹V NMR spectra of the solid product from the reaction [equation (5)] showing a significant amount of **1** with

$$WO_4^{2^-} + 4WO(OMe)_4 + VO(OMe)_3 + 9H_2O \longrightarrow$$

[(MeO)VW₅O₁₈]^{2^-} + 18MeOH (5)

smaller amounts of 5 and three other unidentified vanadates.

In our attempts to prepare tungstoniobates from Nb(OMe)₅, ¹⁷O NMR studies showed that the theoretical stoichiometry required for $[NbW_5O_{19}]^{3-}$ 6 [equation (6)] gave a yield of

$$3WO_4^{2^-} + 7WO(OMe)_4 + 2Nb(OMe)_5 + 19H_2O \longrightarrow 2[NbW_sO_{1,9}]^{3^-} + 38MeOH$$
 (6)

about 80% based on tungsten with 1 as the only other significant polyoxoanion product. As in the vanadate system, an attempt to synthesise the methoxide derivative $[(MeO)NbW_5O_{18}]^{2-7}$ [equation (7)] gave a more complex

$$WO_4^{2^-} + 4WO(OMe)_4 + Nb(OMe)_5 + 10H_2O \longrightarrow [(MeO)NbW_5O_{18}]^{2^-} + 20MeOH$$
(7)

mixture although, in this case, the peaks in the ¹⁷O NMR spectra could be assigned to roughly equal amounts of **1** and a new NbW₅ species in addition to a small amount of **6**. The new compound was isolated by crystallisation and, in addition to tetrabutylammonium resonances, peaks were observed at δ 4.40 in the ¹H NMR spectrum and δ 65.9 in the ¹³C NMR spectrum of this colourless crystalline solid. This suggests that the methoxide **7** is indeed formed in this reaction and, moreover, since the ¹⁷O NMR spectrum (Fig. 6) is consistent with $C_{4\nu}$ symmetry, that the methoxide is terminally bound to the niobium. If the methoxide occupied one of the bridging positions between niobium and tungsten a more complex spectrum with one NbO, four WO (2:1:1:1), two NbOW (2:1), five WOW (2:2:2:1:1) and a single μ_6 -O peak would be expected.

It was noticeable that the ¹H NMR sample of the methoxide 7 showed signs of hydrolysis, with methanol signals at δ 3.28 and 2.21 and a combined Me integration of three protons for every two cations and this moisture sensitivity was evident on attempted recrystallisation. Crystals obtained by slow diffusion of diethyl ether vapour into an acetonitrile solution of this compound over several weeks were shown to be [NBuⁿ₄]₄- Table 1 Selected bond lengths (Å) and angles (°) for complex 2

Ti(1)–O(1)	1.760(10)	Ti(1)-O(5)	1.931(10)	Ti(2)–O(24)	1.935(10)	Ti(2)-O(23)	1.937(10)
Ti(1)-O(3)	1.941(11)	Ti(1) - O(4)	1.948(10)	Ti(2)-O(21)	1.955(9)	Ti(2) - O(22)	1.982(11)
Ti(1) - O(2)	1.967(10)	Ti(1)-O(19)	2.211(11)	Ti(2)-O(38)	2.231(10)	O(20) - C(2)	1.42(2)
O(1)-C(1)	1.44(2)	W(1)-O(11)	1.697(10)	W(6)-O(32)	1.754(9)	W(6) - O(21)	1.872(9)
W(1)–O(2)	1.849(9)	W(1) - O(10)	1.928(10)	W(6)-O(25)	1.923(9)	W(6)-O(33)	1.929(10)
W(1)-O(14)	1.935(9)	W(1)-O(12)	1.956(10)	W(6)-O(31)	1.941(10)	W(6)-O(38)	2.309(11)
W(1)-O(19)	2.325(9)	W(2)–O(9)	1.726(10)	W(7) - O(26)	1.722(10)	W(7) - O(22)	1.858(10)
W(2) - O(5)	1.879(9)	W(2) - O(10)	1.910(10)	W(7) - O(27)	1.919(10)	W(7) - O(25)	1.939(8)
W(2)-O(17)	1.925(9)	W(2) - O(8)	1.956(9)	W(7)-O(34)	1.947(10)	W(7) - O(38)	2.293(10)
W(2)-O(19)	2.355(9)	W(3) - O(7)	1.709(10)	W(8) - O(28)	1.694(8)	W(8)-O(23)	1.844(10)
W(3)-O(4)	1.851(9)	W(3)-O(8)	1.923(10)	W(8)-O(29)	1.920(9)	W(8) - O(27)	1.955(10)
W(3)-O(16)	1.945(10)	W(3)-O(6)	1.959(11)	W(8)-O(35)	1.957(10)	W(8)-O(38)	2.342(11)
W(3)-O(19)	2.349(9)	W(4) - O(13)	1.723(11)	W(9)–O(30)	1.722(10)	W(9)-O(24)	1.845(9)
W(4) - O(3)	1.859(10)	W(4)-O(6)	1.925(9)	W(9) - O(31)	1.933(9)	W(9)-O(29)	1.937(9)
W(4)-O(12)	1.925(9)	W(4) - O(15)	1.940(9)	W(9)-O(36)	1.999(9)	W(9)-O(38)	2.352(10)
W(4)-O(19)	2.288(9)	W(5)-O(18)	1.740(10)	W(10) - O(37)	1.698(10)	W(10) - O(34)	1.908(9)
W(5)-O(16)	1.874(10)	W(5)-O(15)	1.909(10)	W(10)-O(36)	1.912(10)	W(10)-O(35)	1.917(10)
W(5)-O(14)	1.932(9)	W(5) - O(17)	1.947(10)	W(10)-O(33)	1.932(9)	W(10) - O(38)	2.358(10)
W(5)-O(19)	2.348(10)	Ti(2)–O(20)	1.755(10)				,
O(1)-Ti(1)-O(5)	103.3(5)	O(1)-Ti(1)-O(3)	99.9(5)	O(20)-Ti(2)-O(24)	101.4(4)	O(20) - Ti(2) - O(23)	103.9(5)
O(5)-Ti(1)-O(3)	156.8(4)	O(1)-Ti(1)-O(4)	100.8(5)	O(24) - Ti(2) - O(23)	87.0(4)	O(20) - Ti(2) - O(21)	101.0(4)
O(5)-Ti(1)-O(4)	88.1(4)	O(3)-Ti(1)-O(4)	88.2(4)	O(24) - Ti(2) - O(21)	88.5(4)	O(23) - Ti(2) - O(21)	155.1(4)
O(1)-Ti(1)-O(2)	103.5(5)	O(5)-Ti(1)-O(2)	86.9(4)	O(20)-Ti(2)-O(22)	103.4(4)	O(24) - Ti(2) - O(22)	155.2(4)
O(3)-Ti(1)-O(2)	87.2(4)	O(4) - Ti(1) - O(2)	155.7(4)	O(23)-Ti(2)-O(22)	86.4(4)	O(21) - Ti(2) - O(22)	87.5(4)
O(1)-Ti(1)-O(19)	176.8(5)	O(5)-Ti(1)-O(19)	79.7(4)	O(20)-Ti(2)-O(38)	178.9(5)	O(24) - Ti(2) - O(38)	78.2(4)
O(3)-Ti(1)-O(19)	77.2(4)	O(4)-Ti(1)-O(19)	78.1(4)	O(23) - Ti(2) - O(38)	77.1(4)	O(21) - Ti(2) - O(38)	78.0(4)
O(2)-Ti(1)-O(19)	77.6(4)	C(1)-O(1)-Ti(1)	150.1(12)	O(22)–Ti(2)–O(38)	77.0(4)	C(2)–O(20)–Ti(2)	147.1(11)

Fig. 6 The ¹⁷O NMR spectrum of $[(MeO)NbW_5O_{18}]^{2-7}$. Impurity peaks are marked with an asterisk

[(NbW₅O₁₈)₂O] by an X-ray structure determination. This is the first structural characterisation of an anion in which two polyoxometalate units are linked by a single oxide bridge, although [(Nb₂W₄O₁₈)₂O]⁶⁻ has been characterised spectroscopically.²⁴ The asymmetric unit contains one half of the anion [(NbW₅O₁₈)₂O]⁴⁻ **8** and two discrete tetrabutylammonium cations. Angles at W are again typical of those in [W₆O₁₉]²⁻ and related polytungstates, while M–O–M bridges within the NbW₅O₁₈ unit lie in the range 114.1(4)–118.7(4)°. Fig. 7 shows the linear Nb–O–Nb linkage between two NbW₅O₁₈ fragments in **8** and a selection of other bond lengths and angles is given in Table 2.

To our knowledge, the only crystal structure of a polyoxoanion containing the NbW₅O₁₉ fragment is that of $[(C_5H_5)_3U(NbW_5O_{19})_2]^{5-9}$ in which the pentatungstoniobate fragments bond to uranium through the terminal NbO oxygens.²⁵ The only other related structure is that of the tetratungstodiniobate $[(Bu'Me_2SiO)Nb_2W_4O_{18}]^{3-10}$ which contains a terminal bulky siloxide ligand at one of the two niobium sites.²⁴ The Nb(1)–O(1) bond in 8 [1.8882(11) Å] is similar to the Nb–OSi bond in 10 [1.86(2) Å] but is significantly

longer than the Nb–O···U bond in 9 [1.78(3) Å]. This indicates a greater degree of Nb–O π bonding in 9, whereas in 8 and 10 π overlap with another Nb or Si respectively is also possible, reducing the Nb–O bond order. The linear Nb–O–Nb linkage and eclipsed geometry of the two NbW₅O₁₈ fragments in 8 optimise the overlap of oxygen p_x and p_y orbitals respectively with the d_{xz} orbital of one niobium and the d_{yz} orbital of the other (where the z axis is coincident with the Nb–O–Nb bridge). This variation in the terminal Nb–O π bonding results in an increase in the Nb–O distance to the central μ_6 -O from 2.264(8) and 2.27(1) Å in 8 and 10 respectively to 2.33(3) Å in 9, consistent with the general phenomenon of bond lengthening *trans* to strong π -donor ligands (*i.e. trans* influence) at d⁰ metal centres²⁶ and analogous to the situation in 2 described above.

In common with the other structurally characterised NbW₅ hexametalate 9 and with 2 discussed above, the electronic effects of this substitution are manifested in M–O bridging bond-length variations within MW_3O_4 rings. Average values for the bonds labelled as in Fig. 8 are given in Table 3 and clearly show a variation from short to long single bonds as indicated by the dashed and solid lines. This effect is less marked for 8, possibly because $[W=O]^{4+}$ has effectively been

replaced by $[NbL]^{4+}$ in **8** and not $[ML]^{3+}$ as in the other examples in Table 3, resulting in stronger Nb–O bonds (*a*) and weaker W–O bonds (*b*) within the NbW₃O₄ ring. Day and Klemperer²⁸ have discussed this type of bond-length

Fig. 7 View of the $[(NbW_5O_{18})_2O]^{4-}$ anion 8 in the crystal structure of $[NBu^n_4]_4[(NbW_5O_{18})_2O]$ with the atom labelling scheme. Torsion angles: O(2)-Nb(1)-Nb(1a)-O(4a) -0.5, O(5)-Nb(1)-Nb(1a)-O(3a) -0.3^{\circ}

Fig. 8 Bond-length variation within the MW_3O_4 rings of MW_5 hexametalates

Table 2	Selected	bond lengths (Å	and angles (°) for complex	ex 8
W(1)O(6)	1.701(9)	W(1)-O(2)	1.902(9)
W(1)O(7)	1.909(8)	W(1)-O(14)	1.924(9)
W(1)-O(13)	1.926(9)	W(1)-O(19)	2.328(7)
W(2)-O(8)	1.688(8)	W(2)-O(3)	1.908(8)
W(2)-O(9)	1.926(8)	W(2)-O(15)	1.930(7)
W(2)-O(7)	1.942(8)	W(2)–O(19)	2.349(7)
W(3)-O(10)	1.695(9)	W(3)–O(4)	1.888(8)
W(3)-O(9)	1.919(8)	W(3)-O(16)	1.928(8)
W(3)-O(11)	1.934(9)	W(3)–O(19)	2.343(7)
W(4)-O(12)	1.691(9)	W(4)–O(5)	1.908(8)
W(4)-O(13)	1.924(8)	W(4)–O(11)	1.932(9)
W(4)-O(17)	1.936(8)	W(4)–O(19)	2.320(7)
W(5)-O(18)	1.711(8)	W(5)–O(16)	1.920(8)
W(5)-O(17)	1.921(9)	W(5)–O(15)	1.924(8)
W(5)-O(14)	1.925(8)	W(5)–O(19)	2.377(8)
Nb(1)-O	(1)	1.8882(11)	Nb(1)–O(3)	1.953(8)
Nb(1)-O	(2)	1.959(9)	Nb(1)–O(4)	1.964(8)
Nb(1)–O	(5)	1.968(8)	Nb(1)–O(19)	2.264(8)
O(1)–Nb	(1)–O(3)	101.5(2)	O(1)-Nb(1)-O(2)	103.9(2)
O(3)-Nb	(1)-O(2)	86.6(3)	O(1)-Nb(1)-O(4)	103.4(2)
O(3)-Nb	(1)-O(4)	87.6(3)	O(2)-Nb(1)-O(4)	152.7(3)
O(1)-Nb	(1)-O(5)	104.8(2)	O(3)-Nb(1)-O(5)	153.7(3)
O(2)-Nb	(1)–O(5)	86.9(3)	O(4)-Nb(1)-O(5)	86.6(3)
O(1)-Nb	(1)–O(19)	178.5(2)	O(3)-Nb(1)-O(19)	77.0(3)
O(2)-Nb	(1)–O(19)	76.4(3)	O(4)–Nb(1)–O(19)	76.4(3)
O(5)Nb	(1)–O(19)	76.6(3)	Nb(1)-O(1)-Nb(1a)	180
Symmetr $-x + 1$,	y transfo $-y, -z$.	rmation used to	o generate equivalent ato	m Nb(la)

alternation in terms of charge distribution in hexametalates and related it to variations in ¹⁷O chemical shifts. We discuss its relevance to ¹⁸³W NMR chemical shifts below.

We were curious to see if by increasing slightly the amount of water in the reaction designed to produce anion 7 [equation (7)] we might instead obtain 8. After hydrolysis according to equation (8) and removal of the volatiles, the ¹⁷O NMR

$$2WO_4^{2^-} + 8WO(OMe)_4 + 2Nb(OMe)_5 + 21H_2O \longrightarrow$$

[(NbW₅O₁₈)₂O]⁴⁻ + 42MeOH (8)

spectrum revealed a mixture of 1, 6 and a third component with chemical shifts similar to those of 7 but with an additional broad peak at δ 500 (Table 4). By comparison with the ¹⁷O NMR spectrum of [(Nb₂W₄O₁₈)₂O]⁶⁻ reported previously,²⁴ we can tentatively assign this peak to the NbONb oxygen of 8, which on this basis is formed in roughly 30% yield based on tungsten.

An attempted synthesis of $[(MeO)TaW_5O_{18}]^2 = 11$ according to equation (9) resulted in the production of a small amount of

$$WO_4^{2^-} + 4WO(OMe)_4 + Ta(OR)_5 + 10H_2O \longrightarrow$$

$$[(MeO)TaW_5O_{18}]^{2^-} + 5ROH + 15MeOH \quad (9)$$

crystalline complex 1 and a soluble fraction containing one major component and small amounts of two other species. The 17 O and 183 W NMR spectra of the major component (Tables 4 and 5) are consistent with TaW₅ monosubstitution ⁷ and, in the absence of peaks due to Ta=O or TaOTa, we have tentatively assigned this to 11, although further characterisation is in progress.

A reaction designed to produce $[Ta_2W_4O_{19}]^{4-}$ [equation (10)] gave a mixture of species, but with much less of the

$$2WO_4^{2^-} + 2WO(OMe)_4 + 2Ta(OMe)_5 + 9H_2O \longrightarrow$$

[Ta₂W₄O₁₉]⁴⁻ + 18MeOH (10)

hexatungstate 1 than was formed in the previous reaction. The ¹⁸³W NMR spectrum is shown in Fig. 9 and the complex ¹⁷O NMR spectrum contains peaks in the region expected for TaOTa, suggesting that a *cis*-disubstituted product was present.

Fig. 9 The ¹⁸³W NMR spectrum of the reaction products from an attempted preparation of $[Ta_2W_4O_{13}]^{4-}$ according to equation (10)

Table 3 Average bond lengths (Å) within MW_3O_4 rings in MW_5 hexametalate derivatives*

Anion	а	b	С	d	n	Ref.
2 $[(MeO)TiW_5O_{18}]^{3}$	1.95(2)	1.86(1)	1.95(2)	1.91(3)	8	This work
$[(\eta-C_5H_5)TiW_5O_{18}]^{3-1}$	1.95(2)	1.87(1)	1.93(2)	1.91(3)	4	27
8 [(NbW,O18),O]4-	1.961(6)	1.902(8)	1.930(4)	1.923(2)	4	This work
9 $[(\eta - C_5 H_5)_3 U(NbW_5 O_{19})_7]^{6-}$	1.97(3)	1.86(3)	1.93(3)	1.90(3)	4	25

* For bond labels see Fig. 8; averages of n numerical values with estimated standard deviations in parentheses.

Table 4 Oxygen-17 NMR data for MW₅ hexametalate derivatives

		δ_0^a (linewidth/Hz)						
anion ^{<i>b</i>}		M=O	W=O	мом	MOW	WOW	μ ₆ -Ο	
1	$[W_{6}O_{19}]^{2}$		774(98)			414(98)	-80	
2	$[(MeO)TiW_5O_{18}]^{3-}$		721(258), 713(284)		525(64)	390(129), 380(271)	-58(52)	
3	$[LTiW_5O_{18}]^{n-1}$	d	693(258), 690(258)		499(85)	378(206), 365(903)	-66(77)	
4	$[(RO)ZrW_5O_{18}]^{3}$		727(1160), 715(774)		530(245)	387(1096), 375(1520)	-56(85)	
5	$[VW_5O_{19}]^{3-}$	1224(784)	737(217), 734(199)		565(415)	399(119), 392(119)	-72(99)	
6	$[NbW_5O_{19}]^{3-}$	f	732(232), 730(192)		456(1160)	394(142), 392(142)	-67(39)	
7	$[(MeO)NbW_5O_{18}]^2$		758(206), 748(181)		472(181)	405(103), 402(103)	-71(77)	
8	$[(NbW_5O_{18})_2O]^4$		758(774), 748(490)	500(4130)	470(1160)	405(258), 403(387)	-73(103)	
11	$[(MeO)TaW_5O_{18}]^2$		756(264), 744(209)		425(110)	404(120), 403(176)	-68(66)	
12	$[TaW_5O_{19}]^{3-}$	666(257)	739(206), 736(193)		426(64)	397(257)	-71(26)	
13	$[MoW_5O_{19}]^{2-}$	935(69)	775(65)		488(15), 486(15), 482(15)	414(10), 412(10)	- 74(69)	

^{*a*} Positive values downfield from water reference. ^{*b*} All are NBuⁿ₄⁺ salts. ^{*c*} See the text for a discussion of the identity of this species. ^{*d*} A small peak was observed at δ 947 which might be due to Ti=O or Ti–OH. ^{*e*} The ¹⁸³W NMR spectrum supports the formulation of this anion as an alkoxide derivative. ^{*f*} A small broad peak was on occasion observed in the region of δ 800.

Table 5 Tungsten-183, $^{51}\mathrm{V}$ and $^{95}\mathrm{Mo}$ NMR data for MW_5 hexametalate species

Fig. 10 The ^{17}O NMR spectrum of a mixture of $[W_6O_{19}]^{2-}$ 1 and $[MoW_5O_{19}]^{2-}$ 11

On further work-up a small amount of crystalline material was obtained which from microanalysis and ¹⁷O NMR data appeared to be $[NBu^{n}_{4}]_{3}[TaW_{5}O_{19}]$. This suggests that the major peaks in Fig. 9 are due to three main reaction products. A *cis*-disubstituted Ta₂W₄ species would have a 1:1 ¹⁸³W NMR spectrum, possibly the peaks at δ 61.7 and 45.4, whereas the 4:1 pattern expected for $[TaW_{5}O_{19}]^{3-}$ 12 is most likely to comprise the peaks at δ 63.5 and 32.2, which leaves peaks at

 δ 77.9 and 102.1 unassigned. Work is going on to isolate and characterise further these species.

Group 6 heteroatoms

In a previously published procedure, treatment of an aqueous solution of MOQ_4^{2-} with an active form of $WO_3 \cdot H_2O$ at pH > 6 and subsequent addition of $NBu_4^{n}Br$ precipitated a mixture of the tetrabutylammonium salts of anion 1 and $[MOW_5O_{19}]^{2-}$ 13 in a ratio of 4:1. Separation was subsequently achieved by selectively reducing the MOW_5 anion electrochemically and then crystallising the reduced compound $[NBu_4]_3[MOW_5O_{19}]^{.29}$ We recognised that a hydrolytic route using $[NBu_4]_2[MOO_4]$ as the source of molybdenum and of anionic charge may be a more convenient alternative synthesis of 13 [equation (11)]. Similarly, we reasoned that

$$MoO_4^{2^-} + 5WO(OMe)_4 + 10H_2O \longrightarrow$$
$$[MoW_5O_{19}]^{2^-} + 20MeOH \quad (11)$$

 $[(MeO)MoW_5O_{18}]^-$ and $[(MoW_5O_{18})_2O]^{2^-}$ may also be accessible from reactions involving the readily prepared dimolybdate $[Mo_2O_7]^{2^-}$ [equations (12) and (13)]. In the

$$[Mo_2O_7]^{2^-} + 10WO(OMe)_4 + 19H_2O \longrightarrow 2[(MeO)MoW_5O_{18}]^- + 38MeOH$$
(12)

$$[Mo_2O_7]^{2^-} + 10WO(OMe)_4 + 20 H_2O \longrightarrow [(MoW_5O_{18})_2O]^{2^-} + 40MeOH$$
(13)

event, ¹⁷O NMR spectra (Fig. 10) of the pale greenish yellow crystalline products obtained from all three of these reactions contained the same peaks (Table 4), which are consistent with a MoW₅ derivative. In addition to the terminal MoO peak at δ 935, the terminal WO and the WOW peaks have similar chemical shifts to those of 1, while the μ_6 -O signal was not visible for all samples of 13. Inductively coupled plasma (ICP) spectrophotometric analysis gave a ratio of W: Mo of 5.9:1, suggesting that hexatungstate 1 cocrystallises with 13 (in a ratio of 0.15:1). Overlap of ¹⁷O NMR peaks from the two species would then explain the relative intensities of the two WOW peaks shown in Fig. 10. The substitution of one of the W=O sites in 1 for Mo=O would not be expected to have as great an effect on the electronic environment of the unique tungsten in a MoW₅ compound as would the incorporation of Group 4 or 5 elements in the TiW₅ or NbW₅ anions, so the observation of only one terminal WO peak is not surprising. However, a curious feature in these spectra is the appearance of three peaks in the region for MoOW instead of one. These peaks at δ 488, 486 and 482 are not equally intense but have similar relative intensities in spectra of samples from different reactions and there doesn't appear to be an obvious explanation for this pattern. A ¹⁸³W NMR spectrum of this material contains two peaks at δ 55.0 and 47.4 with an approximate intensity ratio of 1:4 (this is difficult to measure with any precision because the low solubility of the compound resulted in a poor signal-tonoise ratio) while the ⁹⁵Mo NMR spectrum contains only one peak at δ 116 with a linewidth of 176 Hz. Consistent with the presence of **13** in this product, v(W=O) and v(Mo=O) appear in the IR spectrum at 976 and 930 cm⁻¹ compared with 976 and 954 cm⁻¹ for **1** and [Mo₆O₁₉]²⁻ respectively.

The ¹⁸³W NMR spectra were obtained for all of the hexametalates except 8 (for which insufficient material was available). For $[VW_5O_{19}]^{3-5}$ only one broad resonance was observed, consistent with previous reports of line broadening in ¹⁸³W NMR spectra of vanadium-substituted tungstates for the W atoms in proximity to vanadium.³⁰ This broad peak was assigned to W(a) since this should be the largest peak in the spectrum, although it is possible that a larger peak might be sufficiently broadened so as not to be visible. The relationship between electronic structure and δ_w in heteronuclear polyoxometalates has been discussed in terms of an upfield shift relative to the analogous homonuclear anion due to a decreased availability of excited states, countered by a downfield shift due to an increase in electronic anisotropy when distortion from the octahedral WO₆ co-ordination geometry occurs. For example, Baker and co-workers³⁰ noted that in substituted *α*-Keggin anions $[EMW_{11}O_{40}]^{n-}$ (E, M = P, V; P, Ti; Si, V or B, V) and $[(H_2O)ZnEW_{11}O_{39}]^{n-}$ (E = P, n = 5; E = Si, n = 6) the resonances of W atoms which are bridged through two O atoms to the heteroatom (i.e. the tungsten and heteroatom coordination octahedra are edge-shared) shift downfield, while corner-shared W atoms shift upfield relative to the unsubstituted α -Keggin anions. From the data shown in Table 5 for the MW₅ hexametalates, a discernible trend emerges in which W atoms *cis* to the heteroatom in $[MW_5O_{19}]^{n-1}$ anions are deshielded relative to 1 while the trans W atoms are shielded, but in the titanium and niobium alkoxide derivatives 2 and 7 respectively, this effect is reversed so that cis W atoms are shielded relative to 1 and the trans W atoms are deshielded. This implies that the greatest electronic anisotropy is at W(a) in $[MW_5O_{19}]^{n-1}$ anions and at W(b) in the alkoxide derivatives $[(MeO)MW_5O_{18}]^{n-1}$. In 13 substitution has a smaller effect on δ_{w} values (as might be expected when W is replaced by Mo) but unlike the other $[MW_5O_{19}]^{n-1}$ anions, W(b) appears to have the largest electronic anisotropy. As mentioned earlier, structural distortions in hexametalates have been related to δ_0 for terminal WO groups²⁸ and, although more experimental results are needed, it seems that similar correlations are possible with δ_{W} values. Assuming that the above trends in δ_{W} are generally applicable to MW₅ hexametalates containing Group 4 and 5 heteroatoms, they lend support to the assignment of alkoxide structures to the zirconium and tantalum derivatives 4 and 11 respectively, and would also suggest that the titanium species 3 is not $[TiW_5O_{19}]^{4-}$. However, δ_0 values for terminal WO in Table 4 move upfield with increasing charge on any particular MW5 hexametalate unit, and on this basis 3 is more likely to be $[TiW_5O_{19}]^{4-}$. Clearly, more results are needed to clarify the relationships between spectroscopic trends, electronic charge distribution and structure in these species.

In contrast to the complex equilibria established during the aqueous acidification of MO_4^{2-} (M = Mo or W), especially when other early transition metals are present,³¹ the reactions discussed here demonstrate that it is possible to generate relatively simple non-aqueous systems in which only a few species are formed. In particular, the almost quantitative formation of $[NBu_4]_2[W_6O_{19}]$ from $[NBu_4^n]_2[WO_4]$ and $WO(OMe)_4$ is striking and provides a convenient route to

¹⁷O-enriched material using only a stoichiometric amount of enriched water, which is more efficient than the previously published method.²³ Similarly, the hydrolytic routes to heterometalates $[MW_5O_{19}]^{3-}$ (M = V, Nb or Ta) described here are more straightforward than previously published methods, 7,22,23 and 17O enrichment is readily achieved without modification to the procedure. In addition, this synthetic strategy appears to be particularly well suited to the preparation of reactive alkoxide derivatives $[(RO)MW_5O_{18}]^{n-}$ (M = Ti or Zr, n = 3; M = Nb or Ta, n = 2), although conditions have yet to be optimised for niobium and tantalum compounds. It is interesting that spectroscopic evidence requires a terminal Nb–OMe bond in 7 since alkylation of cis-[Nb₂W₄O₁₉]^{4–} has been shown to occur at bridging sites in the absence of steric hindrance.²⁴ This difference is likely to be a reflection of the aggregation mechanism in which Nb-O-W bridges are formed in preference to terminal Nb=O bonds during hydrolysis. We have shown that ligand redistribution follows the initial associative step in the homonuclear reaction between WO_4^2 and WO(OMe)₄ to form $[W_2O_5(OMe)_4]^{2-3}$ Analogous interactions with Nb(OMe)5 would lead to heteronuclear species such as $[WNbO_4(OMe)_5]^{2-}$ which, on hydrolysis in the presence of WO(OMe)₄, generate the NbW₅ hexametalates. Similar considerations apply to the formation of the other MW₅ polyanions from the appropriate alkoxides. However, it is still unclear what factors are responsible for selectivity during aggregation to these hexanuclear anions and further studies are in progress to uncover more of the fundamental growth steps.

We are exploring the chemistry of these derivatised tungstates, including the simple hydrolysis of the alkoxides to produce linked hexametalates such as $\mathbf{8}$ and ligand metathesis reactions. We are also investigating the range of other polyoxometalate structures that might be accessible using this hydrolytic method.

Experimental

All manipulations were carried out under dry, oxygen-free nitrogen using standard Schlenk techniques, or in a dry-box fitted with a recirculation system. Hydrocarbon and ether solvents were dried over and distilled from sodium-benzophenone and acetonitrile was dried over and distilled from calcium hydride immediately prior to use. Tungsten alkoxides,32 $Ti(OMe)_4$, Nb(OMe)₄, Ta(OMe)₅³³ and [NBuⁿ₄]₂[Mo₂O₇]³⁴ were prepared by literature procedures, VO(OMe)₃ was prepared from $[VOCl_3(dme)]$ (dme = 1,2-dimethoxyethane)³⁵ other titanium and zirconium alkoxides were supplied by Tioxide Specialities Ltd. and [(NBuⁿ₄)₂][WO₄] was prepared by a modification of the method described by Klemperer and co-workers.³⁶ The salt $[NBu^n_4]_2[W_2O_5(OMe)_4]$ was prepared by mixing equimolar amounts of $[NBu^n_4]_2[WO_4]$ and WO(OMe)₄ in acetonitrile.³ Infrared spectra were recorded as Nujol mulls between CsI plates on a Perkin-Elmer 598 spectrometer, NMR spectra on Bruker WP 200 (¹H and ¹³C-{¹H}), WM 300 (¹⁸³W and ⁹⁵Mo) or AM 500 (¹⁷O) spectrometers. Elemental analyses were performed by the University of Newcastle upon Tyne microanalytical service. Resonances due to NBuⁿ₄⁺ cations are not listed and appear as multiplets centred at about δ 1.0, 1.4, 1.7 and 3.2 in ¹H NMR spectra and as singlets at about δ 13, 19, 24 and 58 in ¹³C-{¹H} NMR spectra.

Preparations

 $[NBu^{n}_{4}]_{2}[W_{6}O_{19}]$. A solution of $[NBu^{n}_{4}]_{2}[WO_{4}]$ (0.23 g, 0.31 mmol) and WO(OMe)₄ (0.50 g, 1.54 mmol) in acetonitrile (3 cm³) was treated with water (56 µl, 3.11 mmol) with thorough mixing. Well formed colourless prisms formed overnight and, after cooling to -20 °C, these were isolated and dried *in vacuo*

(0.36 g, 61%). Further material could be isolated from the mother-liquor, but the yield was not optimised in this experiment.

 $[NBu_{4}]_{3}[(MeO)TiW_{5}O_{18}]$. The salt $[NBu_{4}]_{2}[WO_{4}]$ (6.00 g, 8.19 mmol) in acetonitrile (40 cm³) was transferred via cannula to Ti(OMe)₄ (0.94 g, 5.46 mmol) and the mixture stirred for 2 h. The remaining white solid dissolved on heating and after cooling to room temperature a solution of $WO(OMe)_4$ (6.19 g, 19.11 mmol) in acetonitrile (10 cm³) was added. The solution was stirred for 30 min and filtered to remove some remaining white precipitate before the addition of water (836 µl, 46.4 mmol, 2%¹⁷O enrichment) in acetonitrile (10 cm³). After stirring for 1 h, the solution subsequently turned from a straw colour to pale green on standing overnight. No crystalline material was obtained overnight after reduction of the volume to 10 cm³ but addition of diethyl ether (40 cm³) caused precipitation of a sticky solid which was triturated with further portions of ether $(3 \times 10 \text{ cm}^3)$ and dried in vacuo. Recrystallisation from acetonitrile afforded first $[NBu_{4}^{n}]_{2}[W_{6}O_{19}]$, then pale green single crystals of [NBuⁿ₄]₃[(MeO)TiW₅O₁₈]·0.5MeCN, which were used for an X-ray determination (5.79 g, 53%) (Found: C, 29.9; H, 5.75; N, 2.2. C₅₀H_{112.5}N_{3.5}O₁₉TiW₅ requires C, 29.5; H, 5.6; N, 2.4%); \tilde{v}_{max}/cm^{-1} 1144m, 1090m, 1050w, 1020w, 966w, 947s, 925 (sh), 882m, 795s (br), 735m, 619m, 600m, 575w, 540w, 445s, 425s, 366w and 350w; $\delta_{\rm H}(200.13 \text{ MHz}, \text{CD}_3\text{CN})$ 4.10 (s, OMe); δ_C(75.47 MHz, CD₃CN) 62.35 (OMe).

[NBuⁿ₄]₄[TiW₅O₁₉] (attempted). (a) A solution of [NBuⁿ₄]₂[WO₄] (1.43 g, 1.95 mmol) in acetonitrile (10 cm³) was transferred *via* cannula to WO(OMe)₄ (0.95 g, 2.93 mmol), with simultaneous addition of Ti(OPrⁱ)₄ (0.29 cm³, 0.98 mmol) from a syringe, with stirring. ¹⁷O-Enriched water (141 µl, 7.82 mmol, 5% enrichment) was added. After stirring for 36 h, the solvent was removed *in vacuo*. Fractional recrystallisation from acetonitrile at -20 °C produced crystals of [NBuⁿ₄]₃-[(MeO)TiW₅O₁₈] and then anion **3**.

(b) The salt $[NBu_4]_2[WO_4]$ (6.00 g, 8.19 mmol) dissolved in acetonitrile (40 cm³) was transferred via cannula to $Ti(OMe)_4$ (0.70 g, 4.07 mmol) in acetonitrile (10 cm^{-3}) . After stirring for 2 h the solution was heated to dissolve the remaining white solid, then a solution of WO(OMe)₄ (3.98 g, 12.28 mmol) in acetonitrile was added. The solution was stirred for 30 min and then filtered. A solution of water (590 µl, 32.8 mmol, 2%¹⁷O enrichment) in acetonitrile (10 cm³) was added and stirred for 1 h. After 24 h a small quantity of insoluble material had settled and the mother-liquor was transferred via cannula to a clean flask. The solvent was removed under reduced pressure and the resultant oil was triturated with diethyl ether $(5 \times 10 \text{ cm}^3)$ to give a colourless solid which was pumped dry (yield 8.25 g). Fractional recrystallisation from acetonitrile (10 cm³) at $-20 \,^{\circ}\text{C}$ produced crystals of [NBuⁿ₄]₃[(MeO)- TiW_5O_{18}] and then anion 3 (1.62 g).

[NBuⁿ₄]₆[(TiW₅O₁₈)₂O] (attempted). A solution of water (4.5 μ l, 0.25 mmol, 10%¹⁷O enrichment) in acetonitrile (10 cm³) was transferred to [NBuⁿ₄]₃[(MeO)TiW₅O₁₈] (1.00 g, 0.5 mmol) in acetonitrile (10 cm³), with stirring. The solution was left ovenight, then the solvents were removed *in vacuo*, triturated with diethyl ether and dried *in vacuo* to produce a white solid (0.93 g) which was shown by ¹H NMR spectroscopy to be starting material.

[NBuⁿ₄]₃[(MeO)ZrW₅O₁₈] (attempted). A solution of [NBuⁿ₄]₂[WO₄] (0.87 g, 1.19 mmol) in acetonitrile (10 cm³) was added to an immiscible mixture of a propan-1-ol solution of Zr(OPrⁿ)₄ (73%, 0.36 g, 0.79 mmol) and acetonitrile (10 cm³). After stirring for 1 h some white solid remained, but after removal of the volatiles *in vacuo* the residue dissolved in

acetonitrile (10 cm³). The compound WO(OMe)₄ (0.90 g, 2.77 mmol) in acetonitrile (10 cm³) was added and the solution stirred for 1 h before addition of water (121 µl, 6.73 mmol, 5% ¹⁷O enrichment) in acetonitrile (5 cm³). The mixture was stirred for 1 h and then left for 10 d, over which time a small quantity of insoluble material settled out. The solution was decanted into a clean flask and the solvent removed *in vacuo* to leave a white solid. Colourless needles were obtained from acetonitrile (5 cm³) at -20 °C. \tilde{v}_{max} /cm⁻¹ 1660m, 1150m, 1105w, 1065m, 1029m, 945s, 890m, 800s (br), 740s, 646w, 560w, 500w, 475w, 430s and 340w; $\delta_{\rm H}$ (200.13 MHz, CD₃CN) 3.62–4.20 (several peaks).

[NBuⁿ₄]₂[(MeO)VW₅O₁₈] (attempted). A solution of VO-(OMe)₃ (0.10 g, 0.62 mmol) in acetonitrile (20 cm³) was transferred *via* cannula to [NBuⁿ₄]₂[WO₄] (0.46 g, 0.62 mmol) with stirring to give a pale yellow solution. After 10 min a solution of WO(OMe)₄ (0.81 g, 2.50 mmol) in acetonitrile (10 cm³) was added, and stirring continued for 1 h. The solution turned orange on addition of water (101 µl, 5.61 mmol, 5% ¹⁷O enrichment) in acetonitrile (5 cm³). It was left overnight and then the solvent removed *in vacuo* to leave a brown oil.

[NBuⁿ₄]₃**[VW**₅**O**₁₉**].** The salt [NBuⁿ₄]₂[WO₄] (0.69 g, 0.94 mmol) in acetonitrile (10 cm³) was transferred *via* cannula to a stirred solution of VO(OMe)₃ (0.10 g, 0.62 mmol) in acetonitrile (10 cm³) to give a pale yellow solution. After 15 min WO(OMe)₄ (0.71 g, 2.19 mmol) in acetonitrile (10 cm³) was added and stirring was continued for 1 h. Addition of water (96 μ l, 5.31 mmol, 5% ¹⁷O enrichment) in acetonitrile (5 cm³) gave an orange solution, which was used for spectroscopic characterisation: $\delta_V(131.55 \text{ MHz}, \text{MeCN}) - 509$.

[NBuⁿ₄]₂[(MeO)NbW₅O₁₈]. (a) A mixture of WO(OPrⁱ)₄ (2.05 g, 4.7 mmol), [NBuⁿ₄]₂[WO₄] (0.86 g, 1.17 mmol) and Nb(OMe)₅ (0.29 g, 1.17 mmol) was stirred in acetonitrile (40 cm³) for l h and then heated to dissolve some remaining solid. A solution of ¹⁷O-enriched water (210 µl, 11.7 mmol, 5%¹⁷O enrichment) in acetonitrile (15 cm³) was added *via* cannula with stirring and the solution turned from brown to straw coloured. After stirring for 90 min the solvent was removed *in vacuo* to give a green oily solid. Recrystallisation from acetonitrile at $-20 \,^{\circ}$ C produced first [NBuⁿ₄]₂[W₆O₁₉] then a second colourless crystalline fraction. $\delta_{\rm H}(200.13 \,$ MHz, CD₃CN) 3.28 (s, 1 H) and 4.40 (s, 2 H); $\delta_{\rm C}(125.76 \,$ MHz, CD₃CN) 65.91 (OMe).

(b) A solution of $[NBu^{n}_{4}]_{2}[WO_{4}]$ (1.70 g, 2.32 mmol) in acetonitrile (10 cm³) was added to a solution of Nb(OMe)₅ (0.57 g, 2.29 mmol) in acetonitrile (10 cm³), and after 1 h of stirring WO(OMe)₄ (3.00 g, 9.26 mmol) in acetonitrile (10 cm³) was also added. The solution was stirred for 4 h before addition of water (417 µl, 23.17 mmol, 2%¹⁷O enrichment) in acetonitrile (10 cm³). A small quantity of fine precipitate was allowed to settle over approximately 48 h and then the mother-liquor was decanted into a clean flask. The solution was reduced in volume for NMR studies which showed a mixture of the same three products obtained by method (*a*).

[NBuⁿ₄]₃[NbW₅O₁₉]. A solution of [NBuⁿ₄]₂[WO₄] (3.32 g, 4.53 mmol) in acetonitrile (20 cm³) was transferred *via* cannula to Nb(OMe)₅ (0.75 g, 3.02 mmol) with stirring. A solution of WO(OMe)₄ (3.43 g, 10.58 mmol) in acetonitrile (20 cm³) was added after 1 h followed, after 3 h, by a solution of water (517 μ l, 28.72 mmol, 5%¹⁷O enrichment) in acetonitrile (10 cm³). After 10 min the solution was filtered and solvent removed *in vacuo* to leave a green oil which was triturated with diethyl ether (2 × 10 cm³) and dried *in vacuo* to give a blue-white solid. Recrystallisation from acetonitrile (5 cm³) at -20 °C produced first [NBuⁿ₄]₂[W₆O₁₉] and then colourless cubic crystals of [NBuⁿ₄]₃[NbW₅O₁₉].

	[NBu ⁿ 4]3[(MeO)TiW5O18].0.5MeCN	[NBu ⁿ ₄] ₄ [(NbW ₅ O ₁₈) ₂ O]
Formula	C ₅₀ H _{112.5} N _{3.5} O ₁₉ TiW ₅	C ₆₄ H ₁₄₄ N ₄ Nb ₂ O ₃₇ W ₁₀
Μ	2034.08	1793.08
Crystal system	Monoclinic	Orthorhombic
Space group	Pc	Pccn
Crystal size/mm	$0.34 \times 0.28 \times 0.24$	$0.57 \times 0.48 \times 0.34$
a/Å	24.283(2)	35.022(2)
b/Ă	17.1798(12)	15.4860(11)
c/Å	16.5903(12)	17.6990(12)
β/°	98.095(2)	90
\dot{U}/\dot{A}^3	6852(8)	9599.0(11)
No. reflections for cell refinement	23 424	24 367
Z	4	4
$D_{\rm s}/{\rm g}~{\rm cm}^{-3}$	1.972	2.481
µ/mm ⁻¹	8.534	12.233
F(000)	3924	6696
Crystal colour	Colourless	Colourless
20 Range/°	2.38-51.28	2.88-51.38
Maximum hkl indices	-29 to 28, -20 to 19, -19 to 10	-41 to 31, -18 to 16, -21 to 2
No. reflections measured	29 642	39 601
No. unique reflections	17 063	8323
No. with $F^2 > 2\sigma(F^2)$	16 330	7238
Transmission factors	0.394-0.694	0.180-0.756
$R_{\rm int}$ (on F^2)	0.0458	0.0883
Weighting parameters a, b	0.0260, 68.9512	0.0184, 202.3139
$R[F^2 > 2\sigma(F^2)]$	0.0350	0.0489
wR^{2} (all data) ^h	0.0848	0.1141
No. parameters	1464	575
Goodness of fit on F^2	1.075	1.191
Extinction coefficient	0.000 050(7)	0.000 084(6)
Maximum, minimum in difference map/e $Å^{-3}$	1.418, -1.319	1.756, -1.763

[NBuⁿ₄]₄[(NbW₅O₁₈)₂O] (attempted). A solution of [NBuⁿ₄]₂[WO₄] (1.02 g, 1.39 mmol) in acetonitrile (10 cm³) was transferred to Nb(OMe)₅ (0.35 g, 1.41 mmol) with stirring. After 60 min a solution of WO(OMe)₄ (1.80 g, 5.56 mmol) in acetonitrile (10 cm³) was added followed, after 2 h, by a solution of water (263 µl, 14.6 mmol, 4%¹⁷O enrichment) in acetonitrile (5 cm³). The solvent was removed *in vacuo* and the residue used for spectroscopic studies. Note: crystals shown to be [NBuⁿ₄]₄[(NbW₅O₁₈)₂O] by X-ray diffraction studies, were isolated from the attempted preparation of [NBuⁿ₄]₂[(Me-O)NbW₅O₁₈].

[NBuⁿ₄]₂[(MeO)TaW₅O₁₈] (attempted). Acetonitrile (40 cm³) was added to a mixture of WO(OC₆H₁₁)₄ (1.77 g, 2.95 mmol), [NBuⁿ₄]₂[WO₄] (0.54 g, 0.74 mmol) and Ta(OMe)₅ (0.25 g, 0.74 mmol). The solution was heated and stirred for 2 h before addition of water (134 μ l, 7.4 mmol, 5%¹⁷O enrichment) in acetonitrile (15 cm³) *via* cannula. Stirring was continued for 90 min after which time all of the product dissolved to give a greenish solution. The solution was filtered and the solvent removed *in vacuo*. Fractional recrystallisation from acetonitrile at -20 °C removed [NBuⁿ₄]₂[W₆O₁₉] and the residue was used for spectroscopic studies.

[NBu^{*}₄]₄[Ta₂W₄O₁₉] (attempted). The salt [NBu^{*}₄]₂-[W₂O₅(OMe)₄] (1.33 g, 1.26 mmol) in acetonitrile (20 cm³) was transferred *via* cannula to Ta(OMe)₅ (0.42 g, 1.26 mmol), with stirring at room temperature. After 24 h, water (204 µl, 11.33 mmol, 5%¹⁷O enrichment) was added with stirring, then the solvent removed *in vacuo*. The salt [NBu^{*}₄]₃[TaW₅O₁₉] crystallised from an acetonitrile (10 cm³) solution of the product mixture at -20 °C (0.4 g, 15%) (Found: C, 27.0; H, 5.0; N, 2.0. C₄₈H₁₀₈N₃O₁₉TaW₅ requires C, 27.0; H, 5.1; N, 2.0%): \tilde{v}_{max} /cm⁻¹ 1160w, 1150w, 1105w, 1059w, 1025w, 977 (sh), 964 (sh), 959s, 910m, 884m, 805s, 736m, 723m, 591m, 581m, 447s, 437s and 305w.

[NBu^{*}₄]₂[MoW₅O₁₉]. A mixture of WO(OMe)₄ (2.90 g, 8.95 mmol) and [NBu^{*}₄]₂[MoO₄] (1.15 g, 1.78 mmol) in acetonitrile (20 cm³) was stirred for 30 min. After addition of a solution of water (323 μ l, 17.9 mmol, 5% ¹⁷O enrichment) in acetonitrile (15 cm³) the solution turned pale green. The solvent was removed *in vacuo* to give an oil which was triturated with diethyl ether (2 × 10 cm³) and pumped dry to give a pale green solid. Pale green single crystals were obtained from hot acetonitrile on cooling to room temperature (1.24 g) (Found: C, 21.4; H, 3.9; N, 1.6. C₃₂H₇₂MoN₂O₁₉W₅ requires C, 21.3; H, 4.0; N, 1.55%); \tilde{v}_{max}/cm^{-1} 1164m, 1108w, 1072w, 1062w, 1035w, 1029w, 994(sh), 976s, 971s, 930m, 889m, 875m, 812s (br), 755w, 738m, 592m, 451s and 372m.

[NBu^a₄][(MeO)MoW₅O₁₈] (attempted). A solution of WO(OMe)₄ (1.00 g, 3.09 mmol) in acetonitrile (5 cm³) was transferred to a stirred solution of [NBu^a₄]₂[Mo₂O₇] (0.24 g, 0.31 mmol) in acetonitrile (5 cm³). After 15 min, water (106 μ l, 5.88 mmol, 5% ¹⁷O enrichment) in acetonitrile (5 cm³) was added and stirring continued for 90 min, during which time the solution turned green. The solvent was removed under reduced pressure to give a greenish oil which was shown by ¹⁷O NMR spectroscopy to be [NBu^a₄]₂[MoW₅O₁₉].

[NBu^{*}₄]₂[(MoW₅O₁₈)₂O] (attempted). The compound WO(OMe)₄ (1.00 g, 3.09 mmol) in acetonitrile (10 cm³) was transferred *via* cannula to a stirred solution of [NBu^{*}₄]₂-[Mo₂O₇] (0.24 g, 0.31 mmol) in acetonitrile (5 cm³). After 15 min, water (111 μ l, 6.17 mmol, 5% ¹⁷O enrichment) in acetonitrile (5 cm³) was added and the resultant pale green solution was stirred for 20 min. The solvent was removed *in*

vacuo to leave a green oil which was shown by ¹⁷O NMR spectroscopy to be $[NBu_{4}]_{2}[MoW_{5}O_{19}]$.

X-Ray crystallography

Crystal data for the compounds $[NBu^{n}_{4}]_{3}[(MeO)TiW_{5}O_{18}]$. 0.5MeCN and $[NBu^{n}_{4}]_{4}[(NbW_{5}O_{18})_{2}O]$ are presented in Table 6. All measurements were made at 160(2) K on a Siemens SMART CCD area-detector diffractometer using graphitemonochromated Mo-K α radiation ($\lambda = 0.71073$ Å) with narrow frames (0.3°) and three-dimensional profile fitting. The data were corrected semiempirically for absorption by ψ scans. Structure solution was by direct methods, refinement by fullmatrix least-squares analysis on F^{2} for all independent reflections, with weighting $w^{-1} = \sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP$, where $P = (F_{o}^{2} + 2F_{c}^{2})/3$. All non-hydrogen atoms were refined anisotropically, hydrogen atoms were constrained. Siemens SHELXTL,³⁷ SMART³⁸ and SAINT³⁸ software for data collection and reduction, and local programs, were employed.

The structure of $[NBu_{4}]_{3}[(MeO)TiW_{5}O_{18}]$ -0.5MeCN was refined as a racemic twin with a ratio of 91.07(11):8.91(11)% for the two components. For three of the *n*-butyl chains the terminal carbon atom was disordered over two positions with refined site occupancies as follows: C(42):C(42a), 78(4):22(4); C(50):C(50a), 66(3):34(3); C(62):C(62a), 30(3):70(3)%. Some N-C and C-C distance and anisotropic displacement parameter restraints were used in these cases. Anisotropic displacement parameters were also restrained for the fragment N(6)-C(95)-C(96) which is part of a [NBu_{4}]^+ cation.

In the structure of $[NBu^{n}_{4}]_{4}[(NbW_{5}O_{18})_{2}O]$ one *n*-butyl chain in one of the $[NBu^{n}_{4}]^{+}$ cations is disordered over two sets of positions: C(17)-C(18)-C(19)-C(20):C(17a)-C(18a)-C(19a)-C(20a), 59(4):41(4)%. The N-C and C-C distance and anisotropic displacement parameter restraints were used for this part of the model. Anisotropic displacement parameter restraints were also applied to atoms O(15), O(18), W(2) and W(5).

Complete atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1996, Issue 1.

Acknowledgements

We are grateful to Professor W. McFarlane, Dr. N. H. Rees and Dr. M. N. S. Hill for measuring ¹⁷O and ¹⁸³W NMR spectra and to Professor W. G. Klemperer for stimulating discussions and for sharing his unpublished results. We also thank the EPSRC (formerly SERC) for an Earmarked studentship (to J. H.) and for research funding. R. J. E. also thanks NATO for a Collaborative Research Grant (with Professor W. G. Klemperer) and The Royal Society for research funds.

References

- 1 K. F. Jahr and J. Fuchs, Chem. Ber., 1963, 96, 2457.
- 2 R. J. Errington, M. D. Kerlogue and D. G. Richards, J. Chem. Soc., Chem. Commun., 1993, 649.
- 3 W. Clegg, R. J. Errington, K. A. Fraser and D. G. Richards, J. Chem. Soc., Chem. Commun., 1993, 1105.
- 4 I. Lindqvist, Ark. Kemi, 1953, 5, 247; I. Lindqvist and B. Aronsson, Ark. Kemi, 1955, 7, 49.
- 5 H. R. Allcock, E. C. Bissell and E. T. Shawl, *Inorg. Chem.*, 1973, 12, 2963.
- 6 J. Fuchs, W. Freiwald and H. Hartl, Acta Crystallogr., Sect. B, 1978, 34, 1764.

- 7 C. J. Besecker, W. G. Klemperer, D. J. Maltbie and D. A. Wright, *Inorg. Chem.*, 1985, **24**, 1027.
- 8 M. Dabbabi and M. Bower, J. Inorg. Nucl. Chem., 1976, 38, 1011.
- 9 Y. Hayashi, Y. Oxawa and K. Isobe, *Chem. Lett.*, 1989, 425; H. K. Chae, W. G. Klemperer and V. W. Day, *Inorg. Chem.*, 1989, 28, 1424.
- 10 D. Hou, G.-S. Kim, K. S. Hagen and C. Hill, *Inorg. Chim. Acta*, 1993, **211**, 127.
- 11 Q. Chen and J. Zubieta, Inorg. Chem., 1990, 29, 1458.
- 12 J. A. Hollingshead and R. E. McCarley, J. Am. Chem. Soc., 1990, 112, 7402.
- 13 K. Hegetschweiler, H. Schmalle, H. M. Streit and W. Schneider, *Inorg. Chem.*, 1990, 29, 3625.
- 14 K. Hegetschweiler, H. Schmalle, H. M. Streit, V. Gramlich, H.-U. Hund and I. Erni, *Inorg. Chem.*, 1992, 31, 1299.
- 15 R. Schmid, A. Mosset and J. Galy, Inorg. Chim. Acta, 1991, 179, 167.
- 16 J. R. Rea and E. Kostiner, J. Solid State Chem., 1973, 7, 17
- 17 W. Clegg, R. J. Errington, K. A. Fraser, C. Lax and D. G. Richards, in *Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity*, eds. M. T. Pope and A. Müller, Kluwer, Dordrecht, 1994, p. 113.
- 18 Y. Du, A. L. Rheingold and E. A. Maatta, J. Am. Chem. Soc., 1992, 114, 345.
- 19 W. Clegg, R. J. Errington, K. A. Fraser, S. A. Holmes and A. Schäfer, J. Chem. Soc., Chem. Commun., 1995, 455.
- 20 W. G. Klemperer and C. Schwartz, Inorg. Chem., 1985, 24, 4461.
- 21 (a) P. Jeske, G. Haselhorst, T. Weyhermüller, K. Wieghardt and B. Nuber, *Inorg. Chem.*, 1994, 33, 2462; (b) A. Bodner, P. Jeske, T. Weyhermüller, K. Wieghardt, E. Dubler, H. Schmalle and B. Nuber, *Inorg. Chem.*, 1992, 31, 3737; (c) M. R. Smith III, P. T. Matsunaga and R. A. Andersen, J. Am. Chem. Soc., 1993, 115, 7049; (d) L. Peeng-Ju, H. Sheng-Hua, H. Kun-Yao, W. Ru-Ji and T. C. W. Mak, *Inorg. Chim. Acta*, 1990, 175, 105; (e) W. Hiller, J. Strähle, W. Kobel and M. Hanack, Z. Kristallogr., 1982, 159, 173; (f) G. Willey, J. Palin and M. G. B. Drew, J. Chem. Soc., Dalton Trans., 1994, 1799; (g) P. N. Dwyer, L. Puppe, J. W. Buchler and W. R. Scheidt, *Inorg. Chem.*, 1975, 14, 1782.
- 22 C. M. Flynn, jun. and M. T. Pope, Inorg. Chem., 1971, 10, 2524.
- 23 M. Filowitz, R. K. C. Ho, W. G. Klemperer and W. Shum, *Inorg. Chem.*, 1979, **18**, 93.
- 24 V. W. Day, W. G. Klemperer and C. Schwartz, J. Am. Chem. Soc., 1987, 109, 6030.
- 25 V. W. Day, W. G. Klemperer and D. J. Maltbie, Organometallics, 1985, 4, 104.
- 26 W. A. Nugent and J. M. Mayer, *Metal-Ligand Multiple Bonds*, Wiley, New York, 1988.
- 27 T. M. Che, V. W. Day, L. C. Francesconi, W. G. Klemperer, D. J. Main, A. Yagasaki and O. M. Yaghi, *Inorg. Chem.*, 1992, 31, 2920.
- 28 V. W. Day and W. G. Klemperer, in *Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity*, eds. M. T. Pope and A. Müller, Kluwer, Dordrecht, 1994, p. 87.
- 29 C. Sanchez, J. Livage, J. P. Launay, M. Fournier and Y. Jeannin, J. Am. Chem. Soc., 1982, 104, 3194.
- 30 M. Kozik, R. Acerete, C. F. Hammer and L. C. W. Baker, *Inorg. Chem.*, 1991, **30**, 4429.
- 31 L. Pettersson, in *Polyoxometalates: from Platonic Solids to Anti-Retroviral Activity*, eds. M. T. Pope and A. Müller, Kluwer, Dordrecht, 1994, p. 27.
- 32 W. Clegg, R. J. Errington, P. Kraxner and C. Redshaw, J. Chem. Soc., Dalton Trans., 1992, 1431.
- 33 D. C. Bradley, R. C. Mehrotra and D. P. Gaur, *Metal Alkoxides*, Academic Press, London, 1978.
- 34 W. G. Klemperer, Inorg. Synth., 1990, 27, 71.
- 35 R. Bakri and R. J. Errington, unpublished work.
- 36 T. M. Che, V. W. Day, L. C. Francesconi, M. F. Fredrich and W. G. Klemperer, *Inorg. Chem.*, 1985, 24, 4055.
- 37 G. M. Sheldrick, SHELXTL PLUS, Version 4.2, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1990.
- 38 SMART (data collection, version 4.032) and SAINT (frame integration, version 4.035), Siemens Analytical X-ray Instruments Inc., Madison, WI, 1995.

Received 22nd August 1995; Paper 5/068951