Dinuclear thioether half-sandwich ruthenium(II) complexes of the types $[{RuL'([9]aneS_3)}_2(\mu-L)_n]^{2+}$ ($n = 1, L' = PPh_3$; n = 2, L' = MeCN), $[{Ru([9]aneS_3)}_2(\mu-L)_2]^{2+}$ and $[{Ru([9]aneS_3)}_2(\mu-L)_3]^+$ with heterocyclic thioamides L ([9]aneS_3 = 1,4,7-trithiacyclononane)

Claudia Landgrafe and William S. Sheldrick *

Lehrstuhl für Analytische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Reaction of $[Ru(MeCN)_3([9]aneS_3-\kappa^3S)][CF_3SO_3]_2$ ([9]aneS_3 = 1,4,7-trithiacyclononane) with 1,3-benzo-thiazol-2-thione (Hbtt) and pyridine-2-thione (Hpyt) in methanol in a 1 : 1 molar ratio afforded dinuclear complexes $[{Ru([9]aneS_3-\kappa^3S)}_2(\mu-L)_2][CF_3SO_3]_2$ (L = btt or pyt) in which the ligands exhibit a tridentate μ -1 κ S: $2\kappa^2N$,S bridging mode. Crystallization of the btt complex from acetonitrile yielded $[{Ru(MeCN)([9]aneS_3-\kappa^3S)}_2(\mu-btt)_2][CF_3SO_3]_2$ with μ -S bridging ligands. A triply μ -S bridged complex $[{Ru([9]aneS_3-\kappa^3S)}_2(\mu-btt)_3][CF_3SO_3]_2$ with μ -S bridging ligands. A triply μ -S bridged complex $[{Ru([9]aneS_3-\kappa^3S)}_2(\mu-btt)_3][CF_3SO_3]_2$ with μ -S bridging ligands. A triply μ -S bridged complex $[{Ru([9]aneS_3-\kappa^3S)}_2(\mu-btt)_3][CF_3SO_3]_2$ and btt⁻ in a 2 : 3 molar ratio. Fragments (Ph_3P)([9]aneS_3-\kappa^3S)Ru^{II} can be bridged with tetra- or tri-dentate dtuc²⁻ (H₂dtuc = 2,4-dithiouracil) anions in $[{Ru(PPh_3)([9]aneS_3-\kappa^3S)}_2(\mu-dtuc)]^{2+}$ and $[{RuCl(PPh_3)([9]aneS_3-\kappa^3S)}(\mu-dtuc){Ru(PPh_3)([9]aneS_3-\kappa^3S)}]^+$. The structures of four complexes have been determined by X-ray crystallography.

We have recently reported the synthesis and structural characterization of the 1,4,7-trithiacyclononane ([9]aneS₃) $[Ru(MeCN)_3([9]aneS_3-\kappa^3S)]$ ruthenium(II) complexes $[CF_3SO_3]_2$ 1 and $[Ru(MeCN)_2(PPh_3)([9]aneS_3-\kappa^3S)][CF_3 SO_3]_2$ 2, which are expedient starting materials for the preparation of further thioether half-sandwich complexes.¹ Two important advantages of 1 in comparison to the analogous areneruthenium(II) starting materials^{2,3} [Ru(η^6 -C₆H₆)(Me- $(CN)_3]^{2+}$ or the chloro-bridged complexes $[{RuCl(\eta^6-C_6H_6)}_2 (\mu$ -Cl)₂], namely the increased stability and reduced bulkiness of the facial ([9]aneS₃- $\kappa^3 S$)Ru^{II} fragment, are exemplified by the synthesis of the dinuclear complex [{ $Ru(\mu-S_2CNMe_2)([9])$ ane- $S_3 - \kappa^3 S$ [CF₃SO₃]₂, in which the bridging dimethyldithiocarbamate ligands exhibit respectively $\mu - 1\kappa^2 S_s S' : 2\kappa S$ and μ -1 κ S:2 κ ²S,S' co-ordination modes. In contrast, reaction of $[{RuCl(\eta^{6}-C_{6}H_{6})}_{2}(\mu-Cl)_{2}]$ with dialkyldithiocarbamates leads to loss of the facial benzene ligand and formation of greenish brown paramagnetic solids,4 which may be presumed to be a mixture of ruthenium(III) complexes such as $[Ru(S_2CNR_2)_3]$ and $[Ru_2(S_2CNR_2)_5]Cl (R = Me \text{ or } Et).^{5,6}$

The formal analogy of the facial six-electron-donor ligand [9]aneS₃ to the η^6 -C₆H₆ group is apparent. This prompted us to investigate whether novel dinuclear cations of the types $[\{RuL'([9]aneS_3-\kappa^3 S)\}_2(\mu-L)_2]^{2+}$ (L' = MeCN or PPh₃) or $[{Ru([9]aneS_3-\kappa^3 S)}_2(\mu-L)_3]^+$, with respectively two or three bridging anionic ligands L, can be isolated for the ([9]aneS₃- $\kappa^{3}S$ Ru^{II} fragment, for which only one such example, [{Ru(PPh₃)([9]aneS₃- $\kappa^{3}S$)}₂(μ -Cl)₂]²⁺, has previously been reported.⁷ In contrast to the previous paucity of such thioether half-sandwich ruthenium(II) species, a doubly hydroxo-bridged cation $[{Ru(OH)(\eta^6-C_6H_6)}(\mu-OH)_2{Ru(\eta^6-C_6H_6)(H_2O)}]^+$ has been characterized for the $(\eta^6-C_6H_6)Ru^{II}$ fragment, in addition to the well known chloro-bridged starting material [{RuCl(η^{6} -C₆H₆)}₂(μ -Cl)₂]. Numerous examples of triply bridged dinuclear cations have been prepared for this organometallic half-sandwich, e.g. $[{Ru(\eta^6-C_6H_6)}_2(\mu-L)_3]^+$ for $L = Cl^{3,8}$ OR (R = Me, Et or Ph),⁹ or SEt.¹⁰ Mixedbridged complexes of the types [{ $Ru(\eta^6-C_6H_6)$ }_2(\mu-L)_2(\mu-pz)]^+ $(L = Cl \text{ or } OH; Hpz = pyrazole)^{11}$ and $[\{Ru(\eta^6\text{-arene})\}_2(\mu-L)(\mu-pz)_2]^+$ $(L = Cl \text{ or } OH; \text{ arene} = p\text{-cymene or } C_6H_6)^{11,12}$ have also been reported.

In the course of the present work we established that reaction of the tris(acetonitrile) complex 1 with NaSH, in a 1:2 or 2:3 molar ratio in methanol, leads to the formation of precipitates which are insoluble in common organic solvents. This led us to investigate the heterocyclic thioamides 1,3-benzothiazole-2thione (Hbtt), pyridine-2-thione (Hpyt) and 2,4-dithiouracil (pyrimidine-2,4-dithione) (H₂dtuc). Analogous ambidentate ligands such as 1-methylimidazole-2-thione (Hmimt) or thiazole-2-thione (Htzt) have been successfully employed for the preparation of dinuclear (η^6 -arene)Ru^{II} complexes.¹³

Experimental

Solvents were dried and distilled before use. Proton and ${}^{31}P$ (H₃PO₄ external standard) NMR spectra were recorded on a

Bruker AM-400 spectrometer, IR spectra as KBr discs on a Perkin-Elmer 1760 spectrometer and FAB mass spectra on a VG Autospec instrument employing 3-nitrobenzyl alcohol as the matrix. Elemental analyses were performed on a Carlo Erba 1106 instrument. Complexes 1–3 were prepared according to the literature procedures.^{1,7,14} The compound [9]aneS₃ was obtained from Fluka and used as received.

Syntheses

[{Ru([9]aneS₃- κ^3 S)}₂(μ -btt)₂][CF₃SO₃]₂ 4. Compound 1 (0.141 g, 0.2 mmol) was added to Hbtt (0.033 g, 0.2 mmol) in MeOH (20 cm³) in the presence of 1 mol dm⁻³ NaOH (0.2 cm³). After refluxing (2 h) and filtration the solution was reduced in volume to 5 cm³ and left to stand at room temperature to afford a red-brown precipitate of complex 4. The solid was filtered off and dried in vacuum (yield 86%, 0.103 g) (Found: C, 28.7; H, 2.4; N, 2.4. Calc. for C₂₈H₃₂F₆N₂O₆Ru₂S₁₂: C, 28.2; H, 2.7; N, 2.4%). FAB mass spectrum: m/z 1045 (70%, $[M - CF_3SO_3]^+$). ¹H NMR (CD₃OD): δ 2.07 (2 H, m, [9]aneS₃), 2.23–2.38 (6 H, m, [9]aneS₃), 3.23 (2 H, m, [9]aneS₃), 7.22 (2 H, m, btt), 7.37 (2 H, m, btt) and 7.90 (4 H, m, btt).

[{Ru([9]aneS₃- κ^3 S)}₂(μ-pyt)₂][CF₃SO₃]₂ 5. A solution of Hpyt (0.022 g, 0.2 mmol) in MeOH (20 cm³) and 1 mol dm⁻³ NaOH (0.2 cm³) was refluxed for 2 h together with complex 1 (0.141 g, 0.2 mmol). After filtration and reduction in volume to 1 cm³, the solution was left to stand at -40 °C to afford orange crystals of 5•0.5MeOH which were filtered off and dried (yield 73%, 0.079 g) (Found: C, 26.2; H, 2.7; N, 2.3. Calc. for C₂₄H₃₂F₆N₂O₆Ru₂S₁₀•0.5CH₃OH: C, 26.7; H, 3.0; N, 2.6%). FAB mass spectrum: *m*/*z* 1081 (5, *M*⁺) and 932 (70%, [*M* -CF₃SO₃]⁺). ¹H NMR (CD₃OD): δ 2.12–2.26 (4 H, mm, [9]aneS₃), 2.28–2.46 (4 H, mm, [9]aneS₃), 3.00–3.17 (4 H, mm, [9]aneS₃), 6.78 (2 H, d, pyt), 6.99 (2 H, dd, pyt), 7.51 (2 H, dd, pyt) and 7.98 (2 H, d, pyt).

[{Ru(MeCN)([9]aneS₃- κ^3 S)}₂(μ -btt)₂][CF₃SO₃]₂ 6. Compound 4 (0.060 g, 0.05 mmol) was dissolved in acetonitrile (4 cm³). Slow evaporation of the solution provided red crystals of 6 in quantitative yield which were dried in vacuum (Found: C, 29.8; H, 2.6; N, 3.9. Calc. for C₃₂H₃₈F₆N₄O₆Ru₂S₁₂: C, 30.1; H, 3.0; N, 4.4%). FAB mass spectrum: m/z 1126 (6, $[M - CF_3SO_3]^+$) and 1045 (28%, $[M - CH_3CN - CF_3SO_3]^+$). ¹H NMR (CD₃CN): δ 2.38 (6 H, s, CH₃CN), 2.35–2.48 (8 H, mm, [9]aneS₃), 2.55–2.68 (12 H, mm, [9]aneS₃), 2.88–2.97 (4 H, mm, [9]aneS₃), 7.39 (2 H, dd, btt), 7.47 (2 H, dd, btt) and 7.85 (4 H, m, btt).

[{Ru([9]aneS₃-κ³S)}₂(μ-btt)₃][CF₃SO₃] 7. Compound 1 (0.141 g, 0.2 mmol) was refluxed for 3 h together with Hbtt (0.050 g, 0.3 mmol) in MeOH (20 cm³) and 1 mol dm⁻³ NaOH (0.3 cm³). After filtration the solution was reduced in volume to 10 cm³ and left to stand at 4 °C to afford a red precipitate of complex 7 which was washed with diethyl ether (yield 51%, 0.062 g) (Found: C, 33.4; H, 2.8; N, 3.7. Calc. for C₃₄H₃₆F₃N₃O₃Ru₂S₁₃: C, 33.7; H, 3.0; N, 3.5%). FAB mass spectrum: m/z 1212 (8, $[M + H]^+$) and 1062 (75%, $[M - CF_3SO_3]^+$). ¹H NMR [(CD₃)₂SO]: δ 2.52 (12 H, m, [9]aneS₃), 2.65 (12 H, m, [9]aneS₃), 7.40 (3 H, dd, btt), 7.45 (3 H, dd, btt), 7.82 (3 H, d, btt) and 7.97 (3 H, d, btt).

[Ru(btt)₂([9]aneS₃- κ^3 S)] 8. A solution of Hbtt (0.067 g, 0.4 mmol) in MeOH (20 cm³) and 1 mol dm⁻³ NaOH (0.4 cm³) was heated at 60 °C for 1 h together with complex 1 (0.141 g, 0.2 mmol) leading to the formation of a red-brown precipitate. This was filtered off, washed with diethyl ether and dried in vacuum

to provide **8** in 82% yield (0.101 g) (Found: C, 37.8; H, 2.7; N, 4.1. Calc. for $C_{20}H_{20}N_2RuS_7$: C, 39.1; H, 3.3; N, 4.6%). FAB mass spectrum: m/z 614 (78%, M^+). ¹H NMR [(CD₃)₂SO]: δ 2.50–2.80 (8 H, mm, [9]aneS₃), 3.09 (2 H, m, [9]aneS₃), 3.41–3.47 (2 H, m, [9]aneS₃), 7.13, 7.24, 7.36, 7.43 (4 H, 4dd, btt), 7.55, 7.65, 7.79 and 7.95 (4 H, 4 d, btt).

[Ru(pyt)(PPh₃)([9]aneS₃-κ³S)][CF₃SO₃] 9. The compound Hpyt (0.017 g, 0.15 mmol) was dissolved in MeOH (10 cm³) in the presence of 1 mol dm⁻³ KOH (0.15 cm³). After addition of complex 2 (0.138 g, 0.15 mmol) and refluxing for 3 h the solution was filtered, reduced in volume to 3 cm³ and left to stand at -18 °C to afford a yellow precipitate of 9 in 84% yield (0.061 g) (Found: C, 44.5; H, 3.8; N, 1.5. Calc. for C₃₀H₃₁F₃NO₃PRuS₅: C, 44.9; H, 3.9; N, 1.7%). FAB mass spectrum: *m*/*z* 803 (6, *M*⁺) and 654 (100%, [*M* - CF₃SO₃]⁺). NMR (CDCl₃): ¹H, δ 0.45, 1.99, 2.18, 2.36 (4 H, 4m, [9]aneS₃), 2.70 (4 H, m, [9]aneS₃), 2.88, 3.20, 3.36, 3.44 (4 H, 4m, [9]aneS₃), 6.32 (1 H, dd, pyt), 6.59 (1 H, d, pyt), 7.11 (1 H, dd, pyt), 7.18 (1 H, d, pyt) and 7.32-7.40 (15 H, mm, PPh₃); ³¹P, δ 39.15 (s).

 $[{Ru(PPh_3)([9]aneS_3-\kappa^3 S)}_2(\mu-dtuc)]X_2 (X = CF_3SO_3 10a)$ or Cl 10b) and $[{RuCl(PPh_3)([9]aneS_3-\kappa^3S)}(\mu-dtuc){Ru-$ (PPh₃)([9]aneS₃-κ³S)}]Cl 11. Compound 2 (0.138 g, 0.15 mmol) was added to H₂dtuc (0.011 g, 0.075 mmol) in MeOH (20 cm³) in the presence of 1 mol dm^{-3} NaOH (0.15) cm³). After refluxing for 2 h the solution was filtered and the solvent removed. The resulting solid was redissolved in CHCl₃ (2 cm^3) and the solution covered with hexane (5 cm^3) to afford a yellow microcrystalline precipitate of 10a·CHCl₃ within 3 d (yield 83%, 0.103 g). Complex 10b was prepared under identical conditions using H₂dtuc and 3. After filtration of the reaction solution, this was reduced in volume to 3 cm³ and left to stand for 12 h to afford 10b (yield 83%, 0.108 g). A second fraction, harvested after 2 d more, contained both yellow crystals of 10b and orange crystals of 11.H₂O.0.5MeOH (ratio ca. 45:55). The latter could be separated manually with difficulty and were suitable for an X-ray structural analysis. Complex 10a-CHCl₃ (Found: C, 40.1; H, 3.0; N, 1.4. Calc. for $C_{54}H_{56}F_6N_2O_6$ -P₂Ru₂S₁₀·CHCl₃: C, 40.1; H, 3.5; N, 1.7%): FAB mass spectrum m/z 1528 (7, M^+) and 1379 (81%, $[M - CF_3SO_3]^+$); NMR (CDCl₃), ¹H, δ 0.33, 0.94, 1.41 (3 H, 3m, [9]aneS₃), 2.0-2.9 (16 H, mm, [9]aneS₃), 3.00-3.45 (5 H, mm, [9]aneS₃), 5.71 (1 H, d, dtuc), 6.42 (1 H, d, dtuc), and 7.2–7.5 (30 H, mm, PPh₃); ³¹P, δ 35.60 and 36.28 (2s, 2P). Complex 10b (Found: C, 47.9; H, 3.7; N, 1.6. Calc. for C₅₂H₅₆Cl₂N₂P₂Ru₂S₈: C, 48.0; H, 4.3; N, 2.2%): FAB mass spectrum: m/z 1265 (100%, $[M - Cl]^+$); ³¹P NMR (CDCl₃), δ 35.53, 36.42 (2s, 2P); second fraction (10 + 11), δ 34.79, 35.09 (2P, 2s, *ca.* 55%), 35.51, 36.44 (2P, 2s, ca. 45%).

 $[RuCl(H_2imt)(PPh_3)([9]aneS_3-\kappa^3S)]Cl$ 12 $(H_{,imt} =$ imidazole-2-thione). The compounds H₂imt (0.020 g, 0.2 mmol) and 3 (0.123 g, 0.2 mmol) were refluxed for 2 h in MeOH (15 cm³). After removal of the solvent, followed by addition of $CHCl_3$ (1 cm³) and subsequent filtration, the resulting solution was covered with hexane (3 cm³) to afford orangeyellow crystals of complex 12.0.5CHCl₃ at -18 °C (yield 90%, 0.139 g) (Found: C, 42.3; H, 4.0; N, 4.0. Calc. for $C_{27}H_{31}Cl_2N_2PRuS_4$ •0.5CHCl₃: C, 42.7; H, 4.1; N, 3.6%). FAB mass spectrum: m/z 679 (75%, $[M - Cl]^+$). NMR (CD₃OD): ¹H, δ 1.99, 2.12, 2.38 (3 H, 3m, [9]aneS₃), 2.55 (2 H, m, [9]aneS₃), 2.62, 2.70 (2 H, 2m, [9]aneS₃), 2.82 (2 H, m, [9]aneS₃), 2.93 (1 H, m, [9]aneS₃), 3.05 (2 H, m, [9]aneS₃), 7.02 (2 H, s, H₂imt), 7.34 (9 H, m, PPh₃) and 7.68 (6 H, m, PPh₃); ³¹P, δ 34.00 (s).

 $[Ru(H_2imt)(MeCN)(PPh_3)([9]aneS_3-\kappa^3 S)][CF_3SO_3]_2$ 13. Compound 2 (0.092 g, 0.1 mmol) and H₂imt (0.010 g, 0.1 mmol) were refluxed for 2 h in MeOH (10 cm³). The solution was then reduced in volume to 3 cm³ and left to stand at 4 °C to provide orange crystals of **13** (yield 88%, 0.087 g) (Found: C, 37.8; H, 3.4; N, 5.0. Calc. for $C_{31}H_{34}F_6N_3O_6RuPS_6$: C, 37.9; H, 3.5; N, 4.3%). FAB mass spectrum: m/z 834 (65, $[M - CF_3SO_3]^+$) and 793 (81%, $[M - CH_3CN - CF_3SO_3]^+$). NMR (CD₃OD): ¹H, δ 1.46, 2.08, 2.43, 2.54 (4 H, 4m, [9]aneS₃), 2.00 (3 H, s, CH₃CN), 2.75 (2 H, m, [9]aneS₃), 2.96 (4 H, m, [9]aneS₃) 3.03, 3.12 (2 H, m, [9]aneS₃), 7.22 (2 H, s, H₂imt), 7.50 (9 H, m, PPh₃) and 7.60 (6 H, m, PPh₃); ³¹P, δ 34.31 (s).

[**Ru**(H₂imt)₂(**PPh₃)**([9]aneS₃-κ³S)][**CF**₃**CO**₃]₂ 14. The compounds H₂imt (0.020 g, 0.2 mmol) and **2** (0.092 g, 0.1 mmol) were refluxed in MeOH (10 cm³) for 2 h and the solution volume subsequently reduced to 1 cm³. Addition of CHCl₃ (3 cm³) led to the formation of an orange microcrystalline precipitate of complex 14·CHCl₃ within 3 d (yield 62%, 0.072 g) (Found: C, 34.5; H, 3.1; N, 4.5. Calc. for C₃₂H₃₅F₆N₄O₆PRuS₇·CHCl₃: C, 34.1; H, 3.1; N, 4.8%). FAB mass spectrum: *m*/*z* 893 (27, [*M* - CF₃SO₃]⁺), 793 (12, [*M* - H₂imt - CF₃SO₃]⁺) and 643 (69%, [*M* - H₂imt - 2CF₃SO₃]⁺). NMR (CD₃OD); ¹H, δ 1.80, 2.43 (2 × 2 H, 2m, [9]aneS₃), 2.61, 2.69 (2 × 4 H, 2m, [9]aneS₃), 6.91 (4 H, s, H₂imt), 7.48 (9 H, m, PPh₃) and 7.58 (6 H, m, PPh₃); ³¹P, δ 31.89 (s).

X-ray crystallography

Crystal and refinement data for complexes 5.0.5MeOH, 6-MeCN, 11-H₂O-0.5MeOH and 13 are provided in Table 1. Diffracted intensities were collected on a Siemens P4 four-circle diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å) at 295 K in the ω -scan mode for 5, 11 and 13 and the ω -2 θ scan mode for 6. In each case three control intensities were monitored after collection of 100 reflections; no significant alterations in their intensities were recorded. Semiempirical absorption corrections were applied on the basis of ψ -scan data. The structures were solved by a combination of Patterson and Fourier-difference syntheses and refined by full-matrix least squares with the SHELXTL PLUS set of programs.¹⁵ The asymmetric unit of 5 contains two CF₃SO₃⁻ anions, one of which [S(88), C(88)] displays a rotational disorder about the S-C bond, leading to two sets for O [O(881)-O(883), O(884)-O(886)] and F atoms [F(881)-F(883), F(884)-F(886)] with site-occupation factors (s.o.f.s) of 0.5. A methanol solvent molecule [O(77), C(77)] contained in the unit cell is also disordered with an s.o.f. of 0.5. Anisotropic thermal parameters were introduced for all nonhydrogen atoms of the dication of 5, the sulfur atoms of the $CF_3SO_3^-$ anions and the methanol C and O atoms. With the exception of the C and N atoms of a solvent acetonitrile molecule, all non-hydrogen atoms in 6 were refined anisotropically. This was also the case for the Ru, Cl, S, P, O(water), N, C(dtuc) and C([9]aneS₃) atoms of 11. The asymmetric unit of this complex also contains two disordered water molecules [O(88), O(99)] and a disordered methanol molecule [C(77), O(77)], all atoms of which exhibit s.o.f.s of 0.5. All non-hydrogen atoms in 13 were assigned anisotropic thermal parameters. Hydrogen atoms of the cations of 5, 6, 11 and 13 were included in the refinements at geometrically calculated positions with joint isotropic thermal parameters. Final R factors are listed in Table 1 with weighting schemes $w^{-1} = [\sigma^2(F_0) + g|F_0|^2]$ for $R' = [\Sigma w(|F_0| - |F_c|)^2 / \Sigma w|F_0|^2]^{\frac{1}{2}}$. Scattering factors and corrections for anomalous dispersion were taken from ref. 16. Fractional atomic coodinates for the refined crystal structures are listed in Table 3, selected bond lengths (Å) and angles in Table 2.

Complete atomic coordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1996, Issue 1.

Results and Discussion

The co-ordination chemistry of heterocyclic thioamides is a topic of current interest.17 Recently tzt-, mimt- and btt- have been employed in a μ -1 κN : 2 κS or μ_3 -1 κN : 2 κS : 3 κS bridging manner in the construction of di-, tri- and tetra-nuclear complexes such as $[{Rh(\mu-tzt)(CO)(PPh_3)}_2]$, $[(cod)_2Rh_2(\mu-tzt)(CO)(PPh_3)]_2]$ btt)₂Ag(ClO₄)] (cod = cycloocta-1,5-diene), $[Rh_3(\mu_3-btt)_2 (CO)_2(PPh_3)_2(tfbb)$ [ClO₄] {tfbb = tetrafluorobenzobarrelene (tetrafluorobenzo[5,6]bicyclo[2.2.2]octa-2,5,7-triene)} or $[{Cu(\mu_3-mimt)}_4]^{.18}$ An alternative bridging mode was established for a polymeric cadmium(II) complex $\frac{1}{m}$ [Cd(μ -btt)₂], in which Cd atoms separated at an average distance of 3.09 Å are linked via btt⁻ anions displaying a μ -1 κ S:2 κ ²N,S coordination.¹⁹ Whereas the first of the bridging tzt⁻ ligands in $[{Ru(\eta^6-C_6H_6)}(\mu-tzt)_2 {RuCl(\eta^6-C_6H_6)}]Cl exhibits a similar$ tridentate co-ordination mode, the second is restricted to a bidentate μ -1 κN : 2 κS pattern.¹⁴ It seems reasonable to assume that non-bonding interactions between adjacent cis-sited η^6 -C₆H₆ ligands or ring strain in a potential (RuS)₂ fourmembered ring prevent the adoption of the μ -l κS : $2\kappa^2 N$, Sbridging mode by both tzt - ligands in this complex. As such an (RuS)₂ ring is indeed observed in the dithiocarbamate complex $[{Ru(\mu-S_2CNMe_2)([9]aneS_3-\kappa^3 S)}_2][CF_3SO_3]_2, \text{ it was of}$ interest to establish the co-ordination behaviour of heterocyclic thioamides such as btt⁻ or pyt⁻ in similar dinuclear complexes of the type $[{Ru([9]aneS_3-\kappa^3 S)}_2(\mu-L)_2]^{2+}$ (L = btt 4 or pyt 5).

Both complexes 4 and 5 display an $[M - CF_3SO_3]^+$ ion in their FAB mass spectra, corresponding to a dinuclear formulation for M. The occurrence of only one set of ligand signals in the ¹H NMR spectra of each complex in CD₃OD is in accordance with the adoption of identical tridentate modes by the individual bridging heterocyclic thioamides btt⁻ and pyt⁻. This interpretation was confirmed by the X-ray structural analysis of 5, the effectively C_2 -symmetrical cation of which is depicted in Fig. 1. Complexes 4 and 5 provide the first examples of dinuclear complexes with half-sandwich fragments to contain exclusively μ -1 κ S:2 $\kappa^2 N$,S bridging heterocyclic thioamides. This finding emphasizes once again the reduced steric demands of the facially co-ordinated ([9]aneS₃- $\kappa^3 S$)Ru^{II} fragment in comparison to organometallic half-sandwich fragments such as $(\eta^6 - C_6 H_6) R u^{II}$. The central four-membered ring in 5 is effectively planar as illustrated by the atom deviations of only ± 0.045 Å from the best least-squares plane [Ru · · · Ru(a) 3.61 Å]. In an interesting contrast, the analogous (RuS)₂ ring in [{Ru(μ -S₂CNMe₂)([9]aneS₃- κ ³S)}₂]- $[CF_3SO_3]_2$ is markedly non-planar (deviations ± 0.143 Å),¹ leading to a much shorter (presumably stabilizing) intramolecu $lar S(7) \cdots S(7a)$ interaction of 3.37 Å in comparison with that of 4.08 Å in 5. Significant differences are also observed for the Ru-S bond distances in the (RuS)₂ rings of these complexes, that within the chelate ring being shorter in the dithiocarbamate complex ([Ru-S 2.416(1) and 2.452(1) Å] with the opposite state of affairs being valid in 5 (average Ru-S 2.454 and 2.430 Å). The lengthening of this chelate bond length in 5 is presumably a result of the increased ring strain in this complex caused by the marked difference in the Ru-S and Ru-N distances of the $(RuS)_2$ ring. A comparison of the geometry of the cation¹³ $[{Ru(\eta^6-C_6H_6)}(\mu-tzt)_2{RuCl(\eta^6-C_6H_6)}]^+ \text{ with that of } \mathbf{5} \text{ also}$ provides evidence for the high extent of endocyclic strain in the latter complex. Thus the Ru-S-Ru angle for the tridentate bridging tzt⁻ ligand in the dinuclear $(\eta^6 - C_6 H_6) R u^{II}$ complex is 22.3° larger than that in 5 [95.5 (2)°]. At the same time nonchelate Ru-S distances of 2.361(3) and 2.395(3) Å in the former complex are much shorter than the analogous bond lengths in the four-membered (RuS)₂ ring of 5 (average 2.430 Å).

These findings prompted us to investigate the reaction of complex **4** with an excess of the sterically very undemanding acetonitrile. Substitution of one of the co-ordination sites of the

	5	6	11	13
Formula M	C ₂₄ H ₃₂ F ₆ N ₂ O ₆ Ru ₂ S ₁₀ ·0.5CH ₃ OH 1097.3	C ₃₂ H ₃₈ F ₆ N₄O ₆ Ru ₂ S ₁₂ ·CH ₃ CN 1316.6	C ₅₂ H ₅₆ Cl ₂ N ₂ P ₂ Ru ₂ S ₈ ·H ₂ O·0.5CH ₃ OH 1334.5	C ₃₁ H ₃₄ F ₆ N ₃ O ₆ PRuS ₆ 983.0
Crystal system	Triclinic	Triclinic	Monoclinic	Triclinic
Space group	PT	<u>pī</u>	P2,/n	PT
a/A	8.208(1)	12.730(5)	12.993(6)	8.663(2)
b/\dot{A}	12.558(2)	13.459(5)	30.749(9)	11.761(3)
$c/\text{\AA}$	21.246(3)	14.919(3)	15.581(4)	19.746(6)
o/x	75.91(1)	83.51(3)		82.71(2)
β/∘	79.31(1)	81.32(2)	102.57(3)	89.31(2)
ر الا	78.21(1)	78.86(2)		84.08(2)
$U A^3$	2058.1(7)	2469.9(14)	6076(4)	1984.9(9)
Ζ	2	2	4	2
$D_{\rm c}/{ m g~cm^{-3}}$	1.771	1.770	1.459	1.645
F(000)	1098	1324	2724	966
Crystal size/mm	$0.22 \times 0.30 \times 0.46$	$0.38 \times 0.44 \times 0.54$	$0.31 \times 0.43 \times 0.62$	$0.24 \times 0.34 \times 0.56$
$\mu(Mo-K\alpha)/mm^{-1}$	1.31	1.19	0.95	0.82
Scan width/°	2.00	1.70	1.20	1.40
$2\theta_{max}/\circ$	47.5	50.0	50.0	50.0
hkl Ranges	0-9, -14 to 13 , -24 to 23	0-15, -15 to 16 , -17 to 17	0-15, 0-36, -18 to 18	0-10, -13 to 14, -23 to 23
Maximum, minimum transmission	0.45, 0.40	0.26, 0.24	0.37, 0.32	0.45, 0.39
Reflections collected	7089	8849	11 378	7727
Independent reflections	6590	8661	10 646	7049
$R_{ m int}$	0.022	0.029	0.027	0.021
Observed reflections $[I > 2\sigma(I)]$	3558	6994	5796	4121
No. parameters	412	575	448	504
R	0.078	0.031	0.074	0.052
R'	0.085	0.042	0.078	0.057
g in weighting scheme	0.0003	0.0003	0.0003	0.0005
Maximum minimum in AF conthesis/e Å ⁻³	1.70 - 1.72	1 00 0 57	1 55 0 78	

112 ÷ . . . ¢ -¢ ç .

Fig. 1 Structure of the cation $[{Ru([9]aneS_3-\kappa^3 S)}_2(\mu-pyt)_2]^2 + 5$

tridentate bridging btt - ligands at each of the Ru atoms should lead to drastic reduction in ring strain for either a µ-S or µ-N,S co-ordination pattern in a resulting dinuclear cation $[{Ru(MeCN)([9]aneS_3-\kappa^3 S)}_2(\mu-btt)_2]^{2+6}$. Slow crystallization of 4 from an acetonitrile solution at ambient temperature does indeed lead to the formation of 6 in effectively quantitative yield. The red crystals exhibit the expected $[M - CF_3SO_3]^+$ ion (m/z = 1126) in their FAB mass spectrum. Loss of two acetonitrile ligands yields an ion $[M - 2MeCN - CF_3SO_3]^+$ (m/z = 1045) at the same position as that observed for the molecular ion of 4. A resonance at δ 2.38 (s) in the ¹H NMR spectrum of 6 confirms the presence of symmetrically coordinated acetonitrile ligands. This spectrum also enables a distinction between the potential µ-S and µ-N,S co-ordination modes for the bridging heterocyclic thioamide. The registration of only three resonances at δ 7.39 (dd), 7.47 (dd) and 7.85 (m) for the btt⁻ protons is in accordance with C_i or C_2 symmetry for the dinuclear cation. Whereas a µ-N,S bridging mode must lead to three different trans sites for the S atoms of the facially co-ordinated thioether, only two such sites in a 2:1 relationship

Table 2	Selected bond lengths (Å) and angles in complexes 5, 6, 11 and
13	- · · · · · · · · · · · · · · · · · · ·

Compound 5			
Ru-S(1)	2.287(5)	$\begin{array}{l} Ru(a)-S(1a) \\ Ru(a)-S(4a) \\ Ru(a)-S(7a) \\ Ru(a)-S(11a) \\ Ru(a)-S(11) \\ Ru(a)-N(11a) \\ S(11a)-C(11a) \\ N(11a)-C(11a) \end{array}$	2.293(5)
Ru-S(4)	2.299(5)		2.299(4)
Ru-S(7)	2.287(6)		2.293(6)
Ru-S(11)	2.458(5)		2.451(5)
Ru-S(11a)	2.430(5)		2.431(5)
Ru-N(11)	2.05(2)		2.10(2)
S(11)-C(11)	1.74(2)		1.76(2)
N(11)-C(11)	1.36(2)		1.34(2)
Ru-S(11)-Ru(a)	95.2(2)	$\begin{array}{l} Ru-S(11a)-Ru(a)\\ S(11)-Ru(a)-S(11a)\\ S(11a)-Ru(a)-N(11a)\\ S(11)-Ru(a)-N(11a)\\ Ru(a)-S(11a)-C(11a)\\ S(11a)-C(11a)-N(11a)\\ Ru(a)-N(11a)-C(11a)\\ Ru(a)-N(11a)-C(11a)\\ \end{array}$	95.5(2)
S(11)-Ru-S(11a)	84.4(2)		84.5(2)
S(11)-Ru-N(11)	66.7(5)		67.5(4)
S(11a)-Ru-N(11)	95.0(4)		94.6(4)
Ru-S(11)-C(11)	80.0(6)		79.2(7)
S(11)-C(11)-N(11)	107.0(1)		109.0(1)
Ru-N(11)-C(11)	105.9(14)		103.6(14)
Compound 6 Ru–S(1) Ru–S(4) Ru–S(7) Ru–S(11) Ru–S(11a) Ru–N(21) S(11)–C(11) N(12)–C(11) S(12)–C(11)	2.306(1) 2.311(1) 2.298(1) 2.429(1) 2.435(1) 2.051(1) 1.770(3) 1.288(4) 1.761(4)	Ru(a)-S(1a)Ru(a)-S(4a)Ru(a)-S(7a)Ru(a)-S(11a)Ru(a)-S(11)Ru(a)-N(21a)S(11a)-C(11a)N(12a)-C(11a)S(12a)-C(11a)	2.313(1) 2.313(1) 2.311(1) 2.424(1) 2.438(1) 2.069(3) 1.763(3) 1.307(4) 1.746(4)
Ru-S(11)-Ru(a)	98.5(1)	$\begin{array}{l} Ru-S(11a)-Ru(a)\\ S(11)-Ru(a)-S(11a)\\ S(11a)-Ru(a)-N(21a)\\ S(11)-Ru(a)-N(21a)\\ Ru(a)-S(11a)-C(11a)\\ Ru(a)-S(11)-C(11)\\ \end{array}$	98.8(1)
S(11)-Ru-S(11a)	81.3(1)		81.4(1)
S(11)-Ru-N(21)	93.8(1)		96.6(1)
S(11a)-Ru-N(21)	84.3(1)		86.9(1)
Ru-S(11)-C(11)	115.6(1)		116.5(1)
Ru-S(11a)-C(11a)	114.5(1)		108.4(1)
Compound 11 Ru-S(1) Ru-S(4) Ru-S(7) Ru-P(1) Ru-S(11) Ru-N(12) S(11)-C(11) N(12)-C(11) S(11)-Ru-P(1) S(11)-Ru-N(12) Ru-S(11)-C(11) S(11)-C(11)-C(11) S(11)-C(11)-C(11) S(11)-C(11)-C(11) S(11)-C(11	2.362(4) 2.308(4) 2.335(4) 2.347(4) 2.431(4) 2.11(1) 1.70(1) 1.36(2) 93.0(1) 111.1(9) 80.2(5)	Ru(a)-S(1a) Ru(a)-S(4a) Ru(a)-S(7a) Ru(a)-P(1a) Ru(a)-S(12) Ru(a)-Cl(a) S(12)-C(12) N(12)-C(12) S(12)-Ru(a)-P(1a) S(12)-Ru(a)-Cl(a) Ru(a)-S(12)-C(12) S(12) C(12) N(12)-C(12) S(12) C(12) S(12) C(12)	2.352(4) 2.318(4) 2.291(4) 2.325(4) 2.444(4) 2.456(4) 1.73(1) 1.34(2) 89.7(1) 102.7(1) 118.2(4)
Ru-N(12)-C(11) Compound 13 $Ru-S(1)$ $Ru-S(7)$ $Ru-P$ $S(11)-C(11)$ $C(11)-N(14)$ $S(11)-Ru-P$ $P-Ru-N(21)$	2.358(2) 2.307(2) 2.362(2) 1.702(8) 1.34(1) 87.0(1) 92.8(2)	Ru-S(4) Ru-S(11) Ru-N(21) C(11)-N(11) S(11)-Ru-N(21) Ru-S(11)-C(11)	2.325(2) 2.450(2) 2.081(7) 1.35(1) 94.5(2) 107.0(3)
Ru-N(21)-C(21)	166.9(6)	S(11)–C(11)–N(11)	128.3(7)
S(11)-C(11)-N(14)	126.4(6)	N(11)–C(11)–N(14)	105.2(7)

are expected for a μ -S bridged dimer. The relative simplicity of the signal pattern for the thioether protons, namely three multiplets in an intensity relationship 2:3:1, is strong evidence for the μ -S co-ordination pattern. Confirmation is provided by the X-ray structural analysis of 6-MeCN (Fig. 2). The central (RuS)₂ four-membered ring is planar (atom deviations ± 0.06 Å) with a Ru $\cdot \cdot \cdot$ Ru(a) distance of 3.69 Å, longer than that of 3.61 Å in **5**. Comparison of the exocyclic bond lengths S(11)–C(11) and S(11a)–C(11a) in **6** [1.770(3), 1.763(3) Å] with the analogous distance in free Hbtt [1.662(4) Å]²⁰ suggests that these can be

dinuclear cation $[{Ru([9]aneS_3-\kappa^3 S)}_2(\mu-btt)_3]^+$ 7 can also be prepared. The reaction of 1 with btt⁻ was carried out at reflux in methanol in a 2:3 molar ratio. After filtration and volume reduction, the resulting solution was left to stand at 4 °C to afford a red precipitate of 7, which was characterized by elemental analysis, FAB mass and ¹H NMR spectroscopy. The recorded ion $[M - CF_3SO_3]^+$ (m/z = 1062) corresponds to the formulation of 7 as a triply μ -S bridged dinuclear complex. Conclusive evidence for the necessary C_3 symmetry in solution is provided by the ¹H NMR resonance pattern of the thioether ligands, for which only two multiplets at δ 2.52 (12 H) and 2.65 (12 H) are observed. The bridging btt⁻ ligands are magnetically equivalent and give rise to only one set of four signals. Complex 7 represents the first example of a dinuclear triply bridged $([9]aneS_3 - \kappa^3 S)Ru^{II}$ complex. The employment of the relatively bulky btt⁻ ligands prevents formation of insoluble polymeric products as observed for the reaction between 1 and NaSH. Reaction of 2 with btt⁻ in methanol at a 1:2 or higher molar ratio leads to the precipitation of the red-brown complex $[\operatorname{Ru}(\operatorname{btt})_2([9]\operatorname{anes}_3-\kappa^3 S)]$ 8, which exhibits the expected molecular ion M^+ at m/z = 614. The 1:2 ratio of the thioether and btt⁻ ligands in 8 is confirmed by the integral values of their ¹H NMR signals. The presence of two sets of resonances for the thioamide protons is in accordance with the adoption of different co-ordination modes (κS and $\kappa^2 N, S$) by these ambidentate ligands.

N(21) C(21) C(22)

CUI

🕅 S(7a)

S(4a)

N(12)

S(12)

C(13) C(14)

C(15) O C(16)

C(17)

S(11)

S(11a

Silal (

Ru(

The introduction of a sterically demanding PPh₃ ligand at each Ru centre enables the isolation⁷ of the doubly $\mu\text{-Cl bridged complex } [\{\text{Ru}(\text{PPh}_3)([9]\text{aneS}_3-\kappa^3 S)\}_2(\mu\text{-Cl})_2]^2$ However, the presence of PPh₃ prevents the formation of dinuclear complexes with bulkier bridging ligands such as heterocyclic thioamides. Instead reaction of anions such as btt⁻ or pyt⁻ with 2 produces monomeric complexes $[Ru(btt)(PPh_3)([9]aneS_3-\kappa^3 S)][CF_3SO_3]^1$ and 9. We, therefore, chose to look at the dtuc²⁻ dianion as a potential bridging ligand. This sulfur analogue of uracil is capable of forming two N,S coordinated four-membered chelate rings as in $[{Ti(C_5Me_5)_2}_2(\mu-dtuc)]^{21}$ The adoption of such a $\mu-1\kappa^2$ - $N, S: 2\kappa^2 N', S'$ co-ordination mode should allow the formation of dinuclear complexes with effectively no steric interaction between $(Ph_3P)([9]aneS_3 - \kappa^3 S)Ru^{II}$ fragments. However, employment of the ambidentate dianion dtuc²⁻ has often been found to lead to insoluble polymeric products.²²

Reaction of complex 2 or $[RuCl_2(PPh_3)([9]aneS_3-\kappa^3 S)]^7$

					r i		
Atom	x	у	z	Atom	x	У	z
Compound 5	5						
Ru	6 534(2)	1 315(1)	2 986(1)	C(11a)	2,767(18)	2 947(16)	2.948(10)
Ru(a)	3 985(2)	2 636(1)	1 705(1)	C(12a)	1 951(28)	3 350(27)	3 501(11)
S(1)	6 012(6)	575(5)	4 085(2)	C(13a)	1 367(32)	4 474(30)	3 442(16)
S(4)	9 352(5)	974(5)	3 074(2)	C(14a)	1 585(27)	5 197(22)	2 881(14)
S(7)	6 820(6)	-438(4)	2 801(3)	C(15a)	2 351(24)	4 804(20)	2 342(12)
S(1a)	1 295(5)	2 654(4)	1 541(2)	O(77)	4 197(41)	7 719(33)	1 943(21)
S(4a)	4 320(6)	3 912(4)	730(2)	C(77)	2 567(47)	8 275(33)	1 781(24)
S(7a)	4 912(6)	1 254(4)	1 125(2)	S(88)	9 472(9)	7 208(5)	961(4)
S(11)	6 873(5)	2 495(4)	1 879(2)	O(881)	8 460(38)	6 578(30)	762(19)
S(11a)	3 600(5)	1 584(5)	2 841(2)	O(882)	11 218(19)	6 793(29)	1 020(19)
C(2)	8 076(21)	181(16)	4 396(9)	O(883)	8 618(39)	7 342(31)	1 616(10)
C(3)	9 385(24)	714(20)	3 941(9)	O(884)	10 350(38)	7 154(31)	305(9)
C(5)	10 086(25)	-450(17)	2 961(10)	O(885)	10 388(41)	6 628(27)	1 489(13)
C(6)	9 046(24)	- 834(20)	2 592(10)	O(886)	7 865(25)	6 915(32)	955(18)
C(8)	6 497(29)	-1383(18)	3 620(11)	C(88)	9 189(27)	8 684(9)	694(11)
C(9)	5 488(27)	-801(18)	4 109(10)	F(881)	7 595(27)	9 047(26)	594(16)
C(2a)	919(26)	3 829(21)	8/6(12)	F(882)	9 620(39)	9 380(24)	980(14)
C(5a)	2 293(23)	4 209(10)	433(9)	F(883)	10 191(34)	8 656(25)	120(12)
C(5a)	5 457(20)	3 1 18(18)	150(11)	F(884)	8 137(40)	8 924(31)	1 223(14)
C(0a)	2 077(28)	704(22)	320(9)	F(885)	8 410(42)	8 933(31) 0 405(26)	809(18)
C(0a)	$\frac{5077(20)}{1480(22)}$	1 407(22)	1032(10) 1122(12)	F(000)	0 419(42) 1 496(11)	9 403(20)	230(14)
N(11)	6515(17)	1497(22) 2052(14)	1133(12)	O(001)	1400(11) 2045(22)	7 390(7) 9 435(15)	4 374(3)
C(11)	6 8 2 9 (19)	2,952(14) 3,468(16)	2343(10)	O(991)	2 043(33)	0 433(13) 7 038(22)	4 303(13)
C(12)	7.051(21)	4541(21)	2343(10) 2159(11)	O(992)	1 545(35)	6 863(22)	4 200(12) 5 262(7)
C(12)	6 984(28)	5157(20)	2617(15)	C(99)	3 166(22)	6277(14)	4 438(11)
C(14)	6 641(26)	4 642(22)	3287(13)	F(991)	4 347(25)	6 455(16)	4 743(9)
C(15)	6428(22)	3507(22)	3453(13)	F(992)	2 579(24)	5 338(16)	4 702(10)
N(11a)	2,967(16)	3 666(16)	2373(7)	F(993)	3 529(25)	6 659(16)	3 797(10)
- ()			(.)	- (/////		0.007(1.0)	2 / 2 / (10)
Compound 6	i						
Ru	10 218(1)	1 293(1)	2 447(1)	S(11a)	9 326(1)	225(1)	1 709(1)
S(1)	11 245(1)	2 166(1)	3 110(1)	S(12a)	6 993(1)	60(1)	2 540(1)
S(4)	9 440(1)	2 829(1)	1 759(1)	N(12a)	7 493(2)	1 315(2)	1 164(2)
S(7)	8 900(1)	1 555(1)	3 675(1)	C(11a)	7 917(3)	621(3)	1 757(2)
C(2)	11 187(3)	3 363(3)	2 392(3)	C(12a)	5 949(3)	817(3)	2 032(3)
C(3)	10 075(3)	3 798(3)	2 146(3)	C(13a)	6 368(3)	1 439(3)	1 309(3)
C(5)	8 102(3)	3 079(3)	2 399(3)	C(14a)	5 675(3)	2 098(3)	777(3)
C(6)	8 080(3)	2 804(3)	3 419(3)	C(15a)	4 583(4)	2 112(3)	998(4)
C(8)	9 643(3)	18/5(3)	4 527(2)	C(16a)	4 164(3)	1 513(4)	1 725(4)
C(9)	10 400(3)	2 598(3)	4 155(2)	C(1/a)	4 838(3)	848(3)	2 255(3)
S(11) S(12)	10 851(1)	-332(1)	3 2 5 5 (1)	N(21a)	8 /42(2)	-1243(2)	3 629(2)
S(12) N(12)	12 804(1)	-1288(1)	4 040(1)	C(21a)	8 032(3)	-1203(3)	4 201(3)
C(11)	12 352(2)	-380(2)	2 2 9 9 (2)	C(22a)	7000(3)	-1140(4)	4 898(3)
C(12)	12 239(3) 14 062(3)	-1.697(3)	3 344(3)	S(88)	2103(1) 2222(2)	44/3(1)	-139(1)
C(12)	13909(3)	-1412(3)	2 444(3)	O(882)	2 323(3) 1 785(4)	A 713(3)	10(2)
C(14)	14 756(3)	-1.690(3)	1745(3)	O(883)	1 407(3)	5 000(3)	-1043(3)
C(15)	15 723(4)	-2233(4)	1.982(4)	C(88)	3 392(4)	4871(4)	-277(4)
C(16)	15 859(4)	-2.503(4)	2.882(4)	F(881)	3 330(3)	5 839(3)	-565(3)
C(17)	15 040(3)	-2242(4)	3582(4)	F(882)	4 140(3)	4321(4)	-799(4)
N(21)	11402(2)	1 066(2)	1 356(2)	F(883)	3 768(4)	4 762(3)	517(4)
C(21)	12 052(3)	900(3)	755(3)	S(99)	7 935(1)	5426(1)	5 058(1)
C(22)	12 899(4)	652(4)	-1(3)	O(991)	7 750(3)	6 466(2)	4 677(2)
Ru(a)	9 941(1)	-1394(1)	2 525(1)	O(992)	8 759(3)	4 761(3)	4 539(3)
S(1a)	8 929(1)	-2286(1)	1 858(1)	O(993)	7 933(3)	5 309(3)	6 022(2)
S(4a)	10 739(1)	-2925(1)	3 210(1)	C(99)	6 732(3)	4 973(3)	4 900(3)
S(7a)	11 261(1)	-1643(1)	1 286(1)	F(991)	6 747(3)	4 032(3)	5 247(3)
C(2a)	9 010(3)	-3 484(3)	2 580(3)	F(992)	5 839(3)	5 556(3)	5 255(3)
C(3a)	10 128(3)	-3 907(3)	2 825(3)	F(993)	6 646(3)	4 970(3)	4 031(2)
C(5a)	12 080(3)	-3 184(3)	2 570(3)	C(77)	5 086(6)	2 842(6)	3 465(5)
C(6a)	12 117(3)	-2882(3)	1 555(3)	C(771)	4 728(8)	3 685(7)	2 834(7)
C(8a)	10 530(3)	-1979(3)	442(2)	N(77)	5 344(6)	2 155(6)	3 995(5)
C(9a)	9 768(3)	-2 705(3)	803(2)				
Compound 1	1						
Ru	-1 023(1)	701(1)	6 368(1)	C(55)	- 370(12)	1 153(5)	9 640(10)
Cl	4 018(3)	592(1)́	2 700(3)	C(56)	-198(10)	1 209(4)	8 768(9)
S(7)	-2115(3)	816(1)	7 355(2)	Ru(a)	-2889(1)	2 550(1)	6 507(1)
S(1)	-2542(3)	443(1)	5 379(2)	Cl(a)	-3 656(3)	2 679(1)	4 943(2)
S(4)	-785(3)	2(1)	6 911(3)	S(1a)	-1303(3)	2 847(1)	6 276(3)
C(2)	-2 277(13)	-131(4)	5 337(10)	S(4a)	-3 417(3)	3 260(1)	6 666(3)
C(3)	-1 830(11)	- 333(4)	6 218(10)	S(7a)	-2 147(3)	2 537(1)	7 982(2)
C(5)	-1211(12)	-9(5)	7 913(9)	C(la)	-1 510(13)	3 422(5)	6 225(14)

Table 3	Fractional atomic coordinates	$(\times 10^{4})$) with estimated standard deviations (e.s.d.s) in parentheses

Table 3 (contd.)

Atom	x	у	Z	Atom	x	у	Z
C(6)	-2121(14)	300(5)	7 956(10)	C(2a)	-2.574(12)	3 579(5)	6 129(10)
C(8)	-3432(10)	792(4)	6 685(8)	C(5a)	-2.944(12)	3 399(5)	7 849(10)
C(9)	-3596(11)	424(5)	5974(10)	C(6a)	-2.768(11)	3 009(5)	8 A13(Q)
S(1)	-211(3)	650(1)	5 106(2)	C(8a)	-804(12)	2731(6)	8 080(11)
S(12)	-2.151(3)	1 819(1)	6502(2)	C(9a)	-430(13)	2751(0) 2760(7)	7 336(13)
N(11)	-700(10)	1 404(4)	4 226(7)	P(1a)	-4.00(13)	2700(7) 2250(1)	6 6 20 (2)
N(12)	-1.206(8)	1 272(3)	5 598(6)	C(31a)		2250(1) 2651(4)	6 292(2)
C(11)	-769(10)	1272(3) 1151(4)	4 927(8)	C(37a)	= 5.502(10) 5.629(11)	2.031(4) 2.081(4)	6 060(0)
C(12)	-1.644(10)	1.665(A)	5 606(8)	C(32a)	-5023(11) 6 432(12)	2 202(4)	6724(10)
C(13)	-1.628(11)	1 963(5)	4 875(9)	C(34a)	-0.432(12)	3232(3)	5 020(10)
C(14)	-1.181(13)	1 810(5)	4 206(10)	C(3+a)	-7121(12)	3270(3)	5 929(10)
P(1)	-1101(13) 539(3)	945(1)	7300(2)	C(35a)	-7037(12)	2.942(3)	5 520(10)
C(31)	1 019(10)	1 505(4)	7500(2)	C(30a)	-0.200(10) 4.563(10)	2 034(4)	3 300(9) 7 705(8)
C(32)	1 321(10)	1 790(4)	7 847(9)	C(42a)	$= \frac{3}{3} \frac{3}{6} \frac{3}{10}$	2 008(4)	7 703(8) 8 041(8)
C(33)	1.755(12)	2185(5)	7 734(10)	C(42a)	-3880(10)	1 470(5)	8 810(10)
C(34)	1.864(12)	2 289(6)	6889(11)	C(44a)	-4.707(12)	1 + 79(5) 1 570(5)	9.243(11)
C(35)	1 525(11)	2022(5)	6 185(10)	C(45a)	-5427(13)	1 882(5)	92+3(11) 8 010(11)
C(36)	1 110(10)	1.624(4)	6 336(9)	C(46a)	-5361(12)	2105(5)	8 130(10)
C(41)	1 776(10)	650(4)	7 297(8)	C(51a)	-5.040(9)	1.792(4)	5 916(8)
C(42)	1.774(11)	270(5)	6 883(9)	C(52a)	-4651(10)	1.676(4)	5 107(8)
C(43)	2 759(12)	52(5)	6 920(10)	C(52a)	-5114(11)	1 335(5)	4 655(9)
C(44)	3 669(14)	240(5)	7 334(10)	C(54a)	-5988(11)	1 125(5)	4 839(10)
C(45)	3675(14)	610(5)	7 7 56(10)	C(55a)	-6.372(11)	1223(3) 1221(5)	5 542(9)
C(46)	2727(12)	818(5)	7 720(10)	C(56a)	-5.882(11)	1.556(5)	6.083(10)
C(51)	455(10)	926(4)	8 468(8)	O(99)	6182(24)	1 181(6)	2 547(20)
C(52)	969(11)	603(4)	9 014(9)	O(88)	3840(22)	310(9)	621(17)
C(53)	813(13)	574(5)	9 844(11)	C(77)	7441(27)	476(11)	942(21)
C(54)	170(13)	843(5)	10 141(11)	O(77)	7 023(26)	533(11)	22(21)
Compound	113						
D.,	1 544(1)	2 101(1)	2 212(1)	C(42)	1 706(0)	2 572(7)	2.50((4)
Ku S(1)	1.544(1) 2.667(2)	2 191(1)	2313(1) 1954(1)	C(42)	-1/90(9)	23/3(7)	3 390(4)
S(1)	2007(3)	344(2)	1 0.34(1) 1 207(1)	C(43)	-2.703(10) 2.805(11)	2 337(8)	4 151(5)
S(7) S(4)	2223(2) 3004(2)	$\frac{3}{242(2)}$	$1 \frac{30}{(1)}$	C(44)	-2.803(11)	2 021(0)	4 0 / 1 (3)
C(2)	3334(2)	2374(2)	2723(1)	C(45)	-1803(11)	5921(9)	4 055(4)
C(2)	5202(11)	1 116(8)	2 238(8)	C(40)	+ 303(3)	4 127(7)	4000(4)
C(5)	4737(10)	3 470(8)	2 120(7)	C(51)	-1220(8)	5 508(7)	2 241(4)
C(6)	4.248(12)	3 510(0)	1 430(6)	C(52)	-2203(9)	6 252(8)	2 333(3) 2 122(6)
C(0)	2510(12)	2 176(9)	723(5)	C(53)	-3.406(9)	6 252(8)	2 1 52(0)
C(0)	3 137(13)	1 024(9)	973(5)	C(54)	-2.394(10)	5 496(7)	1 459(0)
S(11)	-959(2)	1024(0) 1027(2)	1823(1)	C(55)	-1310(9)	4737(7)	1548(4)
N(11)	-1.093(7)	-352(6)	2327(4)	S(77)	7 268(3)	1834(2)	-221(2)
N(14)	-992(8)	-45(6)	1236(4)	O(771)	8 734(7)	1138(5)	-117(3)
C(1)	-988(8)	488(6)	1 799(4)	O(772)	6 393(9)	1812(7)	392(5)
C(12)	-1.165(11)	-1.399(8)	2 092(6)	O(773)	6458(13)	1.012(7) 1.726(7)	-827(5)
C(13)	-1112(13)	-1210(8)	1 428(6)	C(77)	7 767(12)	3 257(9)	-353(5)
N(21)	1 252(7)	1 082(6)	3 204(4)	F(771)	6 550(10)	4 024(6)	-348(5)
C(21)	1 388(10)	421(8)	3 678(5)	F(772)	8 745(10)	3 495(6)	99(5)
C(22)	1 599(14)	-457(11)	4 247(6)	F(773)	8 495(13)	3 489(8)	-927(4)
P	254(2)	3 792(2)	2 770(1)	S(88)	3 132(3)	1 284(3)	6 096(2)
C(31)	1 524(8)	4 826(6)	3 009(4)	O(881)	3 635(14)	1 808(9)	6 637(4)
C(32)	1 554(9)	5 902(7)	2 641(5)	O(882)	1 981(8)	515(5)	6 262(3)
C(33)	2 592(12)	6 646(9)	2 827(6)	O(883)	4 341(15)	865(11)	5 652(9)
C(34)	3 591(13)	6 303(12)	3 359(6)	C(88)	2 262(17)	2 405(12)	5 514(7)
C(35)	3 598(10)	5 237(10)	3 719(5)	F(881)	1 102(14)	2 911(9)	5 850(9)
C(36)	2 556(10)	4 507(8)	3 537(5)	F(882)	3 257(11)	3 147(8)	5 301(6)
C(41)	- 863(8)	3 460(7)	3 551(4)	F(883)	1 646(14)	2 042(10)	4 985(5)

with dtuc²⁻ in a 2:1 ratio in methanol does yield dinuclear complexes with the μ -1 $\kappa^2 N, S: 2\kappa^2 N', S'$ co-ordination mode: **10a** (X = CF₃SO₃) and **10b** (X = Cl) were characterized by elemental analysis and FAB mass spectroscopy through their $[M - X]^+$ ions at respectively m/z 1379 and 1265. The possible co-ordination of Ru atoms by acetonitrile ligands can be ruled out by the absence of typical ¹H NMR signals between δ 2.0 and 2.5. Further evidence for the postulated co-ordination mode is provided by the similarity of the ³¹P NMR shifts for the PPh₃ ligands at the different ruthenium centres, *e.g.* δ 35.60 and 36.28 for **10a**. The small difference in the positions of the resonances is caused by the asymmetry of the bridging dtuc²⁻ dianion. Whereas **10a** can be isolated as the only product of the reaction between **2** and dtuc²⁻, a minor product [{RuCl(PPh₃)([9]aneS₃- $\kappa^3 S$)}(μ -dtuc){Ru(PPh₃)([9]aneS₃- $\kappa^3 S$)}]Cl 11 is obtained together with 10b in low yield. Of the three possible co-ordination modes, that of C was established by X-ray structural analysis, as depicted in Fig. 3. Refinement of the ring atoms N(11) and C(13) as expected for pattern C led in comparison to pattern A to a reduction in the reliability index *R'*, which was significant at the 0.005 level (Hamilton *R* test²³). The equivalent isotropic thermal parameters for N(11) and C(13) and the endocyclic bond lengths to these atoms also provide confirmative evidence for the correctness of this interpretation. The alternative bridging mode A is hardly to be expected since it provides no steric hindrance to the formation of a second chelate ring, as observed in the μ -1 $\kappa^2 N$,S: $2\kappa^2 N'$,S' co-ordination pattern of the dtuc²⁻ dianion in 10a and 10b. An

 $X = CF_3SO_3 = 10a$

 $X = Cl \quad 10b$

indication of the extent of ring strain in the four-membered RuSCN ring may be gained from a comparison of the Ru-S(11)-C(11) and Ru(a)-S(12)-C(12) angles of 80.2(5) and $118.2(4)^{\circ}$.

Cooper and Rawle²⁴ have commented on the important role of charge neutralization in crown thioether co-ordination chemistry. As a result of their low σ -donor ability such thioethers are often incapable of displacing anions from metal co-ordination spheres. In pursuit of charge neutralization, complexes of crown thioethers have often been found to display a pronounced affinity for normally 'non-co-ordinating' anions such as CF₃SO₃⁻, BF₄⁻ and ClO₄⁻. However, [Ru(MeCN)₃([9]aneS₃- $\kappa^3 S$)][CF₃SO₃]₂ 1 can be prepared by addition of Ag(O₃SCF₃) to [RuCl₂(Me₂SO)([9]aneS₃- $\kappa^3 S$)] in acetonitrile,¹ indicating that the preference of Ru^{II} for π -

Fig. 3 Structure of the cation $[{RuCl(PPh_3)([9]aneS_3-\kappa^3 S)}(\mu-dtuc){Ru(PPh_3)([9]aneS_3-\kappa^3 S)}]^+ 11$

Fig. 4 Structure of the cation $[Ru(H_2imt)(MeCN)(PPh_3)([9]aneS_3-\kappa^3S)]^{2+}$ 13

acceptor ligands such as MeCN is capable of overweighing the alternative of charge neutralization, which could be achieved by the incorporation of two $CF_3SO_3^-$ anions in the metal coordination sphere. It was, therefore, of interest to establish whether neutral S-donors such as 2-sulfanylimidazole (H₂imt) are capable of replacing one or two ligands in [RuCl₂(PPh₃)([9]aneS₃- κ^3 S)] **3** or [Ru(MeCN)₂(PPh₃)([9]aneS₃- κ^3 S)] **2**. In fact, only one chloride ligand can be substituted in the former complex to yield [RuCl-(H₂imt)(PPh₃)([9]aneS₃- κ^3 S)]Cl **12**, even at molar ratios

 $3:H_2$ int of 1:2 and higher. In contrast, replacement of either one or two acetonitrile ligands can be achieved for 2, as evidenced by the preparation of [Ru(H₂imt)(MeCN)- $(PPh_3)([9]aneS_3-\kappa^3 S)][CF_3SO_3]_2 13(Fig. 4) and [Ru(H_2imt)_2-K_3SO_3]_2 and [Ru(H_2imt)_2-K_3SO_3]_2 and [Ru(H_2imt)_2-K_3SO_3]_2 and [Ru(H_2imt)_2-K_3SO_3]_2 and [Ru(H_2imt)_2-K_3SO_3]_2 and [Ru(H_2imt)_2-K_3SO_3]_2 and [Ru(H_2imt)_2-K_3$ $(PPh_3)([9]aneS_3-\kappa^3 S)][CF_3SO_3]_2$ 14 at appropriate molar ratios of the starting compounds. The restriction to monosubstitution for $[RuCl_2(PPh_3)([9]aneS_3-\kappa^3 S)]$ 3 is in accordance with the preparation of chiral complexes of the type $[\operatorname{RuCl}(L)(\operatorname{PPh}_3)([9]\operatorname{aneS}_3-\kappa^3 S)]^+$ $[L = \operatorname{MeCN}, \operatorname{PhCN},$ PMe_2Ph , $P(OMe)_2Ph$, CO, CS or C_5H_5N] reported by Schröder and co-workers.⁷ The present results demonstrate that $[Ru(MeCN)_3([9]aneS_3-\kappa^3 S)][CF_3SO_3]_2$ 1 is an expedient starting material for the synthesis of dinuclear complexes with one to three bridging ligands. However, the limited steric demand of the facial ([9]aneS₃- $\kappa^3 S$)Ru^{II} fragment tends to favour the formation of polymeric products for small bridging ligands such as Cl⁻ or SH⁻. This may be avoided by the employment of relatively bulky ligands such as the heterocyclic thioamides investigated in this work.

References

- 1 C. Landgrafe and W. S. Sheldrick, J. Chem. Soc., Dalton Trans., 1994, 1885.
- 2 H. Le Bozec, D. Touchard and P. H. Dixneuf, *Adv. Organomet. Chem.*, 1989, **29**, 163.
- 3 M. A. Bennett and A. K. Smith, J. Chem. Soc., Dalton Trans., 1974, 233.
- 4 C. L. Raston and A. H. White, J. Chem. Soc., Dalton Trans., 1975, 2410.
- 5 C. L. Raston and A. H. White, J. Chem. Soc., Dalton Trans., 1975, 2422.
- 6 A. R. Hendrickson, J. M. Hope and R. L. Martin, J. Chem. Soc., Dalton Trans., 1976, 2032.
- 7 A. J. Blake, R. M. Christie, Y. V. Roberts, M. J. Sullivan, M. Schröder and L. J. Yellowlees, J. Chem. Soc., Chem. Commun., 1992, 848.

- 8 D. R. Robertson and T. A. Stephenson, J. Organomet. Chem., 1978, 162, 121; M. J. Rybinskaya, A. R. Kudinov and V. S. Kaganovitch, J. Organomet. Chem., 1983, 246, 279.
- 9 T. Arthur, D. R. Robertson, D. A. Tocher and T. A. Stephenson, J. Organomet. Chem., 1981, 208, 389.
- 10 R. O. Gould, C. L. Jones, D. R. Robertson and T. A. Stephenson, J. Chem. Soc., Chem. Commun., 1977, 222; R. O. Gould, T. A. Stephenson and D. A. Tocher, J. Organomet. Chem., 1984, 263, 375.
- 11 W. S. Sheldrick and H. S. Hagen-Eckhard, J. Organomet. Chem., 1991, 410, 73.
- 12 L. A. Oro, M. P. Garcia and D. Carmona, *Inorg. Chim. Acta*, 1985, 96, L21.
- 13 W. S. Sheldrick and C. Landgrafe, Inorg. Chim. Acta, 1993, 208, 145.
- 14 A. F. Hill, N. W. Alcock, J. C. Cannadine and G. R. Clarke, J. Organomet. Chem., 1992, 426, C40; N. W. Alcock, J. C. Cannadine, G. R. Clark and A. F. Hill, J. Chem. Soc., Dalton Trans., 1993, 1131.
- 15 G. M. Sheldrick, SHELXTL PLUS programs for use with Siemens X-ray systems, University of Göttingen, 1990.
- 16 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
- 17 E. S. Raper, Coord. Chem. Rev., 1985, 61, 115.
- 18 M. Cowie and T. Sielisch, J. Organomet. Chem., 1988, 348, 241; M. A. Ciriano, J. J. Pérez-Torrente, L. A. Oro, A. Tiripicchio and M. Tiripicchio-Camellini, J. Chem. Soc., Dalton Trans., 1991, 255; 1990, 1493; E. S. Raper, J. R. Creighton and W. Clegg, Inorg. Chim. Acta, 1991, 183, 179.
- 19 M. B. Hursthouse, O. F. Z. Kahn, M. Mazid, M. Motevalli and P. O'Brien, *Polyhedron*, 1990, 9, 541.
- 20 J. P. Chesick and J. Donohue, Acta Crystallogr., Sect. B, 1971, 27, 1441.
- 21 D. R. Corbin, L. C. Francesconi, D. N. Hendrickson and G. D. Stucky, *Inorg. Chem.*, 1979, 18, 3069.
- 22 K. Yamanari, Y. Kushi, A. Fuyuhiro and S. Kaizaki, J. Chem. Soc., Dalton Trans., 1993, 403.
- 23 W. C. Hamilton, Acta Crystallogr., 1965, 18, 502.
- 24 S. R. Cooper and S. C. Rawle, Struct. Bonding (Berlin), 1990, 72, 1.

Received 14th August 1995; Paper 5/05435D