Synthesis, structures and redox properties of platinum metal phosphathia complexes: crystal structures of *cis*-[RuCl₂(RSC₂H₄SR)] \cdot 0.75Et₂O and cis -[RhCl₂(RSC₂H₄RS)] $PF₆$ ·CH₂Cl₂ (R = Ph₂PCH₂CH₂)

Neil R. Champness,^{*a*} Robin J. Forder,^{*a*} Christopher S. Frampton^{*b*} and Gillian Reid^{*,*a*}

^a*Department of Chemistry, University of Southampton, HighJield, Southampton SO1 7 IBJ, UK Roche Products Ltd,, Welwyn Garden City, Her fordshire AL7 3A Y, UK*

Reaction of $\lceil \text{RuCl}_2(\text{py})_4 \rceil$ (py = pyridine) with 1 molar equivalent of the new tetradentate acyclic phosphathia compound RSC₂H₄SR (Ph₂PCH₂CH₂SCH₂CH₂SCH₂CH₂PPh₂) or the macrocycle *meso*-Ph₂[14]aneP₂S₂ (4,8-diphenyl- 1,l I **-dithia-4,18-diphosphacyclotetradecane)** in refluxing toluene under a nitrogen atmosphere afforded the ruthenium(II) complexes $[RuCl_2(RSC_2H_4SR)]$ and $[RuCl_2(Ph_2[14]$ ane $P_2S_2)$] respectively as yellow solids. The crystal structure of $\text{[RuCl}_2(\text{RSC}_2\text{H}_4\text{SR})]$ -0.75Et₂O shows RSC₂H₄SR co-ordinated via all four donor atoms with the two P-donors occupying mutually trans co-ordination sites at Ru", and *cis*dichlorides completing the overall octahedral stereochemistry, Ru-S 2.294(1), 2.292(**I),** Ru-P 2.339(2), 2.335(2), Ru-Cl2.463(l), 2.463(1) A. Phosphorus-31 NMR spectroscopic studies on the macrocyclic species $[RuCl₂(Ph₂ [14]anePs₂)]$ are consistent with a *cis*-dichloro isomer in which one C1 is *trans* to P and the other trans to S. Cyclic voltammetry showed a reversible one-electron oxidation occurring at $E_+ = +0.16$ and $+0.32$ V *vs.* ferrocene-ferrocenium for [RuCl₂(RSC₂H₄SR)] and [RuCl₂(Ph₂[14]aneP₂S₂)] respectively. The complexes $[MCl_2(RSC_2H_4SR)]PF_6$ (M = Rh or Ir) have also been prepared. The structure of $[RhCl_2(RSC_2H_4SR)]PF_6\text{-}CH_2Cl_2$ shows discrete $[RhCl_2(RSC_2H_4SR)]^+$ cations adopting a very similar arrangement to that in the ruthenium (II) analogue, with Rh-P 2.352(2), 2.342(2), Rh-S 2.303(2), 2.297(2), Rh–Cl 2.370(2), 2.359(2) Å. Rhodium-103 NMR spectroscopy reveals a triplet at δ + 1405 $(J_{\rm RbP}$ 85 Hz).

Acyclic phosphine ligands are well known to form stable complexes with many metal ions,¹ whereas acyclic thioether complexes tend to be less stable, and often hydrolyse readily.² Macrocyclic thioethers, on the other hand, form complexes which are often significantly more robust with respect to demetallation.³ As part of a long-term project probing the differences in reactivity between phosphine ligands which involve cyclic *us.* acyclic arrangements, we have been looking at ways of incorporating phosphine functions into macrocyclic environments and comparing the chemistry of these new macrocyclic compounds with that of related acyclic ligands which possess similar donor sets. We have recently reported the synthesis of the mixed phosphathia macrocycle $Ph₂[14]$ aneP,S, (4,8-diphenyl- 1,l **l-dithia-4,8-diphosphacyclotetra**decane), together with its complexes of Pd^{II}, Pt^{II} and Rh^{III}.⁴ Specifically, the acyclic phosphathia ligands which we have chosen to study in parallel incorporate the phosphine functions at the termini, with the thioether functions internal to the chain. We anticipated that, as phosphines are better *o* donors compared to thioethers, this would assist in stabilisation of the mixed phosphine-thioether co-ordination, inhibiting decomplexation of the more weakly bound thioethers in solution. The copper(1) complex $\left[\text{Cu}(\text{RSC}_2\text{H}_4\text{SR})\right]^+$ (R = $Ph_2PC_2H_4$) shows tetrahedral ligation via a P_2S_2 -donor set,⁵ while the gold(t) complexes $[AuL]PF_6$ (L = RSC₂H₄SR or $RSC₃H₆SR$) on the other hand adopt geometries intermediate between linear (P₂) and tetrahedral (P₂S₂), involving longrange, weak $Au \cdots S$ interactions of *ca.* 3 Å .⁶ This paper describes the synthesis, spectroscopic characterisation and redox properties of $[RuCl_2(RSC_2H_4SR)]$, $[MCl_2(RSC_2 H_4$ SR)] PF_6 (M = Ir or Rh) and the macrocyclic species $\text{[RuCl}_2(\text{Ph}_2[14]\text{aneP}_2\text{S}_2)]$. We are not aware of any other examples of ruthenium complexes involving phosphine or phosphathia macrocycles. Single-crystal structure determinations on $[RuCl_2(RSC_2H_4SR)]$ 0.75Et₂O and $[RhCl_2(RSC_2 H_4$ SR)]PF₆·CH₂Cl₂ are also reported.

ALTO

Results and Discussion

Reaction of $[RuCl_2(py)_4]$ (py = pyridine) with 1 molar equivalent of $meso-Ph₂[14]aneP₂S₂$ in refluxing toluene under a nitrogen atmosphere gave a yellow solution. Upon cooling a yellow solid was deposited which was filtered off and recrystallised from CH_2Cl_2 -diethyl ether. The FAB mass spectrum (3-nitrobenzyl alcohol matrix) shows peaks at $m/z =$ 557, 521 and 446, with the correct isotopic distributions for 557, 521 and 446, with the correct isotopic distributions for $\left[\begin{array}{cc} ^{102}Ru^{35}Cl(Ph_2[14]aneP_2S_2)\end{array}\right]^+$, $\left[\begin{array}{cc} ^{102}Ru(Ph_2[14]aneP_2S_2-\end{array}\right]$ $[H)]^+$ and $[{}^{102}\text{Ru}(P\bar{h}[14]\bar{a}neP_2S_2 + H)]^+$ respectively. The IR spectrum (CsI disc) shows two peaks at 309 and 283 cm^{-1} assigned to $v(Ru-Cl)$. Phosphorus-31 NMR spectroscopy (145.8 MHz, CH_2Cl_2 -CDCl₃) shows a pair of doublets at δ + 63.5 and $+54.7$ $(^{2}J_{PP} = 40$ Hz), indicative of a *cis*-dichloro stereochemistry. These signals are shifted downfield of free $meso-Ph₂[14]aneP₂S₂$ by some 80-90 ppm, diagnostic of formation of a five-membered chelate ring at each P-donor and thus confirming that in addition to the phosphines the thioether functions are also co-ordinated in solution.' These results, together with 'H NMR, **UVjVTS** spectroscopic and microanalytical data, strongly support the formulation cis-[Ru- $Cl_2(Ph_2[14]$ ane P_2S_2] for this product, in which one phosphine

donor occupies a site *trans* to **S** while the other lies *trans* to CI-, as illustrated in Fig. I.

The cis-dichloro stereochemistry proposed for [Ru- $Cl_2(Ph_2[14]$ ane $P_2S_2)$] contrasts with the structure which we reported previously for the rhodium(III) cationic species $[RhCl₂(Ph₂ [14]aneP₂S₂)]⁺$ in which a *trans* dichloride arrangement is observed in the solid state by X-ray crystallography and in solution by $31P NMR$ spectroscopy.⁴ This difference is presumably principally a consequence of the slightly larger ionic radius for Ru^{II} *us.* Rh^{III} *(ca.* 0.74 and 0.665 Å respectively), $8, *$ and illustrates a fine balance between the constraints of the cavity size available for $Ph₂[14]$ ane $P₂S₂$ and the strain imparted particularly by the phenyl rings on the P-donors on a folded form of $meso-Ph_2[14]$ ane P_2S_2 . Indeed, we commented previously that the related tetrathioether macrocyclic species $[RhCl_2([14]aneS_4)]^+$,⁹ $[IrCl_2([14]aneS_4)]^{+10}$ and $\left[\text{RuCl}_{2}(\left[14\right] \text{aneS}_{4})\right]^{11}$ ($\left[14\right]$ aneS₄ = 1,4,8,11-tetrathiacyclotetradecane) all adopt *cis* arrangements of the Cl^- ligands with the macrocycle in a folded conformation.

We have also investigated the co-ordination chemistry of the related acyclic P_2S_2 donor RSC_2H_4SR ($Ph_2PCH_2CH_2SCH_2$ - $CH₂SCH₂CH₂PPh₂$) in which the P donors are located at the termini of the chain. We anticipated that placing the better σ donors at the termini would render the resultant complexes more stable with respect to demetallation. This open-chain compound was prepared by modification of a literature method.¹² Thus, PPh₂H was treated first with LiBuⁿ in dry, degassed tetrahydrofuran (thf) solution, followed by 1 molar equivalent of SCH_2CH_2 . Addition of 0.5 molar equivalents of $BrCH₂CH₂Br$ to the resulting yellow solution, followed by hydrolysis, extraction (diethyl ether) and recrystallisation from CH_2Cl_2 -diethyl ether gave RSC_2H_4SR as a white solid $(^{31}P$ NMR δ -16.3; FAB mass spectrum $m/z = 519$, $[RSC₂H₄SR + H]⁺$). s prepare
s, PPh₂H
ydrofurar
CH₂CH₂.

The compound RSC_2H_4SR , reacts with 1 molar equivalent of $\lceil \text{RuCl}_2(\text{py})_4 \rceil$ in refluxing degassed toluene to afford an orange air-stable solid which was filtered off and recrystallised from CH_2Cl_2 -diethyl ether. The FAB mass spectrum shows molecular ion peaks at $m/z = 690$, 655 and 627 with the correct isotopic distributions for $\left[{}^{102}Ru^{35}Cl_2(RSC_2H_4SR) \right]^+$, correct isotopic distributions for $\left[{}^{102}Ru^{35}Cl(RSC_2H_4SR) \right]^+$, $\left[{}^{102}Ru^{35}Cl(RSC_2H_4SR - C_2H_4) \right]^+$ respectively. These data, together with ¹H NMR, UVjVIS spectroscopic and microanalytical data, confirm the formulation $[RuCl₂(RSC₂H₄SR)]$. The ³¹P NMR spectrum (145.8 MHz, CDCl₃) shows a singlet at δ +42.7 confirming a single isomeric form in solution. Again, the large downfield shift relative to free $RSC₂H₄SR$ is indicative of a fivemembered chelate ring at each P-donor and hence strong evidence that the thioether functions are co-ordinated in solution.⁷ Upon co-ordination of linear tetradentate $RSC₂H₄SR$ to a six-co-ordinate metal ion several isomeric forms are possible.¹³ Specifically, the equivalence of the phosphine suggests that the complex adopts either a *trans* or *cis-* α form. Unambiguous assignment of Ru-CI stretches in the IR spectrum of $\lceil \text{RuCl}_2(\text{RSC},H_4\text{SR}) \rceil$ was not possible.

Fig. 1 Proposed structure of $[RuCl_2(Ph_2[14]aneP_2S_2)]$

* The ionic radius for Ru^{2+} is not given in ref. 8, however values for Ru^{3+} (0.68), Ru^{4+} (0.62) and Ru^{5+} (0.565 Å) are presented. Extrapolating these would give the ionic radius for Ru^{2+} as approximately 0.74 Å. Irrespective of this, since Ru^{3+} is larger than Rh^{3+} , it is clear that Ru^{2+} will be even larger.

In order to confirm the stereochemistry around the Ru^H ion a single-crystal structure determination of $\left[\text{RuCl}_{2}\right]\left(\text{RSC}_{2}\right)$ $S_{\rm R}$] \cdot 0.75Et₂O was undertaken. This shows (Fig. 2, Table 1) the Ru^{II} co-ordinated to all four donor atoms of the phosphathia ligand with cis-dichloride ligands completing a distortedoctahedral stereochemistry. Consistent with the solution 31P NMR data, the P-donors occupy mutually *trans* co-ordination sites in the crystalline form and hence are equivalent, with the ligand in the cis- α form, Ru-P(1) 2.339(2), Ru-P(2) 2.335(2), $Ru-S(1)$ 2.294(1), $Ru-S(2)$ 2.292(1), $Ru-CI(1)$ 2.463(1) and Ru-Cl(2) 2.463(1) Å. Notably, the trend observed in the bond distances around the Ru^{II} (*i.e.* Ru-S < Ru-P < Ru-C1) differs from that in *trans*- $[RhCl_2(Ph_2[14]aneP_2S_2)]^+$ (*i.e.* $Rh-P <$ Rh-S < Rh-CI), presumably due to the *trans* influence of the Cl^- ligands upon the metal-thioether bonding. The *cis* angles around the Ru lie in the range 85.6-94.2'; those involved in five-membered chelate rings are all less than 90°, reflecting the restricted bite size of the PCH₂CH₂S and SCH₂CH₂S linkages. It is noticeable that the particular co-ordination mode

Fig. 2 View of the structure of cis - $[RuCl_2(RSC_2H_4SR)]$ with the numbering scheme adopted; H atoms are omitted for clarity

Table 1 Selected bond lengths (A) and angles (") for *cis-* $[RuCl₂(RSC, H₄SR)]$

observed for RSC,H,SR in this complex *(cis-a)* does not necessitate that two adjacent five-membered chelate rings lie parallel *(i.e.* there are no $PCH_2CH_2SCH_2CH_2S$ linkages occupying meridional co-ordination sites as would occur in the *cis-p* forms). This avoids the additional ring strain that would otherwise occur. The structure determined for $\lceil \text{RuCl}_{2}(R-\cdot) \rceil$ SC_2H_4SR]. 0.75Et₂O contrasts with that reported for $CH₂CH₂P(Ph)CH₂CH₂(Ph)PCH₂CH₂PPh₂]$ in which a *trans*dichloro stereochemistry is observed, with all three chelate rings occurring around the equatorial co-ordination sites.¹⁴ It is likely that the high barrier to inversion at P and the steric effect of the Ph groups bound to the internal phosphines in $RP(Ph)C₂H₄(Ph)PR$ play a significant role in determining the stereochemistries of its complexes. $\text{[RuCl}_2\text{[RP(Ph)C}_2\text{H}_4\text{(Ph)PR}]\text{ [RP(Ph)C}_2\text{H}_4\text{(Ph)PR} = \text{Ph}_2\text{P-}$

The stereochemistries of $\lceil \text{RuCl}_{2}(\text{RSC}_{2}H_{4}\text{SR}) \rceil$ and $\lceil \text{Ru-H}_{2}(\text{RSC}_{2}H_{4}\text{SR}) \rceil$ $Cl_2(Ph_2[14]$ ane $P_2S_2)$], although both involving cis-dichloro arrangements, are markedly different. This is mainly a consequence of the acyclic *us.* macrocyclic configurations respectively. Clearly, unlike $RSC₂H₄SR$, it is not possible for $Ph₂[14]$ ane $P₂S₂$ to co-ordinate to a metal ion to give a P-trans-P arrangement. Irrespective of this, $Ph₂[14]$ aneP₂S₂ and $RSC₂H₄SR$ each co-ordinates *via* all four donor atoms to give stable complexes. Unfortunately to date we have been unable to grow crystals of $[RuCl_2(Ph_2[14]aneP_2S_2)]$ suitable for a crystal structure determination.

We have also investigated the redox properties of the ruthenium(II) complexes by cyclic voltammetry. In CH_2Cl_2 solution (0.1 mol dm⁻³ NBuⁿ₄BF₄ supporting electrolyte) *cis-* $[RuCl_2(Ph_2[14]aneP_2S_2)]$ shows a reversible one-electron oxidation at $E_+ = +0.32$ V *vs.* ferrocene-ferrocenium (Fig. 3), assigned to a $\overline{\text{Ru}^{\text{II}}-R\text{u}^{\text{III}}}$ redox couple. This couple is observed at $E_+ = +0.16$ V for cis-[RuCl₂(RSC₂H₄SR)]. These potentials are comparable with those for other dichlororuthenium(II) complexes involving phosphine and thioether ligands, e.g. $\text{[RuCl}_2(\text{Ph}_2\text{PCH}_2\text{CH}_2\text{PPh}_2)_2]^{0/+}$ $(E_{\frac{1}{2}} = +0.13 \text{ V})$ and *trans*- $\left[\text{RuCl}_{2}\right](\text{MeSCH}_{2}\text{CH}_{2}\text{SMe})_{2}\right]^{0/+}$ $(E_{\frac{1}{2}} = +0.14 \text{ V}).^{14}$

The related low-spin d⁶ complexes $[MCl_2(RSC_2H_4SR)]$ Pl $(M = Rh)$ or Ir) are obtained either by chloride abstraction from $[RhCl_3(RSC_2H_4SR)]$ (formed from $RhCl_3·3H_2O$ and RSC_2H_4SR in EtOH-water), or by reaction of [${IrCl}$ - $(C_8H_{14})_2$, with 0.5 molar equivalents of RSC₂H₄SR followed by oxidation by C1, and anion metathesis. The **FAB** mass spectra show highest-mass peaks with the correct isotopic patterns for $[RhCl_2(RSC_2H_4SR)]^+$ ($m/z = 691$) and $[IrCl_2$ -

Fig. 3 Cyclic voltammogram of cis -[RuCl₂(Ph₂[14]aneP₂S₂)] measured at 200, 100 and 50 mV s⁻¹ in CH₂CI₂ solution (0.1 mol dm⁻¹ $NBuⁿ₄BF₄$ supporting electrolyte) and relative to equimolar ferroceneferrocenium

 $(RSC₂H₄SR + H)⁺$ ($m/z = 781$), together with additional peaks corresponding to successive loss of C1 from these species. Proton NMR and IR spectroscopy and microanalytical data are also consistent with the formulation $[MCl_2(RSC_2 H_4$ SR)]PF₆ for these products.

The single-crystal structure of $[RhCl_2(RSC_2H_4SR)]PF_6$. CH,Cl, shows (Fig. 4, Table 2) two independent half cations in which the Rh^{III} ions occupy sites of crystallographic two-fold symmetry, with one PF_6 ⁻ anion in a general position in the asymmetric unit. The stereochemistry at Rh"' is very similar to that observed for $[RuCl_2(RSC_2H_4SR)]$ described above, with the cation showing a *cis-a* arrangement and similar trends in the metal-donor atom bond lengths and angles, $Rh(1)-P(1)$ Rh(2)-P(2) 2.342(2), Rh(2)-S(2) 2.297(2), and Rh(2)-C1(2) 2.352(2), Rh(1)-S(1) 2.303(2), Rh(1)-Cl(1) 2.370(2) Å,

Fig. 4 View of the structure of one of the two independent *cis-* $[RhCl₂(RSC₂H₄SR)]⁺$ cations with the numbering scheme adopted. Primed atoms are related to unprimed ones by a two-fold operation. The other cation is essentially indistinguishable; H atoms are omitted for clarity

Table 2 Selected bond lengths (A) and angles (") for *cis-*

2.359(2) Å. The ${}^{31}P_{2}{}^{1}H$ NMR spectra of $[MCl_{2}(RSC_{2}$ - H_4 SR)]PF₆ indicate that this stereochemistry and donor set is retained in solution, δ +41.1, $^{1}J_{\text{RhP}}$ = 85 Hz for M = Rh, δ + 28.0 for M = Ir. The ¹⁰³Rh NMR spectrum (11.4 MHz) of cis -[RhCl₂(RSC₂H₄SR)]PF₆ shows a triplet at δ + 1405 $({}^{1}J_{\text{RhP}} = 85$ Hz). This signal is intermediate between that observed for trans- $[RhCl₂(MeSCH₂CH₂SMe)₂]$ ⁺ (δ 2502-2585, mixture of invertomers)¹⁶ and trans-[RhCl₂{ o -C₆H₄(P- $Me₂$ ₂}₂]Cl (δ 628, qnt, ¹ J_{RbP} 80 Hz).¹⁷ It has already been noted that, for a given ligand set, changing from a cis to a *trans* arrangement results in a downfield shift, $e.g. cis$ - $[RhCl_2$ - $(AsMe₃)₄$ ⁺ (δ 1455) and *trans*-[RhCl₂(AsMe₃)₄]⁺ (δ 1946).¹⁸

The spectroscopic results obtained confirm that ligation of $RSC₂H₄SR$ to the octahedral metal centres Ru^{II} , Rh^{III} or Ir^{III} yields a single isomeric form. Although low-temperature NMR spectra were not recorded, ligand exchange would not be expected in these low-spin d^6 compounds. The spectroscopic data are consistent with the cis - α arrangement observed in the solid state for Ru^{II} and Rh^{III} being retained in solution. The compound meso-Ph₂[14]aneP₂S₂, on the other hand, coordinates to \mathbb{R}^{h} to give exclusively the *trans*-dichloro isomer, whereas the larger Ru^H is not compatible with the hole size available, and spectroscopic data indicate formation of the cisdichloro isomer. We are currently investigating the possibility of chloride abstraction from these cis-dichloro species to yield substitution-labile co-ordination sites for uptake of for example N_2 , O_2 or olefins.

Experimental

Infrared spectra were measured as KBr or CsI discs or as Nujol mulls using a Perkin-Elmer 983 spectrometer over the range 200-4000 cm⁻¹, solution UV/VIS spectra in quartz cells (1 cm path length) using a Perkin-Elmer Lambda19 spectrophotometer, mass spectra by electron impact (EI) or fast-atom bombardment (FAB) using 3-nitrobenzyl alcohol as matrix on a VG Analytical 70-250-SE normal-geometry double-focusing spectrometer, ¹H and ¹³C- 1H NMR spectra using a Bruker AM300 spectrometer operating at 300 and 75.7 MHz respectively, and ³¹P and ¹⁰³Rh NMR spectra in 10 mm NMR tubes containing $10-15\%$ deuteriated solvent using a Bruker AM360 spectrometer operating at 145.8 and 11.4 MHz respectively and referenced to 85% H₃PO₄ (³¹P, δ 0) and Ξ = 3.16 MHz ($103Rh$, δ 0). Microanalyses were obtained from the Imperial College Microanalytical Laboratory. Cyclic voltammetric experiments were performed using an EG & G Princeton Applied Research model 362 scanning potentiostat with 0.1 mol dm^{-3} NBuⁿ₄BF₄ supporting electrolyte, using a double platinum electrode as working and auxiliary electrode and a Ag--AgC1 reference electrode. **All** potentials are quoted versus ferrocene-ferrocenium. The compounds $[RuCl_2(py)_4]$ ¹⁹ and $PPh₂H²⁰$ were prepared by the literature methods and $Ph_2[14]$ ane P_2S_2 was obtained as described previously.⁴

(a) **Synthesis of [RuCI,(Ph,[14]aneP,S,)]**

To a solution of $[RuCl₂(py)₄]$ (56.0 mg, 0.11 mmol) in deoxygenated toluene was added $Ph_2[14]$ ane P_2S_2 (47.1 mg, 0.11 mmol) under a flow of nitrogen. This reaction mixture was refluxed under a nitrogen atmosphere for 6 h before cooling. A yellow precipitate formed during the reaction and after cooling to -10 °C overnight this solid was filtered off and washed with diethyl ether. The product was recrystallised from $CH₂Cl₂$ and diethyl ether and dried in vacuo (37 mg, 56%) (Found: C, 41.2; H, 4.9. $C_{30}H_{32}Cl_{2}P_{2}RuS_{2}CH_{2}Cl_{2}$ requires C, 40.8; H, 4.7%). FAB mass spectrum: $m/z = 557$, 521 and 446; calc. 557 for [¹⁰²Ru³⁵Cl(Ph₂[14]aneP₂S₂)]⁺, 522 for [¹⁰²Ru(Ph₂[14]ane- P_2S_2] + and 445 for $[{}^{102}Ru(Ph[14]aneP_2S_2)]^+$. NMR: ¹H (360 MHz, CDCl₃), δ 7.6–7.1 (m, 10 H, Ph) and 3.3–2.1 (m, 20 H, CH₂); ³¹P-{¹H} (145.8 MHz, CH₂Cl₂-CDCl₃, 300 K), δ

+63.5 (d, ²J_{PP} 40) and 54.7 (d, ²J_{PP} 40 Hz). UV/VIS (CH₂Cl₂): λ_{max} 330 (ϵ 1575 dm³ mol⁻¹ cm⁻¹) and 400 (sh) nm. IR (CsI disc): 3051w, 2917m, 1530w, 1184m, 1432vs, 1261m, 1102vs, 915w, 840w, 805m, 746m, 696vs, 486m, 309m and 283w cm-'.

(*b*) Synthesis of RSC₂H₄SR

The compound PPh,H (3.0 **g,** 16.1 mmol) was dissolved in dry, degassed thf (50 cm³) and cooled to 0 °C. *n*-Butyllithium in hexane (19.3 mmol) was added dropwise over ca. 30 min to give a deep red solution which was then cooled to -78 °C (acetone slush). Ethylene sulfide $SCH_2CH_2(0.96 \text{ cm}^3, 16.1 \text{ mmol})$ dissolved in dry, degassed thf (20 cm^3) was then added over 2 h, followed by $BrCH₂CH₂Br$ (1.5 g, 8.06 mmol) dropwise to give a light yellow solution which was stirred under a nitrogen atmosphere overnight. After hydrolysing with water, the product was extracted with diethyl ether, dried $(MgSO_a)$ and the solvent removed in *vacuo.* It was then recrystallised from CH,Cl,-EtOH to yield a white solid (3.57 **g,** 52%) (Found: C, 68.9; H, 6.2. $C_{30}H_{32}P_2S_2$ requires C, 69.5; H, 6.2%). FAB mass spectrum: $m/z = 519$; calc. 518 for RSC₂H₄SR. NMR: ¹H (300) MHz, CDCI,), 6 7.5-7.3 (m, 20 H, Ph), 2.65 (m, 4 H, CH,P), 2.55 (m, 4 H, SCH₂CH₂P), and 2.30 (m, 4 H, SCH₂CH₂S); ¹³C-{¹H} (75.5 MHz, CDCl₃), δ 137.89 (quaternary C of Ph), 132.80, 129.01, 128.75 (CH of Ph), 31.12 (SCH₂CH₂S), 28.75 CH₂Cl₂-D₂O), δ -16.3. IR (CsI disc): 3066m, 3045w, 2941w, 29 19m, 1583m, I478vs, 1430vs, 1393w, 1326w, 1306w, 1280m, 1207m, 1178m, 1130w, 1097m, 1068m, 1025m, 998m, 907m, 843w, 757w, 737vs, 696vs, 531w, 504m, 479m, 438w and 395w cm^{-1} . (PCH_2CH_2S) , 28.70 (d, PCH₂, ² J_{PC} = 37 Hz); ³¹P (145.8 MHz,

(c) Synthesis of *cis-* [**RuCl,(RSC,H,SR)]**

To a refluxing solution of $RSC₂H₄SR$ (50 mg, 0.097 mmol) in degassed toluene (35 cm³) was added dropwise $\lceil \text{RuCl}_2(\text{py})_4 \rceil$ (47 mg, 0.097 mmol) dissolved in CH_2Cl_2 -MeCN-toluene $(1:1:2 \text{ v/v}, 20 \text{ cm}^3)$. After refluxing this orange solution for 12 h the solvent volume was reduced to *ca. 5* cm3. Addition of diethyl ether afforded the product as a yellow solid which was recrystallised from CH₂Cl₂-diethyl ether and dried in vacuo (57) mg, 82%) (Found: C, 48.2; H, 4.2. C₃₀H₃₂Cl₂P₂RuS₂·CH₂Cl₂ requires C, 48.0; H, 3.8%). FAB mass spectrum: *m/z* = 690, 655 and 627; calc. 690 for $[^{102}Ru^{35}Cl_2(RSC_2H_4SR)]^+,$ 655 for $[{}^{102}Ru^{35}Cl(RSC_2H_4SR)]^+$ and 627 for $[{}^{102}Ru^{35}Cl(RSC_2-H_4SR - C_2H_4)]^+$. NMR (CDCl₃): ¹H (300 MHz), δ 7.5–7.3 (m, 20 H, Ph) and 3.3–1.8 (m, 12 H, CH₂); ³¹P (145.8 MHz), δ $+$ 42.7. UV/VIS (CH₂Cl₂): λ_{max} 254 (ε 24 000), *ca.* 360 (sh) (*ca.* 600) and 450nm (380 dm³ mol⁻¹ cm⁻¹). IR (CsI disc): 3050w, 2961w, 2917w, 1570w, 1482m, 1431vs, 1407m, 1314w, 1260m, 1 189m, 1096vs, 1028m, 899w, 8 12m, 742m, 702vs, 662w, *5* 17m, 495m and 270w cm^{-1} .

(d) **Single-crystal structure determination on** *cis-* $[RuCl₂(RSC₂H₄SR)] $\cdot 0.75Et₂O$$

Orange prismatic crystals were obtained by vapour diffusion of $Et₂O$ into a solution of the complex in $CH₂Cl₂$. The selected crystal $(0.20 \times 0.10 \times 0.30 \text{ mm})$ was coated in silicone oil, mounted on a glass fibre and cooled under a stream of N_2 gas to prevent solvent loss.

Crystal data. $C_{33}H_{39.5}Cl_2O_{0.75}P_2RuS_2$ *M* = 746.2, monoclinic, space group $P2_1/n$, $a = 13.080(5)$, $b = 17.822(2)$, $c =$ 15.003(1) Å, $\beta = 102.87(2)°$, $U = 3409(1)$ Å³ [from 2θ values of 25 reflections measured at $\pm \omega$ (39.4 $\leq 2\theta \leq 39.9^{\circ}$, $\lambda =$ 0.710 73 Å)], $Z = 4$, $D_c = 1.454$ g cm⁻³, $T = 123$ K, $\mu = 0.857$ mm^{-1} , $F(000) = 1534$.

Data collection and processing. Rigaku AFC7R four-circle diffractometer equipped with an Oxford Cryostreams low**Table 3** Fractional atomic coordinates for cis -[RuCl₂(RSC₂H₄SR)] \cdot 0.75Et₂O

temperature attachment, using graphite-monochromated Mo- K_{α} X-radiation, ω scans with ω -scan width = (1.68 + 0.35 tan θ ^o, 8040 data collected, 7710 unique ($R_{\text{int}} = 0.016$) (2 θ_{max} 54°, *h* 0-22, $k - 18$ to 18, $l - 18$ to 17) giving 6511 reflections with $F \geq 5\sigma(F)$ for use in all calculations. No significant crystal decay or movement was observed. The data were corrected for Lorentz and polarisation effects. No absorption correction was applied since preliminary **w** scans revealed no significant absorption.

Structure solution and refinement. The structure was solved by direct methods $2¹$ and developed by using iterative cycles of fullmatrix least-squares refinement and Fourier-difference syntheses which located **all** non-H atoms in an ordered [RuCl,(R- $SC₂H₄SR$] molecule.²² During refinement a partially occupied (75%) Et₂O solvent molecule was found to be present. All non-H atoms were refined anisotropically, while H atoms were located in the difference map and their coordinates fixed. The weighting scheme $w^{-1} = \sigma^2(F)$ gave satisfactory agreement analyses. At final convergence R , $R' = 0.043$, 0.068 respectively, $S = 5.59$ for 380 refined parameters. The final ΔF synthesis showed no peaks above 1.31 or below -0.88 e A^{-3} and the maximum $\Delta/\sigma = 0.01$. Fractional atomic coordinates are listed in Table 3.

(e) Synthesis of *cis*-[$RhCl₂(RSC₂H₄SR)$] $PF₆$

The phosphine (0.0986 g, 0.190 mmol) was dissolved in degassed ethanol (15 cm³) and heated to reflux; $RhCl₃·3H₂O$ (50 mg, 0.19 mmol) was dissolved in water-ethanol $(1:2 \text{ v/v}, 15)$ cm³) and added dropwise over 1 h. Reflux was continued for 1.5 h before the resulting orange solution was allowed to cool. **A** small amount of yellow ethanol-insoluble solid was filtered off. The solvent was then removed *in uacuo* and the product redissolved in CH,CI, and filtered once again. The product, thought to be $RhCl₃(RSC₂H₄SR)$, was precipitated as a pale orange solid by the addition of diethyl ether (1 16 mg, 84%). This was dissolved in MeCN-CH₂Cl₂ (1 : 1 v/v, 30 cm³) and refluxed for 1 h with TIPF₆ (56 mg, 0.16 mmol). The resulting yelloworange solution was filtered through Celite to remove the white TICI precipitated. The product was precipitated from CH_2Cl_2 diethyl ether as a yellow powder and dried *in vacuo* (76 mg, 48%) (Found: C, 39.5; H, 3.9. $C_{30}H_{32}Cl_{2}F_{6}P_{3}RhS_{2} \cdot CH_{2}Cl_{2}$ requires C, 40.4; H, 3.7%). FAB mass spectrum: $m/z = 691$, 656 and 621; calc. 691 for $\binom{103}{103}$ Rh³⁵Cl₂(RSC₂H₄SR)]⁺, 656 for

 $[^{103}Rh^{35}Cl(RSC₂H₄SR)]⁺$ and 621 for $[^{103}Rh(RSC₂H₄ SR$)]⁺. NMR: ¹H (300 MHz, CDCl₃), δ 7.9–7.3 (m, 20 H, Ph) and 3.5–2.6 (m, 12 H, CH₂); ³¹P (145.8 MHz, CH₂Cl₂-D₂O), δ +41.1 (d, 2 P, ¹J_{RhP} = 85, RSC₂H₄SR) and -146.3 (spt, 1 P, PF₆⁻); ¹⁰³Rh (11.4 MHz, MeCN-CD₃CN, 300 K), δ + 1405 (t, 85 Hz). UV/VIS (MeCN): λ_{max} 226 (sh) (ϵ *ca.* 33 *000),* 286 (sh) *(ca.* 18 *500),* 316 (23 000) and 421 (sh) nm *(ca.* 550 dm3 mol-' cm-'). IR (CsI disc): 3060w, 2963w, 1570w, 1482m, 1433vs, 1406m, 1337w, 1314w, 1262w, 1191w, 1097m, 1027m, 998w, 840vs, 745m, 709m, 694m, 558vs, 520m, 368w and $336w$ cm⁻¹.

(f) **Single-crystal structure determination on** *cis-*[**RhC12(RSC2H,SR)] PF6*CH2Cl,**

Orange rhomb-shaped crystals were obtained by vapour diffusion of Et_2O into a solution of the complex in CH_2Cl_2 . The selected crystal (0.60 \times 0.44 \times 0.26 mm) was coated in silicone oil, mounted on a glass fibre and cooled under a stream of N_2 .

Crystal data. $C_{31}H_{34}Cl_4P_2RhS_2 + PF_6^-$, $M = 922.4$, monoclinic, space group $C2/c$, $a = 25.183(5)$, $b = 15.622(5)$, $c =$ 22.520(5) Å, $\beta = 123.90(1)$ °, $U = 7352(3)$ Å³ [from 20 values of 23 reflections measured at $\pm \omega$ (39.0 $\leq 2\theta \leq 39.9^{\circ}$, $\lambda =$ 0.710 73 Å)], $Z = 8$, $D_c = 1.666$ g cm⁻³, $T = 123$ K, $\mu = 1.052$ mm^{-1} , $F(000) = 3712$.

Data collection and processing. As for $\lceil \text{RuCl}_{2}(RSC_2H_{4}SR) \rceil$ except ω scan width = $(1.78 + 0.35 \tan \theta)$ ^o, 6157 data collected, 6004 unique $(R_{\text{int}} = 0.051)$ (2 θ_{max} 48°, *h* 0–32, *k* 0–20, *l* – 29 to 29) giving 4248 reflections with $F \geq 5\sigma(F)$ for use in all calculations.

Structure solution and refinement. Structure solution as for $[RuCl₂(RSC₂H₄SR)]$ located all non-H atoms in the two independent half $[RhCl_2(RSC_2H_4SR)]^+$ cations, one complete PF_6^- anion and CH_2Cl_2 solvent molecule in the asymmetric unit.²² Since there were no identifiable faces on the crystal, at isotropic convergence the data were corrected for absorption using DIFABS *23* (maximum and minimum transmission factors $= 1.174$ and 0.868 respectively). All non-H atoms were refined anisotropically, while H atoms were placed in fixed, calculated positions. The weighting scheme $w^{-1} = \sigma^2(F)$ gave satisfactory agreement analyses. At final convergence R , $R' =$ 0.045, 0.043 respectively, $S = 3.55$ for 425 refined parameters.

Table 4 Fractional atomic coordinates for *cis*-[RhCl₂(RSC₂H₄SR)]PF₆·CH₂Cl₂

The final ΔF synthesis showed no peaks above 1.43 or below -1.02 e Å⁻³ and the maximum $\Delta/\sigma = 0.01$. Fractional atomic coordinates are listed in Table 4.

Complete atomic coordinates, thermal parameters and bond lengths and angles for both crystal structures have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, *J. Chern. SOC., Dalton Trans.,* 1996, Issue 1.

(g) **Synthesis of** [**IrCl,(RSC,H,SR)] PF,**

The complex $\left[\frac{\text{TrCl}(C_8H_{14})_2}{2}\right]$ (98 mg, 0.145 mmol) and RSC,H,SR (150 mg, 0.289 mmol) were added to degassed methanol (40 cm^3) giving a yellow solution, which was refluxed overnight under N_2 . On cooling to 0 °C a solution of Cl₂ in CCI₄ was added $(\approx 5 \text{ cm}^3)$, causing the colour to fade. After stirring for 10 min the solvent was removed *in uacuo.* The resulting solid was refluxed in water (80 cm³), NH_4PF_6 (100 mg) was added in MeCN and reflux was continued overnight. Removal of the solvent *in uacuo* and precipitation from CH,CI, by addition of Et,O gave a pale yellow solid (147 mg, 45%). (Found: C, 38.8; H, 3.5. $C_{30}H_{32}Cl_{2}F_{6}IrP_{3}S_{2}$ requires C, 38.9; H, 3.5%). FAB mass spectrum: $m/z = 781$, 747 and 683; calc. 780 for **['921r35CI,(RSC,H,SR)]+,** 745 for ['921r35Cl(RSC,- H_4 SR)]⁺ and 682 for $\left[{}^{192}H_1(RSC_2H_4SR - C_2H_4 \right]^+$. NMR: 'H (300 MHz, CDCI,); 6 7.8-7.1 (m, 20 **H,** Ph) and 3.4-2.2 (m, 12 H, CH₂); ³¹P (145.8 MHz, CH₂Cl₂-CDCl₃) δ +28.0 (2P, $RSC₂H₄SR$) and -146.3 (spt, 1P, $PF₆^-$). IR (CsI disc): 3053w, 2963w, 2920w, 1570w, 1482m, 1432vs, 1405w, 131 lw, 1272w, 1162w, 1099m, 1027w, 998w, 840vs, 744m, 695m, 558vs, 537m, 526m, 494w and 375w cm-'.

Acknowledgements

We thank the EPSRC and the University of Southampton for support and Johnson Matthey plc for generous loans of platinum metal salts.

References

¹*The Chemistry of Organophosphorus Compounds,* ed. F. R. Hartley, Wiley, New York, 1990, vol. 1.

- 2 **S.** G. Murray and F. R. Hartley, *Chem. Rev.,* 1981,81, 365.
- 3 A. J. Blake and M. Schroder, *Ado. Inorg. Chem.,* 1990, 35, **1; S.** R. Cooper and **S.** C. Rawle, *Struct. Bonding (Berlin),* 1990, 72, 1.
- 4 N. R. Champness, C. **S.** Frampton, G. Reid and D. A. Tocher, *J. Chem. Soc., Dalton Trans.,* 1994, 303 1.
- 5 C. L. Doel, C. S. Frampton, A. M. Gibson and G. Reid, *Polyhedron*, 1995,14,3139.
- 6 A. M. Gibson and G. Reid, *J. Chem. SOC., Dalton Trans.,* 1996, following paper.
- 7 P. Garrou, *Chem. Rev.,* 1981,81,229.
- 8 R. **D.** Shannon, *Actu Crystallogr. Sect. A,* 1976, 751.
- 9 A. J. Blake, G. Reid and M. Schroder, *J. Chem. SOC., Dalton Trans.,* 1989, 1675.
- 10 A. J. Blake, R. 0. Gould, G. Reid and M. Schroder, *J. Organomet. Chem.,* 1988,356,389.
- 11 T.-F. Lai and C.-K. Poon, *J. Chem.* Soc., *Dalton Trans.,* 1982, 1465.
- 12 Y.-M. Hsiao, **S. S.** Chojnacki, P. Hinton, J. H. Reibenspies and **M.** Y. Darensbourg, *Organometallics,* 1993, 12, 870.
- 13 See D. A. House, in *Comprehensive Coordination Chemistry,* eds. R. D. Gillard, J. A. McCleverty and G. A. Wilkinson, Pergamon, Oxford, 1987, vol. 2.
- 14 A. **V.** Rivera, E. R. De Gil and **B.** Fontal, *Inorg. Chim. Acta,* 1985, 98, 153.
- 15 N. R. Champness, W. Levason, D. Pletcher and M. Webster, *J. Chem. Soc., Dalton Trans.,* 1992, 3243.
- 16 H. C. E. McFarlane, W. McFarlane and R. J. Wood, *Bull. SOC. Chim. Belg.,* 1976, 85, 864.
- 17 **S.** R. Preece, Ph. D. Thesis, University of Southampton, 1995.
- 18 See B. E. Mann, in *Transition Metul Nuclear Magnetic Resonance,* ed. P. **S.** Pregosin, Elsevier, Amsterdam, 1991.
- 19 **I.** P. Evans, A. Spencer and G. Wilkinson, *J. Chem. Soc., Dalton Trans.,* 1973, 204; 1770.
- 20 V. D. Bianco and **S.** Doronzo, *Inorg. Synrh.,* 1976, 16, 161.
- 21 SHELXS 86, program for crystal structure solution, G. M.
- 22 TEXSAN Crystal Structure Analysis Package, Molecular Structure Sheldrick, *Acta Crystallogr., Sect. A,* 1990, 46,467.
- Corporation, Houston, TX, 1992.
- 23 DIFABS, An Empirical Absorption Correction Program, N. Walker and D. Stuart, *Arta Crystallogr., Sect. A,* 1983,39, 158.

Received 9th October 1995; Paper 5/06628J