Face *versus* **vertex co-ordination of tridentate crown thioethers to trinuclear cobalt clusters**

Corinne Renouard," Gerd Rheinwald," Helen Stoeckli-Evans," Georg Siiss-Fink,' Dario Braga** **7b* **and Fabrizia Grepioni** '

^a Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, *Switzerland*

Dipartirnento di Chimica G. Ciamician, Universith di Bologna, Via Selmi 2, 40126 Bologna, Italy

The co-ordination of the six-membered crown thioethers 1,3,5-trithiane, 2-methyl-, 2,4-dimethyl-, 2,4,6 trimethyl-, 2-benzyl- and 2,4,6-tribenzyl- 1,3,5-trithiane and the nine-membered crown thioether 1,4,7 trithiacyclononane to the cobalt skeleton of various $Co₃C$ clusters was studied. With trithiane and its derivatives complexes of the type $[Co_3(CO)_6(\mu_3-CR)(\mu_3-SCHR^3)$ (R = Cl, Me or Ph; R¹- $R³ = H$, Me or CH₂Ph) were obtained, whereas the nine-membered crown thioether gave compounds of the type $[Co_3(CO)_5(\mu$ -CO)(μ_3 -CR){(SCH₂CH₂)₃}]. The molecular and crystal structures of several representatives have been investigated by single-crystal X-ray diffraction. It has been shown that the trithiane ligand invariably occupies the axial co-ordination sites on the three cobalt atoms, while the trithiacyclononane chelates on one cobalt atom. The intermolecular networks of hydrogen-bonding interactions of the C-H \cdots O type between the thioether hydrogens and the CO ligands have been investigated and compared with those present in other crystalline clusters carrying thioether ligands.

The co-ordination properties of crown thioethers are at present extensively studied, and they have been shown to co-ordinate more strongly to metals than do simple thioethers.' Crown thioethers containing three sulfur atoms are potentially tridentate ligands, particularly interesting in cluster chemistry. The six-membered crown thioether **1,3,5-trithiacyclohexane** was found to co-ordinate by its three sulfur atoms to a triangular face of a metal cluster. Reaction with $[M_4(CO)_{12}]$ $(M = Ir$ or Rh) gives $[Ir_4(CO)_9(\mu_3-S_3(CH_2)_3)]$ $(M = Ir^2$ or Rh³) and with $\left[\text{Ru}_3(\text{CO})_{12}\right]$ the cluster $\left[\text{Ru}_3(\text{CO})_6(\mu\text{-CO})_3\right]$ $\{\mu_3-S_3(CH_2)_3\}$ is obtained.^{4.5} By contrast, the nine-membered ring **1,4,7-trithiacyclononane** does not co-ordinate to a triangular face of a metal cluster. Reaction with where the ligand is bound to one ruthenium atom only and, under harsher conditions, $[Ru_6(CO)_{14}(\mu_5-C)\{\mu_4-S_3(CH_2-C)\}$ $CH₂$)₂}] where a C₂H₄ unit of the crown thioether has been lost.⁶ With $[Ru_3(CO)_{12}]$ the crown thioether also undergoes fragmentation with loss of a C_2H_4 unit to give $\lceil \text{Ru}_3(\text{CO})_9 \{\mu-S_3(\text{CH}_2\text{CH}_2)\}\rceil$ in which two ruthenium atoms are $co-$ ordinated.⁴ The twelve-membered ring 1,5,9-trithiacyclododecane co-ordinates always to one or two metal atoms of a metal cluster: with $[Os₃(CO)₁₂]$ the reaction gives $[Os_3(CO)_{11} \{S_3(CH_2CH_2CH_2)_{3}S\}]$ and $[Os_4(CO)_{13} \{\mu-S_3 (CH_2CH_2CH_2)_{3-}S_1^3$.⁷ The reaction with $[Ru_3(CO)_{12}]$ gives $\left[\text{Ru}_6(\text{CO})_{16} \left\{\mu-S_3(\text{CH}_2\text{CH}_2\text{CH}_2)\right\}\right]$, and a tetra- and a pentanuclear side-product the structure and the co-ordination mode of which are not known.7 From the reaction with $[Ru_5(CO)_{15}(\mu_5-C)]$ the clusters $[Ru_5(CO)_{13}(\mu_5-C)(\mu-S_3 CH₂$, $-S_i$] have been isolated and characterized.⁸ $\lceil \text{Ru}_6(CO)_{17}(\mu_6-C) \rceil$ yields $\lceil \text{Ru}_6(CO)_{14}(\mu_6-C) \{ S_3(CH_2CH_2)_{3} \} \rceil$ $\overline{\text{CCH}_2\text{CH}_2\text{CH}_2}$ ₃-S₃] and $\overline{\text{Ru}_5(\text{CO})}_{11}$ $\mu_5\text{-C}\text{C}_{14}$ $\text{-S}_3\text{CH}_2\text{CH}_2$

Recently, the intermolecular interactions in crystals of organometallic molecules and clusters have begun to be investigated.⁹ These studies have provided insight into the factors that govern crystal construction and cohesion with respect to those of organic systems. It has been shown that organometallic crystals constituted of neutral molecules can be treated as molecular crystals held together essentially by interactions of the van der Waals type¹⁰ and by hydrogen bonds.¹¹ It has also been found that a relevant contribution to

ALTO

cohesion in crystals of cluster molecules arises most because of the presence of hydrogen bonding of the C-H \cdots O type involving a CO ligand, almost ubiquitous in transition-metal cluster species.¹² It was indeed by studying the crystal structures of the two isomers of $[\text{Ir}_4(\text{CO})_9(\mu_3-S_3\bar{C}_3H_6)]^{13}$ that short intermolecular interactions between the H atoms of 1,3,5 trithiacyclohexane and the CO ligands were first detected. These early findings prompted us to carry out a systematic investigation by means of the structural data accumulated in the Cambridge Structural Database¹⁴ and the discovery of such interactions in a number of crystals constituted of neutral and charged species.¹⁵

In this paper we report the co-ordination chemistry of 1,3,5 trithiacyclohexane and its derivatives as well as of 1,4,7 trithiacyclononane with trinuclear cobalt clusters containing a μ_3 -CR capping ligand. The μ_3 *versus* single-metal co-ordination behaviour of these crown thioethers has been studied, as well as the influence of the substituents on the molecular and the crystal structure. Beside reporting on the synthesis and the solid-state molecular structure determination, this paper discusses the results of a comparison of several closely related crystal structures. The crystalline species described herein are all formed by molecules which differ little in terms of molecular shape and size and geometry so as to constitute a sample with significant statistical value.

Results and Discussion

The trinuclear clusters $[Co₃(CO)₉(\mu₃-CR)]$ (R = Cl, Me or Ph) react with the crown thioethers 1,3,5-trithiane, 2-methyl-, 2,4-dimethyl-, 2,4,6-trimethyl-, 2-benzyl- and 2,4,6-tribenzyl-1,3,5-trithiane under thermal conditions to give the trisubstitution products $[Co_3(CO)_6(\mu_3-CR)]\mu_3-CCHR^1SCHR^2$ -SCHR3)}] **1-17** (Scheme 1). The reaction takes place invariably in non-co-ordinating hydrocarbon solvents, as well as in ether solvents, but requires a temperature of 70 °C.

The nine-membered crown thioether 1,4,7-trithiacyclononane reacts under the same conditions with the clusters $[Co_3(CO)_9(\mu_3-CR)](R = Me \text{ or } Ph)$ to form complexes of the type $[Co_3(CO), (\mu-CO), (\mu_3-CR)$ (SCH, CH₂),)² **18** and **19** (Scheme 2). Complexes **1-19** are intensely coloured, air-stable and are soluble in polar solvents. Crystals have been obtained from dichloromethane-hexane or -heptane mixtures.

Spectroscopic characterisation

The infrared data (v_{CO} values) of complexes 1–19 are given in Table 1; **1-17** show basically the same carbonyl stretching pattern, comprising three characteristic absorptions in the region of terminal carbonyl ligands, and there is no indication of bridging carbonyl ligands. Complexes **18** and **19** also show three absorptions in this region, plus a weak band corresponding to a bridging carbonyl ligand.

The 'H NMR spectra of compounds **1-17** show the expected signals of the substituents R , R^1 , R^2 and R^3 (Table 1). As shown previously in the case of the ruthenium cluster $\lceil Ru_3 (CO)₉{\mu_3-S_3(CH_2)_3}$,⁵ the co-ordination of 1,3,5-trithiane to the trinuclear metal framework results in a differentiation of the two hydrogen atoms at each of the three methylene groups. Whereas in the free crown trithioether molecule all the hydrogen atoms are equivalent, in the co-ordinated 1,3,5-trithiane three hydrogens are found to be equatorial and three axial.⁴

The same differentiation between axial and equatorial hydrogen atoms is observed for the tricobalt clusters **1-3.** It gives rise to two doublets of equal intensity, the high-field doublet being assigned to the equatorial hydrides because of the deshielding influence of the cobalt atoms. The spectra of the substituted 1,3,5-trithiane derivatives **4-17** show that the substituents $R¹-R³$ always occupy equatorial positions, since only the resonances of the axial hydrogen atoms are observed. For **18** and **19** the 'H NMR spectra at ambient temperature show a multiplet for the $CH₂$ groups, but, at low temperature, the hydrogen atoms are different and give rise to four doublets with coupling constants in agreement with those of the clusters $[Ru_3(CO)_9{\mu-S_3(CH_2CH_2)_2}]^4$ and $[Ru_6(CO)_{14}(\mu_6-C){\mu_3}^ S_3(CH_2CH_2)_3$].⁶

Molecular structures

An X-ray determination was carried out for the following compounds: $[Co_3(CO)_6(\mu_3-CCl)(\mu_3-S_3C_3H_6)]$ 1, $[Co_3(CO)_6$ - $(\mu_3\text{-}CPh)(\mu_3\text{-}S_3C_3H_6)$] **3**, $[Co_3(CO)_6(\mu_3\text{-}CPh)(\mu_3\text{-}S_3C_4H_8)]$ **6**, $[Co_3(CO)_6(\mu_3-CMe)(\mu_3-S_3C_5H_{10})]$ **8**, $[Co_3(CO)_6(\mu_3-CMe)$ - $(\mu_3-S_3C_6H_{12})$] 11, $[Co_3(CO)_6(\mu_3-CMe)(\mu_3-S_3C_{24}H_{24})]$ 16 and $(C_{O_3}(CO)_5(\mu$ -CO) $(\mu_3$ -CMe) $\{(SCH_2CH_2)_3\}]$ **18** (Figs. 1-7). In all the structures the pyramidal $Co₃C$ skeleton of the parent clusters is preserved with the same distances and angles, within experimental error.¹⁶ The trithiane ligand bridges the cobalt atoms by its sulfur atoms, co-ordinated to the axial sites,

Fig. 1 Molecular structure of $[Co_3(CO)_6(\mu_3-CCI)(\mu_3-S_3C_3H_6)]$ 1

Scheme 2 Fig. 2 Molecular structure of $[Co_3(CO)_6(\mu_3\text{-}CPh)(\mu_3\text{-}S_3C_3H_6)]$ **3**

 $[Co_3(CO)_9(\mu_3\text{-}CR)]$ + **SCHR¹SCHR²SCHR³** $\frac{70}{20}$

 $[Co_3(CO)_6(\mu_3\text{-}CR)(\mu_3\text{-}(\text{SCHR}^3\text{SCHR}^2\text{SCHR}^3))] + 3 CO$

 $[Co₃(CO)₅(\mu-CO)(\mu₃-CR)(\mu-(SCH₂CH₂)₃)] + 3 CO$

1876 *J. Chem. SOC., Dalton Trans., 1996, Pages 1875-1883*

^{*a*} In CH₂Cl₂.^{*b*} In CDCl₃.^{*c*} In (CD₃)₂CO.^{*d*} At -50 °C.

Fig. 3 Molecular structure of $[Co_3(CO)_6(\mu_3-CPh)(\mu_3-S_3C_4H_8)]$ **6**

Fig. 4 Molecular structure of $[Co_3(CO)_6(\mu_3-CMe)(\mu_3-S_3C_5H_{10})]$ 8

Fig. 5 Molecular structure of $[Co_3(CO)_6(\mu_3\text{-}CMe)(\mu_3\text{-}S_3C_6H_{12})]$ **11**

thus acting as a six-electron donor. It retains its chair conformation on co-ordination with the R^1-R^3 substituents in equatorial positions. The increasing volume of R^1-R^3 has no influence on the chair conformation. The ring plane **S(** 1)-S(3) is

Fig. 6 Molecular structure of $\left[Co_3(CO)_6(\mu_3-CMe)(\mu_3-S_3C_{24}H_{24})\right]$ **16**

Fig. 7 Molecular structure of $\left[Co_3(CO)_5(\mu\text{-}CO)(\mu_3\text{-}CMe)\right\}$ (SCH₂- \overline{CH}_2 ₃}] 18

approximately parallel to the plane of the three cobalt atoms with a dihedral angle varying from 0.73 to 0.12°, decreasing in magnitude as the size of the trithiane substituents increases (Table 2). The average Co-S distance is almost constant, within the range of 2.267-2.273 A, for the six structures studied (Table 2). Concerning the structure of compound **18,** the three sulfur atoms of the ligand are co-ordinated to one cobalt atom, $Co(1)$. The bridging carbonyl is asymmetrically bonded $[Co(1)-C(14)]$ 2.018(4) and $Co(3) – C(14)$ 1.831(4) \AA] because of the coordination of the ligand on Co(1) and is situated below the plane of the metal atoms with respect to the apical carbon. The plane formed by the three sulfur atoms is almost perpendicular to that of the cobalt atoms [dihedral angle $85.36(3)°$]. One can also notice that the Co-S distances are significantly different $[Co(1)-S(1)$ 2.2444(12), $Co(1)-S(2)$ 2.2543(11) and $Co(1)-S(3)$ 2.3031(12) **A]** and the smallest Co-Co distance is not $Co(1)-Co(3)$ 2.5021(8) Å which is spanned by the bridging carbonyl but $Co(2)$ - $Co(3)$ 2.4738(8) Å.

It is known that, upon co-ordination, thioethers, as well as phosphines, increase the electron density of the metal skeleton, which would usually favour the formation of carbonyl bridges.¹⁷ Triaxial co-ordination, however, shows surprising results: carbonyl substitution by the tridentate phosphine $HC(PPh₂)₃$ in $\left[\text{Ru}_3(\text{CO})_{12}\right]$ gives rise to the formation of carbonyl bridges when the phosphorus ligand is triaxially co-ordinated, whereas equatorial substitution does not.¹⁸ By contrast, in $\text{[Ir}_{4}(\text{CO})_{12}\text{]}$, triaxial carbonyl substitution by $HC(PPh₂)₃$ does not give rise to carbonyl bridges, whereas equatorial substitution does.' However, carbonyl bridges were not observed in any of the clusters **1-17.** The average **S-Co-(CO)** angle varies from 100.8 to 104.1°. Owing to the axial co-ordination of the ligand, the

Table 2 Variation of intramolecular structure data in clusters **1,3,6,8, 11** and **16**

Compound	Interplanar angle (deviation)/ ^o	Average $Co-S/A$	Average $S-Co-(CO)/^{\circ}$	Average $C-C-S/°$
	0.28(0.07)	2.272	102.34	
3	0.18(0.13)	2.271	103.18	CONTINUES
6	0.73(0.07)	2.269	100.82	110.0
8	0.33(0.06)	2.267	103.7	109.4
11	0.20(0.05)	2.273	104.1	109.7
16	0.12(0.05)	2.273	103.8	109.7

Table 3 Hydrogen-bonding interactions in crystalline clusters **1,3,6,8, 11, 16** and **18**

position of the carbonyl bands is not influenced by the ligand substituents R^1-R^3 . In the case of tricobalt clusters, the coordination at a single metal gives rise to the formation of a bridging carbonyl; this is not observed with the cluster $[Ru_6(CO)_{14}(\mu_6-C)(S_3C_6H_{12})]$.⁶

Crystal structures

The crystal structures of compounds **1, 3, 6, 8, 11, 16** and **18** have been compared in terms of packing arrangement and hydrogen-bonding interactions of the C-H \cdots O type. As mentioned above this structural sample offers a good opportunity to investigate further the involvement of the thioether hydrogens in hydrogen bonding. In $\left[\text{Ru}_3(\text{CO})_9(\mu_{3}~\text{-}~\text{C})\right]$ $S_3C_3H_6$] the thioether H atoms have been found to form such bonds in the range 2.26-2.55 A, the shortest interactions being established by the bridging ligands. Similarly in $[\text{Ir}_4(\mu_3$ thioether hydrogens form links in the ranges 2.23-2.48 and 2.26-2.45 **A,** respectively. The hydrogen-bonding parameters for species **1, 3,6,8, 11, 16** and **18** are reported in Table **3.** CO ₃(CO)₆(μ_3 -S₃C₃H₆)] and in [Ir₄(CO)₉(μ_3 -S₃C₃H₆)] the

The computer program PLATON *9a* was used to analyse the geometrical features of the hydrogen-bonding patterns, while SCHAKAL 93^{19b} was used for the graphical representation of these patterns. The H-atom coordinates were normalized to give C-H distances (1.08 A) corresponding to typical neutrondiffraction values. We have adopted a threshold value of 2.8 Å for listing the C-H \cdots O interactions^{19c} although only the shortest and (presumably) the strongest interactions will be described in detail in the discussion of the individual crystal structures.

 $[Co_3(CO)_6(\mu_3-CCl)(\mu_3-S_3C_3H_6)]$ 1. The six oxygen atoms belonging to the CO ligands all participate in short $C-H \cdots O$ interactions with the radial H atoms of the CH₂ groups. Each H atom interacts with two oxygens $[H(2A) \cdots O(11) 2.377]$, $H(2A) \cdots O(21)$ 2.412, $H(3B) \cdots O(22)$ 2.401 Å], and the bifurcated pattern is doubled by an inversion centre relating the neutral molecules and the three surrounding ones, as shown in Fig. 8. The crystal contains disordered CH,CI, solvent molecules which could be detected because **of** the presence of spurious peaks in the Fourier map. Fig. 9 shows that indeed there is an empty 'channel' extending along the c -axis in the crystal packing, in which the disordered solvent molecule could be nicely accommodated.

 $[Co₃(CO)₆(μ_3 -CPh)(μ_3 -S₃C₃H₆)] 3. Cluster 3 differs from 1 by$ the presence of a phenyl group formally replacing the CI atom on the top of the cobalt triangle. Short $C-H \cdots$ O interactions

Fig. 8 Bifurcated hydrogen bonds in crystalline cluster 1

Fig. 9 Packing projection along the c axis of crystalline cluster 1, showing one of the channels (diagonal lines) probably occupied by the disordered solvent molecules. Shaded spheres represent Cl atoms

are observed between phenyl H atoms and CO ligands $[H(4B) \cdots$ O(32A) 2.455, H(8B2) \cdots O(12A) 2.498 Å], linking the two independent molecules (A and B in Fig. 10) in the crystal. A third short interaction $[H(9B1) \cdots O(14B) 2.496 \text{ Å}].$ present twice because of an inversion centre, links two molecules of type B.

 $[Co_3(CO)_6(\mu_3-CPh)(\mu_3-S_3C_4H_8)]$ 6. A methyl group formally replaces one radial H(CH,) atom in molecule **3.** A very short $CH \cdots$ O interaction is observed between a CO ligand and a radial H(CH₂) atom [H(9B) \cdots O(16) 2.329 Å]. Again, this interaction is present twice due to the presence of an inversion centre, resulting in the formation of a 'dimer' as shown in Fig. 11.

 $[Co_3(CO)_6(\mu_3-CMe)(\mu_3-S_3C_5H_{10})]$ 8. Short hydrogen-bond interactions involving the two H atoms belonging to the unique CH₂ moiety [H(5A) \cdots O(32) 2.410, H(5B) \cdots O(12) 2.380 Å], and larger distances connecting H (methyl) atoms with the carbonyl ligands, are reported in Table 3.

 $[Co_3(CO)_6(\mu_3-CMe)(\mu_3-S_3C_6H_{12})]$ 11. When the radial $H(CH₂)$ atoms are replaced by methyl groups the shortest $(< 2.6 \text{ Å}) \text{CH} \cdots \text{O}$ interactions are observed between the axial $H(CH₂)$ atoms and two CO ligands belonging to two neighbouring molecules in the crystal $[H(3) \cdots O(11) 2.591]$, $H(4) \cdots$ O(11) 2.538, $H(5) \cdots$ O(21) 2.424 Å], as shown in Fig. 12 [the long contact $O(21) \cdots H(4)$ 2.749 Å is also drawn in this figure, to indicate the presence of bifurcated interactions for both 0 atoms]. The methyl hydrogens are involved in systematically longer contacts.

 $[Co_3(CO)_6(\mu_3-CMe)(\mu_3-S_3C_{24}H_{24})]$ 16. The crystal structure of cluster **16** is particularly relevant because it affords an indirect proof of the importance of the C-H \cdots O interactions involving the thioether H atoms. Owing to the presence of the bulky benzyl groups distributed in a helicoidal fashion under

Fig. 10 Hydrogen-bonding interactions linking the two independent molecules **A** and **B** in crystalline cluster **3**

Fig. I1 'Dimer' formation *via* short hydrogen bonds in crystalline cluster **6**

Table 4 Experimental data, method of synthesis and elemental analysis for compounds **1-19**

		Ligand ^a			Analysis $(\%)^p$	
Compound	Method (t/h)		Mass/mg (yield, %)	Formula	C	H
	A(5)	L	66 (59)	$C_{10}H_6ClCo_3O_6S_3$	22.60 (22.65)	1.25(1.15)
	B(5)	I	72(64)	C_1 , H ₉ C ₀ , O ₆ S ₃	25.90 (25.90)	1.80(1.80)
	C(4)	I	35(32)	$C_{16}H_{11}Co_3O_6S_3$	33.65 (33.60)	2.00(1.95)
	C(2)	П	42 (37)	$C_{11}H_8ClCo_3O_6S_3$	24.55 (24.25)	1.95(1.50)
	C(7)	\mathbf{I}	36(31)	$C_{12}H_{11}Co_3O_6S_3$	27.65 (27.50)	2.30(2.10)
	C(3)	\mathbf{I}	32(29)	$C_{17}H_{13}Co_3O_6S_3$	34.85 (34.85)	2.30(2.25)
	B(3)	Ш	65 (56)	$C_{12}H_{10}C1Co_3O_6S_3$	23.10 (25.80)	2.05(1.80)
8	C(6)	Ш	35(30)	$C_{13}H_{13}Co_3O_6S_3$	29.20 (29.00)	2.35(2.45)
9	C(3)	Ш	81 (70)	$C_{18}H_{15}Co_3O_6S_3$	36.05 (36.00)	2.40(2.50)
10	B(5)	$\mathbf{I} \mathbf{V}$	75 (62)	$C_{13}H_{12}C1C_{03}O_6S_3$	27.55 (27.25)	2.05(2.10)
11	C(6)	IV	35(30)	$C_{14}H_{15}Co_3O_6S_3$	30.40 (30.45)	2.65(2.75)
12	A(4)	V	60(46)	C_1 ₇ H ₁₂ ClCo ₃ O ₆ S ₃	32.75 (32.90)	1.95(1.95)
13	B(5)	v	79 (60)	$C_{18}H_{15}Co_3O_6S_3$	36.10 (36.00)	2.70(2.50)
14	C(4)	V	39 (31)	$C_{23}H_{17}Co_3O_6S_3$	41.45 (41.70)	2.15(2.60)
15	A(4.5)	VI	54 (43)	$C_{31}H_{24}ClCo_3O_6S_3$	46.50 (46.50)	2.90(3.00)
16	C(6)	VI	82 (48)	$C_{32}H_{27}Co_{3}O_{6}S_{3}$	48.60 (49.25)	3.40(3.50)
17	C(5.5)	VI	80 (50)	C_3 , H_2 ₉ C ₀ , O_6S_3	52.75 (52.75)	3.35(3.45)
18	B(3.5)	VII	65 (62)	$C_{14}H_{15}Co_3O_6S_3$	30.60 (30.45)	2.45(2.75)
19	B(3.5)	VII	58 (50)	$C_{10}H_{17}Co_3O_6S_3.0.25CH_2Cl_2$	36.40 (36.40)	2.75(2.75)

" **1** = 1,3,5-Trithiane; **I1** = 2-methyl-I ,3,5-trithiane; **111** = **2,4-dimethyl-l,3,5-trithiane; IV** = **2,4,6-trimethyl-1,3,5-trithiane; V** = 2-benzyl-l,3,5 trithiane; $VI = 2,4,6$ -tribenzyl-1,3,5-trithiane; $VII = 1,4,7$ -trithiacyclononane. ^{*c*} Calculated values in parentheses.

Fig. 12 Bifurcated hydrogen-bonding interactions in crystalline cluster **11**

the cluster base, the volume occupation is optimized by tightly interlocking the benzyl groups belonging to two molecules (related by a centre of inversion) as shown in Fig. 13. In doing so, however, the H atoms of the 'good donor' **CH** units of the thioether are completely encapsulated within the benzyl sheath and are not available for close contacts with the neighbouring acceptor carbonyl oxygens. This results in a general lengthening of the intermolecular **He** *-0* 0 distances (see Table 3). The crystal structure of **16** represents a different compromise between close packing and the maximization of the $CH \cdots O$ interactions. The latter interactions are sacrificed to achieve a more efficient interlocking of the bulky groups. The solvent molecule (CH_2Cl_2) , on the contrary, participates in the hydrogen-bonding pattern *via* one Cl atom [C(11)- $H(11) \cdots C1(1)$ 2.700 Å] and two H atoms $[C(1S) H(1S1) \cdots S(3)$ 2.873, C(1S)-H(1S2) \cdots O(28) 2.575 Å].

 $[C_{0}$ ₃(CO)₅(μ -CO)(μ ₃-CMe){S₃(CH₂CH₂)₃}] **18.** The shortest hydrogen-bonding interactions in crystalline cluster **18** are bifurcated interactions between a terminal CO ligand and two adjacent **CH,** groups on a neighbouring molecule

Fig. 13 Tight interlocking **of** the benzyl groups belonging to two molecules related by an inversion centre in crystalline cluster **16.** Shaded parts represent the carbon atoms **of** the benzyl groups

 $[H(7A) \cdots O(9) 2.493, H(8B) \cdots O(9) 2.488 \text{ Å}]$. The bridging CO ligand is involved in one short $[H(4B) \cdots O(14) 2.500 \text{ Å}]$ and two long (> 2.7 Å) interactions, contrary to what is usually observed with bridging carbonyl ligands, more basic with respect to the terminal co-ordination. *5d* The different behaviour in **18** is probably due to the partial screening exerted by the trithiacyclononane on the $C(14)-O(14)$ ligand.

Conclusion

The co-ordination reactions studied, by varying the steric requirements of the crown thioethers, allow several conclusions to be drawn. First, only the six-membered crown thioethers are able to co-ordinate by their three sulfur atoms to a triangular face of a $Co₃C$ cluster in a μ_3 fashion. Secondly, in this case neither the substituents on the crown thioether nor on the methylidyne carbon of the cluster cause considerable changes in the molecular structure: both the chair conformation of the trithiane ligand and the terminal co-ordination mode of the six carbonyls of the cobalt framework are retained. Furthermore, we have been able to show that the hydrogen atoms of the thioether ligands are, in general, sufficiently polar to form preferential intermolecular interactions with the carbonyl

 \cdot

l,

oxygens. The distances for some of these $C-H \cdots O$ interactions are towards the lower limit of the range observed for these links and are strictly comparable to those usually established by **H** atoms bound to **sp2** carbons (such as in cyclopentadienyl ligands, for instance) rather than for those formed by CH₃ groups or other sp³-carbon atoms. In the absence of serious steric problems these interactions (which are abundant because of the large number of donor and acceptor groups available in these complexes) play a far from negligible role in the stabilization of the crystal structures.

Experimental

General comments

All manipulations, except the chromatographic separations, were carried out under nitrogen and with deoxygenated solvents. The clusters $[Co_3(CO)_9(CR)]$ (R = Cl, Me or Ph) were prepared by literature methods,²⁰ substitution of trithiane was done following the procedure of Edema et al.²¹ 1,3,5-Trithiane and **1,4,7-trithiacyclononane** were commercially available (Aldrich). All compounds were synthesized with one of the three methods described below and complementary information is given in Table **4.**

Syntheses

Method A. A mixture of the cobalt cluster (100 mg) and the crown thioether **(1** equivalent) was refluxed in tetrahydrofuran (thf) (20 cm³). After cooling, the solvent was evaporated under vacuum and the residue washed twice with hexane *(5* cm3), to remove unreacted starting materials. The desired compound was extracted twice with dichloromethane *(5* cm3) and the solution filtered. Slow diffusion of hexane (25 cm^3) into the dichloromethane solution allowed crystallization.

Method B. A mixture of the cobalt cluster (100 mg) and the crown thioether **(1** equivalent) was refluxed in heptane (20 cm3). The red-brown precipitate was filtered off from the hot solution and dissolved in dichloromethane **(8** cm3). Diffusion of heptane (10 cm^3) into this solution allowed crystallization.

Method C. A mixture of the cobalt cluster (100 mg) and the ligand (1 equivalent) was refluxed in thf (25 cm^3) . The solvent was evaporated in vacuum and the residue chromatographed on silica plates. Elution with dichloromethane-hexane *(3* : 2) gave three fractions: the first one gave unreacted parent cluster, the second was not identified and the third, extracted with dichloromethane, gave the desired product. Slow evaporation of a mixture of dichloromethane-hexane resulted in the formation of crystals.

Crystallography

Data for the crystal structure analyses were collected on a Stoe-Siemans AED2 four-circle diffractometer using graphitemonochromated Mo-K_{α} radiation ($\lambda = 0.71073$ Å) and with the *w-8* scan mode. The structures were solved by **SHELXS** 8622 and refined with **SHELXL** 93.23 Hydrogen atoms were included in calculated positions and treated as riding atoms. No absorption correction was applied for complexes **1** and **3;** for *6,* **8, 11, 16 and 18 the DIFABS program was used.^{19a} Refinement** was on *F2.* Experimental details are given in Table *5.*

Complete atomic co-ordinates, thermal parameters and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre. See Instructions for Authors, *J. Chem. SOC., Dalton Trans.,* 1996, Issue *1.*

Acknowledgements

Financial support by the Fonds National Suisse de la Recherche Scientifique and by the Ministero della Università e della Ricerca Scientifica e Tecnologica is gratefully acknowledged.

References

- 1 **S.** R. Cooper, *Ace. Chem. Res.,* 1988,21, 141.
- 2 G. Suardi, A. Strawczynski, R. Ros, R. Roulet, **F.** Grepioni and D. Braga, *Helv. Chim. Acta,* 1990, 73, 154.
- 3 R. J. Crowte, J. Evans and M. Webster, *J. Chem.* Soc., *Chem.* Commun., 1984, 1344.
- 4 **S.** Rossi, K. Kallinen, J. Pursianinen, **T.** T. Pakkanen and **T.** A. Pakkanen, *J. Organomet. Chem.,* 1992,440,367.
- 5 L. Hoferkamp, G. Rheinwald, H. Stoeckli-Evans and G. Suss-Fink, *Helv. Chim. Acta,* 1992,75, 2227.
- 6 R. D. Adams, **S.** B. Falloon, K. **T.** McBride and J. H. Yamamoto, *Organometallics,* 1995, 14, 1739.
- 7 A. J. Edwards, B. F. G. Johnson, F. K. Khan, J. Lewis and P. R. Raithby, *J. Organomet. Chem.,* 1992,426, C44.
- **8** R. D. Adams, **S.** B. Falloon and **K. T.** McBride, *Organometallics,* 1994,13,4870.
- 9 D. Braga and F. Grepioni, *Acc. Chem. Rex,* 1994,27, 51.
- 10 D. Braga and F. Grepioni, *Organometallics,* 1991,10,2563; 1992,11, 711; D. Braga, **F.** Grepioni, P. Sabatino and **A.** J. Gavezzotti, *J. Chem. Soc., Dalton Trans.,* 1992, 1185.
- 11 D. Braga, F. Grepioni, P. Sabatino and G. R. Desiraju, *Organometallics,* 1994, 13, 3532.
- 12 D. Braga, K. Biradha, F. Grepioni, V. R. Pedireddi and G. R. Desiraju, *J. Am. Chem. Soc.,* 1995, 117, 3156.
- 13 D. Braga and F. Grepioni, *J. Chem. Soc., Dalton Trans.,* 1993, 1 123.
- 14 F. H. Allen, J. **E.** Davies, J. J. Galloy, *0.* Johnson, 0. Kennard, C. **F.** Macrae and D. G. Watson, *J. Chem. In\$ Comput. Sci.,* 1991, 31, 204.
- 15 *(a)* D. Braga, **F.** Grepioni, M. J. Calhorda and L. **F.** Veiros, *Organometallics,* 1995, 14, 1992; *(b)* **D.** Braga, P. J. Dyson, F. Grepioni, B. **F.** G. Johnson and M. J. Calhorda, *Inorg. Chem.,* 1994, 33, 3218; (c) D. Braga, J. J. Byrne, M. J. Calhorda and F. Grepioni, B. F. G. Johnson and M. J. Calhorda, *Inorg. Chem.*, 1994, 33, 3218; *(c)* D. Braga, J. J. Byrne, M. J. Calhorda and F. Grepioni, *J. Chem. Soc., Dalton Trans.*, 1995, 3287; *(d)* D. Braga, F. Grepioni, H. Wadepohl, **S.** Gebert, M. J. Calhorda and L. F. Veiros, *Organometallics,* 1995, 14, 5350.
- 16 **S.** B. Colbran, B. H. Robinson and J. Simpson, *Acla Crystallogr., Sect. C,* 1986,42,972.
- 17 J. A. Clucas, M. M. Harding, B. **S.** Nicholls and **A.** K. Smith, *J. Chem. SOC., Dalton Trans.,* 1985, 1835.
- 18 J. **A.** Clucas, M. M. Harding, B. **S.** Nicholls and **A.** K. Smith, *J. Chem. Soc., Chem. Commun.,* 1984,3 19.
- 19 *(a)* **A.** L. Spek, *Acta Crystallogr., Sect. A,* 1990, *46,* C31; *(b)* E. Keller, SCHAKAL 93, Graphical Representation of Molecular Models, University of Freiburg, 1993; (c) G. R. Desiraju, *Acc. Chem. Rex,* 199 1, *24,* 290.
- 20 G. Bor, L. Marko and B. Marko, *Chem. Ber.,* 1962,95, 333.
- 21 J. J. H. Edema, M. Hoogenraad, **F. S.** Schoonbeeck, R. M. Kellog, H. Kooijman and A. **L.** Spek, *Recl. Trav. Chim. Pays-Bas,* 1993,112, *370.*
- 22 G. M. Sheldrick, *Acta Crystallogr., Sect. A,* 1990,46,467.
- 23 *G.* M. Sheldrick, SHELXL 93, University **of** Gottingen, 1993.

Received 30th October 1995; *Paper 5/07* 144E