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The atom-atom potential method has been demonstrated to quantify intermolecular interactions in molecular 
crystals of organometallic compounds. A sufficiently general minimization program with a robust steepest- 
descent algorithm has been used successfully to show that experimentally determined crystal structures 
correspond to energy minima. The algorithm may be used to predict hitherto unknown crystal structures 
starting from random packing. 

minimization o f  the 
l a t t i c e  energy 

Many physical properties of materials are governed by their 
solid-state structure. In the field of molecular crystals, single- 
crystal X-ray diffraction has made enormous progress towards 
automatization and as a result the step from synthesis to 
structure has almost become routine. Structure prediction is a 
topic of current research. Possible applications like ferroics, 
pigments, or non-linear optics are not the only aims of this 
development: from the viewpoint of basic research, molecu- 
lar crystals are supramolecules and very apt to the study 
of molecular recognition; crystallization provides countless 
examples of self-assembly. Close packing and, as a consequence 
thereof, the preference for only a few very common space 
groups was recognized many years ago by Kitaigorodsky as 
general principles in molecular crystals. Especially in the realm 
of organic crystal chemistry, the atom-atom potential method 
provides a quantitative approach to the lattice energy of molecu- 
lar crystals. The program OPEC (Organic Packing Energy 
 calculation^),^ has become a widely used tool in organic solid- 
state chemistry. Lattice-energy minimizations requiring a 
reasonable starting geometry are implemented in several 
well known computer programs, e.g. Busing’s WMIN‘ and 
Williams’ PCK 83 .6  Among possible applications of lattice- 
energy minimizations the prediction of crystal structures has 
for long been one of the most ambitious aims of this method.’ 
Owing to obvious limitations in computing facilities, only 
problems with a few degrees of freedom could be handled in the 

In the last years, the problem of complete structure 
predictions from scratch has been tackled again by the recent 
approaches of Gavezzotti (‘cluster method’) l o  and Karfunkel 
and Gdani tz. Braga and Grepioni 2 , 1  successfully trans- 
ferred the methods of organic crystal chemistry like lattice- 
energy calculations to organometallic compounds. Making use 
of the cluster method, they were able to reproduce the crystal 
structure of [Fe(CO),] cor-rectly. l 4  In this contribution, we 
present a method for the prediction of crystal structures of 
organometallic compounds which is based on lattice-energy 
minimization starting from random packing. In well ordered 
crystals, entropy differences between different packing arrange- 
ments are small; thus minima in lattice energy will correspond 
to minima in free energy. The latter represents the decisive 
stability criterion for a crystal structure. 

Method 
General 

The crystal structure is obtained from an input molecular 
structure by minimizing the intermolecular energy. Starting 
from random molecular arrangements which include crystal 
symmetry, minimization is achieved by a steepest descent 
algorithm. Scheme 1 represents a flow chart of the method. 
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Molecular geometry 

As the precision of the molecular structure is not crucial, the 
input may be obtained by a variety of computational or 
experimental methods (X-ray crystallographic determination, 
electron diffraction, microwave spectra, etc. ). Standard 
molecular modelling procedures may be helpful to combine 
these types of information. When X-ray data are used, the 
structures may be idealized, e.g. by averaging over chemically 
equivalent and crystallographically independent distances and 
placing hydrogen atoms in calculated positions. For molecules 
with internal degrees of freedom different conformations have 
been treated separately; in principle, our approach may be 
combined with an intramolecular force field to locate the 
overall free-energy minimum of the crystal packing and 
molecular conformation. 

* Application of the Atom-Atom Potential Method to Lattice-energy 
Calculations for Organometallic Compounds. Part 1 .  
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Packing variables 

Along with molecular structure data, the input for the 
minimization procedure requires two different types of 
information on the intermolecular arrangement. Space group 
symmetry (see below) is maintained over the whole 
minimization procedure. In addition to this static information, 
the unit-cell dimensions, the position and the orientation of 
each symmetry-independent rigid molecule are variables which 
determine the lattice energy. These latter parameters are 
assigned random values within a user-defined range at the start 
of the minimization procedure and are subsequently refined (see 
below). 

Symmetry 

The crystal symmetry is included from the beginning. For 
applications like structure prediction where in general no a 
priori space-group information is available, possible space 
groups have to be tested separately. Fortunately, only a very 
limited number of space groups occur in practice: more than 
87% of all molecular crystals belong to one of the most common 
12 space groups. 
with only a few independent molecules and the possibility to 
reach higher symmetry during the minimization procrdure 
reduces the number of space groups that have to be considered 
for practical applications. In contrast to other methods, our 
minimization procedure allows calculations in all space groups 
with molecules occupying every kind of special position. 
including 'complicated' cases like space group Pa3 with 
molecules on the three-fold axes. 

The strong preference for 'antimorphism' 

Van der Waals energy 

Van der Waals (vdW) forces are the predominant contribution 
to the lattice energy of molecular crystals. They may be 
calculated by the atom-atom potential method, which has 
proven a successful tool in organic crystal chemistry: 
intermolecular vdW forces are reduced to a summation over 
discrete pair interactions in which the interaction energy 
depends only on the atom types of the centres involved and the 
distance between them. In our implementation of this method, 
we use a Buckingham potential of the type (1) where ri, 

EvdW = 11 - Ari j -6  + Be-"rJ (1) 
1 J  

represents the interatomic distance and A ,  B and C are 
empirical parameters. The summation in principle extends to 
infinity and must in practice be limited to a user-defined cut-off 
radius (e.g. 20 A). Different sets of empirical interaction 
parameters have been published, 1 7 -  l 9  and both their numerical 
values and the lattice energies obtained by their application 
differ considerably, whereas the minimizations converge to 
quite similar crystal structures. This behaviour is obviously due 
to high correlation between the parameters. Therefore care 
must be taken when combining different parameter sets from 

the literature. Table 1 summarizes the parameters used in our 
minimizations. 

Electrostatic energy 

Even though van der Waals forces constitute the major 
contribution to the lattice energy, Coulomb interactions may be 
decisive for the preference of one molecular arrangement over 
others of similar energy. Their influence may be included in our 
calculations using the normal Coulomb formula (2). The 

relative permittivity E ,  is set to the value for a vacuum, 1 .O, and 
point charges 4i and 4j  are assigned to the atomic centres. This 
strategy is rapid and simple because both the atomic positions 
and the interatomic distances are also required for the 
calculation of vdW interactions. The summation includes five 
unit cells in each direction. Unlike in ionic solids, the charges 
involved in our minimizations are small (see below) and do not 
generally require convergence acceleration by a summation in 
reciprocal space as in the methods of Ewald,20 Bertaut 2 1  or 
Williams. 2 2  Unsatisfactory convergence behaviour of the 
summation in real space is only a serious drawback when polar 
molecules in polar space groups have to be tested, because 
they may exhibit a non-zero unit-cell dipole moment. In these 
cases the summation may be extended to any user-defined 
range over whole unit cells at the expense of longer 
calculation times. 

To obtain point charges for our organometallic compounds 
we make use of the extended Hiickel method23 with charge 
iteration. The resulting charges may be scaled with an 
additional factor to match our vdW potentials. An empirical 
scale factor of 1 .1  proved appropriate in the case of our 
compounds. 

Minimization 

We use a simple and robust steepest-descent procedure for the 
lattice-energy minimizations starting from random packing of 
the molecules. Depending on the crystal system and the space- 
group symmetry, up to six lattice constants (a,b,c,a,B,y) and a 
maximum of three translational and orientational parameters 
for each independent molecule have to be specified to define the 
packing. Upper and lower limits for the random start points of 
the lattice constants a, b and c should ensure a very loose 
arrangement of the molecules, e.g. approximately twice or three 
times the expected final values, to allow for reorientation of the 
molecules during the energy minimization. The translational 
and orientational parameters are restricted to the indepen- 
dent part of the lattice-energy hypersurface, e.g. only obtuse 
monoclinic cells are considered. As an advantage of our 
method, additional a priori information may be used from the 
beginning: lattice constants from a successfully indexed powder 
diagram or knowledge about packing motifs or the preferred 

Table 1 Parameters for the van der Waals potential 

AjkJ EminIkJ 
Interaction mol-' BjkJ mol CIA-' ro/A rmin/A mol ' h = Crmln 
H - * * H  144.2 I 1  104 3.74 2.831 3.229 -0.064 12.08 
C * * * H  523 36677 3.67 2.897 3.303 -0.203 12.12 
c...c 2 377 349908 3.60 3.451 3.882 -0.396 13.98 
o.-.o 1 242.6 372 203 4.18 2.885 3.253 -0.586 13.60 
Si + - Si 9 702 1542969 3.46 3.763 4.218 -1.015 14.59 
F e - . . F e  6463 1804000 4.00 3.110 3.498 -2.016 14.00 

yo = Distance where E = 0; rmin = minimum of the potential curve; Emin = depth; h = steepness; all other mixed parameters were calculated 
according to the combining rules. 
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orientation of the molecules may reduce calculation times 
drastically. After the minimization algorithm has located a local 
energy minimum, new random values are generated for all 
packing variables, From a total of 500-1000 minima, those 
packings with the most favourable lattice energy are re- 
evaluated with increased accuracy. As a rule, the best minima 
are found several times from different starting points. After 
generation of the appropriate input, the minimization 
procedure is run automatically. 

Computational details 

For the vdW potentials, the combining rules A,,  = ( A ,  ,A2,)’, 
B, ,  = (B11B22)i and C,, = (Cll + C,,)/2 have been 
respected throughout our calculations. Our interaction 
parameters are essentially based on the results of Wil- 
l i a m ~ . ‘ . ~ ’ , ~ ~  Parameters for oxygen were taken from 
Mirsky 1 8 * 2 5  and modified in the following way to match our 
potentials: crystal structures with essentially C - - C, C H 
and H - - H intermolecular contacts showed no significant 
differences in their lattice constants after minimization with 
Mirsky’s parameters and our own parameter set; their lattice 
energy, however, resulted in more favourable values (minimum 
12%, maximum 17%, average 14.5%) for our parameters. This 
means that Mirsky’s parameters A and B which are responsible 
for the depth of the interaction curve must be adjusted 
accordingly to avoid underestimation of the interactions 
involving oxygen atoms, whereas C, characteristic of the radial 
position of the minimum of the potential-energy curke, may 
be retained. Scaling of Mirsky’s A and B with a factor of 
1.145 resulted in the potential parameters listed in Table 1. 
Metal parameters are not a crucial point and are largely 
intuitive. To allow for at least a reasonable extrapolation of 
parameters for larger atoms, those for silicon were derived and 
tested: C7(Si ... Si) was set to an extrapolated value of 3.46 
A, and A(Si . Si) and B(Si Si) were obtained from a least- 
squares fit to the crystal structure of hexasilylbenzene.26 The 
parameters obtained were tested reproducing the crystal struc- 
ture of 2,2,6,6-tetrasilyl-l,3,5,7-tetrasilaspir0[3.3]he~tane.~~ 
Parameters for metals were obtained by extrapolation. 

Within a cut-off distance of 10 A, at least 90% of the 
vdW encrgy is included. For more accurate calculations, inter- 
actions of up to 20 8, are taken into account, corresponding 
to more than 99% of the vdW energy calculated for an infinite 
cut-off. Further extension of the threshold does not change 
the order of precedence between different minima of similar 
energy. 

Owing to the mathematical form of the Buckingham 
potential, the attractive r-’ term overrides the repulsive 
exponential contribution for very small interatomic distances 
(0 .g .  C - - - C < 0.6 A). To avoid this artefact and ensure a 
realistic repulsive interaction, we replace the calculated 
potential energy by a constant value of + lo6 kJ mol-’ for 
interatomic distances of less than 1.3 A. 

For the input molecular geometries we used electron diffrac- 
tion data in the case of [Fe(C,H,)(CO),] 5.,’ The metallo- 
cene [Fe(C,H,)(C,Me,)] 6 was constructed by combining 
the ring geometries and the iron-ring distances from [Fe(C,- 
H5),] and [Fe(C,Me,),]. For the other compounds, X-ray 
diffraction data were used; they are individually referenced 
in the corresponding tables. 

Extended Huckel calculations were performed with the 
program ICON29 making use of the charge-iteration 
procedure. Parameters for C, H, N, 0, Si, and the first-row 
transition metals were taken from ref. 29, orbital parameters for 
Nb and R h  from Summerville and H~f fmann ,~ ’  for Ru from 
Basch and Gray 3 1  and charge-iteration parameters for Nb, Rh 
and Ru from Munita and Letelier.32 With a convergence limit 
of 0.000 0 I A for lattice constants and a cut-off distance of 20 A, 
the reproducibility for the same minimum reached from 

different random starting points was better than 0.001 A. As this 
value exceeds by far the precision of our method (cf Results and 
Discussion), reproducibility is not a limiting factor in our 
calculations. 

The minimization programs are written in ANSI-C and run 
under common operating systems like DOS, VAX-VMS, or 
UNIX. Calculation times are of the same order of magnitude as 
for other methods of crystal structure calculation: the structure 
prediction for the metallocene 6 required about 2d of computer 
processing time on a fast single-processor computer (e.g. 
DEC9000). In addition, our method still needs considerable 
user interaction as far as the preparation of the input molecular 
structure and charges and the interpretation of the possible 
packings are concerned; with increasing computer speed, these 
will probably be the true limitations in the future. 

The coordinates of all input molecular geometries and 
calculated crystal structures may be obtained from the authors 
upon request. 

Results and Discussion 
In all test cases where our method was applied to 
organometallic compounds and the correct space group 
information was supplied the experimental crystal structures 
were correctly reproduced starting from random packings. 
Calculations were performed on a total of 25 organic and 
organometallic compounds. 3 3  Table 2 gives four examples and 
allows the comparison between calculated and experimental 
structural data. A common feature of our calculations is a slight 
underestimation of the lattice constants. The observed dis- 
crepancies typically amount to ca. 0.3 8, in lattice constants 
and about I ”  in angles. 

Our results confirm that the space-group problem may be 
overcome: statistics show that the great majority of molecular 
crystals adopt space groups which are ‘antimorphic’ or ‘tending 
towards antimorphism’ in Wilson’s nomenclature; therefore 
only a few probable space groups have to be considered for 
most purposes. During the minimization procedures additional 
symmetry can emerge: this may occur either by a reduction of 
the number of independent molecules or by a transition into a 
supergroup of the current space group with the molecules in 
special positions. The second case may be illustrated by the 
subgroup-supergroup relations between P2, I‘ uersu.7 C2/c or 
Pnma. The latter space groups are the most common ones for 
molecules with site symmetry 2 or m. This relation implies that 
the higher symmetry should not necessarily be included in the 
space group-testing strategy but can be found ‘automatically’. 
Minimization of the [Ni(CO),] molecule in a subgroup 
provides a good example: the experimentally established space 
group 3 8  is Pa7 with molecules on Wyckoff positions 8c, i.e. site 
symmetry 3 ,  and a = b = c = 10.832(5) A. Minimization in the 
subgroup Pbca (a quite common space group) converges at a = 

10.256, b = 10.254, and c = 10.253 8, with the Ni less than 
0.001 8, off the idealized position in the cubic space group. An 
additional example illustrating the numerical relations between 
minimum structures in both the correct space group and a 
subgroup is given in Table 3 where the results for the butadiene 
complex 5 are compiled. 

In principle, all crystal structures could be treated as having 
space group P1 with a sufficiently high number of independent 
molecules, but this approach would require lengthy calculations 
and elaborated search algorithms for ‘missed’ symmetry. 

The crystal structure of the metallocene 6 is successfully 
reproduced from an approximate molecular geometry input 
and without any a priori lattice-constant or space-group 
information. Both staggered and eclipsed conformations 
corresponding to the extrema of a ‘soft’ conformational degree 
of freedom were investigated separately in the common space 
groups P1, P i ,  P2,/c with a molecule in general position and 
in P2,/m and Pnma with a molecule on the crystallographic 
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Table 2 Comparison between experimental and calculated lattice constants in four organometallic compounds on the basis of van der Waals and, in 
the case of 4, electrostatic interactions 

Ru 

1 2 

Ru 

3 

4 

Ref. 

Parameter 34 35 36 37 l2 

Space group p2 1 lm Pi p2 1 l c  Pnma 
Lattice constants 
alA 
blA 
CIA 
ai" 
Pi" 
Y I" 
Metal coordinates' 
Y 
A 

Y 

7.718 (7.617) 9.796 (9.509) 8.516 (8.306) 
14.646 (14.303) 10.822 (10.787) 22.078 (22.014) 
8.617 (8.527) 8.724 (8.520) 8.559 (8.062) 

107.64 (107.66) 
106.50 (107.80) 113.77 (1 13.78) 119.83 (1 19.06) 

91.49 (92.05) 

0.080 (0.083) 0.2828 (0.2765) 0.2473 (0.2151) 
0.250 (0.250) 0.2641 (0.2604) 0.1 102 (0.1 122) 
0.292 (0.304) 0.1049 (0.0937) 0.3650 (0.3807) - 

l2 Extended Hiickel charges used (charge iteration applied). Calculated values in parentheses. 

8.292 (8.230) 
15.351 (14.948) 
18.268 (18.229) 

0.5966 (0.5943) 
0.75 (0.75) 
0.0499 ( - 0.0486) 

Table 3 
space group Pnma and the subgroup P112,/a 

Results of energy minimizations for complex 5 in the correct 

Fe . -  

OC 'l'co c 
0 

Parameter 
Space group 
z 
alA 
blA 
CIA 
Yi" 
ujA 

5 

Calculated 
crystal structure * 

Experimental 39 

Pnma Pnma P112,la 
812 812 4 

12.494 10.881 10.883 
9.503 9.725 9.724 
6.113 6.478 6.477 

90.002 
725.7 685.4 685.4 

E,,,/kJ mol-' 
E,,/kJmol 
E,,,/kJ mol-' 

* vdW and Coulombic interactions. 

- 72.89 - 72.90 
- 15.91 - 15.68 
-88.80 - 88.58 

mirror plane. Only vdW and no Coulomb interactions were 
considered. The best results, i.e. the lowest lattice energy, were 
obtained for an eclipsed molecule in general position in Pi. 
Table 4 shows the good agreement between our prediction 40 
and the experimentally established crystal ~ t ruc tu re .~ '  

According to our experience, the choice of interaction 
parameters for non-peripheral atoms (like metals in most 
cases!) does not modify the order of precedence among different 

local minima of similar energy; it only slightly affects the 
agreement between calculated and experimental structures. 

Unlike in the above example, the contribution of electro- 
static interactions may not always be neglected. Though it is 
not easy to determine reliable charges for transition-metal 
complexes, Mulliken point charges from extended Hiickel 
calculations with the charge-iteration procedure are at least 
a reasonable approximation. Table 5 shows the influence of 
vdW forces and electrostatic charges on the lattice energy of 
the ruthenium complex 7. For this compound the following 
point charges resulted: Ru, +0.20; 0, -0.18; C (carbonyl), 

+0.01; dipole moment 6.6 x C m. The charges stabilize 
the experimental Pi structure with respect to alternative 
minima. 

In all the above cases rigid molecules served as input for the 
minimization algorithm. How about 'soft' conformational 
degrees of freedom? In the relatively simple case of compound 6 
the problem was solved by refining both rotamers separately. 
The energy difference for the free molecule is expected to be 
very low, and thus it was expected that the molecule will simply 
adopt the more favourable conformation for packing. Of 
course things are not necessarily as easy; in general, both intra- 
and inter-molecular forces may interfere, and the global 
minimum in terms of packing and conformation has to be 
found. In the field of organometallic compounds, internal 
degrees of freedom do not represent so much of a mathematical 
problem but require the availability of a sufficiently general 
intramolecular force field and its correct scaling versus the 
intermolecular parameters. General force fields for organometal- 
lic compounds are a current field of active research and far 
beyond the scope of this contribution. At the present state, 
organometallic molecules with many alternative conformational 
minima of similar energy must be considered as the limit of our 
method. 

+0.13; C Of C(CH,),, +0.03; C of C(CH2)3, 0.00; H, 

2080 J. Chem. SOC., Dalton Trans., 1996, Pages 2077-2082 

http://dx.doi.org/10.1039/DT9960002077


Table 4 Summary of experimental and calculated structures for pentamethyl ferrocene 6 

Pnma 

Parameter 
z 
a lA 
blA 
'./A 
4" 
PI" 
Y I" 
EikJ mol ' 

Exptl. 
3 - 
8.169 

12.239 
7.819 

94.73 
117.81 
73.14 

Pi  e 
2 
8.046 

11.889 
7.806 

93.69 
1 18.23 
73.28 

-94.18 

Pi  s 
2 
8.057 

12.962 
7.506 

97.12 
120.81 
72.85 

- 89.85 

Pi  dis 

412 
8.032 

12,171 
8.093 

102.52 
120.18 
75.26 

- 84.41 

e 
2 
8.1 10 

12.153 
6.807 

99.16 

86.61 

S P1 e 
2 1 
6.741 7.989 

13.128 6.801 
7.809 8.025 

114.05 
107.39 114.95 

67.39 
- 87.40 - 80.61 

e S 

4 4 
8.420 7.672 

10.899 13.000 
14.088 14.340 

94.76 112.69 

89.11 -86.16 - 

e S 

4 4 
8.345 12.082 

11.889 8.653 
12.970 12.807 

87.52 83.51 

Exptl. = Experimental; e = eclipsed; s = staggered; dis = C,Me, ring 1 : 1 disordered over an eclipsed and staggered arrangement with respect to 
C,HY 

Table 5 Summary of experimental and calculated crystal structures for [Ru{ (CH,),C)(CO),] 7 

Ru 

0 

7 

Calculated crystal structures 

Parameter 
Space group 
z 
blA 
CIA 
El "  
PI" 
Yl" 

Metal coordinates 
Y 

V 
z 
EjkJ mol-' 

Experimental 
structure42 
Pi 
2 
5.765 
7.096 

10.323 
81.89 
84.46 
82.03 

0.209 
0.192 
0.235 

vdW and Coulombic 
Only vdW interactions interactions 

Pi  p2,lC* pi P2,lc* 
2 4 2 4 
5.564 9.575 5.563 9.575 
7.006 6.196 7.071 6. I46 

10.145 12.884 10.084 12.849 
82.48 82.65 
83.44 90.12 83.32 90.20 
8 1.48 79.67 

0.200 0.253 0.197 0.254 
0.190 0.283 0.185 0.282 
0.235 0.080 0.234 0.080 

-71.0 - 72.6 - 77.5 - 77.5 

* The minimization was performed in space group P2,/c but converged close to Pnma symmetry. 

Conclusion 
In the present contribution we have focused on crystal struc- 
ture calculations. Though the prediction of possible crystal 
structures must be considered the most ambitious application 
of lattice-energy calculations and minimizations, the results 
obtained with our method are promising. The concepts and 
algorithms for probing the energy hypersurface by our extended 
atom-atom potential method are, however, not limited to the 
topic of structure prediction. Other applications include 
interpretation of dynamic phenomena 43 and disorder problems 
in molecular crystals 44,45 and will be the subject of forthcoming 
publications. 
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