Synthesis and crystal structure of $[Ni{Ph_2PC(S)NPh}_2]$ and $[Ni{Ph_2P(Y)C(S)NPh}_2]$ (Y = S or Se)

George Siasios and Edward R. T. Tiekink

Department of Chemistry, The University of Adelaide, Adelaide, S.A. 5005, Australia

DALTON

The square-planar nickel(1) complexes $[Ni{Ph_2PC(S)NPh}_2]$ and $[Ni{Ph_2P(Y)C(S)NPh}_2]$ (Y = S or Se) have been prepared and characterised spectroscopically. Their structures have been confirmed by single-crystal X-ray diffraction methods. In $[Ni{Ph_2PC(S)NPh}_2]$ the Ni atom is chelated by the thioamide S atoms [2.188(2), 2.163(2) Å] and phosphine P atoms [2.171(2), 2.182(2) Å] which define a *trans*-S₂P₂ donor set. In $[Ni{Ph_2P(S)C(S)NPh}_2]$ the centrosymmetric structure features S,S chelating ligands with the Ni–S (thioamide) distance of 2.184(2) Å being equivalent to the Ni–S (sulfide) distance of 2.197(2) Å in the S₄ donor set. In $[Ni{Ph_2P(S)C(S)NPh}_2]$ the Ni atom in the centrosymmetric structure exists in a square-planar S₂Se₂ donor set with Ni–S 2.202(3) Å and Ni–Se 2.344(1) Å.

Despite being known for sometime,^{1 4} the co-ordination chemistry of ions with the general formulae $R_2P(Y)C(S)S^$ and $R_2P(Y)C(S)NR'^-$ (Y = lone pair, O and S, R = R' = alkyl or aryl) remains relatively unexplored, in particular when compared to the ubiquitous dithiocarbamates. A major focus of investigation has been on their complexes with Mo,5 ' W ⁶⁻⁸ and Mn.^{9,10} Points of interest include the diversity of coordination modes that may be adopted and the expansion of metal chalcogenide chemistry in general.¹¹ In the former context, it is noteworthy that in the dimolybdenum phosphine complex $[Mo_2{Ph_2PC(S)NMe}_4]^5$ both S,N (×2) and P,N $(\times 2)$ co-ordination modes are found in one isomer and in the other a S.N (×4) mode is observed. This paper describes the characterisation of a series of neutral nickel complexes of the $Ph_{2}P(Y)C(S)NPh^{-}$ anion, including that of the novel Y = Secomplex.

Experimental

Reagents and materials

All materials were of reagent grade or better used without further purification. Red selenium,¹² PPh_2H^{13} and the compounds $Ph_2PC(S)N(H)Ph$,³ $Ph_2P(S)C(S)N(H)Ph^4$ and $Ph_2P(Se)C(S)N(H)Ph^{14}$ were all prepared by published methods.

Instrumentation

Infrared spectra were recorded as KBr discs on a Perkin-Elmer 1720X FT spectrophotometer, proton (300.13 MHz) and ¹³C (75.47 MHz) NMR spectra on a Bruker ACP-300 NMR spectrometer with CDCl₃ as the solvent and SiMe₄ as the internal reference in each case. Proton-decoupled ³¹P NMR spectra were recorded as CHCl₃ solutions on a Bruker CXP-300 NMR spectrometer at 121.5 MHz with 85% H₃PO₄ in D₂O as the internal reference. Fast atom bombardment (FAB) mass spectra were recorded with the assistance of T. Blumenthal on a VG ZAB-2HF spectrometer (using 3-nitrobenzyl alcohol as matrix, exciting gas argon, FAB gun voltage 7 kV, current 1 mA and accelerating potential 8 kV).

Syntheses

[Ni{ $Ph_2PC(S)NPh_{}_2$]. To a stirred ethanolic solution (30 cm³) of NiNO₃·6H₂O (200 mg, 0.69 mmol) was added 2.1 molar equivalents of solid Ph₂PC(S)N(H)Ph (464 mg, 1.44 mmol). The solution was stirred for about 10 min until all the

solid was dissolved then NEt₃ (2 cm³) was added dropwise over 1 min. After 30 min of stirring a red precipitate appeared which was collected by vacuum filtration and washed with cold ethanol (10 cm³) and diethyl ether (10 cm³). Recrystallisation from chloroform solution afforded an orange-red crystalline product which was dried *in vacuo* over P₂O₅; yield 457 mg (95%), m.p. 150 °C (decomp.). NMR: ¹H, δ 7.11–8.03 (m); ¹³C (PPh₂), δ 132.7 [¹J(PC) 10.1, C_x], 133.3 [²J(PC) 6.2, C_β], 128.9 [³J(PC) 4.9 Hz, C_y], 131.3 (C₈); (NPh), 151.6 (C_x), 128.4 (C_β), C_y and C_{δ} not observed, 173.4 (C_q).

[Ni{Ph₂P(S)C(S)NPh₂]. This was prepared in a similar manner as a dark green-brown solid which was recrystallised from a chloroform solution that had been layered with light petroleum (b.p. 40–60 °C); yield 65%, m.p. 134–136 °C. NMR: ¹H, δ 7.03–7.96 (m); ¹³C (PPh₂), δ 127.8 [¹J(PC) 60.6, C_x], 132.9–128.7 (C_β-C_δ); (NPh), 149.2 [³J(PC) 29.1, C_x], 128.6 (C_β), 121.3 (C_γ), 125.1 (C_δ), 176.2 [¹J(PC) 109.3 Hz, C_q].

[Ni{Ph₂P(Se)C(S)NPh}₂]. This was prepared and recrystallised as described above for [Ni{Ph₂P(S)C(S)NPh}₂]; yield of brown crystals 75%, m.p. 135 °C (decomp.). NMR: ¹H, δ 7.05– 7.93 (m); ¹³C (PPh₂), δ 127.5 [¹J(PC) 70.7, C_x], 133.0–128.6 (C_β-C_δ); (NPh), 149.2 [³J(PC) 28.1, C_x], 128.9 (C_β), 121.4 (C_y), 125.1 (C_δ), 177.8 [¹J(PC) 98.9 Hz, C_q].

Crystallography

Crystal data and refinement parameters for $[Ni{Ph_2PC(S)N-Ph}_2]$, $[Ni{Ph_2P(S)C(S)NPh}_2]$ and $[Ni{Ph_2P(Se)C(S)NPh}_2]$ are given in Table 1.

Intensity data were measured at 290 K on a Rigaku AFC6R diffractometer using Ni-filtered Cu-Kx radiation, λ 1.5418 Å, and the $\omega\text{--}2\theta$ scan technique such that θ_{max} was 60.0°. The data sets were corrected for Lorentz and polarisation effects 15 and for absorption using an empirical procedure.¹⁶ The structures were solved by direct methods¹⁷ and each refined by a fullmatrix least-squares procedure based on F.¹⁵ The non-H atoms were refined anisotropically and H atoms were included in the models at their calculated positions (C-H 0.97 Å). The refinements were continued until convergence employing a weighting scheme of the form $w = 1/\sigma^2(F)$. Scattering factors for all atoms were as incorporated in the TEXSAN package¹⁵ installed on an Iris Indigo workstation. The numbering schemes employed are shown in Figs. 1-3, which were drawn with ORTEP¹⁸ using 25, 25 and 30% probability ellipsoids, respectively.

Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc.*, *Dalton Trans.*, 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and its reference number 186/38.

Results and Discussion

The complexes $[Ni{Ph_2PC(S)NPh}_2]$ and $[Ni{Ph_2P(Y)C(S)} NPh_{2}$ (Y = S or Se) were formed by the reaction of $Ni(NO_3)_2 \cdot 6H_2O$ and the respective phosphoryl compound in the presence of base in good to high yields. Similar products have been isolated with other $R_2P(Y)C(S)NR'$ compounds where R, R' = aryl and/or alkyl,¹⁹ however only the R = R' = Ph derivatives are reported here. The preparation of the complexes was found to be most efficient with Ni(NO₃)₂•6H₂O and the use of hydroxide as the base often resulted in the isolation of $Ph_2P(Y)OH$ (Y = O, S or Se).¹⁹ The [Ni{Ph₂PC-(S)NPh₂] complex has been prepared previously from the reaction of [Ni(PPh₃)(PPh₂H)] with PhNCS as well as electrochemically, albeit in lower yields.²⁰ The complexes are air-stable, soluble in chlorinated solvents, however prolonged standing of solutions of [Ni{Ph₂P(Se)C(S)NPh}₂] invariably resulted in the deposition of elemental selenium. The complexes have been characterised spectroscopically (IR, NMR and FAB mass) as well as crystallographically.

$[Ni{Ph_2PC(S)NPh}_2]$

The infrared spectra of related compounds have shown that there are two regions of particular interest, *i.e.* 1400–1600 and around 1350 cm⁻¹, and these have been assigned as thioamide I (mainly due to C–N) and II (mainly C–S) bands, respectively.^{4,21,22} For [Ni{Ph₂PC(S)NPh}₂] there is a band at 1555 cm⁻¹ which has been shifted to higher frequency compared with the free phosphine (*i.e.* 1528 cm⁻¹) indicating additional C–N double-bond character. The band at 1388 cm⁻¹ of the free phosphine is no longer present, however a new band appears at 924 cm⁻¹ which is ascribed to v(C–S), consistent with similar absorptions found for related phosphinothioformamide complexes involved in four-membered chelate rings.^{23,24} No evidence was found for v(N–H). Similarly, δ (N–H) was absent in the ¹H NMR spectrum which showed the expected

Table 1 Crystallographic data

resonances. In the ¹³C NMR spectrum a single resonance was observed at δ 173.4 [no J(P–C) observed] due to the quaternary carbon atom. This resonance has shifted significantly upfield compared with the free phosphine (*i.e.* δ 206.6). The other major difference between the free and co-ordinated phosphine is found in $\delta(C_{\alpha}$ of NPh) which has shifted downfield to δ 151.6 from δ 138.7 for the free phosphine. The ³¹P NMR spectrum showed one resonance only at $\delta - 1.8$ which has shifted significantly upfield from δ 19.2 for the free phosphine. In the FAB mass spectrum the $[M]^+$ ion was present at low abundance (7%) and the most abundant fragment was assigned to $[Ph_2PNiS_2]^+$ at m/z 307; the fragment $[Ni{Ph_2PC}-$ (S)NPh]⁺ was observed at 12% abundance. The major non-Ni-containing fragments were assigned to [Ph2PC(S)NPh]⁺ (15%) and $[Ph_2PCNPh]^+$ (82%); there were no significant fragments at m/z greater than that of $[M]^+$. A full characterisation was afforded by a crystal structure analysis.

The molecular structure of $[Ni{Ph_2PC(S)NPh}_2]$ is shown in Fig. 1 and selected interatomic parameters are collected in Table 2. In contrast to a previous report of an incompletely refined structure,²⁰ the molecule is not situated about a crystallographic centre of inversion, however the Ni atom does exist in a *trans*-S₂P₂ donor set which defines a distorted square-

Fig. 1 Molecular structure and crystallographic numbering scheme for $[Ni\{Ph_2PC(S)NPh\}_2]$

	$[Ni{Ph_2PC(S)NPh}_2]$	$[Ni{Ph_2P(S)C(S)NPh}_2]$	$[Ni{Ph_2P(Se)C(S)NPh}_2]$
Formula	C ₃₈ H ₃₀ N ₂ NiP ₂ S ₂	$C_{38}H_{30}N_{2}NiP_{2}S_{4}$	$C_{38}H_{30}N_2NiP_2S_2Se_2$
М	699.4	763.6	857.4
Colour	Orange	Brown	Brown
Crystal size/mm	$0.05 \times 0.18 \times 0.21$	$0.03 \times 0.10 \times 0.16$	$0.05 \times 0.13 \times 0.39$
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group	$P\overline{1}$	$P2_1/c$	$P2_1/n$
a/Å	10.357(1)	12.160(4)	9.74(1)
b/Å	18.309(2)	8.909(2)	19.26(1)
c/Å	8.9393(8)	16.375(3)	10.39(2)
$\alpha/^{\circ}$	96.125(9)		
β/°	99.152(7)	91.15(2)	115.22(9)
$\gamma/^{\circ}$	80.479(9)		
$U/Å^3$	1644.8(3)	1773.7(7)	1763(3)
Z	2	2	2
$D_c/\mathrm{g}~\mathrm{cm}^{-3}$	1.412	1.430	1.614
F(000)	724	788	860
µ/cm ⁻¹	31.90	40.79	53.53
Range of transmission factors	0.948-1.027	0.961-1.011	0.957-1.023
No. data collected	5202	2982	2893
No. unique data	4889	2833	2718
No. unique data with $I \ge 3.0\sigma(I)$	2903	1336	1701
R	0.039	0.049	0.053
R'	0.041	0.046	0.059
Residual density/e Å ⁻³	0.24	0.32	0.67

Table 2	Selected bond distances (Å) and angles (°) for $[Ni{Ph_2PC(S)NPh}_2]$

Ni-S(1a)	2.188(2)	Ni–S(1b)	2.163(2)
Ni-P(1a)	2.171(2)	Ni-P(1b)	2.182(2)
S(1a)-C(1a)	1.757(5)	S(1b)-C(1b)	1.763(5)
P(1a)-C(1a)	1.825(5)	P(1b)-C(1b)	1.829(5)
P(1a) - C(11a)	1.807(5)	P(1b) - C(11b)	1.810(5)
P(1a) - C(21a)	1.816(5)	P(1b) - C(21b)	1.813(5)
N(1a) - C(1a)	1.276(5)	N(1b)-C(1b)	1.265(5)
N(1a) - C(31a)	1.415(6)	N(1b)-C(31b)	1.441(6)
S(1a) - Ni - S(1b)	177.73(7)	P(1a)-Ni-P(1b)	177.62(7)
S(1a) - Ni - P(1a)	77.58(5)	S(1b)-Ni-P(1b)	77.40(6)
S(1a) - Ni - P(1b)	104.78(6)	S(1b)-Ni-P(1a)	100.24(6)
Ni-S(1a)-C(1a)	92.2(2)	Ni-S(1b)-C(1b)	93.3(2)
Ni-P(1a)-C(1a)	90.9(2)	Ni-P(1b)-C(1b)	90.9(2)
Ni-P(1a)-C(11a)	120.8(2)	Ni-P(1b)-C(11b)	119.7(2)
Ni-P(1a)-C(21a)	118.4(2)	Ni-P(1b)-C(21b)	118.0(2)
C(1a) - P(1a) - C(11a)	108.6(2)	C(1b) - P(1b) - C(11b)	110.0(2)
C(1a) - P(1a) - C(21a)	107.8(2)	C(1b) - P(1b) - C(21b)	105.3(2)
C(11a) - P(1a) - C(21a)	107.9(2)	C(11b) - P(1b) - C(21b)	109.9(2)
C(1a) - N(1a) - C(31a)	121.3(4)	C(1b) - N(1b) - C(31b)	121.2(4)
S(1a) - C(1a) - P(1a)	99.3(2)	S(1b) - C(1b) - P(1b)	98.3(2)
S(1a) - C(1a) - N(1a)	134.3(4)	S(1b)-C(1b)-N(1b)	132.5(4)
P(1a) - C(1a) - N(1a)	126.4(4)	P(1b)-C(1b)-N(1b)	129.3(4)

planar geometry. The major distortions from the ideal geometry can be traced to the restricted bite angles of the S,P chelating ligands [i.e. 77.58(5) and 77.40(6)°, for ligands a and b respectively]. The four-membered rings formed are essentially planar as seen in the Ni-P(1)-C(1)-S(1) torsion angles of 0.4(2) and $-3.3(2)^\circ$, respectively. There are no significant differences between comparable geometric parameters in the two ligands. It is notable that the C(1)-S(1) and C(1)-N(1) bond distances in the complex have elongated and contracted, respectively, compared with the equivalent values found for the parent Ph₂PC(S)N(H)Ph [1.650(3) and 1.334(3) Å, respectively²⁵]. These variations indicate that the ligand co-ordinates essentially as a thiolate with significant double-bond character in the C(1)-N(1) bond. It is also noteworthy that the P(1)-C(1)bond has decreased by ca. 0.035 Å in the complex, from 1.862(3) Å in the free phosphine. Other noteworthy changes in the parameters upon co-ordination are found in the angles about the C(1) atom, *i.e.* S(1)-C(1)-P(1), S(1)-C(1)-N(1) and P(1)-C(1)-N(1) which have contracted, expanded and expanded, respectively by 15, 4 and 10°, reflecting the strain at the C(1) atom upon the formation of the NiSCP four-membered ring. The above observations, coupled with the planarity of the ligands {the S(1)-C(1)-N(1)-C(31) and P(1)-C(1)-C(31)N(1)-C(31) torsion angles are -177.0(4) [-177.5(4) for ligand b] and $6.4(8)^{\circ}$ [2.6(8)°], respectively}, indicate the delocalisation of π -electron density over the ligand atoms. In the lattice there are no significant intermolecular contacts with the closest non-hydrogen contact of 3.430(8) Å occurring between atoms C(24a) and C(26a') atoms (symmetry operation: -1 - x, 1 - y, -z).

$[Ni{Ph_2P(S)C(S)NPh}_2]$

The $[Ni{Ph_2P(S)C(S)NPh}_2]$ complex may be thought of as the product of the insertion of S into the Ni–P bonds of $[Ni{Ph_2PC(S)NPh}_2]$, however experience with related systems showed that this was not a useful method of preparation.¹⁹ Three absorption bands of interest in the IR spectrum at 1524, 948 and 605 cm⁻¹ were assigned to v(thioamide I), v(thioamide II) and v(P=S), respectively; v(N–H) was absent. Compared with the free phosphine, the v(thioamide I) band has moved 19 cm⁻¹ to higher frequency and v(P=S) 35 cm⁻¹ to lower frequency, indicating increased and reduced bond orders, respectively. Similar shifts have been reported in the related systems where S,S chelation occurs.²⁶⁻²⁸ The ¹H NMR spectrum was as expected and in the ¹³C NMR

Fig. 2 Molecular structure and crystallographic numbering scheme for $[Ni{Ph_2P(S)C(S)NPh}_2]$

spectrum the significant changes compared with the free phosphine were found in the position of (*i*) the quaternary C_q resonance which had moved upfield to δ 176.2 [¹J(PC) 109.3 Hz] (*cf.* δ 206.6) and (*ii*) the C_{α} (PPh) resonance which had moved downfield to δ 149.2 (*cf.* δ 138.7). A single resonance was observed in the ³¹P NMR spectrum at δ 50.0 (*cf.* 47.4 for the free phosphine). In the FAB mass spectrum [*M*]⁺ was present only in 4% abundance, the most abundant peak being assigned to [Ph₂PNiS₃]⁺; the [Ph₂P(S)C(S)N(H)Ph]⁺ fragment was present at 54% intensity. The spectroscopic results indicate a S,S co-ordination mode and this was confirmed by an X-ray analysis.

The molecular structure of $[Ni{Ph_2P(S)C(S)NPh}_2]$ is shown in Fig. 2 and selected interatomic parameters are given in Table 3. The molecule is centrosymmetric with the Ni atom located at a site of symmetry and existing in a distorted squareplanar geometry. The Ni atom is chelated *via* the thiophosphinoyl and thioamide S atoms forming essentially equivalent Ni-S(1) and Ni-S(2) separations of 2.184(2) and 2.197(2) Å, respectively. This mode of co-ordination results in the formation of a NiSPCS five-membered ring which is almost planar; the values of the Ni-S(1)–C(1)–P(1) and Ni-S(2)–P(1)–C(1) torsion angles are 13.0(3) and 6.8(4)°, respectively. The S(1)–Ni-S(2) chelate angle of 83.53(8)° is greater than that of *ca.* 77.5° found in the structure of

Table	3	Selected	bond	distances	(Å)	and	angles	(°)	for
[Ni{Ph	2P(Y)C(S)NPl	$1_{2}(Y)$	= S or Se)					

Ni-S(1) Ni-Y(2) S(1)-C(1) Y(2)-P(1) P(1)-C(1) P(1)-C(11) P(1)-C(2)	Y = S 2.184(2) 2.197(2) 1.706(7) 2.001(3) 1.836(7) 1.820(7) 1.794(7)	Y = Se 2.202(3) 2.344(1) 1.751(8) 2.145(3) 1.821(8) 1.794(7) 1.811(9)
N(1)-C(1) N(1)-C(31)	1.290(8)	1.260(9)
$\begin{array}{l} S(1)-Ni-Y(2) \\ S(1)-Ni-Y(2') \\ Ni-S(1)-C(1) \\ Ni-Y(2)-P(1) \\ Y(2)-P(1)-C(1) \\ Y(2)-P(1)-C(1) \\ Y(2)-P(1)-C(21) \\ C(1)-P(1)-C(21) \\ C(1)-P(1)-C(21) \\ C(1)-P(1)-C(21) \\ C(1)-P(1)-C(21) \\ C(1)-P(1)-C(31) \\ S(1)-C(1)-P(1) \end{array}$	1.414(9) 83.53(8) 96.47(8) 111.8(3) 105.4(1) 108.9(2) 112.7(3) 110.2(3) 106.7(3) 108.5(3) 109.6(3) 124.9(6) 115.8(4)	83.8(1) 96.2(1) 112.2(3) 97.1(1) 108.1(3) 112.9(3) 113.5(3) 109.7(4) 105.5(4) 107.0(4) 125.2(7) 113.9(5)
S(1)-C(1)-N(1) P(1)-C(1)-N(1)	132.6(6) 111.6(5)	132.2(6) 113.9(6)

 $[Ni{Ph_2PC(S)NPh_2}]$, reflecting the reduced steric strain owing to the inclusion of the additional atom, *i.e.* S(2), into the chelate ring. As expected, the P(1)-S(2) and S(1)-C(1) distances of 2.001(3) and 1.706(7) Å, respectively have been elongated significantly in the complex compared with the free phosphine,²⁹ i.e. 1.951(2) and 1.633(4) Å, respectively. Concomitantly, the P(1)-C(1) and C(1)-N(1) distances have decreased to 1.836(7) and 1.290(8) Å, respectively compared with 1.855(5) and 1.338(5) Å in the free phosphine. The torsion angles of $-167.9(3)^{\circ}$ for S(2)-P(1)-C(1)-S(1) and 9.4(6)^{\circ} for S(2)-P(1)-C(1)-N(1) indicate that significant delocalisation of π -electron density over the ligand is unlikely. The closest nonhydrogen contact in the lattice of 3.47(2) Å occurs between two symmetry-related C(32) atoms (symmetry operation: -x, 1 - y, -z). There have been two other crystal-structure determinations containing the $[Ph_2P(S)C(S)NPh]^-$ anion, namely $[Mn(CO)_4 \{Ph_2P(S)C(S)NPh\}]$ in which S,S chelation is found 10 and $[Mo(CO)_2(\eta^5\text{-}C_5H_5)\{Ph_2P(S)C(S)NPh\}]^7$ in which chelation is afforded by the thioamide S and N atoms with the S(2) atom not participating in co-ordination to the Mo atom, emphasising the varied co-ordination potential of these ligands.

[Ni{Ph₂P(Se)C(S)NPh}₂]

The IR spectrum for $[Ni{Ph_2P(Se)C(S)NPh}_2]$ was similar to that of the Y = S analogue with the thioamide I and II bands occurring at 1523 and 944 cm⁻¹, respectively. The v(P=Se) band at 529 cm⁻¹ was shifted by 20 cm⁻¹ to lower frequency compared with the free phosphine. The expected resonances were observed in the ¹H NMR spectrum and in the ¹³C NMR spectrum the resonance of C_q had shifted upfield to δ 177.8 (cf. δ 186.3 for the free phosphine) with ${}^{1}J(PC)$ of 98.9 Hz, again resembling the results for the Y = S analogue. A single resonance at δ 41.3 with Se satellites [¹J(PSe) 549 Hz] was observed in the ³¹P NMR spectrum (cf. δ 45.3, 722 Hz). In the FAB mass spectrum the $[M]^+$ ion was not observed and the most abundant ion was assigned to $[Ph_2PNiS_2]^+$; [Ph₂P(Se)C(S)N(H)Ph]⁺ was present in 14% abundance. The molecular structure was determined unambiguously by X-ray methods.

The molecular structure of centrosymmetric $[Ni{Ph_2P(Se)C-(S)NPh_2}]$ is shown in Fig. 3 and selected geometric parameters

Fig. 3 Molecular structure and crystallographic numbering scheme for $[Ni{Ph_2P(Se)C(S)NPh}_2]$

are collected in Table 3. The Ni atom exists in a distorted square-planar geometry with a S_2Se_2 donor set. The Ni-S(1) distance of 2.202(3) Å is as expected and the Ni-Se(2) distance of 2.344(1) Å is comparable to 2.330(2) Å in [NBu₄][Ni{SSeC=C- $(CN)_{2}_{2}^{30}$ which also features a *trans*-S₂Se₂ donor set. The Ni-S distance in the latter structure is longer at 2.292(3) Å than that in $[Ni{Ph_2P(Se)C(S)NPh}_2]$, this may be attributed to the presence of a sterically strained four-membered ring compared cf. 1.875(8) Å]. The NiSCPSe chelate ring is buckled signifiwhich the chelate angle is 83.8(1)°. This analysis completes the series of $[Ni{Ph_2P(Y)C(S)NPh}_2]$ structures and shows that the magnitude of the Ni-S (thioamide) distance increases in the order $Y = \text{lone pair} < S < \text{Se. The P(1)-Se(2) distance in [Ni \{Ph_2P(Se)C(S)NPh\}_2$ of 2.145(3) Å is longer than that in the free phosphine¹⁴ [2.106(3) Å] and other systematic variations, as observed above for the Y = S structure, are also found. Hence, the S(1)–C(1) distance in $[Ni{Ph_2P(Se)C(S)NPh}_2]$ has elongated [1.751(8) cf. 1.629(9) Å], C(1)-N(1) has contracted [1.260(9) cf. 1.31(1) Å] and P(1)–C(1) has contracted [1.821(8) with the five-membered NiSCPSe ring in the present case, for cantly, the mean deviation of the atoms from their least-squares plane being 0.193 Å. Similarly, the central chromophore of the ligand is far from planar as evidenced by the S(1)-C(1)-P(1)-Se(2) and Se(2)-P(1)-C(1)-N(1) torsion angles of 33.0(5) and $-148.0(6)^\circ$, respectively. That the structure is molecular is seen in the closest distance between non-hydrogen atoms in the lattice of 3.29(2) Å which occurs between centrosymmetrically related C(23) atoms.

This study shows that deprotonated $Ph_2PC(S)N(H)Ph$ and $Ph_2P(Y)C(S)N(H)Ph$ (Y = S or Se), can form stable chelate complexes with Ni and, in particular, that $Ph_2P(Se)C(S)N(H)Ph$ offers the opportunity to access novel M-Se systems.

Acknowledgements

G. S. was the holder of an Australian Postgraduate Research Award. The Australian Research Council is thanked for support of the crystallographic facility.

References

- 1 O. Dahl, N. C. Gelting and O. Larsen, Acta Chem. Scand., 1969, 23, 3369.
- 2 O. Dahl and O. Larsen, Acta Chem. Scand., 1970, 24, 1094.
- 3 K. Issleib and G. Harzfeld, Chem. Ber., 1964, 97, 3430.
- 4 I. Ojima, K. Akiba and N. Inamoto, Bull. Chem. Soc. Jpn., 1969, 42, 2975.
- 5 H. P. M. M. Ambrosius, F. A. Cotton, L. R. Falvello, H. T. J. M. Hintzen, T. J. Melton, W. Schwotzer, M. Tomas and J. G. M. van der Linden, *Inorg. Chem.*, 1984, 23, 1611.
- 6 H. P. M. M. Ambrosius, J. Willemse, J. A. Cras, W. P. Bosman and J. H. Noordik, *Inorg. Chem.*, 1984, 23, 2672.

- 7 H. P. M. M. Ambrosius, A. W. van Hemert, W. P. Bosman, J. H. Noordik and G. J. A. Ariaans, *Inorg. Chem.*, 1984, 23, 2678.
- 8 K.-H. Yih, Y.-C. Lin, M.-C. Cheng and Y. Wang, J. Chem. Soc., Dalton Trans., 1995, 1305.
- 9 B. Just, W. Klein, J. Kopf, K. G. Steinhäuser and R. Kramolowsky, J. Organomet. Chem., 1982, 229, 49.
- 10 A. Antoniadis, W. Hiller, U. Kunze, H. Schaal and J. Strähle, Z. Naturforsch., Teil B, 1982, 37, 1289.
- 11 T. S. Lobana, Prog. Inorg. Chem., 1989, 37, 495.
- 12 M. Dräger, personal communication.
- 13 W. Gee, R. A. Shaw and R. C. Smith, Inorg. Synth., 1967, 9, 19.
- 14 G. Siasios and E. R. T. Tiekink, Z. Kristallogr., 1993, 207, 59.
- 15 TEXSAN. Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1992.
- 16 N. Walker and D. Stuart, Acta Crystallogr., Sect. A, 1983, 39, 158.
- 17 G. M. Sheldrick, SHELXS 86, Program for the automatic solution of crystal structure, University of Göttingen, 1986.
- 18 C. K. Johnson, ORTEP II, Report ORNL 5138, Oak Ridge National Laboratory, Oak Ridge, TN, 1976.
- 19 G. Siasios, Ph.D. thesis, The University of Adelaide, 1995.
- 20 T. A. Annan, R. Kumar and D. G. Tuck, J. Chem. Soc., Dalton Trans., 1991, 11.

- 21 S. W. Carr, R. Colton and D. Dakternieks, *Inorg. Chem.*, 1984, 23, 720.
- 22 K. A. Jensen and P. H. Nielsen, *Acta Chem. Scand.*, 1963, **17**, 1875. 23 H. P. M. M. Ambrosius, A. H. I. M. van der Linden and J. J.
- Steggerda, J. Organomet. Chem., 1980, **204**, 69. 24 D. H. M. W. Thewissen, J. G. Noltes and J. J. Steggerda, Inorg.
- Chim. Acta, 1981, 51, 135.
 25 S. W. Cowan, B. F. Hoskins and E. R. T. Tiekink, Aust. J. Chem., 1984, 37, 1991.
- 26 U. Kunze and A. Antoniadis, Z. Naturforsch., Teil B. 1981, 36, 1117.
- 27 D. H. M. W. Thewissen, J. Organomet. Chem., 1980, 192, 115.
- 28 U. Kunze, H. Jawad and R. Burghardt, Z. Naturforsch., Teil B, 1986, 41, 1142.
- 29 G. Siasios and E. R. T. Tiekink, Z. Kristallogr., 1992, 200, 295.
- 30 W. Dietzsch, J. Kaiser, R. Richter, L. Golic, J. Siftar and R. Heber, Z. Anorg. Allg. Chem., 1981, 477, 71.

Received 11th January 1996; Paper 6/00225K