Preparation and properties of the corner-shared double cube $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ as a derivative of $[Mo_3S_4(H_2O)_9]^{4+}$

David M. Saysell, Z.-X. Huang and A. Geoffrey Sykes*

Department of Chemistry, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

DALTON

The heterometallic corner-shared double-cuboidal cluster $[Mo_6PbS_8(H_2O)_{18}]^{8+}$, with the lead atom common to both cubes, has been prepared for the first time by the reaction of $[Mo_3S_4(H_2O)_9]^{4+}$ with lead shot, which requires up to 1 h to reach completion, and by addition of a solution mix of $[Mo_3S_4(H_2O)_9]^{4+}$ and Pb^{II} to an excess of BH₄⁻, when reaction is rapid. The air-sensitive blue-green product has UV/VIS absorbance bands at 387 and 757 nm in 2.0 M HClO₄. Inductively coupled plasma atomic emission spectroscopy confirmed the Mo: Pb: S ratio as 6:1:8. It was eluted from a cation-exchange column with 4 M Hpts (toluene-*p*-sulfonic acid), but not 2 M Hpts (or 4 M HClO₄), consistent with a high charge, confirmed as 8+ from the 2:1 stoichiometries for the oxidation reactions with *e.g.* $[Co(dipic)_2]^-$ (dipic = pyridine-2,6-dicarboxylate) or $[Fe(H_2O)_6]^{3+}$, which yield $[Mo_3S_4(H_2O)_9]^{4+}$. Kinetic studies on the oxidations with $[Co(dipic)_2]^-$ and $[Fe(H_2O)_6]^{3+}$ were also carried out as part of an overall appraisal of the reactivity of the heterometallic clusters.

The now extensively studied trinuclear Mo^{IV}₃ incomplete cuboidal cluster $[Mo_3S_4(H_2O)_9]^{4+}$ (refs. 1 and 2) has the quite remarkable ability of incorporating heterometal atoms M to give $[Mo_3MS_4(H_2O)_x]^{4+}$ (x = 10 or 12) and related cuboidal complexes.^{3 5} The present listing (>14 clusters) extends from Group 6 (Cr)⁶ through Group 15 (Bi)⁷ in the Periodic Table. Heterometallic clusters are also obtained from the Fe_3S_4 incomplete cube present in metalloproteins, $^{8-12}$ and as Fe₃MS₄ analogue clusters,¹³ with e.g. M = Fe, Mn, Co, Ni, Zn or Cd. The greater stability and ease of preparation of $[Mo_3S_4(H_2O)_9]^{4+}$ derivatives has resulted in more extensive studies, with a range of single- and double-cube products.^{3,4} Whether a single or double cube is obtained seems to depend on the heterometal atom incorporated and the method of preparation used. With M = Hg, In, Tl, Pb or Bi the cornershared double cubes (sometimes referred to as sandwich structures) $[Mo_6MS_8(H_2O)_{18}]^{8+}$ are obtained, and are a feature of Main Group metallic elements. Single-cube clusters have been identified only in the case of M = In or Sn. In the present paper we add to this list and describe the preparation and properties of a Pb-containing product reported for the first time.

Molybdenum–lead mixed-metal compounds have previously attracted interest, and the stoichiometric compound Mo_6PbS_8 exists as a Chevrel-phase superconductor.¹⁴ Furthermore an all-lead cube $[Pb_4(OH)_4]^{4+,15,16}$ obtained by hydrolysis of perchlorate solutions of Pb^{2+} , was first prepared in the 1960s. The cluster reported in this paper is the first Mo/Pb/S product obtained in aqueous solution.

Experimental

Preparation of Pb-containing cluster

Solutions of $[Mo_3S_4(H_2O)_9]^{4+}$ in 2.0 M Hpts (toluene-*p*-sulfonic acid) or 2.0 M HCl were obtained from the Mo^V₂ complex $[Mo_2(\mu-S)_2O_2(cys)_2]^{2-}$ [cys = cysteinate(2-)] by BH₄⁻ reduction as previously described, and purified by Dowex cation-exchange chromatography.^{1,2} Samples in 2.0 M HClO₄, peak at 603 nm ($\varepsilon = 362 \text{ M}^{-1} \text{ cm}^{-1}$ per Mo₃),^{1,2} were prepared by removal of HCl on a vacuum line and taking up the solid in 2.0 M HClO₄ as previously described, ^{17,18} thereby obtaining solutions of a sufficiently high concentration. To synthesize the lead cluster two procedures were used. In the first

a solution of $[Mo_3S_4(H_2O)_9]^{4+}$ in 0.50 M Hpts (2 mM, 50 cm³) containing a 10-fold excess of Pb(ClO₄)₂·3H₂O (0.46 g, 20 mM, Sigma) was syphoned onto a ≈ 100 -fold excess of NaBH₄ (0.38 g, 0.20 M) under a nitrogen atmosphere. A vigorous effervescence occurred, and the solution changed from green to blue-green. It was left stirring under N₂ for 30 min, after which the mixture was purified by Dowex 50W-X2 cation-exchange chromatography. All operations were carried out under nitrogen. Using 1-2 M Hpts unreacted $[Mo_3S_4(H_2O)_9]^{4+}$ was first eluted. The blue-green Pb-containing cluster was then eluted with 4 M Hpts. No elution is observed with 2 M Hpts or 4 M HClO₄. This is consistent with the stronger complexing of pts⁻ than ClO₄⁻, and high charge on the product demonstrated to be 8+ for the corresponding clusters containing Hg,¹⁹ In,^{20,21} Tl,²² Sn,^{23,24} Sb²⁵ and Bi.⁷ The charge is assumed to be 8+ (confirmed below), which enables the reaction to be expressed as in equation (1).

$$2\mathrm{Mo}_{3}\mathrm{S}_{4}^{4+} + \mathrm{Pb}^{2+} + 2\mathrm{e}^{-} \longrightarrow \mathrm{Mo}_{6}\mathrm{Pb}\mathrm{S}_{8}^{8+} \qquad (1)$$

The second procedure involves the direct interaction of $[Mo_3S_4(H_2O)_9]^{4+}$ (4–5 mM) in 2.0 M Hpts or HClO₄ with a large excess of lead shot (≈ 5 g), under an N₂ atmosphere, and leaving to react for 30–60 min. The lead shot was first cleaned and activated by washing with HClO₄ prior to use. The same colour change is observed for the reaction, (2). This procedure

$$2\mathrm{Mo}_{3}\mathrm{S}_{4}^{4+} + \mathrm{Pb} \longrightarrow \mathrm{Mo}_{6}\mathrm{Pb}\mathrm{S}_{8}^{8+}$$
(2)

was preferred as column purification is not required. It was moreover the only method available to us for preparing stock solutions in 2.0 M HClO₄. However, if stock solutions prepared by reaction (2) are left to stand with an excess of Pb over long periods, a build-up of Pb²⁺ can occur as a result of ingress of O₂ and oxidation back to $[MO_3S_4(H_2O)_9]^{4+}$ which recycles. Hydrochloric acid was generally avoided because of the possibility of insoluble PbCl₂ forming. Stock solutions were stored by placing a container within a container, both under nitrogen at 4 °C. Under these conditions less than 10% oxidation was observed in 5 d.

Metal analyses were carried out by inductively coupled plasma atomic emission spectroscopy (ICP-AES) on product freshly eluted from a Dowex column with 2 M HCl. The ratio Mo:S:Pb obtained was 6.1:8.4:1, consistent with a core structure Mo_6PbS_8 . We have not so far been able to isolate crystals suitable for structure determination.

Solutions of $[Mo_3S_3O(H_2O)_9]^{4+}$ and $[Mo_3S_2O_2(H_2O)_9]^{4+}$ were prepared by procedures described.¹

UV/VIS and NIR spectra

The spectrum of the $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ cluster (ϵ per Mo_6) in 2 M HClO₄ is shown in Fig. 1, alongside that of $[Mo_3S_4(H_2O)_9]^{4+}$ (ϵ per Mo_3). The spectrum varies little in HCl. Hpts and HClO₄, where peak positions λ/nm (ϵ/M^{-1} cm⁻¹) are as listed in Table 1 (ϵ values per Mo_6). The ϵ values were determined by allowing solutions of the lead cube to oxidize with air to $[Mo_3S_4(H_2O)_9]^{4+}$, which has accurately known λ/nm (ϵ/M^{-1} cm⁻¹ per Mo_3) values of 248 (8219), 366 (5550) and 603 (362) in 2 M HClO₄.^{1,2} No NIR absorbance was observed up to 1300 nm.

Other reactants

A sample of NH₄[Co^{III}(dipic)₂]·H₂O, where dipic is pyridine-2,6-dicarboxylate, λ/nm (ϵ/M^{-1} cm⁻¹) 510 (630), was prepared as previously described.⁶ Solutions of [Fe(H₂O)₆]³⁺ were obtained by column purification of Fe(ClO₄)₃·6H₂O (Fluka). The final elution was carried out with 1.0 M HClO₄. Other reagents used including Hpts (from Aldrich), HCl, HClO₄ and LiClO₄ were of analytical grade purity, and used as supplied.

Kinetic studies

These were carried out at 25.0 ± 0.1 °C using perchlorate solutions of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$, ionic strength 2.00 ± 0.01 M (LiClO₄). Reactions were studied with the oxidant in large > 20-fold excess over $[Mo_6PbS_8(H_2O)_{18}]^{8+}$. All the kinetic runs were performed on a Dionex D-110 stopped-flow spectrophotometer.

Results

Stability of [Mo6PbS8(H2O)18]8+

The cluster is very air sensitive, and rigorous oxygen-free conditions are required for transfers and storage. On exposure to air, with some shaking, decay back to $[Mo_3S_4(H_2O)_9]^{4+}$ is observed $t_3 \approx 2$ min, equation (3).

$$Mo_{6}PbS_{8}^{8+} + \frac{1}{2}O_{2} + 2H^{+} \longrightarrow 2Mo_{3}S_{4}^{4+} + Pb^{2+} + H_{2}O \quad (3)$$

Beer's law

On varying the concentration of cluster in 2.00 M HClO₄ within the range 0.05–1.0 mM (using optical cells of different path length), Beer's law was found to be obeyed at all three peak positions 247, 387 and 757 nm, I = 2.00 M. It is concluded that a single main species is present in all such solutions.

Complexing with Cl⁻

Small changes only are observed in the absorbance spectrum of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ on changing the acid from HClO₄ (or Hpts) to HCl, Table 1. Similar shifts have been noted for the incomplete cube $[Mo_3S_4(H_2O)_9]^{4+}$ in 2.0 M HCl.¹⁸ The effect is assigned to the complexing of Cl⁻ at the Mo atoms.

Stoichiometry of oxidation reactions

Aliquots of the oxidants $[Co(dipic)_2]^-$ and $[Fe(H_2O)_6]^{3+}$ (solutions ≈ 20 times more concentrated than those of the cluster) were titrated into solutions of $Mo_6PbS_8^{8+}$ in 2 M HClO₄, and absorbance changes monitored at the cluster peak position at 757 nm. The sole Mo-containing product of

Fig. 1 The UV/VIS spectra (25 °C) of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ (----) and $[Mo_3S_4(H_2O)_9]^{4+}$ (----), ϵ values per Mo₆ and Mo₃ respectively, I = 2.00 M (HClO₄)

Table 1 Peak positions λ/nm (ϵ/M^{-1} cm⁻¹ per Mo₆) from UV/VIS absorbance spectra of the Mo₆PbS₈ cluster in different acids

2 M HClO ₄	2 M Hpts	2 M HCl
247 (22 068)	326 (sh) (10 560)	255 (22 700)
387 (13 955)	392 (14 590)	390 (12 800)
612 (sh) (4557)	*	620 (sh) (3600)
757 (27 300)	757 (27 300)	787 (24 100)
* Not observed.		

oxidation was identified spectrophotometrically as $[Mo_3S_4-(H_2O)_9]^{4+}$. Stoichiometries of 2.11 ± 0.10 (Co) and 1.95 ± 0.07 (Fe) were obtained from six determinations in each case, consistent with equations (4) and (5). To give a balance in

$$Mo_{6}PbS_{8}^{8+} + 2Co^{11} \longrightarrow 2Mo_{3}S_{4}^{4+} + Pb^{2+} + 2Co^{11} \quad (4)$$
$$Mo_{6}PbS_{8}^{8+} + 2Fe^{11} \longrightarrow 2Mo_{3}S_{4}^{4+} + Pb^{2+} + 2Fe^{2+} \quad (5)$$

these equations it is concluded that Mo_6PbS_8 has an 8 + charge, and the cluster is therefore assigned a formula $[Mo_6PbS_8(H_2O)_{18}]^{8+}$, Fig. 2.

Kinetics of oxidation of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ with $[Co(dipic),]^-$

The conversion of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ into $[Mo_3S_4-(H_2O)_9]^{4+}$, equation (4), was monitored at 757 nm. Firstorder rate constants k_{obs} were determined by the stopped-flow method, with the oxidant $[Co(dipic)_2]^-$ in ≥ 20 -fold excess over $[Mo_6PbS_8(H_2O)_{18}]^{8+}$. A linear dependence of k_{obs} on $[Co(dipic)_2^-]$ is observed, Fig. 3, consistent with the rate law (6). No dependence of rate constants on $[H^+]$ in the range

$$-d[Mo_6PbS_8^{8+}]/dt = k_{Co}[Mo_6PbS_8^{8+}][Co(dipic)_2^{-}]$$
(6)

0.50–2.00 M is observed, I = 2.00 M (LiClO₄), Fig. 3. From the slope $k_{Co} = (2.76 \pm 0.05) \times 10^5$ M⁻¹ s⁻¹. A reaction sequence (7), (8) is consistent with the behaviour observed, where the 9 +

$$Mo_6PbS_8^{8+} + Co^{III} \xrightarrow{k_{Co}} Mo_6PbS_8^{9+} + Co^{II}$$
 (7)

 $Mo_6PbS_8^{9^+} + Co^{III} \xrightarrow{fast} 2Mo_3S_4^{4^+} + Co^{II} + Pb^{II}$ (8)

Fig. 2 Structure of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ in solution

Fig. 3 Dependence of first-order rate constants k_{obs} (25 °C) for the oxidation of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ with $[Co(dipic)_2]^-$, $[H^+] = 2.00$ (\blacksquare), 1.00 (×) and 0.50 M (\bigoplus), I = 2.00 M (LiClO₄)

product is a transient species, not so far characterized. Reaction (8) can occur by fast oxidation to a 10+ product which then undergoes decay, or alternatively by dissociation of the 9+ product to give a fragment which oxidizes rapidly.

Kinetics of oxidation of $[Mo_6PbS_8(H_2O)_{18}]^{8\,+}$ with $[Fe(H_2O)_6]^{3\,+}$

The reaction summarized by equation (5) was monitored by stopped-flow spectrophotometry at 757 nm. Pseudo-first-order behaviour is again observed, and rate constants (k_{obs}) with the oxidant in large excess are as listed in Table 2. A linear dependence of k_{obs} on [Fe^{III}] is observed at each [H⁺]. The reaction is therefore first order in the concentrations of each reactant, (9). On varying [H⁺] in the range 0.50–2.00 M a linear

$$-d[Mo_{6}PbS_{8}^{8+}]/dt = k_{Fe}[Mo_{6}PbS_{8}^{8+}][Fe^{III}]$$
(9)

dependence of k_{Fe} on $[\text{H}^+]^{-1}$, (10), is found, Fig. 4. From a plot

$$k_{\rm Fe} = k_{\rm a} + k_{\rm b}' [{\rm H}^+]^{-1}$$
(10)

of $k_{\rm Fe}$ against [H⁺]⁻¹ the intercept yields $k_{\rm a}$ (1430 ± 60 M⁻¹ s⁻¹) and slope $k'_{\rm b}$ (820 ± 50 s⁻¹). The reaction sequence is similar to (7) and (8), with [Fe(H₂O)₆]³⁺ ($k_{\rm a}$) and [Fe(H₂O)₅(OH)]²⁺ ($k_{\rm b}$) contributing to the rate-determining first stage (7).

Discussion

The corner-shared double-cube $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ structure, Fig. 2, is deduced for the blue-green product obtained in these studies. Thus ICP-AES analyses indicate a Mo:Pb:S ratio of 6:1:8. In addition Dowex cation-exchange chromatography experiments, with elution using 4.0 M Hpts (but not 2.0 M Hpts or 4.0 M HClO₄), are consistent with a high charge. The charge is confirmed as 8+ from the 2:1 stoichiometries observed for the reactions with [Co(dipic)₂]⁻ and [Fe(H₂O)₆]³⁺, equations (4) and (5), with [Mo₃S₄(H₂O)₉]⁴⁺

Fig. 4 Dependence of second-order rate constants k_{Fe} (25 °C) on $[H^+]^{-1}$ for the $[Fe(H_2O)_6]^{3+}$ oxidation of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$, $I = 2.00 \text{ M} (\text{LiClO}_4)$

Table 2 The variation of rate constants k_{obs} (25 °C) for the oxidation of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$, (4–8) × 10⁻⁶ M, by $[Fe(H_2O)_6]^{3+}$, I = 2.00 M (LiClO₄)

[H ⁺]/M	[Fe ^{III}]/mM	$k_{\rm obs}/{\rm s}^{-1}$
2.00	0.50	1.00
	1.00	1.90
	1.50	2.56
	2.00	3.7
	2.50	4.4
1.50	0.50	1.10
	1.00	2.06
	1.50	3.00
	2.00	4.0
	2.50	5.1
1.00	0.50	1.30
	1.00	2.46
	1.50	3.6
	2.00	4.6
	2.50	5.8
0.75	0.50	1.40
	1.50	4.0
	2.00	5.1
0.50	0.50	1.51
	1.00	3.1
	1.50	4.5
	2.00	6.1

the only Mo-containing product. Moreover a single species is indicated from the conformity to Beer's law at three different wavelengths using a 20-fold variation in cluster concentration. There are now seven clusters of this type, the others incorporating Hg,¹⁹ In,^{20,21} Tl,²² Sn,^{23,24} Sb²⁵ and Bi.⁷ Those of Hg,¹⁹ In,^{20,26} Sn,²³ and Sb²⁵ have been characterized by X-ray crystallography. This type of structure appears to be by far the most favoured by Main Group heterometal atoms. Another example is provided by $[Mo_7S_8(H_2O)_{18}]^{8+,27}$ which is the only case at present in which a transition metal occupies the nodal position.

The double-cube $[Mo_6InS_8(H_2O)_{18}]^{8+} [\lambda/nm (\epsilon/M^{-1} cm^{-1})]$ 488 (6650) and 794 (648) (ϵ per Mo_6)] has only recently been prepared by reduction of a mixture of the single cube $[Mo_3InS_4(H_2O)_{12}]^{5+}$ and $[Mo_3S_4(H_2O)_9]^{4+}$ with BH_4^- or $H_3PO_2^{-2+1}$ The product cannot be column purified due to a quite rapid reaction with H⁺. However in related chemistry the incomplete cube $[Mo_3S_3O(H_2O)_9]^{4+}$, with one μ -sulfido core atom replaced by μ -oxo, has been shown to react with indium metal to give the corner-shared double cube $[(H_2O)_9Mo_3S_3OInOS_3Mo_3(H_2O)_9]^{8+}$, which has been characterized by X-ray crystallography.²⁰ No evidence was found in the present studies for any reaction of lead with the oxosulfido clusters $[Mo_3S_3O(H_2O)_9]^{4+}$ and $[Mo_3S_2O_2(H_2O)_9]^{4+}$, containing one μ -oxo and two μ -oxo core atoms respectively. The indium derivative of $[Mo_3S_3O(H_2O)_9]^{4+}$ therefore remains an isolated example. More generally it is not clear why the Mo_6 heterometallic clusters should be 8+, and why the heterometal should occupy the nodal position. These are features which require further clarification.

The oxidations of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ with $[Co(dipic)_2]^$ and hexaaqua iron(11) give 1:2 stoichiometries, equations (4) and (5). Two moles of $[Mo_3S_4(H_2O)_9]^{4+}$ are formed and no other stable oxidation state is identified. Equation (11)

$$Mo_6PbS_8^{8+} - 2e^- \longrightarrow 2Mo_3S_4^{4+} + Pb^{II}$$
 (11)

summarizes the half-reaction. When the cluster $[Mo_6SnS_{8^-}(H_2O)_{18}]^{8+}$ is oxidized (Sn also Group 14)²⁴ the single-cube cluster $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ is formed as a two-equivalent product prior to further oxidation to $[Mo_3S_4(H_2O)_9]^{4+}$

$$Mo_6SnS_8^{8+} - 4e^- \longrightarrow 2Mo_3S_4^{4+} + Sn^{IV}$$
 (12)

The corresponding half-reaction (12), differs therefore from (11) in the oxidation state of the heterometallic product.

Only two single-cube clusters $[Mo_3InS_4(H_2O)_{12}]^{5+}$ and $[Mo_3SnS_4(H_2O)_{12}]^{6+}$ of the Main Group metals have so far been isolated. Both have been characterized by X-ray crystallography.^{24,26} The existence of single and corner-shared double cubes for these 5p metals may relate to the redox properties of In^{I} - In^{III} and Sn^{II} - Sn^{IV} . In the latter case an assignment of these states to the double (Sn^{II}) and single (Sn^{IV}) cubes respectively has been suggested, consistent with the redox behaviour observed. No evidence has been obtained for the single cube Mo_3PbS_4 as a stable form, and Pb as a heterometal appears therefore to behave like Hg, TI and Bi (6p series).

There is no marked influence of 2.0 M HCl on the UV/VIS spectrum of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$. This contrasts with the behaviour observed for $[Mo_6BiS_8(H_2O)_{18}]^{8+}$, which gives a strong association (K > 40 M⁻¹), and an appreciable change in colour assigned to the complexing of one chloride at the Bi atom.⁷ In the case of $[Mo_6SnS_8(H_2O)_{18}]^{8+}$ it is known that chloride interacts with the Sn and induces dissociation to $[Mo_3(SnCl_3)S_4(H_2O)_9]^{3+}$.²⁴ The high affinity of Sn for Cl⁻ in the single cube ($K > 10^2$ M⁻³) has been noted.

The absence of an $[H^+]$ dependence for the $[Co(dipic)_2]^$ oxidation of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ is as observed for other clusters,^{4,28} and the mechanism is outer sphere. Likewise the k_a and k_b terms determined in the case of the iron(III) oxidation (10) are assigned to the reactions of $[Fe(H_2O)_6]^{3+}$ and $[Fe(H_2O)_5(OH)]^{2+}$ respectively, where K_a (25 °C) for the aciddissociation process (13) is 1.0×10^{-3} M at I = 2.00 M

$$[Fe(H_2O)_6]^{3+} \rightleftharpoons [Fe(H_2O)_5(OH)]^{2+} + H^+$$
 (13)

 $(NaClO_4)$.²⁹ The k_a term (1430 M⁻¹ s⁻¹) corresponds to an outer-sphere process, and $k_b (=k_b'/K_a)$ to the reaction of $[Fe(H_2O)_5(OH)]^{2+}$ with $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ (8.2 × 10⁵ M⁻¹ s⁻¹). The rate constant enhancement in the latter case is attributed to an inner-sphere process, with a hydroxo-bridge between Fe and Mo (or Pb) in the activated complex $\{Mo_6S_8Pb(OH)Fe(H_2O)_5\}^{10+}$ assisting the electron-transfer process.

The lead cluster is very oxygen sensitive, like many other heterometallic clusters obtained from $[Mo_3S_4(H_2O)_9]^{4+}$, and in particular the corner-shared clusters. This is of interest in view of the sheltered position of the heterometal atom, and the expected substitution inertness of the Mo atoms.³⁰ The reaction of $[Mo_3FeS_4(H_2O)_{10}]^{4+}$ with oxygen has been studied in some detail,³¹ and an intermediate formulated as $[Mo_3FeS_4(O_2)]^{4+}$ detected. Addition of oxygen at the lead in the protected nodal position of the double cube is less likely to occur, and an outersphere mechanism is therefore suggested. Outer-sphere reactions of O_2 have been observed previously.³² ³⁴

All the corner-shared double clusters have intense UV bands in the range 320–390 nm, and a second intense band at higher wavelengths. In the case of $[Mo_6PbS_8(H_2O)_{18}]^{8+}$ such a peak is observed at 757 nm, with the unusually high ε associated with a charge-transfer process. By analogy with $[Mo_6SnS_8-(H_2O)_{18}]^{8+}$ the oxidation state of Pb is most likely II. Shibahara *et al.*¹⁹ have suggested an assignment Hg⁰ in the $[Mo_6HgS_8(H_2O)_{18}]^{8+}$ cluster, which has very long Hg–S bond lengths of ≈ 2.84 Å. Owing to the sensitivity of the In- and Tl-containing clusters to H⁺ oxidation,^{21,22} an oxidation state t assignment to these heterometal atoms is favoured. Different oxidation levels of the Mo₃S₄ component are implicated by such variations in oxidation state of the heterometal atom.

Recent work has revealed that $[Mo_3S_4(H_2O)_9]^{4+}$ in 2 M HCl will interact with lead metal to form $[Mo_4S_4-(H_2O)_{12}]^{4+}$,³⁵ with no incorporation of lead. The mechanism of this reaction is not clear to us, and certainly merits further investigation.

To summarize, lead has been incorporated into $[Mo_3S_4(H_2O)_9]^{4+}$ for the first time to give $[Mo_6PbS_8-(H_2O)_{18}]^{8+}$. Heterometallic corner-shared double-cube clusters of this type have now been prepared for M = Hg, In, Tl, Sn, Pb, Sb or Bi, and are a particular feature of Main Group metals. No evidence has been obtained for a single cube analogous to $[Mo_3SnS_4(H_2O)_{12}]^{6+}$. Whilst the cluster has the same empirical formula as the Chevrel-phase superconductor Mo_6PbS_8 , the latter has a quite different structure with eight S atoms in a cube containing an Mo_6 unit, *i.e.* with a Mo at the centre of each face of the cube.¹⁶ The Pb atoms intercalate between Mo_6S_8 units in this structure.

Acknowledgements

We are grateful to the University of Newcastle (D. M. S.), and the British Council (Z.-X. H.) for financial support, the latter under an Academic Links with Professor J.-X. Lu and colleagues at the Chinese Academy of Sciences Institute in Fuzhuo.

References

- 1 M. Martinez, B.-L. Ooi and A. G. Sykes, J. Am. Chem. Soc., 1987, 109, 4615.
- 2 B.-L. Ooi and A. G. Sykes, Inorg. Chem., 1989, 28, 3799.
- 3 T. Shibahara, Adv. Inorg. Chem., 1991, 37, 143.
- 4 D. M. Saysell and A. G. Sykes, J. Cluster Chem., 1995, 6, 449.
- 5 D. M. Saysell, M. N. Sokolov and A. G. Sykes, Sulfur Coordinated Transition Metal Complexes, ed. E. Stiefel and K. Matsumoto, ACS Symp. Ser., PacifiChem 95 Meeting, Honolulu, 1996.
- 6 C. A. Routledge, M. Humanes, Y.-J. Li and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1994, 1275.
- 7 D. M. Saysell and A. G. Sykes, Inorg. Chem., in the press.
- 8 K. Y. Faridoon, H.-Y. Zhuang and A. G. Sykes, *Inorg. Chem.*, 1994, 33, 2209.
- 9 T. A. Kent, M. H. Emptage, H. Merkle, M. C. Kennedy, H. Beiner and E. Münck, J. Biol. Chem., 1985, 260, 6871.
- 10 J. N. Butt, A. Sacheta, F. A. Armstrong, J. Breton, A. J. Thomson and E. C. Hatchikian, J. Am. Chem. Soc., 1991, 113, 8948.
- 11 K. K. Surerus, E. Münck, I. Moura, J. J. G. Moura and J. LeGall, J. Am. Chem. Soc., 1987, 109, 3805.
- 12 M. G. Finnegan, R. C. Conover, J.-B. Park, Z.-H. Zhou, M. W. Adams and M. K. Johnson, *Inorg. Chem.*, 1995, **34**, 5358.
- 13 J. Zhou, M. J. Scott, Z. Hu, G. Peng, E. Münck and R. H. Holm, J. Am. Chem. Soc., 1992, 114, 10 843.
- 14 R. Chevrel, M. Hirrien and M. Sergent, Polyhedron, 1986, 5, 87.
- 15 G. Johanssen and A. Olin, Acta Chem. Scand., 1968, 22, 3197.
- 16 C. F. Baes and R. E. Mesmer, in *The Hydrolysis of Cations*, Wiley, New York, 1976, p. 360.
- 17 D. M. Saysell, C. D. Borman, C.-H. Kwak and A. G. Sykes, *Inorg. Chem.*, 1996, 35, 173.

- 18 D. T. Richens, P. A. Pittet, A. E. Merbach, M. Humanes, G. J. Lamprecht, B.-L. Ooi and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1993, 2305.
- 19 T. Shibahara, H. Akashi, M. Yamasaki and K. Hashimoto, *Chem. Lett.*, 1991, 689.
- 20 G. Sakane, Y.-G. Yao and T. Shibahara, *Inorg. Chim. Acta*, 1993, **216**, 13.
- 21 M. N. Sokolov and A. G. Sykes, unpublished work.
- 22 J. E. Varey and A. G. Sykes, Polyhedron, 1996, 15, 1887.
- 23 H. Akashi and T. Shibahara, Inorg. Chem., 1989, 28, 2906.
- 24 J. E. Varey, G. J. Lamprecht, V. P. Fedin, A. Holder, M. R. J. Elsegood, W. Clegg and A. G. Sykes, *Inorg. Chem.*, submitted for publication.
- 25 T. Shibahara, K. Hashimoto and G. Sakane, J. Inorg. Biochem., 1991, 43, 280.
- 26 G. Sakane and T. Shibahara, Inorg. Chem., 1993, 32, 777.
- 27 T. Shibahara, T. Yamamoto, H. Kamadani and H. Kuroy, J. Am. Chem. Soc., 1987, **109**, 3495.

- 28 P. W. Dimmock, D. M. Saysell and A. G. Sykes, *Inorg. Chim. Acta*, 1994, **225**, 157.
- 29 Ref. 16, p. 230.
- 30 Y.-J. Li, M. Nasreldin, M. Humanes and A. G. Sykes, *Inorg. Chem.*, 1992, 31, 3011.
- 31 P. W. Dimmock and A. G. Sykes, J. Chem. Soc., Dalton Trans., 1990, 3101.
- 32 D. M. Stanbury, O. Hass and H. Taube, Inorg. Chem., 1980, 19, 518.
- 33 I. I. Creaser, R. J. Geue, J. M. Harrowfield, A. J. Herlt, A. M. Sargeson, M. R. Snow and J. Springborg, J. Am. Chem. Soc., 1982, 104, 6016.
- 34 A. Bakac, J. H. Espenson, I. I. Creaser and A. M. Sargeson, J. Am. Chem. Soc., 1983, 105, 7624.
- 35 M. Brorson, J. Hyldtoft, C. H. Jacobsen and K. G. Olesen, *Inorg. Chim. Acta*, 1995, 232, 171.

Received 27th February 1996; Paper 6/01393G