Macropolyhedral boron-containing cluster chemistry. Isolation and characterisation of the eighteen-vertex nido-S-iridaoctaborano $[3', 8' : 1, 2]$ -closo-4-iridadodecaborane, $[(CO)(PMe₃), IrB₁₆H₁₄Ir(CO)(PMe₃),1†$

Lawrence Barton,^a Jonathan Bould,^{a,b} John D. Kennedy^b and Nigam P. Rath^a

^aDepartment of Chemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA School of Chemistry, University of Leeds, Leeds LS2 9JT, UK

The novel eighteen-vertex macropolyhedral diiridaborane $[(CO)(PMe₃)₂IrB₁₆H₁₄Ir(CO)(PMe₃)₂]$ has been isolated in low yield from the products of thermolysis of the nine-vertex *arachno*-monoiridaborane $[(CO)(PMe₃)₂HIrB₈H₁₂]$, and examined by single-crystal X-ray diffraction analysis, NMR spectroscopy and mass spectrometry. The macropolyhedral framework consists of a *closo*-type twelve-vertex ${IrrB_{11}}$ subcluster and a nido-type eight-vertex $\{IrB_7\}$ subcluster fused with two boron atoms in common. In addition there is an iridium-boron two-electron two-centre intercluster cross-linkage that is suprafacial to the open *nido* subcluster. The results are briefly discussed in terms **of** bonding schemes among individual subclusters.

The extent of structure available to polyhedral boroncontaining cluster compounds ' is considerably increased by the application of the principle of cluster fusion, in which smaller single-cluster building blocks are intimately joined, with two or more atoms in common, to generate so-called 'macropolyhedral' cluster species.^{2,3} Experimentally this is an oxidation, often difficult to engender. It may be performed chemically, for example by the use of oxidising agents based on transition elements. Thus $B_{12}H_{16}$ is derived from the $[nido-B_6H_9]$ anion by use of $FeCl₂-FeCl₃,⁴$ and the $[anti-B₁₈H₂₁]⁻$ anion or neutral *anti*- $B_{18}H_{22}$ from the $[nido-B_9H_{12}]$ ⁻ anion *via* reaction with $\left[\frac{\{Os(CO)_3Cl_2\}_2\}}{Os} \right]$ or HgBr₂ respectively.^{5,6} Alternatively, an oxidative electron loss can occur by dihydrogen elimination, and/or by the elimination of electron-rich ligands.⁷ So far, this has usually been induced thermally. For single-cluster boranes this is classically exemplified⁸ by the thermolysis of B_2H_6 to give B_5H_9 and thence $B_{10}H_{14}$, and in macropolyhedral synthesis by the thermolysis of *nido*- B_8H_{12} to give $B_{16}H_{20}$ ^{7,9} Thermolysis of nine-vertex *arachno*- $B_9H_{13}(SMe)_2$ yields $B_{18}H_{22}$ ⁷ and of nine-vertex *arachno*-SB₈H₁₂ yields $S_2B_{16}H_{16}$.¹⁰ Thermolysis of nine-vertex *arachno*-[(PMe₂Ph)₂PtB₈H₁₂] gives several macropolyhedral species, *e.g.* seventeen-vertex $[(PMe₂Ph)Pt B_{16}H_{18}(PMe_2Ph)$] and $[(PMe_2Ph)_4Pt_3B_{14}H_{16}]$. Two further nine-vertex *arachno* species that have interesting chemistries are $[(CO)(PMe₃)₂HIrB₈H₁₂]$ and $[(CO) (PMe₃), HIrB₈H₁₁Cl¹²⁻¹⁵$ We found previously that mild thermolysis of these yields corresponding nine-vertex nido- $[(CO)(PMe₃)₂IrB₈H₁₁]$ and *nido*- $[(CO)(PMe₃)₂IrB₈H₁₀Cl].$ With the latter B-chlorinated compound stronger heating thence gives uniquely structured *isocloso*-[(CO)(PMe₃)₂HIrB₈-
H₇Cl].¹³ By contrast, we now report that thermolysis of the unsubstituted species $[({\rm CO})({\rm PMe}_3)_2{\rm IrB}_8{\rm H}_{11}]$ gives small quantities of an eighteen-vertex macropolyhedral diiridaborane of molecular formulation $[(CO)(PMe₃)₂IrB₁₆H₁₄Ir (CO)(PMe₃)₂$].

Experimental

Synthesis of $[(CO)(PMe₃)₂IrB₁₆H₁₄Ir(CO)(PMe₃)₂]$

In an evacuated flask, arachno- $[(CO)(PMe₃)₂HIrB₈H₁₂]$ (650 mg, 1.4 mmol; prepared as in ref. 12) was heated for 2 min in an oil-bath maintained at 180 "C, during which time the solid melted, bubbled and turned red. The ¹¹B NMR spectrum of the product showed that it was essentially all *nido*- $[(CO)(P-Ne₃)₂IrB₈H₁₁]$, as expected, ¹²⁻¹⁵ although the red colour indicated the trace presence of other species. The NMR solvent was removed, and the solid then heated again at 180 °C for 15 min, after which time the resulting mixture was dissolved in $CH₂Cl₂$, applied to a preparative TLC plate (silica gel, Aldrich TLC grade, with gypsum binder and fluorescent indicator; $1 \times 200 \times 200$ mm), and developed using dichloromethanepentane (70:30) as the liquid phase. Several coloured bands were evident between *R, ca.* 0.55 and *ca.* 0.15 *(ca.* 0.5, red; *ca.* 0.45, red; *ca.* **0.4,** brown; *ca.* **0.2,** yellow). Each of the bands was removed from the plate, extracted with $CH₂Cl₂$, the filtrate reduced to dryness, and then redissolved in CDCl, for NMR analysis. Each component appeared to be a mixture of compounds. Further repeated attempts at chromatographic differentiation have so far proved ineffective, although ultimately, for the strongest band (yellow, R_f 0.2), a slow diffusion of hexane at 5° C into a CDCl₃ solution produced small orange crystals which, after recrystallisation, were fully characterised by NMR, mass spectrometry, and single-crystal X-ray diffraction analysis, as the compound $[(CO)(PMe₃)₂Ir-$ B,,H141r(CO)(PMe,),] **1** (1 mg, 1.1 pmol, **0.1%** yield). A second component, at *R, ca.* 0.18, was partially characterisable as a sixteen-boron iridaborane species, **2,** and gave yellow needle crystals (< **1** mg) which were not suitable for singlecrystal X-ray analysis. Compound **2** was insufficiently robust to survive repeated recrystallisation attempts. The remaining bands have not so far been at all amenable to full characterisation on the scale of the experiments conducted, although some appear to contain macropolyhedral cluster compounds similar to **1.** A subsequent preparation using 100 mg (ca. 200 µmol) of the arachno-iridanonaborane, and heating at *ca.* 175 "C for 4 min, resulted in a yield of *ca.* **1** mg (0.5% yield) of compound **1.** The mass spectrum (FAB mode; 3 nitrobenzyl alcohol matrix) of **1** was as follows, ordered as *m/z* (observed) [observed relative intensity (calculated relative

 \dagger 4,5'-Dicarbonyl-4,4,5',5'-tetrakis(trimethylphosphine)- σ {Ir(5')B(6)}**nido-5'-iridaoctaborano[3',8'** : **1,2)-closo-4-iridadodecaborane.** The compound and the crystal habit adopted *(P2,2,2,* symmetry) are both chiral, and this name **is** for the configuration as determined in the particular crystal selected **(Fig.** 1). The bulk compound as prepared would be racemic.

intensity for $C_{14}H_{50}B_{16}Ir_2O_2P_4$ isotopomers in natural abundance)]: 927 [13(13)], 928 [25(28)], 929 [52(50)], 930 [78(76)], 931 $[100(95)]$, 932 $[87(100)]$, 933 $[82(86)]$, 934 $[62(58)]$, 935 [33(29)], 936 [6(10)].

Nuclear magnetic resonance spectroscopy

This was carried out¹⁶ at *ca.* 9.35 and *ca.* 11.69 T on commercially available instruments. Chemical shifts, 6, are given in ppm to low field (high frequency) of $E = 32.083971$ MHz (nominally $Et_2O·BF_3$) for ¹¹B, of 100 MHz (SiMe₄) for ¹H and of 40.480 730 MHz (nominally 85% H₃PO₄) for ³¹P, Ξ being defined as in ref. 17. The data for compound **1** (CD,CI, at 294-297 K) are given as, $\delta(^{11}B)$ (relative intensities greater than unity, tentative assignment where possible) $\{\delta({}^{1}H)$ of directly attached hydrogen atom}: $+63.0$ { + 7.70 (br, partially resolved d structure due to unassigned coupling)}, +26.9 $\{+5.94\}$, +22.3 { + 5.16}, +15.7 [2B, B(6') or B(7')] { +4.78, +3.11}, $+5.4 \{+3.50\}, ca. +0.6(2B) \{+2.34, +2.60\}, -0.6 \{+2.96\},$ -6.9 {+2.67}, -9.9 [B(2), B(6) or B(1)] {*conjuncto* linkage}, -10.3 [B(2), B(6) or B(1)] {conjuncto linkage}, -12.9 $\{+1.87\}$, -17.0 $\{+2.32\}$, -21.3 [B(2), B(6) or B(1)] $\{con$ j uncto linkage}, -28.2 $(-1.29, d,$ splitting 25}. Additional $\delta({}^{1}H$): +0.91 [H(6'), H(7')] +1.93 (18 H, d of d, splitting 9.4 and 2.4, PMe₃), +1.73 (9 H, d, splitting 9.5) and +1.56 (d, splitting 8.9 Hz). δ (31P) (230 K, CDCl₃-CH₂Cl₂ solution): P(1)}, -49.7 {d, ²J_L³¹P(3)-³¹P(4)] 24 Hz, P(3)} and *ca.* -55 [vbr, P(4)]. For compound 2, $\delta({}^{11}B)$ (CDCl₃ at 297 K, intensity 1B unless otherwise indicated) + 53.5, + 18.7, *ca.* + 14.2 (2B), $-21.5, -24.5, -26.8$ and -27.9 . -40.9 [d, P(1), P(2)], -41.9 {d, $^{2}J_{1}^{31}P(1/2)-^{31}P(2/1)$] 27, P(2), $+5.3, +3.5, ca. -5.3$ (2B), $-11.2, -11.7, -13.9, -18.5,$

Orange irregularly shaped crystals were obtained by slow diffusion at *5* "C of pentane into a solution of compound **1** in $CH₂Cl₂$. Data were collected on a Siemens P4 (sealed tube) apparatus using Mo-Ka irradiation at 0.710 73 **A.** Crystal data, intensity-data collection parameters and structure-refinement parameters are in Table 1. Reduction and decay correction were carried out using XSCANS,¹⁸ solution and refinement using SHELXTL PLUS $(5.03)^{19}$ and absorption using XEMP.¹ Full-matrix least-squares refinement was carried out by minimising $\Sigma w (F_0^2 - F_0^2)^2$. The non-hydrogen atoms were (compound 2) was isolatable in a pure state as yellow crys-
refined anisotropically to convergence. The hydrogen atoms on tals, and partially characterisable by the borane cage were located from Fourier-difference syntheses sixteen-boron species (see Experimental section). However, 2 and $H(4')$, $H(6')$, $H(7')$ and $H(6,7')$ were refined freely with an decomposed during repeated at isotropic thermal parameter equal to 1.2 times that of the boron suitable for an X-ray diffraction study. Only compound **1** was atom to which they are attached. The hydrogen atoms on the amenable to full characterisation. It was characterised by rest of the cage, together with those of the methyl groups, were single-crystal X-ray diffraction analys rest of the cage, together with those of the methyl groups, were refined using the riding models 19 AFIX 153 and AFIX 33, respectively. The absolute configuration was determined section). The NMR spectra were consistent with the results of using the Flack parameter $[x = -0.02(1)]$. A drawing is in the X-ray work. In particular, they confirmed t using the Flack parameter $[x = -0.02(1)]$. A drawing is in the X-ray work. In particular, they confirmed the hydrogen-
Fig. 1.

and angles have been deposited at the Cambridge Crystallo- atoms. These are represented in **I,** in which M is graphic Data Centre (CCDC). See Instructions for Authors, $\{Ir(CO)(PMe₃)₂\}$. Structure I has a different perspective from *J.* Chem. *Soc., Dalton Trans.,* 1996, Issue 1. Any request to the that of Fig. **I** to facilitate discussion. The architecture consists CCDC for this material should quote the full literature citation of a closed twelve-vertex $\{IrB_{11}\}$ unit fused, with two boron and the reference number 186/80. atoms in common, to an open eight-vertex $\{IrB_7\}$ unit. The

Results and Discussion

Thermolysis of $arachno-[(CO)(PMe₃)₂HIrB₈H₁₂]$ under vacuum at *ca.* 180 °C for 4-15 min yielded, after repeated chromatographic separation and recrystallisation, the *nido-5'* iridaoctaborano[3',8' : **1,2]-clos0-4-iridadodecaborane,** [(CO)- $(PMe₃)₂IrB₁₆H₁₄Ir(CO)(PMe₃)₂]$ **1** in 0.1-0.5% yield. Boron-11 NMR spectroscopy suggested that other macropolyhedral products were also formed in low yield, of which only one

Fig. 1 Molecular structure of $[(CO)(PMe₃)₂IrB₁₆H₁₄Ir(CO)(PMe₃)₂]$ **1,** with non-hydrogen atoms as 50% probability thermal ellipsoids and methyl group atoms omitted for clarity

tals, and partially characterisable by NMR spectroscopy as a decomposed during repeated attempts to obtain single crystals and 2), and by NMR and mass spectrometry (see Experimental atom count and disposition. The structure is based on an Atomic coordinates, thermal parameters and bond lengths eighteen-vertex cluster with two iridium and sixteen boron (IrB, ,) unit has classical *closo* icosahedral geometry.' The $\{IrB_7\}$ unit has eight-vertex *nido* or *arachno* geometry, as typified by nido- $B_8H_{12}^{20}$ and arachno- $B_8H_{14}^{21}$ respectively. The similarity of *nido* or arachno octaborane shapes^{15,} prevents distinction based on geometry. However the presence of just one bridging hydrogen atom and electron-counting considerations (see below) suggest *nido.* In addition to the twoboron fusion, the subclusters are linked by a suprafacial twocentre, two-electron bond. This is *endo* to the iridium atom $[Ir(5')]$ of the eight-boron subcluster and *exo* to a boron atom

Table 1 Crystal data and structure refinement for compound **1**

Empirical formula M	$C_{14}H_{50}B_{16}Ir_2O_2P_4$ 931.78
T/K	295(2)
Crystal system	Orthorhombic
Space group	P2,2,2,
a/A	10.150(2)
b/Å	14.839(3)
c/A	22.970(5)
U/\AA ³	3459.7(11)
Z	4
D_c/Mg m ⁻³	1.789
μ /mm ⁻¹	7.885
Crystal size/mm	$0.1 \times 0.1 \times 0.1$
F(000)	1776
θ range for data collection/ \degree	$1.63 - 27.50$
hkl Ranges	-1 to 13, -15 to 19, -29 to 1
Reflections collected	8079
Independent reflections	6668 ($R_{\text{int}} = 0.0379$)
Maximum, minimum	0.9666, 0.6480
transmission	
Absorption correction	Semiempirical from ψ -scans
Data, restraints, parameters	6646, 0, 335
Goodness of fit on F^2	1.072
Final R indices $[I > 2\sigma(I)]$ R.	0.0436
$wR_2(F^2)$	0.0990
Largest difference peak and hole/e A^{-3}	1.251 to -1.664

[B(6)] of the $closo$ -{IrB₁₁} subcluster. There is a somewhat related linkage in the nineteen-vertex platinaborane $[(PMe₂ Ph_2Pt-(\eta^1,\eta^2)$ -anti- $B_{18}H_{20}$].²² The Ir(5')–B(6) distance of $2.24(2)$ \AA is within established ranges for iridaborane clusters.²³ It is somewhat longer than a σ -bonded distance, as in **[2-{(CO)(PMe,),HBr,Ir}-nido-B5H8] (2.07 A).24** Such intercluster linkages presumably arise from the proximity of reactive transition-element centres to exo-BH units of an opposing subcluster. They may mimic intermediate stages in fusions that produce more condensed species.²⁵ Here, for example, compound 1 has an open four-membered ring, $Ir(5')-B(6)$ - $B(1)-B(4')$. Simple closure across $B(6)-B(4')$ (observed distance 2.45 A) would then result in a more intimate fusion involving a common triangular face (heavier lines in **IIa):** this would give a nine-vertex nido-shaped subcluster, as observed in the eighteen-vertex diplatinaborane $[(PMe₂Ph)₂$ - $Pt_2B_{16}H_{15}(C_6H_4Me-4)(PMe_2Ph)^{26}$ **IIb.** Other intercluster dimensions are in normal ranges. Compound **1** is the first macropolyhedral metallaborane to have a two-boron edge fusion between *closo* and nido subclusters. The platinaborane **IIb** has a two-metal one-boron triangular-face *closo to* nido fusion. The thermolysis of $[(CO)(PMe₃)₂HIrB₈H₁₂]$ therefore results in a *conjunct0* linkage of shared boron atoms only. This is in contrast to the ostensibly similar $[(PMe₂Ph)₂Pt B_8H_{12}$]^{11,26} which generates several macropolyhedrals that all have fusions involving shared platinum as well as shared boron atoms.

Table 2 Selected interatomic distances (A) and angles (") for compound **1**

A simplistic application of electron counting²⁷ to the whole compound indicates a ${B_{18}H_{16}}^2$ ²⁻ equivalent, formally an eighteen-vertex pileo species. However, overall pileo, *closo,* nido, arachno, etc. descriptors have limited meanings in macropolyhedral compounds: the character of each individual subcluster and the nature of the intercluster linkages separately affect the overall electron count. They have to be assessed separately. The analysis of compound **1** is complicated by the Ir(5')-B(6) two-electron, two-centre suprafacial linkage. For easier analysis, this can can be replaced by a BH(6) and an IrH(5') unit **(111,** vertices BH and MH respectively), as it is extraneous to the fundamental cluster fusion that involves the common atoms $B(1)$ and $B(2)$. The $\{Ir_2B_{16}\}\$ cluster thence becomes a ${B_{18}H_{18}}^2$ equivalent. This is two electrons short of the electron count for the formulation $B_{18}H_{22}$, of which both known isomers have a *nido:nido* constitution with two boron atoms in common.^{$28-30$} Formal removal of two electrons from the nido:nido $B_{18}H_{22}$ formulation plus retention of the same type of two-boron cluster linkage would result in a closo:nido constitution as observed for compound **1.** Compound **1** and $B_{18}H_{22}$ also of course differ in that the $B_{18}H_{22}$ isomers are ten vertex : ten vertex species, whereas **1** is twelve vertex : eight vertex. In general, removal of an electron pair from a fused cluster compound can result either in (a) an increase in the intimacy of the fusion or *(b)* a two-electron condensation of either individual subcluster along the *hypho-arachno-nido-closo*pileo sequence.

The cluster structure of compound **1** is therefore based on a nido eight-vertex subcluster fused with a *closo* twelve-vertex subcluster. It is useful to consider the fusion modes of macropolyhedral species in terms of the neutral constituent subcluster molecules. Thus $B_{18}H_{22}$, consisting of two nido tenvertex units,²⁸⁻³⁰ notionally derives from two nido-B₁₀H₁₄ molecules fused with two boron vertices in common, and $B_{12}H_{16}$,⁴ consisting of a *nido* eight-vertex unit and a *nido* sixvertex unit, derives similarly from nido-B₈H₁₂ and nido-B₆H₁₀. Likewise, 1, after again converting the $B(6)$ -Ir(5') link into BH(exo) and IrH(endo) as in **111,** derives from a nido-type eightvertex species [(CO)(PMe,),HIrB,H,] **IVb** and a closo-type twelve-vertex species $[(CO)(PMe₃)₂IrB₁₁H₁₂]$ **IVa**. The eightvertex species would correspond to a $\{nido-B_8H_{11}\}^-$ unit of styx 2521 topology. The twelve-vertex species would correspond to a *closo*-type ${B_{12}H_{13}}$ ⁻ unit, and protonation of the B(1)-B(2) edge of **a** so-far hypothetical conventionally *closo* $[4,4,4-(CO)(PMe_3)_2$ -closo-4-Ir $B_{11}H_{11}$ ⁻ anion (numbering as in Fig. 1) would be required to generate the neutral $[(CO)(PMe₃)₂IrB₁₁H₁₂]$ entity. These neutral species would notionally come together **(V),** with one three-centre boronhydrogen-boron and two direct boron-hydrogen bonds in the $BH(1)-\mu-H-BH(2)$ unit of the twelve-vertex subcluster being replaced by one three-centre and two direct interboron bonds involving $B(1')$, $B(4')$ and $B(7')$ in the eight-vertex subcluster (other canonical forms can be drawn). 31

This type of two-boron conjunction in compound **1** links *closo* with nido units. Most two-boron conjunctions reported are nido with nido, as in the typical series of binary boranes $B_{12}H_{16}$,⁴ $B_{14}H_{18}$,³² $B_{16}H_{20}$ ^{7,31} and $B_{18}H_{22}$ ^{28,29} (although the similarly linked $B_{13}H_{19}$ and the interestingly symmetrical $B_{14}H_{20}$ are formally nido: arachno).^{29,31,33} This type of twoboron intercluster fusion mode is therefore general. It can thence lead to predictions of as yet unsynthesised macropolyhedral species. One of these, in view of the ready subrogation of BH groups by iridium moieties, $2^{3,34}$ would be the binary boron hydride analogue of compound 1, the closo:nido twelve wertex : eight vertex $[B_{18}H_{19}]$ anion.

The results of ¹¹B, ¹H, ¹H-{¹¹B} and ³¹P NMR spectroscopy for compound **1** are consistent with the molecular structure in **Fig.** 1. The three boron resonances for the intercluster links can be pinpointed because they have no terminal hydrogen atoms (Fig. 2), and ¹H-{¹¹B(selective)} experiments pinpoint

łН

 III

ВH

:H

MН

the boron resonances associated with the bridging hydrogen atoms. The small amount $(ca. 1 \mu mol)$ of material available precluded successful ¹¹B and ¹H homonuclear correlation experiments for additional assignments. The low-temperature **31P-{** 'H} NMR spectrum shows sharp **31P** resonances due to atoms P(1), **P(2)** and P(3) and a broad one from **P(4)** which is trans to the boron atom B(6) involved in the suprafacial iridium-boron link.

Acknowledgements

We thank the Johnson-Matthey Company for a loan of IrCl₃-3H₂O, the National Science Foundation (USA), the EPSRC (UK), the Missouri Research Board, and the University of Missouri-St. Louis for financial support of this work, and the National Science Foundation for a grant to purchase the X-ray diffractometer.

Fig. 2 The 128 MHz ¹¹B (top trace) and ¹¹B- $\{$ ¹H $\}$ (bottom trace) NMR spectra of $[(CO)(PMe_3)_2]$ $\overline{IPB}_{16}H_{14}I$ \overline{I} \overline{C} \overline{O} $\overline{PMe_3}$ \overline{O}_2 \overline{I} **1** in CDCl₃ solution at 294 K. The asterisks indicate impurities

References

- 1 R. E. Williams, *Inorg. Chem.,* 1971, **10,** 210; *Ado. Inorg. Chem. Radiochem.,* 1976, **18,** 67.
- 2 L. Barton, in *Topics in Current Chemistry-100. New Trends in Chemistry,* ed. F. L. Boschke, Springer, Berlin, Heidelberg and New York, 1982, pp. 169-206 and refs. therein.
- 3 P. Kaur, J. Holub, N. P. Rath, J. Bould, L. Barton, B. Stibr and J. D. Kennedy, *J. Cbem. Soc., Chem. Commun.,* 1996,273; T. Jelinek, J. D. Kennedy, B. Stibr and M. Thornton-Pett, *Angew. Chem., Int. Ed. Engl.,* 1994,33,1599; P. Kaur, J. D. Kennedy, M. Thornton- Pett, T. Jelinek and B. Stibr, *J. Chem. Soc., Dalton Trans.,* 1996, 1775.
- 4 C. Brewer and R. N. Grimes, *J. Am. Chem. Soc.,* 1984, 106, 7226; C. Brewer, R. G. Swisher, E. Sinn and R. N. Grimes, *J. Am. Chem. Soc.,* 1985, **107,** 3558.
- *5* J. Bould, N. N. Greenwood and J. D. Kennedy, *Polyhedron,* 1983,2, 1401.
- **6** D. F. Gaines, C. K. Nelson and G. A. Steehler, *J. Am. Chem. Soc.,* 1984,106,7226.
- 7 J. PleSek, **S.** Heimanek, B. Stibr and **F.** Hanousek, *Collect. Czech. Chem. Commun.,* 1967, 32, 1095; J. PleSek, **S.** Heimanek and **F.** Hanousek, *Collect. Czech. Chem. Commun.,* 1968,33, 699.
- 8 See, for example, N. N. Greenwood and R. Greatrex, *Pure Appl. Chem.,* 1987,59, 857 and refs. therein.
- 9 **J.** Rathke and R. Schaeffer, *Inorg. Chcm.,* 1974, 13, 3008.
- 10 **T.** Jelinek, J. D. Kennedy and B. Stibr, *J. Chem. Soc., Chem. Commun.,* **1** 994, I4 1 *5.*
- 11 M. A. Beckett, J. E. Crook, N. N. Greenwood, **J.** D. Kennedy and W. **S.** McDonald, *J. Chern. Soc., Chem. Commun.,* 1982, *552;* M. A. Beckett, J. E. Crook, N. N. Greenwood and J. D. Kennedy, *J. Chem. Soc., Chem. Commun.,* 1983, 1228; *J. Cheni. SOC., Dalton Trans.,* 1986,1879; M. A. Beckett, N. N. Greenwood, J. D. Kennedy, P. **A.** Salter and M. Thornton-Pett, *J. Chem. Soc., Chem. Cornmun.,* 1986, 536.
- 12 J. Bould, J. E. Crook, N. N. Greenwood and **J.** D. Kennedy, *J. Chem. Sue., Dalton Trans.,* 1984, 1903.
- 13 J. Bould, J. E. Crook, N. N. Greenwood and J. D. Kennedy, *J. Chem. Soc., Chem. Commun.,* 1982, 346.
- 14 J. Bould, N. N. Greenwood and J. D. Kennedy, *J. Chem. Soc., Dalton Trans.,* 1984, 2477.
- 15 J. Bould, N. **P.** Rath and L. Barton, *Organometullics,* 1996, in the press.
- 16 See, for example, M. Bown, X. L. R. Fontaine and J. D. Kennedy, *J. Cheni. Soc., Dalton Trans.,* 1988, 1467.
- 17 W. McFarlane, *Proc. R. Soc. London, Ser. A,* 1968,306, 185.
- 18 XSCANS, Siemens Analytical Instruments, Madison, WI, 1994.
- 19 G. M. Sheldrick, Siemens Analytical X-Ray Division, Madison, **WI,** 1995.
- 20 R. E. Enrione, **F.** P. Boer and W. N. Lipscomb, *J. Am. Chem. Soc.,* 1964,86, 1451; *Inorg. Chem.,* 1964,3, 1659.
- 21 D. C. Moody and R. Schaeffer, *Inorg. Chem.,* 1976, 15,233.
- 22 *Y.* M. Cheek, N. N. Greenwood, J. D. Kennedy and W. **S.** McDonald, *J. Chem. Soc., Chem. Commun.,* 1982, 80.
- 23 J. D. Kennedy, *Prog. Inorg. Chenz.,* 1984, 32, 519.
- 24 M. R. Churchill, J. J. Hackbarth, A. Davidson, D. D. Traficante and **S. S.** Wreford, *J. Am. Chem. Soc.,* 1974,96,4041.
- 25 X. L. **R.** Fontaine, N. N. Greenwood, **J.** D. Kennedy, P. **A.** MacKinnon and M. Thornton-Pett, *J. Chem. Soc., Chem. Commun.,* 1986, 1111.
- 26 M. A. Beckett, N. N. Greenwood, J. D. Kennedy, P. A. Salter and M. Thornton-Pett, *J. Chem. Soc., Chem. Commun.,* 1986, 556.
- 27 K. Wade, *Chem. Commun.,* 197 I, 792; *Adv. Inorg. Chem. Radiochem.,* 1976, **18,** 1.
- 28 P. G. Simpson and W. N. Lipscomb, *J. Chem. Phys.,* 1963,39,26.
- 29 P. G. Simpson, **K.** Folting, R. B. Dobrott and W. N. Lipscomb, *J. Chem. Phys.,* 1963, 39, 2339.
- 30 D. **A.** Dixon, D. **A.** Kleier, T. A. Halgren and W. N. Lipscomb, *J. Am. Chem. SOC.,* 1976,98,2086.
- 31 **L.** B. Friedman, R. E. Cook and M. D. Glick, *Inorg. Chem.,* 1970,9, 1452.
- 32 **S.** Heimanek, K. Fetter, J. PleSek, L. J. Todd and A. R. Garber, *Inorg. Chem.*, 1975, 14, 2250.
- 33 **J.** C. Huffman, D. C. Moody and R. Schaeffer, *Inorg. Chem.,* 1976, 15,227; 1981,20,741.
- 34 See, for example, J. Bould, N. P. Rath and **L.** Barton, *J. Chem. Soc., Chem. Commun.,* 1995, 1285; J. Bould, M. Pasieka, J. B. Braddock-Wilking, N. P. Rath and L. Barton, *Organometallics*, 1995, 14, 5138; J. Bould, N. P. Rath and L. Barton, *Inorg. Chem.,* 1996,35, 35.

Received 4th December 1995; *Paper* 5/07866K