Dilithium diamides $[{Li(OC_4H_8)}_2 {C_{20}H_{12}(NR)_2}]$ (R = SiMe₃ or CH₂Bu^t) derived from *R*-, *S*- or *R*,*S*-2,2'-diamino-1,1'-binaphthyl derivatives *

Christian Drost, Peter B. Hitchcock and Michael F. Lappert

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, UK

The dilithium diamides [{Li(thf)}₂{C₂₀H₁₂(NR)₂}] (R = SiMe₃ 1 or CH₂Bu' 2, thf = tetrahydrofuran) were prepared from *R*,*S*-2,2'-diamino-1,1'-binaphthyl, $C_{20}H_{12}(NH_2)_2$, via $C_{20}H_{12}[N(H)SiMe_3]_2$ or $C_{20}H_{12}[NHC(O)Bu']_2$ and $C_{20}H_{12}[N(H)CH_2Bu']_2$, respectively, and were transformed into SiCl₂[$C_{20}H_{12}(NR)_2$] by treatment with SiCl₄. The crystal structures of 1 and 2 were determined. They are monomers, having a Li(1)N(1)Li(2)N(2) buckled ring, with Li(1)-N(2) ca. 0.2 Å shorter than Li(1)-N(1), the two groups R *cis* to one another, and N(1)-C(1) η^2 bonded to Li(1). The *R* and *S* enantiomers were similarly prepared and their optical stability was demonstrated by their hydrolysis to *R*- and *S*-C₂₀H₁₂(NH₂)₂, respectively. Evidence is provided for the structures of [M{ $C_{20}H_{12}[N(SiMe_3)]_2$] (M = Ge or Sn), obtained by conversion of the stannylene into the crystallographically characterised [{Sn[(NSiMe_3)_2C₂₀H₁₂](µ-O)}₃].

This paper has a bearing on two diverse topics of current interest: novel, lipophilic, organic compounds of the alkali metals and C_2 -symmetric chiral auxiliaries.

Organic lithium compounds, with or without a neutral coligand [such as OEt_2 , tetrahydrofuran (thf), $(Me_2NCH_2)_2$ (tmen) or $NMe(CH_2CH_2NMe_2)_2$ (pmdien)], are important as reagents.¹ Their structures, both in solution and the crystalline state, have also attracted much attention.² The role of the coligand, which lowers the state of aggregation of the lithium compound, has been to change the reactivity of the reagent. Chiral lithium amides have been shown to undergo intermolecular chirality transfer in a wide variety of applications.³

The structures of crystalline lithium amides have been reviewed.⁴ Those having an ether as coligand are at least binuclear, as in [{Li[μ -N(SiMe_3)]L}₂] {L = OEt₂^{5a} [Li–N 2.06(1), Li–O 1.95(2)] or L = thf^{5b} [Li–N 2.03(9), Li–O 1.88(1) Å]}, but mononuclear analogues with a bidentate coligand are known, *e.g.* [Li(NRR')(tmen)] {R = R' = SiMe_3 [Li–N 1.79(1)] or R(R') = H(C₆H₂Bu'₃-2,4,6) [Li–N 1.89(8) [Å]}.⁶ Only one example of a lithium bis(amide) appears to have been described previously, the dimer {Me₂Si[N(Li)Bu']₂}.⁷ A small number of dimeric tris(amides) has been reported, {RSi[N(Li)SiMe_3]_3}₂ (R = Me, Bu' or Ph),⁸ {PhSi[N(Li)-Bu']_3}₂⁷ and {MeC[CH₂N(Li)R]_3}₂ (R = Prⁱ or SiMe₃),⁹ as well as the monomeric CH[SiMe₂N(Li)Bu']_3 and its bis(thf) adduct.¹⁰ In CH[SiMe₂N(Li)Bu']_3 each Li atom is two-coordinate with an average Li–N distance of 1.92 Å (*cf.* 2.00 Å in the thf adduct in which the four-co-ordination of Li is completed by bonds to oxygen, average 2.03 Å).

Lithium salts of dianionic ligands which we have previously crystallographically characterised include the monomeric dialkyls and diphosphides [{Li(tmen)}₂{ $o-C_6H_4[E(SiMe_3)]_2$ }] (E = CH¹¹ or P¹²) in which each Li atom is equidistant from the two dianionic centres; the related bis(amide) has only been structurally studied as its dimeric magnesium salt [{Mg(OEt_2)[$o-C_6H_4$ {N(SiMe_3)}_2]}_2].¹³ R,S-2,2'-Dimethyl-1,1'-binaphthyl, isoelectronic with C₂₀H₁₂(NH₂)₂, has been converted into crystalline [{Li(tmen)}₂{C₂₀H₁₂(CHSiMe_3)_2]} having a dihedral angle between the two naphthyl planes of 82°.¹⁴

The synthesis and applications of R- and S-binaphthylic C_2

A T

derivatives have been reviewed.¹⁵ Many of these have been the neutral molecules $C_{20}H_{12}X_2$, including those with $X = PPh_2$ (binap), OH (binol) {*cf.* Li[($C_{20}H_{10}O_2$)Al(OR)H]}, SH or NH₂.¹⁶ Compounds having X = NHR (R = Me, Et, Buⁱ or CH₂Ph) have been obtained from the parent diamine $C_{20}H_{12}(NH_2)2^{.17.18}$ One of these, $R-C_{20}H_{12}(NHEt)2$ upon treatment with Li[AlH₄] in thf, yielded a solution believed to contain [Li{ $C_{20}H_{12}(NEt)2AH_2$], which was used for enantioselective reduction of alkyl phenyl ketones.

Results and Discussion

The parent diamine $C_{20}H_{12}(NH_2)_2$ I was synthesised by the reaction of 2-naphthol and hydrazine hydrate (98%) in a sealed glass cylinder at 180–190 °C.¹⁹ Careful purification was advantageous with respect to the subsequent resolution and reactions. Both enantiomers were readily obtained using (+)-camphor-10-sulfonic acid (7,7-dimethyl-2-oxobicyclo[2.2.1]-heptane-1-methanesulfonic acid) as the resolving agent.²⁰ The snow-white diamine was stored for long periods under argon at room temperature, without deteriorating.

The diamine I proved to be surprisingly resistant to silylation, e.g. using SiMe₃Cl and a base or hexamethyldisilazane and a catalytic amount of SiMe₃Cl. However, the N,N'-bis(trimethylsilyl)diamine II was obtained (90%) from R,S-I and N,Nbis(trimethylsilyl)acetamide in the presence of a trace of SiMe₃Cl [(i) in Scheme 1]. Acylation of R,S-I with Bu'C(O)Cl-NEt₃, yielding the N,N'-bis(pivaloyl)diamine C₂₀H₁₂[NH-C(O)Bu']₂ III [(ii) in Scheme 1], was more facile; III was readily reduced [(iii) in Scheme 1] to give the N,N'-bis(neopentyl)diamine IV. Similar reactions of R(+)- or S(-)-I gave the corresponding R and S derivatives II-IV. Each of II and IV was transformed into the appropriate dilithium diamide [{Li-(thf)}₂{C₂₀H₁₂(NR)₂}] 1 and 2 using LiBuⁿ-hexane-thf [(iv)

^{*} No reprints available.

Scheme 1 Synthesis of the N,N'-substituted derivatives II and IV of 2,2'-diamino-1,1'-binaphthyl I and their conversions into lithium salts, silanes and germanium and tin compounds. (i) MeC(O)N(SiMe_3)₂, SiMe_3Cl, 140–150 °C, 4 h; (ii) Bu'C(O)Cl, NEt₃, thf, 4 h reflux; (iii) Li[AlH₄], thf, 1.5 d reflux; (iv) LiBuⁿ, C₆H₁₄, 5 h; (v) LiBuⁿ, C₆H₁₄, 4 h, 25 °C; (vi) SiCl₄, C₆H₁₄, thf, 2 h relux; (vii) SnCl₂ or GeCl₂-diox, C₆H₁₄, thf, 5 h reflux; (viii) C₅H₁₂, O₂, 4 weeks

and (v) in Scheme 1]. Hydrolysis of the silvlated *R*-II and the lithiated *R*-II afforded in both cases optically pure R(+)-I, $[\alpha]_{589}^{25} = +164.5$ (c = 1.89, thf); therefore no racemisation occurred during any of the transformations $I \rightarrow II \rightarrow I$ or $I \rightarrow III \rightarrow IV \rightarrow 2$. Treatment of 1 or 2 with an equimolar portion of SiCl₄ afforded [(vi) in Scheme 1] the appropriate diaminodichlorosilane SiCl₂[$C_{20}H_{12}(NR)_2$] 3 or 4.

The reaction of the dilithium diamide $[{Li(thf)}_2 {C_{20}H_{12}}(NR)_2]$ 1 (R = SiMe₃) with SnCl₂ or GeCl₂-diox (diox = 1,4-dioxane) in hexane-thf yielded coloured solutions from which the corresponding tin(II) (5) or germanium(II) (6) amide was obtained, but not in a pure, crystalline form. (The orange-yellow foamy mass, obtained in both cases after the usual work-up, resisted crystallisation from various solvents.) Since purification of 5 or 6 was not achieved, their identification rests on their electron-impact (EI) mass spectra (giving parent molecular ions), and for 5 the ¹¹⁹Sn-{¹H} NMR spectrum and its derivatisation to produce the crystallographically characterised complex 7. Compound 5 showed as the major ¹¹⁹Sn NMR signal a peak at δ + 512. This highly deshielded value is characteristic for a homoleptic monomeric tin(II) amide.²¹

An attempted synthesis of the stannylene 5 from $Sn[N(SiMe_3)_2]_2$ and $C_{20}H_{12}[NH(SiMe_3]_2 II$ proved to be unsuccessful, and the lack of the reaction is attributed to the high steric demands of II. This result may be compared with the ready formation of $[Sn\{o-C_6H_4[N(SiMe_3)]_2\}]$ from $o-C_6H_4[NH(SiMe_3)]_2$ and $Sn[N(SiMe_3)_2]_2$.²²

The stannylene 5 was converted into the cyclotristannoxane $[{Sn[(NSiMe_3)_2C_{20}H_{12}](\mu-O)}_3]$ 7. Only a very few pale yellow crystals were obtained after slow (4 weeks) diffusion of molecular oxygen into a solution of 5 in pentane at room temperature. Cyclostannoxanes [{SnR₂(μ -O)}_x] (x = 2 or 3) are extremely rare. The sole structurally authenticated cyclo-2,4-distannoxane is $[{Sn(CHR_2)_2(\mu-O)_2}]$ (R = SiMe₃),²³ synthesised by oxidation of the stannylene $Sn(CHR_2)_2$ with Me₃NO. Access to the less strained Sn₃O₃ six-membered ring compounds having alkyl or aryl groups bonded to the tin has been by treatment of a di(hydrocarbyl)tin(IV) chloride (e.g. SnBu¹₂Cl₂) with NaOH. There are several examples of such cyclotristannoxanes which have been characterised by X-ray studies.²⁴ In contrast to these, amido-ligated cyclostannoxanes are even more rare. Treatment of the stannylene $Sn(NR_2)_2$ $(R = SiMe_3)$ with molecular oxygen gave the remarkable bis(μ - peroxo)-bridged tin(IV) complex [{Sn(NR₂)₂(μ -O₂)}₂],²⁵ while the cyclic stannylene [Sn{(NBu^t)₂SiMe₂]] and molecular oxygen gave an adduct of a compound containing an Sn₂O₂ four-membered ring, [{Sn[(NBu^t)₂SiMe₂](μ -O)}₂]•[{Sn₂-O[(NBu^t)₂SiMe₂]}₂].²⁶ Thus, complex 7 is the first cyclotri-(diamino)stannoxane, although a germanium analogue [{Ge(NR₂)₂(μ -O)}₃] is known.²⁷

Each of the compounds 1–4 and II–IV gave satisfactory C, H and N microanalyses (Table 1, which also documents their m.p.s) and NMR spectra (see Experimental section). Some data on the optically active compounds II–IV are listed in Table 2. Compounds 3–7 and II–IV showed parent molecular ions (Table 3, which also summarises their fragmentation) in their EI mass spectra.

The structures of crystalline compounds 1 and 2 (data for 2 in parentheses) are very similar, as shown in outline, together with atom labelling, in Fig. 1. Selected intramolecular bond lengths and angles are in Tables 4 (1) and 5 (2). There is a central Li(1)N(1)Li(2)N(2) buckled ring; this is certainly not due to intermolecular effects, as evident from the packing diagrams for 1 (Fig. 2) and 2 (Fig. 3), but is believed to be a consequence of the nature of the Li-N bonding (see below). (Another buckled NMNM ring was reported for $[{Na[\mu-N(Me)Ph](tmen)}_2]^{.28}$ The Li(1)-N(2) at 1.85(3) [1.92(3)] and Li(2)-N(1) 1.97(3) [1.94(3)] Å bonds are shorter than Li(1)-N(1) at 2.20(3) [2.13(3)] and Li(2)-N(2) 2.25(3) [2.24(3)] Å. The pairs of $SiMe_3$ (1) or CH_2Bu^t (2) substituents at N(1) and N(2) are *cis* to one another. Each $C(sp^2)$ -N bond of one unit, e.g. N(1)-C(1), is related in an η^2 fashion to the lithium atom of the neighbouring unit, e.g. Li(1)-C(1) 2.26(3) [2.23(3)] Å. Each nitrogen atom lies in a trigonal-planar environment with respect to the attached $C(sp^2)$, Si[$C(sp^3)$], and Li atoms: e.g. Li(2)–Si(1)–C(1) have N(1) as their coplanar centroid: C(1)-N(1)-Si(1)[C(21)] 130(1)[119(1)], C(1)-N(1)-Li(2) 118(1) [122(1)] and Si(1)[C(21)]-N(1)-Li(2) 111(1) [117(1)]°, with C(1)-N(1) 1.37(2) [1.39(2)] and Si(1)[C(21)]-N(1) 1.71(1) [1.46(2)] Å. The atom Li(1) tends towards being orthogonal to the Li(2)Si(1)C(1)N(1) plane [and conversely Li(2) with respect to Li(1)Si(2)C(2)N(2)]; cf. Li(1)-N(1)-Li(2) 81(1), Li(1)-N(1)-Si(1) 123(1) and Li(1)-N(1)-C(1) 75(1)°. This, together with the shorter Li(2)-N(1) bond compared with Li(1)-N(1), suggests that N(1) uses sp² hybrid orbitals in its bonds to Li(2), Si(1) and C(1) and its orthogonal p orbital to bind to Li(1); similarly, N(2) uses sp²

Table 1 Melting points and analytical data for the R,S compounds 1-4 and II-IV

		Analysis (%) *		
Compound	M.p. (°C)	C	Н	N
$\frac{1 [{Li(thf)}_{2} \{C_{20}H_{12}(NSiMe_{3})_{2}\}]}{2 [{Li(thf)}_{2} \{C_{20}H_{12}(NCH_{2}Bu')_{2}\}]}$	\approx 150 (decomp.) ≈130 (decomp.)	68.6 (69.8) 78.1 (77.5)	8.50 (7.95) 8.60 (9.95)	4.00 (4.80) 4.80 (4.75)
$3 \operatorname{SiCl}_{2}[C_{20}H_{12}(NSiMe_{3})_{2}]$	149154	59.0 (59.4)	5.45 (5.75)	5.20 (5.35)
4 $SiCl_2[C_{20}H_{12}(NCH_2Bu')_2]$ II $C_{20}H_{12}(NHSiMe_3)_2$ III $C_{20}H_{12}(NHCOBu')_2$ IV $C_{20}H_{12}(NHCH_2Bu')_2$	≈210 (decomp.) 147–149 171–174 116–117	68.6 (69.1) 79.5 (79.6) 84.7 (84.9) 72.8 (72.8)	6.00 (6.55) 7.50 (7.15) 8.60 (8.55) 7.50 (7.50)	5.25 (5.35) 6.10 (6.20) 6.50 (6.60) 6.50 (6.55)

* Calculated values in parentheses.

 Table 2
 Some properties of the optically active compounds

		Optical o	Optical data *	
Compound	M.p. (°C)	$\left[\alpha\right]_{589}^{T}$	<i>T/</i> °C	
II $R-C_{20}H_{12}$ (NHSiMe ₃) ₂	59	- 43.6	25	
$S-C_{20}H_{12}(NHSiMe_3)_2$	59	+48.5	23	
III R -C ₂₀ H ₁₂ (NHCOBu ^t) ₂	102-106	+86.6	25	
$S-C_{20}H_{12}(NHCOBu^{1})_{2}$	102-106	-92.2	25	
IV $R-C_{20}H_{12}(\text{NHCH}_2\text{Bu}^{t})_2$	112-115	+6.5	27	
$S-C_{20}H_{12}(NHCH_2Bu^{t})_2$	112–115	-6.1	20	
* Optical rotations were measured	ed in thf.			

Table 3 Principal mass spectral features with relative intensities and assignments $(M^+ = \text{parent molecular ion})$

Compound	m/z (%, assignment)
3	524 (62, M^+), 509 (100, $[M - Me]^+$), 451 (4, $[M -$
	$SiMe_3$] ⁺)
4	$520(15, M^+), 463(100, [M - CMe_3]^+)$
Π	428 (82, M^+), 413 (18, $[M - Me]^+$), 355 (16, $[M -$
	$SiMe_3$] ⁺), 340 (40, $[M - SiMe_3]^+$), 325 (68, $[M -$
	$SiMe_3 - Me]^+$
III	$453(8, M^+), 396(1, [M - CMe_3]^+)$
IV	$424(12, M^+), 367(16, [M - CMe_3]^+)$
5	$564(32, M^+), 531(25, [M - Me]^+)$
6	$500(40, M^+), 548(21, [M - Me]^+)$
7	1684 (2, <i>M</i> ⁺)

Table 4 Selected intramolecular distances (Å) and angles (°) for $[{Li(thf)}_2{C_{20}H_{12}(NR)_2}] 1 (R = SiMe_3)$

Si(1) - N(1)	1.711(15)	N(1)-C(1)	1.37(2)
Si(2) - N(2)	1.713(12)	N(2)-C(20)	1.38(2)
O(1) - Li(2)	1.85(3)	C(1) - Li(1)	2.26(3)
O(2) - Li(1)	1.92(3)	C(20) - Li(2)	2.25(3)
N(1) - Li(2)	1.97(3)	N(1) - Li(1)	2.20(3)
N(2) - Li(1)	1.85(3)	N(2)-Li(2)	2.25(3)
Si(1)-N(1)-C(1)	130(1)	Si(2)-N(2)-C(20)	129.3(9)
Si(1)-N(1)-Li(2)	111(1)	Si(2)-N(2)-Li(1)	113(1)
C(1)-N(1)-Li(2)	118(1)	C(20)-N(2)-Li(1)	117(1)
C(1)-N(1)-Li(1)	75(1)	C(20)-N(2)-Li(2)	72(1)
N(1)-Li(1)-N(2)	100(1)	N(1)-Li(2)-N(2)	94(1)
N(1)-C(1)-C(10)	121(1)	N(2)-C(20)-C(11)	122(1)
C(30)-O(1)-Li(2)	136(1)	C(30)-O(2)-Li(1)	121(1)
C(34)-O(2)-Li(1)	134(1)	Si(1)-N(1)-Li(1)	123(1)
Si(2)-N(2)-Li(2)	108.8(8)	Li(1)-N(1)-Li(2)	81(1)
Li(1)-N(2)-Li(2)	82(1)	N(2)-C(20)-Li(2)	72(1)
C(11)-C(20)-Li(2)	84(1)	C(19)-C(20)-Li(2)	112(1)
O(2)-Li(1)-N(1)	126(1)	O(2)-Li(1)-N(2)	134(2)
O(2)-Li(1)-C(1)	109(1)	N(2)-Li(1)-C(1)	108(1)
N(1)-Li(1)-N(2)	100(1)	N(1)-Li(1)-C(1)	35.8(6)
O(1)-Li(2)-N(1)	127(2)	O(1)-Li(2)-N(2)	136(2)
O(1)-Li(2)-C(20)	110(1)	N(2)-Li(2)-C(20)	35.6(7)
N(1)-Li(2)-N(2)	94(1)	N(1)-Li(2)-C(20)	104(1)

hybrids in bonding to Li(1), Si(2) and C(2) and the remaining p orbital to bind to Li(2), and a similar picture may apply to 2; we

Fig. 1 Molecular structure of (a) [$\{Li(thf)\}_2 \{C_{20}H_{12}(NR)_2\}$] 2 (R = CH₂Bu') and the atom numbering scheme; (b) the central skeletal arrangement for [$\{Li(thf)\}_2 \{C_{20}H_{12}(NR)_2\}$] (R = SiMe₃ 1 or CH₂Bu' 2)

thank a referee for this suggestion. Each lithium atom has four near neighbours: two nitrogens, one oxygen $\{Li(2)-O(1) \ 1.85(3) \ 1.85(3)\}$, $Li(1)-O(2) \ 1.92(3) \ 1.90(3)\}$ and an *ipso*-carbon, $Li(2)-C(20) \ 2.25(3) \ 2.22(3)\}$ Å. The dihedral angle between the two naphthyl planes is 81° in 2, 78° in 1. The distance of the nitrogen atoms from the least-squares plane of each naphthyl unit is $0.31 \ 0.18\}$ Å for N(1) and $0.37 \ 0.31\}$ Å for N(2). The carbon atoms of each naphthyl group are coplanar with a maximum deviation of $0.08 \ 0.054\}$ Å.

The structure of the crystalline R,S-cyclotristannoxane 7, with atom labelling, is shown in Fig. 4. Selected bond lengths and angles are given in Table 6. The molecular structure has a planar (SnO)₃ core, each tin(IV) centre being attached to the chelating $C_{20}H_{12}[N(SiMe_3)]_2$ ligand. The pairs of SiMe₃

Table 5 Selected intramolecular distances (Å) and angles (°) for $[\{Li(thf)\}_2\{C_{20}H_{12}(NR)_2\}]$ 2 $(R=CH_2Bu^t)$

O(1)-Li(2)	1.85(3)	N(2)-Li(2)	2.24(3)
O(2) - Li(1)	1.90(3)	N(1)-C(1)	1.39(2)
N(1) - Li(1)	2.13(3)	N(2) - C(20)	1.38(2)
N(1)-Li(2)	1.94(3)	C(1)-Li(1)	2.23(3)
N(2)-Li(1)	1.92(3)	C(20)–Li(2)	2.22(3)
C(1)-N(1)-C(21)	119(1)	C(20)-N(2)-C(23)	117(1)
C(1)-N(1)-Li(2)	122(1)	C(20)-N(2)-Li(1)	125(1)
C(21)-N(1)-Li(2)	117(1)	C(23)-N(2)-Li(1)	118(1)
C(1)-N(1)-Li(1)	75(1)	C(20)-N(2)-Li(2)	71.3(9)
N(1)-Li(1)-N(2)	99(1)	N(1)-Li(2)-N(2)	95(1)
N(1)-C(1)-C(10)	119(1)	N(2)-C(20)-C(11)	117(1)
C(28)-O(1)-Li(2)	124(1)	C(25)-O(1)-Li(2)	119(1)
C(29)-O(2)-Li(1)	117(1)	C(21)-N(1)-Li(1)	121(1)
Li(1)-N(1)-Li(2)	78(1)	C(23)-N(2)-Li(2)	132(1)
Li(1)-N(2)-Li(2)	76(1)	N(1)-C(1)-Li(1)	68(1)
C(10)-C(1)-Li(1)	92(1)	N(2)C(20)Li(2)	72.7(9)
C(11)-C(20)-Li(2)	80(1)	C(19)-C(20)-Li(2)	112(1)
O(2)-Li(1)-N(1)	114(1)	O(2)-Li(1)-N(2)	124(2)
O(2)-Li(1)-C(1)	131(1)	O(2)-Li(1)-Li(2)	118(1)
N(1)-Li(1)-C(1)	37.0(6)	N(1)-Li(1)-Li(2)	47.4(8)
N(2)-Li(1)-C(1)	102(1)	N(2)-Li(1)-Li(2)	57.4(9)
C(1)-Li(1)-Li(2)	73(1)	O(1)-Li(2)-N(1)	142(1)
O(1)-Li(2)-N(2)	117(1)	O(1)-Li(2)-C(20)	112(1)
N(1)-Li(2)-C(20)	106(1)	N(2)-Li(2)-C(20)	36.0(6)

Fig. 2 Crystal packing of complex 1

Fig. 3 Crystal packing of complex 2

substituents are now, in contrast to compounds 1 and 2, *trans* to one another. Also, unlike in 1 or 2, there is no evidence of a close $M \cdot \cdot C(sp^2)$ contact. The sum of angles at the N atoms is approximately 358°, with respect to the attached $C(sp^2)$, Si[$C(sp^3)$], and Sn atoms, consistent with there being a trigonal-planar environment at the nitrogens, with N(3)–C(27) 1.45(3) and N(3)–Si(3) 1.82(3) Å. The Sn–O bond lengths, which

Table 6 Selected intramolecular distances (Å) and angles (°) for $[{Sn[(NSiMe_3)_2C_{20}H_{12}](\mu-O)}_3]7$

Sn(1)-O(2)	1.76(4)	Sn(1)-O(1)	1.90(2)
Sn(1)-N(1)	2.07(3)	Sn(1)-N(2)	2.02(3)
Sn(2)-O(2)	1.76(4)	Sn(2)-O(3)	1.79(3)
Sn(2)-N(3)	1.91(2)	Sn(2)-N(4)	2.03(3)
Sn(3)-O(1)	1.87(2)	Sn(3)-O(3)	1.93(3)
Sn(3)-N(5)	2.03(2)	Sn(3)-N(6)	1.99(2)
O(2)-Sn(1)-O(1) O(2)-Sn(2)-O(3) O(1)-Sn(3)-O(3) N(1)-C(1)-C(10) Sn(1)-O(1)-Sn(3) Sn(1)-O(2)-Sn(2)	118.7(14) 119.4(14) 111.2(9) 124(3) 122.8(12) 123(2)	N(2)-Sn(1)-N(2) N(3)-Sn(2)-N(4) N(6)-Sn(3)-N(5) N(2)-C(20)-C(11) Sn(2)-O(3)-Sn(3)	101.6(11) 100.5(10) 103.1(10) 122(3) 124.5(14)

Fig. 4 Molecular structure of (a) $[{Sn[(NSiMe_3)_2C_{20}H_{12}](\mu-O)}_3]7$ and the atom numbering scheme; (b) the central skeletal arrangement for one unit Sn(2)N(3)N(4)Si(3)Si(4)C(46)C(27)

are within the range 1.76(4)–1.93(3) Å, are shorter than typical for related tin(1V) complexes; e.g. $\langle Sn-O \rangle$ 1.987(7) Å for [$\{Sn(NR_2)_2(\mu-O_2)\}_2$]²⁵ or 1.96–1.99 Å for the cyclotristannoxane [$\{SnR_2(\mu-O)\}_3$] (R = C₆H₂Me₃-2,4,6).²⁴ The O–Sn–O angles [111.2(9)–119.4(14)°], are somewhat larger than a tetrahedral value, while the N–Sn–N angles are considerably smaller [100.5(10)–103.1(10)°]. The Sn–O–Sn angles range from 122.8(12) to 124.5(14)°; thus the endocyclic angles at tin are narrower than those at oxygen. The Sn–N bond lengths, 1.91(2)–2.07(3) Å, are significantly shorter than in amidostannylenes, e.g. 2.096(1) and 2.088(6) Å in Sn(NR₂)₂ (R = SiMe₃)²⁹ or 2.098(5) and 2.093(5) Å in [$\{Sn[o-$

 $C_6H_4\{N(SiMe_3)\}_2]\}_2]$ -tmen.²² The N–Si bond lengths range from 1.69(2) to 1.82(3) Å. The dihedral angles of all three binaphthalene groups attached to Sn(1), Sn(2) and Sn(3) are 72° for Sn(1) and Sn(2) but 69° for Sn(3), and therefore clearly smaller than those observed for the lithium derivatives 1 (78) and 2 (81°).

Experimental

All synthetic work was carried out under argon using standard Schlenk techniques. Tetrahydrofuran, pentane and hexane were predried over sodium wire, distilled from sodium-potassium alloy and stored over molecular sieves (4 Å). Triethylamine was dried over sodium wire. Deuteriated solvents (C_6D_6 and CDCl₃) were stored over molecular sieves (4 Å). Triethylamine, chlorotrimethylsilane, lithium aluminium hydride, (+)camphor-10-sulfonic acid, 2-naphthol, pivaloyl chloride and tetrachlorosilane (Aldrich), N,N-bis(trimethylsilyl)acetamide (Lancaster) and 1.6 mol dm⁻³ LiBuⁿ in hexane (FMC Corporation) were used without further purification. The racemic R,S-2,2'-diamino-1,1'-binaphthyl I was prepared by a literature procedure.⁵ The NMR spectra were recorded on a Bruker AC 250 at 250 (¹H), 62.86 (¹³C-{¹H}) and 97.16 MHz $(^{7}Li-\{^{1}H\})$ or AMX 500 spectrometer at 99.33 MHz ($^{29}Si-\{^{1}H\}$) and referenced internally to residual solvent resonances, EI mass spectra on solid samples using a Kratos MS80RF spectrometer. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter. Elemental analyses were performed by Medac Ltd., Brunel University. Melting points were determined in sealed capillaries and are uncorrected.

Preparations

R, S-2, 2'-Diamino-1,1'-binaphthyl and the R and S enantiomers. In a typical experiment, 2-naphthol (35 g) and hydrazine hydrate (6.08 g, 98%) were sealed under argon in a Carius tube and heated at 180-190 °C for 5 d. After cooling and carefully opening the tube, the orange-yellow gummy mass was treated with ethyl acetate-hexane (1:1, 100 cm³), whereupon the product precipitated. The supernatant orange solution was removed and the washing procedure repeated until the gummy mass disappeared and the washings remained colourless to slightly yellow. The crude residual diamine was filtered off, dissolved in tetrahydrofuran and filtered again. Concentration and cooling the filtrate to -30 °C yielded the crystalline product, which was isolated and dried in vacuo. Finally the diamine was washed by stirring in pentane, yielding a freeflowing, white powder (20-27%) after filtration and evaporation to dryness, m.p. 192-193 °C. Optical resolution was effected with (+)-camphor-10-sulfonic acid according to the literature: $[\alpha]_{589}^{25}$ + 164.2 (c = 1.75, thf) for R-I, -167.2 (c = 1.72, thf) for S-I; $[\alpha]_{589}^{22}$ +157.4 (c = 0.712, pyridine) for R-I, $[\alpha]_{589}^{23}$ $-153.0 (c = 0.758, \text{ pyridine}) \text{ for } S-I.^{1}$

R,S-2,2'-Bis(trimethylsilylamino)-1,1'-binaphthyl II and its *R* and *S* enantiomers. *N*,*N*-Bis(trimethylsilyl)acetamide (8.58 g, 42.6 mmol) was added at room temperature to racemic compound I (2.0 g, 7.0 mmol) and a few drops of SiMe₃Cl. The stirred reaction mixture was rapidly warmed to reflux temperature until I had dissolved. After refluxing for 4 h at 150 °C to ensure complete silylation, the volatiles were removed under vacuum. The residue was extracted into hexane (20 cm³). Cooling the extract to -20 °C afforded colourless crystals of compound II (2.71 g, 90%). NMR (CDCl₃): ¹H, δ 0.18 [s, 18 H, Si(CH₃)₃], 3.53 (s, 2 H, NH) and 7.23–7.92 (m, 12 H, H of naphthyl); ¹³C, δ 1.92 (SiC₃) and 112.58–142.64 (C of naphthyl); ²⁹Si, δ 3.48.

Similar treatment of R(+)- or S(-)-I with bis(trimethylsilyl)acetamide afforded the corresponding optically active compounds R- and S-II in comparable yields, purified by distillation at 175 °C (10^{-6} mmHg, *ca.* 1.33 × 10^{-4} Pa) to yield the glassy solids.

R,*S*-2,2'-Bis(pivaloylamino)-1,1'-binaphthyl III and its *R* and *S* enantiomers. Pivaloyl chloride (2.54 g, 21.1 mmol) was added dropwise at room temperature to a stirred solution of racemic compound I (3.0 g, 10.5 mmol) in thf (50 cm³) and NEt₃ (4.27 g, 42.2 mmol). The mixture was refluxed for 4 h then stirred for 3 h. The precipitate was filtered off and washed with thf (20 cm³). The volatiles were removed from the filtrate under vacuum. The foamy residue was treated with EtOH (10 cm³) whereupon III began to crystallise. Recrystallisation from EtOH yielded colourless crystals (4.58 g, 96%). NMR (CDCl₃): ¹H, δ 0.76 [s, 18 H, C(CH₃)₃] and 7.17–8.07 (m, 12 H, H of naphthyl); ¹³C, δ 26.79 [C(CH₃)₃], 39.27 [C(CH₃)₃], 121.12–135.06 (C of naphthyl) and 177.01 (CO).

The corresponding R and S enantiomers were prepared similarly from the appropriate R- and S-diamine II.

R,S-2,2'-Bis(neopentylamino)-1,1'-binaphthyl IV and its R and S enantiomers. A solution of compound R,S-III (4.0 g, 8.8 mmol) in thf (50 cm³) was added dropwise to a stirred suspension of $Li[AlH_4]$ (2.0 g, 52.7 mmol) in thf (100 cm³). The mixture was heated under reflux for 1.5 d. The cooled (0 °C) reaction mixture was carefully quenched by addition of water (20 cm^3) . The precipitate was filtered off and washed with Et₂O $(2 \times 20 \text{ cm}^3)$. The combined filtrate and washings were evaporated under reduced pressure, and extracted into pentane (20 cm³); the extract was concentrated and cooled (-20 °C) yielding colourless crystals of compound IV (3.60 g, 96%). NMR (CDCl₃): ¹H, δ 0.68 [s, 18 H, C(CH₃)₃], 2.92 (d, 2 H, J 12.6, CH₂Bu^t), 2.99 (d, 2 H, J 12.6 Hz, CH₂Bu^t), 3.83 (br s, 2 H, NH) and 7.04–7.91 (m, 12 H, H of naphthyl); ¹³C, δ 27.22 [C(CH₃)₃], 32.32 [C(CH₃)₃], 55.72 (CH₂Bu^t) and 111.65-144.69 (C of naphthyl).

The analogous R and S compounds were prepared similarly.

 $[{Li(thf)}_{2} \{C_{20}H_{12}(NR)_{2}\}]$ *R*,*S*-Dilithiodiamides $(\mathbf{R} =$ SiMe₃ 1 or CH₂Bu^t 2). n-Butyllithium (1.46 cm³ of a 1.6 mol dm⁻³ solution in hexane, 2.3 mmol) was added dropwise to a stirred solution of the R,S-diamine II or IV (0.5 g, 1.2 mmol) in hexane (50 cm³). The mixture was stirred for 5 h, then heated to gentle reflux while thf was slowly added by a syringe until the precipitate had dissolved. Slow cooling to room temperature afforded yellow-orange crystals of 2 (0.62 g, 91%) or yellow crystals of 1 (0.58 g, 85%). Complex 1: NMR (C_6D_6), ¹H, δ 0.41 [s, 18 H, Si(CH₃)], 0.85 (m, 8 H, thf), 2.95 (m, 8 H, thf) and 6.72-7.56 (m, 12 H, H of naphthyl); ¹³C, δ 2.76 (SiC₃), 25.14 (thf), 68.07 (thf) and 120.06–155.03 (C of naphthyl); $^{29}\mathrm{Si},\,\delta$ - 11.68; ⁷Li, δ 0.38. Complex **2**: NMR (C₆D₆), ¹H, δ 1.01 [s, 18] H, C(CH₃)₃], 1.07 (m, 8 H, thf), 2.90 (m, 8 H, thf), 3.03 (d, 2 H, J 12.4, CH₂Bu^t), 3.47 (d, 2 H, J 12.6 Hz, CH₂Bu^t) and 6.80-7.71 (m, 12 H, H of naphthyl); ¹³C, δ 25.01 (thf), 28.99 [C(CH₃)₃], 33.71 [C(CH₃)₃], 62.48 (CH₂Bu^t), 67.86 (thf) and 113.43-157.53 (C of naphthyl); ⁷Li, δ 0.14.

R,S-Dichlorosilanes $\operatorname{SiCl}_2[\operatorname{C}_{20}H_{12}(\operatorname{NR})_2]$ (R = SiMe₃ 3 or CH₂Bu' 4). Addition of SiCl₄ (0.33 g, 1.9 mmol for 1; or 0.46 g, 2.7 mmol for 2) to a solution of complex 1 (1.16 g, 1.9 mmol) or 2 (1.60 g, 2.7 mmol) in hexane-thf (2:1, 30 cm³) at room temperature and refluxing for 2 h afforded 3 or 4; 3 was filtered through Celite and obtained as a pale yellow powder (0.88 g, 84%). NMR (CDCl₃): ¹H, δ -0.27 [s, 18 H, Si(CH₃)₃] and 7.23-7.92 (m, 12 H, H of naphthyl); ¹³C, δ 1.49 (SiC₃) and 124.96-140.32 (C of naphthyl); ²⁹Si, δ -32.61 (SiCl₂) and 10.30. Colourless crystalls of 4 (1.27 g, 89%) were obtained after filtration and recrystallisation from hexane. NMR (CDCl₃): ¹H, δ 0.34 [s, 18 H, C(CH₃)₃], 3.20 (d, 2 H, J 14.3, CH₂Bu'), 3.51 (d, 2 H, J 14.3 Hz, CH₂Bu') and 7.13-7.97 (m, 12 H, H of naphthyl); ¹³C, δ 27.61 [C(CH₃)₃], 34.07 [C(CH₃)₃], 57.22

Table 7 Crystallographic data* and refinement for the complexes $[{Li(thf)}_2 \{C_{20}H_{12}(NR)_2\}]$ (R = SiMe₃ 1 or CH₂Bu¹ 2) and $[{Sn}[(NSiMe_3)_2C_{20}H_{12}](\mu-O)]_3]$ 7

	1	2	7
Formula	$C_{34}H_{46}Li_2N_2O_2Si_2$	$C_{38}H_{50}Li_2N_2O_2$	C78H90N6O3Si6Sn3
М	584.8	580.7	1684.2
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	$P2_1/c$	$P2_1/c$	$Pca2_1$
a/Å	10.062(3)	15.002(6)	32.166(11)
b/Å	23.224(7)	10.687(4)	14.109(3)
c/Å	15.005(5)	21.682(7)	19.695(8)
β/°	106.23(3)	91.54(3)	
$U/Å^3$	3366	3475	8938
$\dot{D_c}/\mathrm{g}\mathrm{cm}^{-3}$	1.15	1.11	1.25
F(000)	1256	1256	3432
N (total unique)	4256	4537	5669
$N_0[I > 2\sigma(I)]$	1630	1589	3575
Specimen/mm	$0.2 \times 0.2 \times 0.1$	$0.4 \times 0.2 \times 0.1$	$0.3 \times 0.3 \times 0.2$
R	0.116	0.124	0.091
R'	0.109	0.116	0.276
S	1.8	2.0	1.1
µ/cm ⁻¹	1.3	0.6	9.6
- 4: Ma Ka radiat	$ion (1 - 0.7107 \text{ Å}) \cdot 17'$	$\mathbf{V} \cdot \mathbf{P} = \mathbf{\Sigma} \langle \mathbf{E} \rangle$	$ \nabla \mathbf{r} \mathbf{r} \mathbf{r} = \mathbf{r} + $

* Details in common: Z = 4; Mo-K α radiation ($\lambda = 0.7107$ Å); 173 K; $R = \Sigma(|F_o| - |F_c|)/\Sigma|F_o|$ for $I > 2\sigma(I)$; for 1 and 2, $R' = [\Sigma(|F_o| - |F_c|)^2/\Sigma|F_o|^2]^{\frac{1}{2}}$ for $I > 2\sigma(I)$; for 7, $R' = [\Sigma(|F_o| - |F_c|^2)^2/\Sigma(|F_o|^2)^2]^{\frac{1}{2}}$ for all data. For 1 and 2 $w = \sigma^{-2}(F)$ and for 7 w is as defined in ref. 30.

(CH₂Bu^t) and 122.61–143.18 (C of naphthyl); ²⁹Si, δ –31.00 (SiCl₂).

R,S-Amido-stannylene and -germylene, $[M\{C_{20}H_{12}[N(Si-Me_3)]_2\}]$ (M = Sn 5 or Ge 6). Addition of SnCl₂ (0.45 g, 2.4 mmol for 5) or GeCl₂-diox (0.51 g, 2.2 mmol for 6) to a solution of complex 1 (1.4 g, 2.4 mmol for 5; or 1.3 g, 2.2 mmol for 6) in hexane-thf (2:1, 100 cm³) at room temperature and refluxing for 5 h afforded 5 or 6. Removal of the solvent *in vacuo* from the filtrate yielded in both cases an orange-yellow foamy mass, which was dissolved in hexane and filtered again. Crystals of 5 or 6 were not obtained from different solvents, at room temperature or at -30 °C.

X-Ray quality single crystals of $[{Sn[NSiMe_3)_2C_{20}H_{12}](\mu-O)}_3]$ 7. A dilute solution of compound 5 in pentane was kept in a Schlenk tube at room temperature for about 4 weeks. During this time complex 7 crystallised in the form of pale yellow crystals, owing to slow diffusion of molecular oxygen into the tube. Only a very few crystals were obtained and these were used for crystallographic studies.

Crystallography

Details are given in Table 7. Data for complexes 1 and 2 were collected on an Enraf-Nonius CAD4 diffractometer. Intensities for $h k \pm l$ reflections with $2 < \theta < 22^{\circ}$ were measured by θ -2 θ scans. Reflections with $|F^2| > 2\sigma(F^2)$, where $\sigma(F^2) = [\sigma^2(I) + (0.04I)^2]^{\frac{1}{2}}/L_p$ were considered to be observed. No correction was applied for absorption. The structure was solved *via* direct methods using SHELXS 86,³¹ with Si atoms refined anisotropically for 1, otherwise all non-H isotropically by full-matrix least squares on F using the Enraf-Nonius MOLEN program package.³² Hydrogen atoms were held fixed at calculated positions with $U_{iso} = 1.3U_{eq}$ for the parent atom. For both crystals the diffraction was weak at high angle and because of the limited significant reflections anisotropic refinement was not justified.

For complex 7 a unique data set was collected, using a single crystal as above. A correction was made for absorption based on ψ scans; maximum 1.00, minimum 0.82. The structure was solved by direct methods and difference maps using SHELXS 86³¹ and refined by full-matrix least squares on F^2 using SHELXL 93³⁰ with Sn and Si atoms anisotropic, C, N and O isotropic and H atoms in riding mode with $U_{iso}(H) =$

 $1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl groups. The absolute structure parameter refined to 0.04(8). The combination of rather broad diffraction peaks and a long *a* axis caused some problems of peak overlap which reduced the accuracy of the data.

Atomic coordinates, thermal parameters, and bond length and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1996, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/144.

Acknowledgements

We thank the EPSRC for support and Dr. F. Reed (FMC) for *n*-butyllithium.

References

- B. J. Wakefield, Best Synthetic Methods: Organolithium Methods, Academic Press, London, 1988; L. Brandsma and H. Verkuijsse, Preparative Polar Organometallic Chemistry 1, Springer, Berlin, 1987; D. Seebach, Angew. Chem., Int. Ed. Engl., 1988, 27, 1624; G. Boche, Angew. Chem., Int. Ed. Engl., 1989, 28, 277.
- 2 W. N. Setzer and P. v. R. Schleyer, Adv. Organomet. Chem., 1985, 24, 353.
- 3 P. J. Cox and N. S. Simpkins, Tetrahedron: Asymmetry, 1991, 2, 1.
- 4 K. Gregory, P. v. R. Schleyer and R. Snaith, Adv. Inorg. Chem., 1991, 37, 47; R. E. Mulvey, Chem. Soc. Rev., 1991, 20, 167; U. Olsher, R. M. Izatt, J. S. Bradshaw and N. K. Dalley, Chem. Rev., 1991, 91, 137; D. B. Collum, Acc. Chem. Res., 1993, 26, 227; T. Koizumi, K. Morihashi and O. Kikuchi, Bull. Chem. Soc. Jpn., 1996, 69, 305.
- M. F. Lappert, M. J. Slade, A. Singh, J. L. Atwood, R. D. Rogers and R. Shakir, *J. Am. Chem. Soc.*, 1993, **105**, 302; L. M. Engelhardt, A. S. May, C. L. Raston and A. H. White, *J. Chem. Soc.*, *Dalton Trans.*, 1983, 1671; (b) L. M. Engelhardt, B. S. Jolly, P. C. Junk, C. L. Raston, B. W. Skelton and A. H. White, *Aust. J. Chem.*, 1986, **39**, 1337.
- 6 T. Fjeldberg, P. B. Hitchcock, M. F. Lappert and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1984, 822.
- 7 D. J. Brauer, H. Bürger and G. R. Liewald, J. Organomet. Chem., 1986, 308, 119.
- 8 D. J. Brauer, H. Bürger, G. R. Liewald and J. Wielke, J. Organomet. Chem., 1985, 287, 305.
- 9 L. H. Gade and N. Mahr, J. Chem. Soc., Dalton Trans., 1993, 489.
- 10 L. H. Gade, C. Becker and J. W. Lauher, *Inorg. Chem.*, 1993, 32, 2308.

- 11 M. F. Lappert, C. L. Raston, B. W. Skelton and A. H. White, J. Chem. Soc., Chem. Commun., 1982, 14.
- 12 P. B. Hitchcock, M. F. Lappert, W.-P. Leung and P. Yin, J. Chem. Soc., Dalton Trans., 1995, 3925.
- 13 A. W. Duff, P. B. Hitchcock, M. F. Lappert, R. G. Taylor and J. A. Segal, J. Organomet. Chem., 1985, 293, 271.
- 14 L. M. Engelhardt, W.-P. Leung, C. L. Raston, G. Salem, P. Twiss and A. H. White, J. Chem. Soc., Dalton Trans., 1988, 2403.
- 15 C. Rosini, L. Francini, A. Raffaelli and P. Salvadori, Synthesis, 1992, 503; H. Takaya and R. Noyori, Acc. Chem. Res., 1990, 23, 345; S. Otsuka and H. Tani, Synthesis, 1991, 665.
- 16 See F. Fabris and O. de Lucchi, J. Organomet. Chem., 1996, 509, 15
- 17 S. Miyano, M. Nawa, A. Mori and H. Hashimoto, Bull. Chem. Soc. Jpn., 1984, 57, 2171.
- 18 K. Kabuto, T. Yoshida, S. Yamaguchi, S. Miyano and H. Hashimoto, J. Org. Chem., 1985, 50, 3013.
- Y. Yamamoto, A. Sakamoto, T. Nishioka, J. Oda and Y. Fukazawa, J. Org. Chem., 1991, 56, 1112.
 K. J. Brown, M. S. Berry and J. R. Murdoch, J. Org. Chem., 1985,
- 50, 4345.
- 21 H. Braunschweig, R. W. Chorley, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1992, 1311.
- 22 H. Braunschweig, B. Gehrhus, P. B. Hitchcock and M. F. Lappert, Z. Anorg. Allg. Chem., 1995, 621, 1922.

- 23 M. A. Edelman, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1990, 1116.
- 24 V. K. Belsky, N. N. Zemlyonsky, I. V. Borisova, N. D. Kolosova and I. P. Beletskaya, J. Organomet. Chem., 1983, 254, 189; H. Puff, W. Schuh, R. Sievers, W. Wald and R. Zimmer, J. Organomet. Chem., 1984, 260, 271; S. Masamune, L. R. Sita and D. J. Williams, J. Am. Chem. Soc., 1983, 105, 630.
- 25 R. W. Chorley, P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Chem. Commun., 1992, 525.
- 26 M. Veith and O. Recktenwald, Z. Anorg. Allg. Chem., 1979, 459, 208. 27 M. Veith, M. Nötzel, L. Stahl and V. Huch, Z. Anorg. Allg. Chem.,
- 1994, 620, 1264.
- 28 P. C. Andrews, D. R. Armstrong, W. Clegg, M. MacGregor and R. E. Mulvey, J. Chem. Soc., Chem. Commun., 1991, 497.
- 29 T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1983, 639.
- 30 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993
- 31 G. M. Sheldrick, in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, 1985, p. 175.
- 32 C. K. Fair, MOLEN, Structure Determination System, Enraf-Nonius, Delft, 1990.

Received 29th March 1996; Paper 6/02230H